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Abstract. The correlations detected by the mutual information in the propensities of a molecular viscous liquid are
studied by molecular-dynamics simulations. Dynamic heterogeneity is evidenced and two particle fractions with dif-
ferent mobility and relaxation identified. The two fractions exhibit scaling of their relaxation in terms of the rattling
amplitude of the particle trapped in the cage of the first neighbours 〈u2〉. The scaling master curve does not differ
from the one found for bulk systems, thus confirming identical results previously reported in other systems with strong
dynamic heterogeneity as thin molecular films. Excitation of planar and globular structures at short and long times with
respect to structural relaxation, respectively, is revealed. Some of the globular structures are different from the ones
evidenced in atomic mixtures. States with equal 〈u2〉 are found to have identical time dependence of several quantities,
referring to both bulk and the two fractions with heterogeneous dynamics, at least up to the structural relaxation time
τα.
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1 Introduction

The nature of the progressive solidification of a liquid to get to
the amorphous glassy state is a major scientific challenge [1–5].
On approaching the glass transition, trapping effects due to the
cage formed by the first neighbors are more and more promi-
nent and the average escape time, i.e. the structural relaxation
time τα, increases from a few picoseconds up to thousands of
seconds. The caged particles are not completely immobilized
by the surroundings but they wiggle with mean-square ampli-
tude 〈u2〉 on the picosecond time scale t?. Henceforth, 〈u2〉
which is strictly related to the the Debye-Waller factor, will be
referred to as fast mobility (FM).

Despite the huge range of time scales earlier [6] and later
theoretical [7–13] and experimental [14] studies addressed the
rattling process within the cage to understand the structural re-
laxation rising a growing interest on the FM role [15–37]. In
particular, correlations between FM and structural relaxation
are found in polymers in bulk [20–22, 36] and thin films [37],
binary atomic mixtures [21, 30], colloidal gels [25], antiplas-
ticized polymers [29, 38], water [32] and water-like models
[34, 35]. FM also provided an alternative interpretation of the
so-called thermodynamic (or temperature/density) scaling [33].
The correlation between structural relaxation and FM has been
inspected in the experimental data concerning several glass-
formers in a wide range of fragility - the steepness index m
defined by Angell [39] - (20 ≤ m ≤ 191), including poly-
mers, van der Waals and hydrogen-bonded liquids, metallic
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glasses, molten salts and the strongest inorganic glassformers
[20, 23, 24, 30–33]. The correlation is summarized by the uni-
versal master curve [20]:

log τα = FFM (〈u2〉) (1)

= α̃+ β̃

(
〈u2g〉
〈u2〉

)
+ γ̃

(
〈u2g〉
〈u2〉

)2

(2)

〈u2g〉 is the FM at the glass transition, β̃ and γ̃ are system-
independent constants and α̃ = 2 − β̃ − γ̃ to comply with
the usual definition τα = 100 s at the glass transition. Douglas
and coworkers developed a localization model predicting the
alternative master curve FFM (〈u2〉) ∝ 〈u2〉−3/2 [29, 38, 40].

Further studies revealed that the master curve, Eq.1, is a
manifestation of a more intimate correlation between the vi-
brational dynamics and the slow relaxation, i.e., if two states
have equal FM, they have coincident time evolution of any
ensemble-averaged quantity X(t) at least between t? and τα
[22]. Said otherwise, for t∗ . t . τα at least, it holds

〈u2〉(1) = 〈u2〉(2) ⇒ X(t)(1) = X(t)(2) (3)

In selected systems Eq.3 extends up to even longer times, e.g.
atomic binary mixtures and unentangled polymers, where the
diffusive regime is covered as well [22, 26, 30, 36]. Eq.3 has
been tested for the intermediate scattering functions, mean square
displacement and non-gaussian parameter [20, 23, 24, 30], van
Hove function [22], transient elasticity [41] and displacement-
displacement correlation functions [27, 28].
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Following first indications [20], the role of the vibrational
dynamics has been noted in systems with heterogeneous dy-
namics - e.g. glassformers close to the glass transition [26–
28, 36] where the Stokes-Einstein relation fails [26, 36] and
thin films with strong mobility gradient [37] - where distinct
FM is found in regions with different relaxation and transport
at long times. Insight into the structural origin of the long-
time dynamic heterogeneity has been provided by propensity,
the random particle displacement in times longer than the vi-
brational ones starting from the same initial global configura-
tion, thus forming the so-called ’iso-configurational ensemble’
(ICE) [17, 19, 42].

Motivated by the previous remarks, the present paper fo-
cuses on the dynamic heterogeneity of dense liquids where it
has been revealed that more and more particles move in a corre-
lated way approaching the glass transition, e.g. see the review
in ref. [5]. In particular, we investigate if: i) both the master
curve Eq.2 and Eq.3 hold in the regions with different FM and
relaxation and ii) there are structural signatures, especially at
short times t ∼ t∗, of the long-time dynamic heterogeneity.
As to the latter aspect, we profit from previous studies on the
local geometry and collective extended excitations driving the
moves of a particle in the cage of its neighbours in dense liq-
uids [15, 43].

We examine the dynamic correlations detected by mutual
information (MI). MI between two random variables is a mea-
sure of their, possibly nonlinear, statistical dependence (corre-
lation) [44]. MI between the random vector variables X and Y
is defined as [45]:

I(X,Y) =

∫ ∫
dxdy p(x,y) log

[
p(x,y)

p(x)p(y)

]
(4)

where p(x,y) is the joint probability distribution of the vari-
ables X and Y with marginal distributions p(x) and p(y), re-
spectively. MI has been used for detecting classical phase tran-
sitions for several classical system and topological transition
in the XY model [46], the phase transition in a 2D disordered
Ising model [47] and for evaluating the configurational entropy
of liquid metals [48]. In the framework of liquid-state physics
MI has been considered in atomic glassformers as a metric
of the correlation between structural and dynamical quantities
[45, 49, 50], in particular the propensity [45, 50]. Since MI re-
vealed the presence of subsets of particles with different re-
laxation properties in molecular-dynamics (MD) simulations
of an atomic liquid mixture [45], it offers the opportunity to
see if these subsets comply with the vibrational scaling as ex-
pressed by Eq.2 and Eq.3. More specifically, we investigate by
MD simulations the MI correlations in space and time of the
propensities of a model molecular glassformer with the same
scheme of ref. [45]. We design our molecular liquid to limit
the differences with atomic liquids in an attempt to test the
sensitivity of MI correlations. To this aim, we consider short
linear trimers where bending and torsional potentials are miss-
ing to ensure the highest molecular flexibility and constrain the
monomer displacements as less as possible. The bond length
was taken slightly shorter than the equilibrium point of the
Lennard-Jones (LJ) non-bonding potential to avoid crystalliza-
tion issues while ensuring limited perturbation of the local or-
der.

The paper is organized as follows. In Sec. 2 details about
the numerical models and methods are given. The results are
presented and discussed in Sec. 3.

2 Models and methods

We performed MD simulations of fully-flexible, i.e. with no
bond-bond bending potential, linear chains of trimers in the
mildly supercooled regime. All simulations were carried out
with the open-source software LAMMPS [51,52]. Non-bonded
monomers interact with a truncated LJ potential

ULJ(r) = ε

[(
σ∗

r

)12

− 2

(
σ∗

r

)6
]
+ Ucut(r) (5)

where σ∗ = 21/6σ is the location of the potential minimum
which has depth ε. Ucut is chosen to ensure ULJ(r) = 0 for
any r > rcut and rcut is set to the value of 2.5σ. Monomers that
belongs to the same chain interact with each other via the har-
monic potential U b(r) = k (r − r0)2 where the constant k is
set to 555.5ε/σ2 and the rest length of the bond is r0 = 0.97σ.
All quantities are in reduced units: length in units of σ, tem-
perature in units of ε/kB and time in units of σ

√
m/ε where

m is the monomer mass. We set m = kB = 1. The time step
for the integration was chosen to be 0.003. All the investigated
systems haveN = 3999 monomers, i.e. 1333 chains. The NVT
ensemble has been used for the equilibration runs. For each run
the equilibration time lasted not less than 3τee, where τee is the
end to end vector autocorrelation function decay time [53–62].

After equilibration, the NVE ensemble was employed for
the conventional data production employing at least sixteen in-
dependent runs. We built three sets of states varying both the
density ρ and temperature T , each state being characterized
by the pair (ρ, T ): set A = {A1,A2} with A1= (1.05, 0.60),
A2= (1.01, 0.47); set B = {B1,B2} with B1=(1.03, 0.49), B2=
(1.01, 0.435); set C = {C1,C2} with C1=(1.02, 0.42), C2=
(1.05, 0.51). The states of the same set exhibit the same relax-
ation time τα, i.e. τ (A)

α ' 42, τ (B)
α ' 150, τ (C)

α ' 1550. The
exact definition of the relaxation time will be given in Sec.3.1.

From the equilibrated configuration of each state, in par-
allel to the usual production runs in NVE ensemble, we also
started production runs in the iso-configurational ensemble (ICE)
[42]. Each ICE, henceforth labeled by µ, consists in a single
initial spatial configuration of all the particles, each of them
starting the time evolution with 1000 random assignments of
the initial velocity, as drawn from the corresponding Maxwell-
Boltzmann distribution of the state. We considered four ICEs
for the states of the set C and two ICEs for the other two sets,
in close agreement with other studies performed with about
three times less particles than the present one [45]. The ini-
tial configurations of the ICEs were randomly taken by the set
of NVE production runs. The fact that the number of ICEs is
less than the number of production runs in the NVE ensemble
is due to the extremely time-consuming procedure to perform
the MI evaluation. Arguments will be presented in Sec.3.1 to
conclude that the phase space explored by all the ICEs of every
single state closely matches in size the one explored by all the
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Fig. 1. Top: self-part of the intermediate scattering function (ISF) at
qmax, the fist peak of the static structure factor, of the six states of the
present study. They exhibit ISFs grouped in three distinct pairs. The
position of the relaxation time τα of each pair is marked with a dot.
Bottom: mean square displacement (MSD). States with coincident ISF
exhibit coincident MSD too.

NVE runs. Following previous studies [45, 50], MI was eval-
uated via the Kraskov-Stögbauer-Grassberger estimator [63].
The high number of velocity assignments in each ICE ensures
proper convergence of the estimator.

We point out that two different kind of averages are adopted
in the present work: i) the usual ensemble average over the
NVE ensemble to be denoted as 〈X〉NV E . In the absence of
any ambiguity the NVE subscript is understood; ii) the average
〈X〉ICEs, namely the average over the different velocities and
all the monomers in a single ICE followed by the average over
all the ICEs, i.e. all the initial configurations. Even if the two
averages yield virtually indistinguishable results in the present
study within the errors, i.e. 〈X〉 ' 〈X〉ICEs, given the concep-
tual difference, it seems proper to distinguish between them.

3 Results and discussion

3.1 Global relaxation and transport

With the purpose of characterizing the dynamics in terms of
mobility, we consider the mean square displacement (MSD)
of a monomer with position r(t) at time t, departing from the
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Fig. 2. Typical plots of the MI distribution at times t for a single ICE
of a selected state of the C set. The threshold I0 = 0.2 above which
MI values are considered significant [45] is also indicated.

initial position r(0):

〈δr2(t)〉k =
1

N

N∑
j=1

〈
||rj(t)− rj(0)||2

〉
k
, k = NV E, ICEs

(6)
Instead, relaxation is accounted for by the self-part of the inter-
mediate scattering function (ISF):

F (k)
s (q, t) =

1

N

N∑
j=1

〈
eiq·[rj(t)−rj(0)]

〉
k
, k = NV E, ICEs

(7)
In an isotropic liquid ISF depends only on the modulus of the
wavevector q = ||q|| and features the rearrangements of the
spatial structure of the fluid over the length scale ∼ 2π/q. We
define the structural relaxation time τα by the relation
Fs(qmax, τα) = e−1 where Fs(q, t) ≡ F

(NV E)
s (q, t) and

qmax is the maximum of the static structure factor (7.14 ≤
qmax ≤ 7.22).

Fig.1 shows MSDs and ISFs of the monomers, respectively.
At very short times, i.e. the ballistic regime, MSD increases
according to 〈r2(t)〉 ∼= (3kBT/m)t2 and ISF starts to decay.
At later times the repeated collisions with the other monomers
slow down the displacement and a quasi-plateau region, also
found in ISF, occurs when the temperature is lowered and/or
the density increased. The plateau-like regions signal the in-
creased trapping of the monomer in the cage of the surround-
ing particles. The trapped monomer is released after an average
time τα, leading to the ISF decay and the MSD increase due to
diffusive motion for t > τα. Owing to the choice q = qmax,
the relaxation time τα corresponds to displacements of about
the monomer size. Notice that τα provides also a good estimate
of the time needed by the trimer to diffuse by its size. In fact,
the molecular size, i.e. the average end-end distance, is about
1.4 monomer size.

We define the fast mobility 〈u2〉 as the MSD at t∗ [20]:

〈u2〉 = 〈δr2(t∗)〉 (8)

A proper choice of t∗ is set by the position of the inflection
point of MSD seen in Fig.1 which for the present model is
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nearly constant, t∗ ' 1 [20], corresponding to a few picosec-
onds [64]. Fig.1 offers, for the three pairs of states having equal
FMs, an example of the correlation between the FM and the
long-time relaxation, Eq.3 with the identificationX = ISF,MSD.
It is worth noting that the presence of the bonds plays a neg-
ligible role at t∗. In fact, the C set which exhibits a relaxation
time τα ' 1550 has fast mobility 〈u2〉 ' 0.035. The latter is
rather close to the one of the species in an atomic binary mix-
ture with Lennard-Jones potential in states with τα ∼ 1900, i.e.
〈u2〉 ' 0.03 − 0.04 [30]. We ascribe this fact to the fact that
the molecules are largely deformable owing to the absence of
both bending and torsional potentials in our model.

3.2 Mutual Information

3.2.1 Global analysis

Following Ref. [45], we consider MI between the vector dis-
placements of the particle pair (i, j). MI is evaluated, according
to Eq.4, by the relation

Iµij(t) = I(δr µi (t), δr
µ
j (t)) (9)

where δr µi (t) is the displacement of the i-th particle in a time
t starting from the initial position in the selected ICE (labeled
by µ). The particles i and j are said to be correlated at time t
if Iµij(t) > I0 with I0 = 0.2. The threshold I0 has been cho-
sen in agreement with other studies [45] to filter out the Gaus-
sian noise of the estimator leading to spurious effects at small
MI values. A quantity of interest is the probability distribution
p(Iµ, t) of the MI values at time t for a single ICE of the liquid.
p(Iµ, t)dIµ is the probability that the MI between two particles
at time t is located in the range [Iµ, Iµ + dIµ].

Fig.2 presents typical plots of the distribution p(Iµ, t) of
the MI values at time t for a single ICE of the liquid. It shows
that, for t � τα the distribution p(Iµ, t) exhibits a disjoint
structure above I0 which develops as two well separated peaks
at t � τα. The disjoint structure of p(Iµ, t) is missing in
atomic liquids [45] and follows from the permanent bonds of
the trimer linking the monomers to each other.

We define the number of correlated particles with the i-
th central particle for a given ICE at time t as nµi (t). Hence-
forth, p(n, t) denotes the probability, evaluated by considering
all ICEs, that a generic central particle is MI-correlated with n
surrounding ones at time t.

Fig.3 plots the evolution of the distribution p(n, t), for the
same state considered in Fig.2. In a time t ∼ 1, correspond-
ing to the reduced time t/τα ∼ 7 · 10−4, the monomer hits
the surrounding cage a few times [43]. The collisions trigger
MI-correlations with a rather limited number of particles and
p(n, t) peaks at very small n values. As time goes by, the dis-
tribution displaces at larger n values for t/τα < 1 due to the
rapid exploration of the cage by the central particle establish-
ing MI-correlations with a larger number of surrounding neigh-
bours. For t/τα > 1, following the cage disappearance and
the larger displacements (see Fig.1), the MI-correlated parti-
cles decrease. For t/τα ∼ 4 the distribution exhibits a notable
change of the shape with clear bimodal structure. In particu-
lar a component peaking at n ∼ 12 is observed, revealing the
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Fig. 3. Probability that a central particle is MI-correlated with n sur-
rounding ones at time t for the state in Fig.2 with relaxation time
τ
(C)
α ∼ 1550. The probability is averaged over all ICEs.

presence of monomers with persistent MI correlations. A sim-
ilar bimodal pattern has been also reported in atomic liquids at
the same reduced time, t/τα = 4 [45]. However the bimodal
patterns of the atomic and the molecular liquids show an im-
portant difference in the location of the peak at low n values.
In atomic liquid, the peak is centred at n = 0, corresponding
to the fact that at times exceeding τα an increasing fraction
of atoms with no MI correlations with other atoms develops,
whereas in the present study, dealing with a molecular liquid
of trimers, the peak is centred at n = 2 corresponding to the
fact that in a trimer each monomer has permanent correlations
with two other ones. For t � τα the distribution narrows and
only the peak at about n ∼ 2 is apparent.

Fig.4 plots two characteristic parameters of the distribution
p(n, t), i.e. the average n(t) (top panel) and the standard de-
viation σ(t) (bottom panel). The average number of particles
which are MI-correlated with a generic one offers a measure
of the average size of correlated regions at time t, whereas the
standard deviation suggests how broad the size distribution is.
It is seen that the average n(t) vanishes at short times, peaks
at times t ∼ τα and reaches at long time the plateau level 2,
already interepreted in the discussion of Fig.3. In atomic liq-
uids n(t) vanish at long times [45]. The standard deviation
σ(t) peaks at two different times indicating the presence of
two characteristic time scales other than τα. We refer to them
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as τearly and τlate (τlate > τα > τearly). On increasing τα,
these two characteristic time scales get longer but in a differ-
ent way: τearly gets away from τα where τlate approaches the
latter. The complex pattern of the standard deviation is close,
but not identical, to the one of atomic liquids [45]. A remark-
able difference is that in our molecular liquid the peak at τearly
grows in height on increasing τα and the ratio between the
heights of the peaks at τearly and τlate is fairly constant. In-
stead, in atomic liquids the peak at τearly is absent for states
with fast relaxation (τα . 10) and grows more than the peak
at τlate when the relaxation slows down [45]. Fig.4 points out
that the pairs of states with equal FM, and then equal relaxation
time, exhibit the same dependence of n(t) and σn(t) from very
fast to slow time scales. We interpret the finding as novel sup-
port to the general validity of Eq.3. Finally, preliminary results
about a melt of polymeric chains withM = 10 shows that both
the average n(t) and the standard deviation σ(t) are virtually
the same for t . τα. This is rather expected in linear molecules
with high flexibility. For t� τα the average tends to 9 whereas
the standard deviation vanishes.
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In order to characterize the monomers on the basis of the
number of their MI-correlated particles, we consider the Pear-
son correlation coefficient c(ni(t), X), where ni(t) and X are
the number of MI-correlated particles with the generic i-th
monomer at time t and X is a quantity of interest. Beyond an
average over all the monomers, the coefficients are also aver-
aged over all the initial configurations.

First, we examine the Pearson correlation between ni(t)
and the propensity at the same time, i.e. the square displace-
ment of the i-th particle in a time t starting from the initial con-
figuration. Fig.5 plots the related time evolution. It is seen that
the Pearson correlation is maximum at t ≈ τearly and mini-
mum at t ≈ τlate. This clearly indicates that the monomers
with higher number of surrounding MI-correlated particles than
the average have higher mobility than the average at short times
(t < τα) and lower mobility at longer times. This aspect is sub-
stantiated in the next section. Notably, the time dependence of
the correlation coefficient is the same in each pair of states with
the same FM and relaxation time in agreement with Eq.3.

3.2.2 Early-relaxing and late-relaxing fractions

Fig.6 presents, for the same ICE of the state shown in fig.2, the
correlation plot of the number of correlated particles surround-
ing the i-th particle at times τearly and τlate, n

µ
i (τearly) and

nµi (τlate) for all the monomers i = 1, · · · , N . A similar pat-
tern is found in atomic liquids [45] and, in close analogy, we
are led to focus on the two fractions of monomers exhibiting
the largest number of MI-correlated particles. More precisely,
the two fractions are formed by the monomers with a number of
correlated particles exceeding the average value of nµi (τearly)
and nµi (τlate) by two times the standard deviation. They will
be referred to as early- and late-relaxing particles, respectively.
Early-relaxing particles exhibit high number of correlated part-
ners at t = τearly decreasing at the longer time τlate. With rare
exceptions, late-relaxing particles do the opposite, i.e. they ex-
hibit a low number of correlated partners at t = τearly increas-
ing at τlate.



6 Antonio Tripodo et al.: Vibrational scaling of the heterogeneous dynamics detected by mutual information

Fig.7 characterizes the early-relaxing and late-relaxing
monomers for the two states with slower relaxation (set C).
Similar features are seen for the A and B groups of states.
The top and bottom panel of Fig. 7 show ISFs and MSDs,
respectively, restricted to the early- and late-relaxing popula-
tions and compare them to the global curves considering all the
monomers. It is seen that early-relaxing particles exhibit faster
relaxation and higher mobility than the global system whereas
the opposite conclusion is reached for late-relaxing particles. In
particular, as conjectured in ref. [45], the restricted ISFs curves
show that τearly and τlate are just the relaxation times of the
early-relaxing and late-relaxing populations. Note that for very
long times, t� τlate, the restricted MSDs merge signalling the
dynamical homogenisation of the system. In agreement with
Eq.3, the time dependence of the ISFs and MSDs restricted to
the the early- and late-relaxing populations is found to be the
same within the errors in the two states of the C set.

3.2.3 Vibrational scaling of the early-relaxing and
late-relaxing fractions

We now test if the master curve Eq.2 holds for the early-relaxing
and late-relaxing fractions. We remind that Eq.2 has been origi-
nally by considering the global relaxation of a bulk system [20].
To proceed, we first specialize Eq.2 to the present model. Since
the latter is characterized by 〈u2g〉1/2 = 0.129(1), Eq.2 is recast
as [20]:

log τα = α+ β
1

〈u2〉
+ γ

1
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rare exceptions - a late-relaxing particle does the opposite.
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all the system and restricted to the early-relaxing and late-relaxing
monomers. The former exhibit faster mobility than the latter at in-
termediate times recovering a homogeneous, identical behaviour for
t � τlate. Notice that the curves referring to the same quantity are
independent of the state in agreement with Eq.3.

where α = −0.424(1), β = 2.7(1) · 10−2, γ = 3.41(3) · 10−3
[20]. Note that Eq.10 is written in dimensionless MD units
whereas Eq.2 is written in actual SI units.

The comparison between Eq.10 and our results are shown
in Fig.8. It is seen that the vibrational scaling of the relaxation
of the bulk system also holds for the the early-relaxing and
late-relaxing fractions with no adjustable parameter over about
three decades in relaxation time.

It is worth noting that the extension of the master curve,
Eq.10, to selected fractions of a given system has been also
demonstrated - with no parameter adjustment - by considering
the different layers with monomer-size thickness of a molecular
thin film. [37].

It is interesting to investigate the implications of the find-
ings of Fig.8 and the related ones of ref. [37]. The model lead-
ing to Eq.10 is based on the presence of energy barriers ∆E ∝
kBTa

2/〈u2〉 where a is the displacement to overcome the bar-
rier, and kB is the Boltzmann constant. The usual rate the-
ory leads to the Hall-Wolynes equation τ

(HW )
α (a2/〈u2〉) ∝
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exp(a2/2〈u2〉) [7]. In a disordered system one expects that the
displacement a is dispersed, leading to the distribution p(a2).
In the present molecular model it is found that the distribution
p(a2) does not change with the physical state set by the temper-
ature, density, molecular size and non-bonding potential [20].
The mean global structural relaxation time is evaluated by av-
eraging τ (HW )

α with p(a2) as weight factor [20]:

τα(〈u2〉) =
∫ ∞
0

τ (HW )
α (a2/〈u2〉) p(a2) da2 (11)

Within this scheme the fact that the relation between the struc-
tural relaxation time and FM of selected parts, i.e. the ”early”
and ”late” fractions of the present molecular liquid and the
molecular layers of the thin film, is the same of the global sys-
tem suggests that the distribution of the displacements to over-
come the barrier is the same. Said otherwise, the parts sample
effectively the global distribution p(a2) and all the specific de-
tails of the parts are encoded in their FM not in p(a2).

3.2.4 Structure influence on the fast and the slow
dynamics

We now characterize the structure influence on the fast (t < τα)
and slow (t < τα) dynamics. We first resort to a suitable defi-
nition of local density and, later, to a more detailed description
of the spatial arrangement surrounding the particle with higher
number of MI-correlated particles at short and long times.

Fig.9 presents the time evolution of the Pearson correla-
tion between the number of MI-correlated particles with the
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Fig. 8. Vibrational scaling of the structural relaxation time τ (k)α vs.
FM 〈u2〉k for the states of the A, B and C sets. Color codes as in
Fig.1. The figure shows that the scaling, originally found by con-
sidering the global relaxation, k = {global,NVE}, [20] and lead-
ing to the master curve Eq.10 (dashed line) [20], also applies, with
no adjustable parameter, to the early- and the late-relaxing fractions,
k = {early, ICEs} and k = {late, ICEs}, respectively. Error bars
are affected by the limited size of the early- and late-relaxing fractions
(about 6% and 2% of the total population of particles, respectively)
The empty circles enclose the global NVE averages of the three pairs
of states plotted in Fig.1.
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Fig. 9. Pearson correlation between the local density around the
generic i-th particle in the initial configuration of the ICEs and ni(t),
the number of MI-correlated particles at time t. Color codes as in
Fig.1. Orange and violet dots mark τearly and τlate, respectively,
as defined in Fig.4 (bottom). For t < τα particles with higher MI-
correlation belong to sites with initial lower density. For t > τα par-
ticles with higher MI-correlation belong to sites with initial higher
density. Inset: comparison between the density and the average local
density at the sites where the early and late-relaxing particles are lo-
cated for all the six investigated states. Late-relaxing monomers are
located in denser sites than early-relaxing ones.

generic i-th central one at time t and the local density of its
surroundings at the initial time, ρlocali . The latter quantity is
evaluated in a sphere of radius r0 = 1.45 centred on the i-th
particle. The quantity r0 is about the position of the first min-
imum of the radial distribution function (virtually independent
of the state) to restrict the evaluation to the first shell around
the tagged particle. We see that states belonging to the same
set (A,B,C) exhibit the same time dependence of the correla-
tion. The time dependence is similar to the one observed in
atomic liquids [45]. For t < τα a negative correlation is ob-
served which indicates a slight tendency for the early-relaxing
particles to be located in regions with lower local density. We
notice that the negative correlations start to decrease in mod-
ulus at t ' τearly and vanish very close to τα. For t > τα
the correlation is positive suggesting that late-relaxing parti-
cles tend to be located in regions with higher local density with
respect to the bulk (however note that the correlations are eval-
uated considering all the particles). The positive correlations
start to decrease at t ' τlate. As also suggested by Fig.7, Fig.9
supports the conclusion that τearly and τlate, the times where
the standard deviations of the number of correlated particles is
maximum (Fig. 4), are to be interpreted as the lifetimes of the
early- and late-relaxing fractions, respectively. On increasing
the relaxation time τα by moving from the A set of states to the
C set, Fig.9 clarifies that: i) the width of the region with nega-
tive correlation widens (in units of τα) whereas the region with
positive correlations does not, ii) the magnitude of both the pos-
itive and the negative correlations do not change appreciably.
The region with negative Pearson correlation between parti-
cles with high MI-correlations and local density is expected to
be contributed by early-relaxing particles whereas late-relaxing
particles should come up with positive Pearson correlations. In
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Fig. 10. Pearson correlation between ni(t), the number of MI-
correlated particles with the generic i-th particle at time t, and the
number of clusters with κ identifier owning the i-th particle in the ini-
tial configuration, Mi,κ. The analysis is performed for a state of the
C set. The highlighted curves correspond to the set of clusters which
maximise the modulus of the Pearson correlation at both τearly and
τlate in all the six states of the sets A, B, C. Their κ identifiers, accord-
ing to the taxonomy of refs. [65,66], are listed in the legend. The pro-
cedure reveals correlation with ring structures at short times whereas
at long times, among others, globular structures like the tetrahedron
(4 A), the triangular bi-pyramid (5 A), the octahedron (6 A) and the
pentagonal bi-pyramid (7 A) are signalled. The grey curves indicate
the presence of several other kinds of clusters with some Pearson cor-
relation.

fact, the inset of Fig.9 shows that the average local density of
the early-relaxing particles is lower than the global one and the
opposite holds true for the late-relaxing ones.

On increasing the relaxation time moving from the A set of
states to the C set, the deviations of the local densities from the
global one tend to decrease. This suggests that packing effects
alone are unable to provide insight into more subtle details as
the relative shift of τearly and τlate with respect to τα noted in
Fig.4. In that respect, we now investigate the role of the kind of
spatial arrangements of the correlated particles.

To proceed, we employ the topological cluster classifica-
tion (TCC) of the local structure [66] being adopted to inves-
tigate the structure of a large variety of system, ranging from
simple liquid to colloid-polymer mixtures [67–69]. TCC relies
on a modified Voronoi decomposition to identify the neigh-
bourhood topology and compare the latter with the one of iso-
lated equilibrated clusters. In particular, we analyse the struc-
ture of the initial spatial configuration and identify the topo-
logical clusters owning each particle. We remind that a particle
can be owned by more than one cluster, even of the same kind.

Fig.10 shows the Pearson correlation between the generic
i-th particle with ni(t) MI-correlated surrounding particles at
time t and the number of different kind of clusters labelled
by the κ identifier owning the i-th particle in the initial con-
figuration, Mi,κ for a state of the C set. The complete list of
identifiers and the corresponding description of the clusters is
given elsewhere [65, 66]. The high numbers of curves signals
that the kinds of cluster with some Pearson correlation is not
low. In order to devise a viable procedure to compare the six
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Fig. 11. Pearson correlation between ni(t), the number of MI-
correlated particles with the generic i-th particle at time t, and the
number of either ring (planar) or globular clusters identified in Fig.10
owning the i-th particle in the initial configuration, Mi,R and Mi,G,
respectively. Color codes as in Fig.1. Orange and violet dots mark
τearly and τlate (violet dot), respectively.

states forming the A, B and C sets, we highlighted the kind of
clusters which maximise the modulus of the Pearson correla-
tion at both τearly and τlate in all the six states. These clus-
ters are believed to be better correlated to the dynamics in a
state-independent way. Fig.10 shows that for t < τα particles
with higher number of MI-correlated particles than the average
belong to quasi-planar clusters of 3, 4 and 5 particles known
as shortest path ring which are associated to lower local den-
sity [45]. This agrees with Fig.9. Differently, for t > τα highly
correlated particles belong to globular clusters like the tetrahe-
dron (4 A), the triangular bi-pyramid (5 A), the octahedron (6
A), the pentagonal bi-pyramid (7 A) and other complex struc-
tures with higher number of particles [66].

It must be pointed out that some of our selected clusters are
also revealed in atomic liquids [45]. As an example, ring clus-
ters sp3, sp4 and sp5, associated to the the early-relaxing popu-
lation. Instead, globular clusters like 10B and 12D, detected in
the late-relaxing population of atomic liquids do not pass our
selection criteria owing to low Pearson correlation. Moreover,
long long-lived clusters in hard sphere systems like cosahedron
(13A) [70] are barely detected in our molecular system.

Even if the above selection procedure captures significant
structural features of the clusters owning the particles with high
MI correlation, it still exhibits some small state-dependence in
the sense that the magnitude of the Pearson correlation of the
selected clusters still depends on the state. In order to reduce
this effect, we consider the Pearson correlation between ni(t),
the number of MI-correlated particles with the generic i-th par-
ticle at time t, and the number of either ring (planar) or glob-
ular clusters identified in Fig.10 owning the i-th particle in the
initial configuration, Mi,R and Mi,G, respectively. The results
are shown in Fig.11. Interestingly, this less detailed character-
ization offers additional insight. As to the the relative shift of
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τearly and τlate with respect to τα noted in Fig.4, one sees that
τearly and τlate provide not only a measure of the relaxation
time of the the early-relaxing and the late-relaxing fractions,
but they also offer a measure of the lifetime of selected sub-
groups, i.e the ring and the globular clusters respectively. Fur-
thermore, Fig.11 recovers the property, Eq.3, i.e. states with the
same FM exhibit rather close time dependence at all times from
vibrational time scales to long times of a specific quantity, i.e.
the Pearson correlation (less apparent in the B set) between par-
ticles with high number of MI-correlated particles and the num-
ber of their inclusions in specific sets of either planar or glob-
ular clusters. This finding suggests that Eq.3, at least in part,
is enforced by structure. A similar indication was reached by
considering the scaling between elasticity and relaxation [41].

The validity of Eq.3 shown in Fig.11 is in harmony with
several other quantities presented in this study, i.e. global ISF
and MSD (fig.1), average and standard deviation of the global
distribution of MI-correlated monomers (fig.4), Pearson cor-
relation coefficients of number of MI-correlated particles with
propensity (fig.5) and local density (fig.9). All in all, these find-
ings further corroborate our previous conclusion that physi-
cal states with identical vibrational properties, as quantified by
FM, manifest strong dynamic similarity at long times, i.e at
least the structural relaxation time [20–37].

4 Conclusions
The heterogeneous dynamics in a mildly supercooled molecu-
lar liquid has been investigated by MD simulations. The anal-
ysis revealed MI correlation between propensities which al-
lowed the identification of two particle fractions with different
mobility and relaxation. The two fractions exhibit vibrational
scaling of their relaxation with master curve not differing from
the one found for the bulk, thus confirming identical results
found in other systems with strong dynamic heterogeneity as
thin molecular films. Packing effects are unable to clarify finer
aspects of the dynamics of the two fractions. A more refined
analysis suggests excitation of planar and globular structures at
short and long times, respectively. The observation that states
with equal fast mobility have identical time dependence of any
other quantity considering all the particles, at least up to τα,
has been extended to quantities restricted to the fractions with
heterogeneous dynamics.
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