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NOVIKOV’S CUT ELIMINATION

Luca Bellotti

Abstract

This is an exposition of Novikov’s cut-elimination procedure for a Hilbert-style 
formulation of the first-order predicate calculus, which depends on a property of 
formulas introduced by him, called ‘regularity’. A comparison with other methods 
is outlined.
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1.  Introduction

Our purpose in this paper is to explain the interesting, original reduction 
procedure invented by Pëtr Sergeevich Novikov1 by means of the notion of 
regularity (regulyarnost’) of formulas, to obtain what amounts to (a sort of) 
cut elimination for a Hilbert-style formulation of the first-order predicate 
calculus.

The notion of regularity (a form of cut-free derivability) was first intro-
duced by Novikov in (1939), and then developed in (1943), with reference 
to infinitary derivations in a system for the propositional calculus admitting 
countable conjunctions and disjunctions.2 Novikov’s work was reviewed 
by Church in (1946), a bit tepidly and apparently without appreciating the 
novelty of the approach, and, much later, well described (and compared 
with similar results in the West, on which it does not depend) by Jon Barwise 
(1981, esp. Appendix), Grigori Mints (in his survey of Soviet proof theory, 
1991, 387 ff.) and Sergei Tupailo (1992).3 Thierry Coquand (1995) deeply 

1  We only recall here that P. S. Novikov (1901–1975) was one of the foremost Soviet 
mathematicians of the last century, especially renowned for his contributions to classical 
descriptive set theory and his work on the borderline of logic and group theory (work of 
epic difficulty, done in part in collaboration with his pupil Adian).

2  One is strongly reminded of Tait’s work (1968), carried out independently (and in 
greater generality) almost thirty years later. A comparison could be useful, as an anonymous 
referee rightly remarked, but will not be given here, since I chose to focus on Novikov’s spe-
cific work on finitary systems, neglected in the literature.

3  Tupailo considered an infinitary system also for predicate logic (embedding finitary 
predicate logic into it) and showed that cut-free derivations of the same form can be obtained 
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explained further, and reformulated in terms of games, the reduction tech-
nique developed by Novikov (also illuminating the nontrivial matter of the 
interaction between the classical and the intuitionist point of view in this 
setting).

In (1949) Novikov first defined regularity for the usual finitary first-order 
predicate logic, and stated a theorem to the effect that every formula which 
is provable4 there is regular. But only in the book Elements of mathematical 
logic (1959), the first original logic textbook in Russian (a beautiful, very 
clear introduction, sometimes a bit unfamiliar for the western reader), 
Novikov finally published a proof of the result that regularity is preserved 
by the rules of a (usual) formal system for predicate logic, in particular by 
Modus Ponens. In fact, the result is thoroughly proved there (1959, Ch. 6) 
for a stronger system (viz. a form of ‘restricted’ arithmetic, based on full 
first-order logic with identity, with successor and order axioms, definitions 
for all primitive recursive functions, without any form of induction), but the 
point of the proof-theoretic reduction concerns the purely logical part of the 
system.5

To our knowledge, this proof has received scarce attention in the litera-
ture, and a full exposition of it is lacking. In view of the fact that Novikov’s 
method is very different from the usual ones, this could be useful. More
over, a comparison of this original technique with other forms of cut elim-
ination for finitary systems (mainly Gentzen’s one, but also the methods 
employed in Herbrand’s Thesis) could be interesting.

As we shall see, the proof is nontrivial and requires a long series of 
lemmas, whose proofs are sometimes a bit involved; its (perhaps) most 
important peculiarity is that no induction stricto sensu on the complexity 
of (what corresponds to) the cut formula is needed: the formula is modified 
but (in a sense to be seen below) preserved.

After the description and explanation of Novikov’s procedure, a brief 
comparison with other classical cut-elimination procedures for predicate 
logic (inspired by Gentzen 1934) is given. Of course, a comparison with 

by Gentzen-type reductions and Novikov’s transformations. Barwise, on the other hand, 
employed mainly semantic arguments.

4  But Novikov always used the Russian word for ‘true’ (istinnaya) for this notion (except 
in the second edition, 1973, of Novikov 1959), just like Herbrand, who always used the 
French vraie in his works.

5  Thus we shall restrict to this part, and we shall ignore questions of consistency, with 
some ensuing simplifications, e.g. avoiding the notion of weak regularity (see ibid.). As results 
from Mints’s survey, Novikov’s finitary proof systems based on regularity did not gain much 
favor, perhaps in view of the greater efficiency of other systems, such as those based on 
Maslov’s ‘inverse method’ (an independently invented form of resolution, see Mints 1991). 
Apparently, the only further development (after 1959) of Novikov’s finitary methods for 
applications in the proof theory of arithmetic can be found in the work of a pupil of his, 
Tsinman (1968).
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the relevant methods and results contained in Herbrand’s Thesis (see Her-
brand 1968, 35-154), or deriving from it, would be even more interesting 
(since the formulation of predicate logic and the techniques adopted there 
are much closer6 to Novikov’s ones), but in view of the notorious difficul-
ties of Herbrand’s original work (even after all the corrections), and of my 
limited competence on the topic, this will be left as a task for future research 
(except for a few remarks below: see Section 3). On the other hand, another 
possible direction for further work would be a comparison with certain 
more recent developments in proof theory.7

2.  The procedure

2.1.  Basic definitions

Our system is a Hilbert-style axiomatic formulation of the first-order 
predicate calculus without identity (though it is not difficult to extend the 
results below to the case with identity and even to the restricted arithmetic 
mentioned above), without constants or function symbols, with countably 
many predicate letters for each arity, and both quantifiers treated as primitive. 
The axiom schemas8 are those of any usual complete system for predicate 
logic, e.g. we take a complete system for propositional logic and, as axioms 
for quantifiers, (∀x)A(x)  A(y) and the dual axiom for the existential 
quantifier. The quantifier rules are: from A  B(x) infer A  (∀x)B(x) 
(x not free in A), and the dual rule for the existential quantifier. The only 
propositional rule is Modus Ponens. As usual, ‘A       B  C’ abbreviates 
‘(A    B)  C’ (conjunction binds stronger than disjunction).

Following Novikov, we shall use the term product for conjunction (fac­
tor for conjunct) and sum for disjunction (summand for disjunct). If a factor 
is not a product, we say that it is a prime factor; similarly, if a summand is 

6  E.g., there is an analogy, the exact extent of which is unclear, between Novikov’s 
notion of regularity and Herbrand’s notion of Property A of provable propositions, defined 
in Ch. 5, Sec. 2 of his thesis (see Herbrand 1968, 118 ff. for the definition, which is too 
involved to be given here). One cannot exclude among Novikov’s sources also Bernays’ 
reformulation of Herbrand’s approach in Grundlagen II §3.3 (Hilbert-Bernays 1939, 149 ff.), 
although this is not mentioned in 1959, despite the overtly Hilbertian overall setup. See 
however Section 3 below.

7  E.g., expansion trees (Miller 1987), or deep inference, in particular the calculus of 
structures (see, e.g., this page, maintained by A. Guglielmi: http://alessio.guglielmi.name/
res/cos/, especially references to the contributions of Brünnler and McKinley, among others). 
These developments do not descend from Novikov’s approach, but could be related to it 
(again, a specific competence would be needed for the comparison). I owe these suggestions 
to an anonymous referee.

8  Novikov has axioms and substitution rules, but this is immaterial.
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not a sum, it is a prime summand. By associativity, any product is equiva-
lent to a product whose factors are all prime; similarly for sums. A formula 
is reduced if it contains as connectives only conjunction, disjunction and 
negation, the latter applied only to atomic formulas (i.e., it is in negation 
normal form). Any formula has an equivalent reduced formula, its reduct. 
Without loss of generality, we shall deal with reduced formulas below. 
A– denotes the reduct of ¬A.

A formula is primitive if it contains no quantifiers. A primitive formula 
is primitively true if any formula which results from an arbitrary uniform 
substitution of its atomic subformulas with propositional letters is a 
tautology.9

A formula is elementary regular if either it is primitively true or it is a 
sum in which at least one summand is primitively true.

Every formula can be put in the following form (by means of the usual 
transformations):

(∀x1) … (∀xn) ((A11  …  A1p1
)  …  (Ak1 

 …   Akpk 
)).

Here n ≥ 0, k ≥ 1, pi ≥ 1. The members of the conjunction are (by defini-
tion) prime factors and are called exterior factors, while the members of 
the disjunctions are (by definition) prime summands and are called exterior 
summands; the quantifiers are called exterior quantifiers.

Main definition (Regular formula). A formula is regular if, when put in 
the above form, every exterior factor of the formula is either elementary 
regular, or it can be made elementary regular by finitely iterated application 
of the following operations (1)-(3).

Operation (1): shift of the universal quantifier. Any universal quantifier 
of a prime summand of an exterior factor is moved backwards out of the 
parentheses and put at the end of the sequence of the exterior quantifiers 
(renaming the variable if necessary).10

Operation (2): separation from the existential quantifier. If an exterior 
summand has the form (x) B (x), a further summand of the form B(t) is 
added to the sum in which it occurs, where t is any variable not occurring 
bound in the formula (A11  …   A1p1

)  …  (Ak1  …   Akpk 
).

Operation (3): distributive operation. If an exterior factor has a summand 
(in which quantifiers occur) which is a product, i.e. if the factor has the 
form A1  …  An1

  B (where the A’s are prime factors), then that factor 
is replaced by the product (A1  B)  …  (An  B).

This concludes the definition of regularity.

9  A primitive formula is primitively false if its negation is primitively true.
10  I.e., if it coincides with another variable in the formula.
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A regularity series of a formula A is a sequence A0, …, An = A, where 
all the exterior factors of the formula A0 are elementary regular, and for all 
i, 0 < i ≤ n, the formula Ai–1 is obtained from the formula Ai by a single 
application of one of the operations (1)-(3).11

All the formulas of a regularity series are regular. Properties of regular 
formulas can be proved to hold by induction on the length of the regularity 
series of the given formula.

Let us see a simple example of a regular formula. Take the following 
formula: (x)(A(x)  (y)A(y)). Put in the above form, it becomes 
(x) (¬ A(x)  (y) A (y)), with a single exterior factor containing a single 
exterior summand, without exterior quantifiers. We have the (possible) 
regularity series:

[An= A]	 (x) (¬ A(x)  (y)  A(y));
[An–1]	 ¬ A(t)  (y) A(y)   (x) (¬ A(x)  (y) A(y)), by Operation (2);
[An–2]	� (z) (¬ A(t)  A (z)   (x) (¬ A(x)  (y) A(y))) by Operation 

(1), renaming the variable y to avoid collision; finally,
[An–3= A0]	� (z) (¬ A(t)  A (z)   ¬ A(z)  (y) A(y)  (x) (¬ A(x)  

(y) A(y))),

again by Operation (2), this time choosing the variable z, which is useful 
for the (sort of) unification we need here, and on the other hand can be 
freely used, since it respects the restriction in the formulation of Opera-
tion (2) above. The only exterior factor of the latter formula is elementary 
regular, since it contains the primitively true summand A (z)   ¬ A (z). Thus, 
the formula [A] is regular (here n = 3).

Note that after each application of Operation (2), the affected existen-
tially quantified formula is retained, so that it is still available and can be 
used again when needed.12 It should be clear that by means of the notion 
of regularity Novikov in fact independently introduced a new, original 
notion of cut-free provability (with invertible deduction rules given in 
reverse order in his definition, in terms of the three operations), since a 
regularity series for a certain formula is a (form of) cut-free proof of the 
formula, more Herbrand-style (or Bernays-Quine-Dreben-Craig-Lyndon 
style, just to cite a few possible analogues, all descending from that source; 

11  In view of the obvious non-uniqueness, in general, of the regularity series of a for-
mula, when we say below ‘the regularity series of the formula A’ we always mean a fixed 
chosen series in the given context; non-uniqueness is immaterial for all the proofs given or 
sketched below.

12  Something similar happens in Gentzen’s first consistency proof for arithmetic, when 
he considers his reduction rules for sequents. It is also a common feature in classical analytic 
systems.
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see, e.g., Craig 1957) than Gentzen-style (either in the sense of sequent 
calculi13 or variants of natural deduction) or in the style of resolution methods. 
The possible steps according to Operations (1)-(3) (in particular, the first 
two) transform a given formula by means of a process which can be inter-
preted as producing something very close to the various stages of a kind of 
Herbrand expansion (with variables) of the formula, here aiming (in each 
factor) at a final disjunction containing a disjunct which is an instance of a 
tautology.14

Every formula can also be put in the following form (dual to the form 
given above):

(x1) … (xn) (A11  …  A1p1 
  …  Ak1  …  Akpk 

).

As above, dually, the members of the disjunction are prime summands 
and are called exterior summands, while the members of the conjunctions 
are prime factors and are called exterior factors; the quantifiers are called 
exterior quantifiers.

We can then define three operations, (1*)-(3*), dual to the operations (1)-
(3) defined above (they will have a decisive role in the main theorem below).

Operation (1*): shift of the existential quantifier. If an exterior factor has 
the form (x)B(x), the existential quantifier is moved backwards out of the 
parentheses, and put at the end of the sequence of the exterior quantifiers 
(renaming the variable if necessary).

Operation (2*): separation from the universal quantifier. If an exterior 
factor has the form (∀x)B(x), a further factor of the form B(t) is added to 
the product in which it occurs, where t is any variable not occurring bound 
in the formula A11  …  A1p1

  …  Ak1  …   Akpk
.

Operation (3*): dual distributive operation. If an exterior summand has 
a factor (in which quantifiers occur) which is a sum, i.e. if the summand 
has the form (A1  …  An )     B (where the A’s are prime summands), then 
that summand is replaced by the sum A1  B  …  An   B.

2.2.  Lemmas on regular formulas

Our aim is to prove that any formula provable in the predicate calculus 
is regular. Several lemmas are needed. First we show some basic properties 
of regular formulas (we only give in brackets hints for the proofs).

13  But there is a closer resemblance (visible in the above example) with the sequent form 
of analytic tableaux (see, e.g., Smullyan 1968), in which one uses a system of reversed rules 
for sequents embodying a reformulation (à  la Schütte and Kanger) of the tableaux methods 
(of Beth and Hintikka).

14  A similar remark was made by Mints with respect to some aspects of Shanin’s ‘majo-
rant semantics’, which is independent of Novikov’s work (see Mints 1991, 413).
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Property 0. The formula (∀x) A(x) is regular iff the formula A(x) is reg-
ular. (Proof: by considering the regularity series of the formula.)

Remark 0. The regularity of a formula is determined only by the exterior 
factors of the formula. By replacing Operation (1) with Operation (1ʹ): 
elimination (instead of shift) of the universal quantifier, by renaming vari-
ables (if necessary), and by applying the other operations in the same order, 
we can transform any regularity series into another series without altering 
the regularity of the occurring formulas; thus, in the definition of regularity, 
(1ʹ) can replace (1). (Proof: by the previous property.)

Property 1. Any exterior factor of a regular formula is a regular formula. 
(Proof: by considering the regularity series of the formula.)

Property 2. If every exterior factor of a formula is regular, then the for-
mula is regular. (Proof: by operating on the product of the exterior factors 
of the formula.)

Property 3. A product is regular iff all its factors are regular. (Proof: by 
Properties 1 and 2).

Property 4. Every regular formula is provable in the predicate calculus. 
(Proof: by observing first that the operations (1)-(3) transform any formula into 
a logically equivalent one; this is proved by simple logical equivalences prov-
able in the predicate calculus, e.g., for (2), (x)A(x)  A (y)   (x)A(x); 
secondly, that elementary regular formulas are provable by definition; 
finally, that taking products and adding exterior quantifiers preserves prov-
ability.)

Property 5. If the formula which results from the application of one of the 
operations (1)-(3) to a given formula is regular, then the latter formula was 
regular. (Proof: by definition of regularity.)

Property 6. If any universal quantifier is deleted from a regular formula, 
the result is a regular formula. (Proof: by considering the regularity series 
of the formula, by the eliminability of exterior universal quantifiers, see 
above.)

Now we give the necessary lemmas. Their proofs are usually lengthy 
and tedious, and sometimes nontrivial, though not conceptually difficult. 
We only sketch them below (except for the fundamental Lemmas 5, 1* and 
4*). The usual restrictions on free occurrences of variables are assumed 
without mention.

Lemma 1. If some summands of the exterior factors of a regular formula 
are products, and we delete from every such product any number of factors, 
but not every one, we obtain a regular formula. (Proof: by induction on the 
length of the regularity series of the formula, and by cases in the induction 
step.)
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Lemma 2. If in a regular formula we add any summands to the sum-
mands of the exterior factors of the formula, we obtain a regular formula. 
(Proof: as above, Lemma 1.)

Lemma 3. If in a regular formula we replace a free variable with a term, 
we obtain a regular formula. (Proof: as above, Lemma 1.)

Remark 1. If we apply one of the operations (1)-(3) to a regular formula, 
we obtain a regular formula. (Proof: by showing that the modified exterior 
factor remains regular, by Property 6 above, Lemma 2, Lemma 1, resp.)

Lemma 4. If both formulas A  K and B  K are regular, then the for-
mula A  B  K is regular. (Proof: by cases, nontrivial.)

Corollary 1. If A is a regular formula whose exterior factors are of the 
form Aʹ  Bʹ  Bʺ, and the formula C  Bʹ is regular, then by replacing in 
A any number of exterior factors with Aʹ  C  Bʹ  Bʺ (renaming varia-
bles if necessary) we obtain a regular formula. (Proof: by Lemma 4.)

Remark 2. The formula A1  …    An  B is regular iff the formula 
(A1  B)  …  (An  B) is regular. (Proof: by the previous lemmas.)

The following lemma will have a crucial role below, and we give a full 
proof.

Lemma 5. If both formulas (x)A(x)  L and B  L are regular, then 
the formula (x)(A(x)  B)  L is regular.
Proof.  The proof is by induction on the length of the regularity series of 
the formula, and by cases in the induction step. We have to show the admis-
sibility (for regularity) of a form of movement15 of the existential quantifier 
over conjunction (a basic prenex operation); in other words, that reductions 
for conjunction and the existential quantifier commute.

Consider the regularity series K0, …, Km of (x)A(x)  L, in which the 
first summand is always present (since no operation can delete it). For K0, 
if the formula is elementary regular, then L must contain a primitively 
true summand, and this makes also (x)(A(x)  B)  L elementary regular. 
Assume the lemma holds for Ki–1. In Ki we have a factor of the form 
(x)A(x)  Li, and in Ki–1 we have either the same factor (if another factor is 
affected), or a factor of the form (x)A(x)  Li–1 (if Li is affected) or finally 
a factor of the form A(t)  (x)A(x)  Li. The first case is trivial; for the 
second case we apply directly the induction hypothesis, since (x)A(x) is 
not affected. In the third case, since by hypothesis both (x)A(x)  Li and 

15  In fact, a form of distributivity (since x is not free in B), if one reads existentially 
quantified formulas as countable sums, as in Novikov (1943). The result of this lemma is a 
notorious sore point in Herbrand’s Thesis (Ch. 5, Sec. 3.3).
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B  Li are regular, also A(t)  (x)A(x)  Li and A(t)  B  Li are regu-
lar (by adding the same summand A(t) to both regular formulas, Lemma 2 
above), and then by induction hypothesis also A(t)  (x) (A(x)  B)  Li 
is regular. Hence, by Corollary 1 above (recall that B  Li is regular), 
A(t)  B  (x) (A(x)  B)  Li is regular, but then (by definition of 
Operation (2)) also (x) (A(x)  B)  Li is regular. This concludes the 
proof.� ¡

The following remark will have a similar role as the previous lemma. 

Remark 3. If the formula (x) A(x)  Lʹ  Lʺ is regular, then the formula 
(x) (A(x)  Lʹ)  Lʺ is regular. (Proof: by applying Operation (2) to the 
second formula.)

Recall that A– denotes the reduced form of ¬A.
Remark 4. For every formula A, the formula A  A– is regular. (Proof: 

by induction on the structure of the reduced formula.)

The following lemmas (on the dual operations (1*)-(3*)) are also crucial 
for the reduction procedure on our system. We fully prove the first (the 
others are proved similarly).

Lemma 1*. If A  H is a regular formula, and Aʹ is obtained from A by 
Operation (1*), then Aʹ  H is regular.

Proof.  The proof is by double induction:16 on the number of exterior existen-
tial quantifiers in the formula and on the length of its regularity series. 

We have to prove that if the formula

(*)  (x1) … (xn) ((y) A(y)  B  C)  H

is regular, then the formula

(**)  (x1) … (xn) (y) (A(y)  B  C)  H,

obtained by applying Operation (1*), is also regular.

If there are no exterior quantifiers, then since (y)A(y)  B  C  H 
is regular, both (y) A(y)  C  H and B   C  H are regular, and 
thus by the previous lemmas (crucially, Lemma 5 and Remark 3 above) 
(y) (A(y)  B  C)  H is regular.

16  That we need a double induction on  in the proof of a lemma for (a form of) cut 
elimination for the predicate calculus is hardly surprising.
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If the formula is elementary regular, then Operation (1*) cannot be applied 
to the relevant primitively true summand, and regularity is preserved.

The first induction is on the number of exterior quantifiers. For the induc-
tion step, let us consider K0, …, Km, the regularity series of the formula (*). 
We need a second induction, on the length of this regularity series. For the 
induction step of the second induction, we have to prove that applying 
Operation (1*) to any summand of the form (x1) … (xn) ((y) A(y)  
B  C) preserves regularity.

If the operation leading from Ki to Ki–1 does not apply to any such sum-
mand, then regularity is preserved. The crucial case is the one in which one 
such summand is affected. But the only operation which could have been 
applied to it, in that case, is Operation (2). Then we have a formula (in Ki–1) 
of the form

(x2) … (xn) ((y) A(y, t)  B (t)  C (t))  (x1) … 
(xn) ((y) A(y)  B  C  H.

By the second induction hypothesis, the formula

(x2) … (xn) ((y) A(y, t)  B (t)  C (t))  (x1) … 
(xn) (y) (A(y)  B  C )  H,

which results by applying Operation(1*) to the second main summand, is 
still regular, and by the first induction hypothesis also the formula

(x2) … (xn) (y) (A(y, t)  B (t)  C (t))  (x1) … 
(xn) (y) (A(y)  B  C )  H,

obtained by further applying the same operation, this time to the first main 
summand, is regular. The latter formula can be obtained by Operation (2) 
from a formula of the form

(x1) … (xn) (y) (A(y)  B  C)  H,

which is thus regular, as we needed. This concludes the proof.� ¡

Lemma 2*. The same as Lemma 1*, with Operation (2*) in place of 
Operation (1*). (Proof: as above, Lemma 1*.)

Lemma 3*. The same as Lemma 1*, with Operation (3*). (Proof: as 
above, Lemma 1*.)

Finally, we need to show that deleting from regular disjunctions certain 
subformulas containing primitively false components preserves regularity.

Lemma 4*. If the formula (x1) … (xn) (A1  B1  …  Ap  Bp )  H is 
regular, and every formula Ai is primitively false, then the formula H is regular.
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Proof.  The proof is again by double induction (number of exterior quanti-
fiers and length of the regularity series). If there are no exterior quantifiers, 
if the formula is regular then (by Lemma 1 above) also A1  …  Ap  H 
is regular; if we can delete all the primitively false summands Ai preserving 
regularity, H must be regular. That this can be done is proved by showing 
(by induction on the length of the regularity series of the formula) that in 
any regular sum any primitively false summand can be deleted preserving 
regularity. For the base case, if the primitively false summand occurs in a 
primitively true component (the only nontrivial case), then the latter must 
have the form of a sum of that summand with another summand that must 
be primitively true, and then the elimination can be done. For the induction 
step, it is sufficient to recall that none of the operations (1)-(3) can be 
applied to a primitive (here, primitively false) formula.

If there is at least an exterior quantifier,17 we have to prove (induction 
step of the first induction) that H is regular if the hypotheses of the lemma 
are satisfied, assuming that this holds when one initial quantifier (the first 
one, without loss of generality) is absent; and this is proved by a second 
induction, on the length of the regularity series of the formula of the lemma 
(where the base case is trivial, since in that case H is elementary regular). 
The only nontrivial case in the induction step of the latter induction is the 
one in which our formula is affected, and in that case (being the formula 
existentially quantified, as in the proof of Lemma 1*) we must have an 
application of Operation (2). Thus we obtain a regular formula of the form: 

(x2) … (xn) (A1(t)  B1 (t)  …  Ap(t)  Bp (t)) 
 (x1) … (xn) (A1  B1  …  Ap  Bp)  H,

where all formulas Ai(t) remain primitively false. Hence, by the second 
induction hypothesis

(x2) … (xn) (A1(t)  B1 (t)  …  Ap(t)  Bp (t))  H

is regular; then, by the first induction hypothesis, H is regular. This con-
cludes the proof.� ¡

2.3.  The main theorem

Theorem. Every formula provable in the predicate calculus is regular.
Proof. The (reduced forms of the) propositional axioms are tautologies, 
hence they are primitively true and (by definition) regular. For the axiom 

17  This case is not explicitly treated by Novikov.
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(schema) on the universal quantifier, (∀x)A(x)  A(y), we have the reduced 
form18 (x) ¬A(x)  A(y), from which by Operation (2) the elementary reg-
ular formula ¬A(y)  (x)¬A(x)  A(y) is obtained. The proof for the dual 
axiom is similar.

For the rule on the universal quantifier, let us assume that the premise 
A  B (x) (x not free in A) is regular. Then its reduct (assuming without 
loss of generality that B is reduced) A–  B (x) is also regular, and (∀x) 
(A–  B (x)) remains regular (by adding a universal quantifier, see above). 
But this formula can be obtained by Operation (1) from A–  (∀x) B (x), 
which is the reduct of the conclusion of the rule, which is thus regular. An 
analogous proof can be given for the dual rule on the existential quantifier.

The only interesting case is the one concerning Modus Ponens. Assume that 
A  B and A are regular. The reduced form of A can be written in the form

(∀x1) … (∀xn) ((A11  …  A1p1
)  …  (Ak1  …  Akpk )).

This formula is regular, thus it can be reduced by means of Operations 
(1)-(3) to the form

(∀x1) … (∀xn +  r ) ((A0
1  C0

1 )  …  (A0
m  C0

m )).

where all the formulas A0
i are primitively true. On the other hand, the 

reduced form of A  B is A–  Bʹ where Bʹ is the reduct of B. The form 
of the formula A– is 

(x1) … (xn) (A –11  …  A –1p1
  …  A –k1  …  A –kpk )),

dual with respect to the reduced form of A given above. By applying Oper-
ations (1*)-(3*) to this form in the dual way with respect to the above 
applications of Operations (1)-(3), we obtain the form

(x1) … (xn +   r ) (A0
1–  C0

1–  …  A0
m –  C0

m – ).

The application of Operations (1*)-(3*) to A– in A–  Bʹ preserves regu-
larity of the whole formula (by the lemmas on these operations, see above); 
hence the formula

(x1) … (xn +   r ) (A0
1 –  C0

1 –  …  A0
m –  C0

m – )  Bʹ

is regular. But all the formulas A0
i – are primitively false, since all the 

formulas A0
i are primitively true; then, by the last lemma of the previous 

subsection, Bʹ, and thus B, are regular. This concludes the proof.� ¡

18  This is the simplest case, easily generalized by Lemma 2 and Remark 4.
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3.  A comparison

Consider the ‘cut formula’ A in the above proof that Modus Ponens pre-
serves regularity. We have seen that its reduct can be written in the form

(A)  (∀x1) … (∀xn) ((A11  …  A1p1
)  …  (Ak1  …  Akpk )).

while the reduct of its negation can be written as 

(A–)  (x1) … (xn) (A –11  …  A –1p1
  …  A –k1  …  A –kpk )).

Let us see what would happen in the case of a Gentzen-style cut elim-
ination in which A is indeed the cut formula. To avoid unnecessary com-
plications and to make the comparison easier, we shall use (after the well-
known approach of Schütte and Tait; see Schütte 1951) the formulation with 
derivable disjunctions (instead of ordinary sequents) and negation for com-
pound formulas defined by DeMorgan Laws. We shall also ignore some 
details without loss of generality (e.g., freely using associativity, commu-
tativity and idempotence of disjunction) and use cut in the (equivalent) 
simplified form which allows to obtain B from A and ¬ A  B.

First observe that the (exact) statements of the crucial lemmas above are 
provable without difficulties: in any reasonable formulation of a sequent 
calculus the cut-free derivability of (x)A(x)  L and B  L almost imme-
diately implies the cut-free derivability of (x) (A(x)  B)  L (Lemma 5),19 
and this is the main ingredient in the induction which proves Lemma 1*; 
while the point of the crucial Lemma 4* (the fact that in any cut-free deriv-
able sum any primitively false summand can be deleted without destroying 
cut-free derivability) is obtained by simply observing that the primitively 
false summand could have been introduced only by weakening. Here the 
comparison is rather trivial.

A little more interesting is the case of Modus Ponens in the main theo-
rem. We have to show (directly taking reduced formulas, without loss of 
generality) that B can be proved without cuts, assuming that the same holds 
for A and A–  B. In sequent calculi (in the formulation we have chosen) 
this would be carried out, of course, by induction on the complexity of 
A (together with a sub-induction, as usual, on cut rank, which however is 
minimal by hypothesis in the case we have chosen), taking the relevant 
subformulas and applying the cut rule to them. In view of the form of A 
(given above) this can be done as follows.

If all initial (external) quantifiers are absent, the procedure is straight
forward. On the left, we have (A11  …  A1p1

)  …  (Ak1  …  Akpk ), 

19  We noted above that, on the contrary, this is problematic in Herbrand’s Thesis (Ch. 5, 
Sec. 3.3).
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which can be (meta-theoretically) decomposed (by inversion), as a cut-free 
derivable conjunction, into its cut-free derivable component disjunctions. 
On the right, we have its negation with added the further summand B, i.e. the 
formula (A –11  …  A –1p1

)  …  (A –k1  …  A –kpk )  B. This disjunction 
can be directly used as the right premiss of a new cut (this is a typical advantage 
of Schütte’s formulation, which we apply to our further simplified form of cut), 
where the left premiss of this new cut is one of the component disjunctions 
(say, the first) just obtained from the decomposed conjunction which was 
on the left. This is precisely what we need for the induction step: we simply 
iterate the new cuts, eliminating one component at a time from the disjunc-
tion (the new right premiss), until only B is left. Schematically, we have:

… …
… (A11  …  A1p1

) (A –11  …  A –1p1
)  …  B

(A21  …  A2p2 
) (A –21  …  A –2p2

)  …  B

… (A –31  …  A –3p3
)  …  (A –k1  …  A –kpk 

)  B
…  …

B

There is still the case in which some initial (external) quantifiers are present. 
The induction step is not especially troublesome in this case, since the scope 
of the remaining quantifiers is preserved as a whole (except for the newly 
indicated eigenvariable of the universal quantifier which has been removed) 
and the whole remaining formula (after substitution of the eigenvariable with 
the respective variable occurring in the right subderivation, where the corre-
sponding existential quantifier has been removed) becomes the cut formula.

On the other hand, in Novikov’s proof given above we do not directly 
make any induction on the complexity of the cut formula, but we transform 
it, reducing the formula to a form in which its primitively true summands 
are explicitly isolated. Then we exploit the primitively false components 
in A– (which has undergone the dual transformation with respect to A), 
recognized as such by means of the corresponding primitively true com-
ponents in A, to get B, still regular, by Lemma 4* (which is indeed proved 
by double induction).20 In order to carry out this procedure, we must be 
assured that the transformation of A– does not destroy regularity (i.e. cut-
free derivability) of A–  B, but this is warranted precisely by the crucial 
Lemmas 1*-3* (also proved by double induction).21

20  Involving two measures (one direct: length of regularity series, and one indirect: num-
ber of exterior quantifiers) of length of proofs, rather than of complexity of formulas.

21  See the preceding footnote.
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Which way is simpler and more elegant is arguably a matter of taste: 
neither is short (they both require a long series of lemmas or distinct cases, 
though without conceptual trouble); Novikov’s procedure shows us (so to 
say) the axioms incorporated in the cut formula; the usual one has the 
advantage of a uniform and direct inductive treatment. In any case, since 
we do not have any decisive argument in one direction or the other, we 
suspend judgement.

We have seen that Novikov transforms the cut formula in such a way that 
a certain tautological instantiation results, from which the formula could be 
ordinarily derived by introducing quantifiers in a suitable way. It is remark-
able that something fairly similar happens in Herbrand’s Thesis (Ch.  5, 
Sec. 5.1), where elimination of Modus Ponens for the predicate calculus is 
achieved indirectly, as a consequence of the fact (which is part of Her-
brand’s ‘Fundamental Theorem’ modulo the usual necessary corrections) 
that every provable formula has Property A, i.e. (roughly) that the result of 
a certain instantiation (without constant or functional terms) of the variables 
in a disjunction obtained from a prenex equivalent of the formula is a quan-
tifier-free tautology (see, for the rather involved definition, ibid. Sec. 2), and 
that formulas with Property A can be derived from their corresponding 
tautologies without Modus Ponens.22

Another striking analogy is with Bernays’ treatment of (a suitable adap-
tation of) Herbrand’s theorem and related results in Grundlagen II §3.3 
(Hilbert-Bernays 1939, 149 ff.).23 Although his proofs are based on the 
second Epsilon-theorem (see ibid. §3.1), hence ultimately (if one tracks the 
dependence of theorems) on the use of epsilon-substitution techniques 
(which have no analogue in Novikov), we find (ibid., 160 (b), 158 in the 
first ed.) the following result (with some generalizations), which certainly 
should sound familiar at this point: to each prenex formula provable in the 
predicate calculus we can associate a disjunction with the following properties: 
(1) each disjunct is obtained from the formula by deleting all quantifiers, 
replacing universal variables with free variables, and existential variables 
with terms built on free variables and constants and function symbols 

22  One definitely has the impression that Herbrand (whose name is mentioned only once 
in passing in Novikov 1949, never in 1939, 1943, not even in the textbook of 1959) is the 
true ‘stone guest’ in this whole story. Indeed, what Novikov gives is basically a reformulation 
in Herbrandian terms of Gentzen’s result. We note in passing that a variant of Herbrand’s 
Property A resurfaces in Ackermann (1954, 90 ff.), but in connection with decision problems, 
thus employing the fact that Schütte’s system mentioned above (i.e., the first system in 
Schütte 1951) is semantically complete and enjoys cut elimination.

23  Although it is often quite difficult to trace Novikov’s (and some other Soviet authors’) 
sources, it is clear from his works (e.g. the introduction of Novikov 1959) that he knew 
(beyond Hilbert-Ackermann) the Grundlagen (but he apparently never cites Vol. II), although 
his first results on regularity (which concern infinitary propositional derivations), published 
already in 1939, are independent and utterly original.
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occurring in the formula; (2) the disjunction is an instance of a tautology; 
(3) the formula can be derived from the disjunction by applying the ordi-
nary rules of introduction of quantifiers in members of disjunctions24 and a 
rule of contraction.25

4.  Concluding remarks

We hope to have given sufficient evidence, at least, of the originality of 
Novikov’s method of elimination. If, on the one hand, the interest of his 
procedure is mainly theoretical, since it seems to allow no gain in efficiency, 
on the other hand, the fact that in the ordinary26 setting of a Hilbert proof 
system he needs for reduction no form of induction directly on (what amounts 
to) the cut formula is a peculiar feature, whose consequences are not imme-
diately clear, and surely deserve further investigation.
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