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Mutual information does not detect growing correla-
tions in the propensity of a model molecular liquid†

Antonio Tripodo,a Andrea Giuntoli,a Marco Malvaldi,a and Dino Leporiniab∗

The dynamical spatial correlations detected by the mutual information (MI) in the isoconfig-
urational particle displacements of a monodisperse molecular viscous liquid are studied via
molecular-dynamics simulations by changing considerably both the molecular mobility and the
degree of dynamical heterogeneity. Differently from atomic liquids, the MI correlation length is
not growing on approaching the glass transition by considering the liquid both in full detail as
a collection of monomers and as a coarse-grained ensemble of molecular centers of mass. In
the detailed picture it is found that: i) the MI correlations between monomers are largely due to
inter-molecular correlations, ii) the MI length scale is numerically identical, within the errors, to
the correlation length scale of the displacement direction, as drawn by conventional correlation
functions. The time evolution of the MI spatial correlations complies with the scaling between the
fast vibrational dynamics and the long-time relaxation. Our findings suggest that the characteris-
tics of the MI length scale are markedly system-dependent and not obviously related to dynamical
heterogeneity.

1 Introduction
The nature of the solidification process observed at the glass tran-
sition temperature Tg by cooling supercooled viscous liquids is
a topic of intense research1,2. Starting with the seminal pa-
per by Adam and Gibbs, who invoked the presence of "coopera-
tively rearranging regions" in viscous liquids3, increasing interest
has been devoted to identifying possible growing length scales
as mobility decreases (for a recent topical review see ref.4). A
broad classification in terms of either static or dynamic length
scales is usually used. Static (thermodynamic) length scales
are determined by the free energy landscape, whereas dynamic
length scales are set by the rules governing the time evolution
of the system and extracted from finite-time behavior of time-
dependent correlation functions and associated susceptibilities.
Even if growing static length scales have been reported by exper-
iments5 and simulations6, there is still debate if they control the
glass transition7. On the other hand, the discovery of the spa-
tial inhomogeneity of the dynamics in supercooled liquids, the
so-called dynamic heterogeneity, e.g. see the review8, revealed
that more and more particles move in a correlated way approach-
ing Tg from above and promoted the study of their characteristic
dynamical length scales9. It is still not clear to what extent dy-
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namic correlations are the consequence or the primary origin of
slow dynamics4.

The present paper investigates dynamic spatial correlations de-
tected by mutual information (MI). MI is a measure of the degree
of statistical dependence (correlation) of two random variables
X and Y 10,11. Notably, MI, differently from the usual correlation
coefficient, can capture the nonlinear dependence between two
random variables12. MI is defined as10,11:

I(X ,Y ) =
∫ ∫

dx dy p(x,y) log
[

p(x,y)
p(x)p(y)

]
(1)

where p(x,y) is the joint probability distribution of the random
variables X and Y with distributions p(x) and p(y), respectively.
MI has been used for detecting classical phase transitions for sev-
eral classical system and topological transition in the XY model13,
the phase transition in a 2D disordered Ising model14 and for
evaluating the configurational entropy of liquid metals15. In
the framework of liquid-state physics MI has been considered in
atomic glassformers as a metric of the correlation between struc-
tural and dynamical quantities16–18, in particular the propen-
sity17,18. We remind that propensity refers to particle displace-
ments starting from the same initial global configuration and is
a tool to investigate the possible link between structure and dy-
namics19.

As a follow-up of previous studies20,21, we adopt the scheme
of ref.18 and investigate by molecular-dynamics (MD) numerical
simulations the MI correlations in space and time of the propen-
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sities of a model molecular glassformer. As a major result, we find
no growing dynamical correlations on slowing down the micro-
scopic mobility. This finding is strikingly different with respect to
the outcomes of MI studies of atomic glassformers where a clear
increase has been reported18.

2 Models and methods
We performed molecular-dynamics (MD) simulations of fully-
flexible, i.e. with no bond-bond bending potential, linear chains
of trimers (M = 3) in the supercooled regime. All simulations
were carried out with the open-source software LAMMPS22,23.
Non-bonded monomers interact with a truncated Lennard-Jones
potential

ULJ(r) = ε

[(
σ∗

r

)12
−2
(

σ∗

r

)]
+Ucut(r) (2)

where σ∗ = 21/6σ is the location of the potential minimum which
has depth ε. Ucut is chosen to ensure ULJ(r) = 0 for any r > rcut

and rcut is set to the value of 2.5σ . Monomers that belongs to the
same chain interact with each other via the harmonic potential

Ub(r) = k (r− r0)
2 (3)

where the constant k is set to 555.5ε/σ2 and the rest length of
the bond is r0 = 0.97σ . All quantities are in reduced units: length
in units of σ , temperature in units of ε/kB and time in units of
σ
√

m/ε where m is the monomer mass24. We set m = kB = 1.
The time step for the integration was chosen to be 0.003. All the
investigated systems have N = 3999 monomers, i.e. 1333 chains.
The NVT ensemble has been used for the equilibration runs. For
each run the equilibration time lasted not less than 3τee, where τee

is the end to end vector autocorrelation function decay time25–28.
After equilibration, the NVE ensemble was employed for the data
production employing at least sixteen independent runs. We built
three sets of states varying both the density ρ and temperature
T , each state being characterized by the pair (ρ, T ): set A [(1.05,
0.60), (1.01, 0.47)], set B [(1.01, 0.435), (1.03, 0.49)], set C [(1.05,
0.51), (1.02, 0.42)]. The states of the same set exhibit the same
relaxation time τα , i.e. τ

(A)
α ' 42, τ

(B)
α ' 150, τ

(C)
α ' 1550. The

exact definition of the relaxation time will be given in Sec.3.1.
From the equilibrated configuration of each state, in parallel to

the usual production runs in NVE ensemble, we also started pro-
duction runs in the iso-configurational ensemble (ICE)19. Each
ICE, henceforth labeled by µ, consists of a single initial spatial
configuration of all the particles, each of them starting the time
evolution with 1000 random assignments of the initial velocity,
as drawn from the corresponding Maxwell-Boltzmann distribu-
tion of the state. We considered four ICEs for the states of the
set C and two ICEs for the other two sets, in close agreement with
other studies performed with about three times less particles than
the present one18. The initial configurations of the ICEs were ran-
domly taken by the set of NVE production runs. The fact that the
number of ICEs is less than the number of production runs in the
NVE ensemble is due to the extremely time-consuming procedure
to perform the MI evaluation. Arguments will be presented in
Sec.3 to conclude that the phase space explored by all the ICEs of

a single state is indistinguishable from the one explored by all the
NVE runs.

To perform the MI evaluation, if the distribution functions
which are involved in the MI definition, Eq.1, are unknown, one
has to resort to complex estimators. Following previous stud-
ies17,18, we employed the Kraskov-Stögbauer-Grassberger esti-
mator11. The high number of velocity assignments in each ICE
ensures proper convergence of the estimator.

3 Results and discussion

3.1 Relaxation and transport

We first characterize the relaxation and the mobility of the molec-
ular liquid. One central quantity is the self part of the van Hove
function Gs(r, t)29:

Gs(r, t) =
1
N

〈
N

∑
i=1

δ [r+ ri(0)− ri(t)]

〉
(4)

where ri(t) is the position of the i-th monomer at time t and the
brackets denote the average over the system replicas. In isotropic
liquids the van Hove function depends on the modulus r of r. The
interpretation of Gs(r, t) is direct. The product Gs(r, t) ·4πr2 is the
probability that the monomer is at a distance between r and r+dr
from the initial position after a time t. The second moment of the
van Hove function is the mean square displacement (MSD):

〈δ r2(t)〉= 1
N

N

∑
j=1

〈
||r j(t)− r j(0)||2

〉
(5)

The spatial Fourier transform of the self part of the van Hove
function yields the self part of the intermediate scattering func-
tion (ISF)29:

Fs(q, t) =
1
N

〈
N

∑
j=1

eiq·[r j(t)−r j(0)]

〉
(6)

which in an isotropic liquid depends only on the modulus of the
wavevector q = ||qqq||. ISF provides a convenient relaxation func-
tion to study the rearrangements of the spatial structure of the
fluid over the length scale ∼ 2π/q. We define the structural re-
laxation time τα by the relation Fs(qmax,τα ) = e−1 where qmax is
the maximum of the static structure factor (for the present study
7.14≤ qmax ≤ 7.22).

The top panel of Fig.1 shows the monomer ISF of all the states
under investigation. To better understand the relaxation process,
the top inset also plots the monomer MSD. The coincidence of the
ISF and MSD curves of particular states over all the time window
will be commented at the end of the present Sec. 3.1. At very
short times (ballistic regime) MSD increases according to 〈r2(t)〉∼=
(3kBT/m)t2 and ISF starts to decay. At later times, the repeated
collisions with the other monomers slow the displacement of the
tagged one and a quasi-plateau region, also found in ISF, occurs
when the temperature is lowered and/or the density increased.
This signals the increased caging of the particle. The latter is
released by the cage after an average time τα , leading to the ISF
decay and the MSD increase due to diffusive motion for t & τα .
It is worth noting that no difference is observed if ISF and MSD
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Fig. 1 Top: ISF, Eq.6, at qmax, the first peak of the static structure factor,
of the six studied states. ISFs are groupable in three distinct pairs. The
relaxation time τα of each pair is marked by a dot. Insets: MSD, Eq.5,
and NGP, Eq.7. Bottom: self-part of the van Hove function Gs(r,τα ),
Eq.4. The states of the C set reveal a bimodal structure of the van Hove
function signalling marked heterogeneous dynamics in agreement with
their highest NGP maximum. Note that, if two ISF, MSD and NGP curves
coincide at short time (t ∼ 1), they do the same up to τα at least. This is a
manifestation of the known universal scaling between the fast vibrational
dynamics and the long-time relaxation in viscous liquids 30,31. See text
for details.

are evaluated in terms of the ICEs instead of the NVE runs (not
shown). The bottom inset of the top panel of Fig.1 shows the
non-gaussian parameter (NGP) to be defined as:

α2(t) =
3 < δ r4(t)>
5 < δ r2(t)>2 −1 (7)

α2(t) vanishes if the displacement r is gaussian and is a well-
known metric of the dynamical heterogeneity, featuring the non-
gaussian character of the displacements1,2,8. It is seen that the
maximum of α2(t) increases with the relaxation time and states
with equal relaxation time have virtually identical α2(t)30,32. The
increasing peak height of α2(t) proves that the states have signifi-
cantly different dynamical heterogeneity. Fig. 1(bottom) presents
the self-part of the van Hove function Gs(r, t) evaluated at τα of
the three sets of states. It is seen that states with equal τα (the
sets A, B, C) have coinciding Gs(r,τα ) in agreement with previous
studies31,33. Most monomers displace by half a radius, r ∼ 0.25.
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Fig. 2 Panel (a): representative plots of the MI distribution at time t for a
single ICE of a selected state of the C set. The threshold I0 = 0.2 above
which MI values are considered significant 18 is also indicated. Panel (b):
distribution p(n, t) of the number of correlated particles with a central one
at time t. The distribution is averaged over all ICEs of the state of the
panel (a).

The states of the set C also exhibit a secondary peak at r ∼ 1 (the
monomer diameter) due to the presence of fast particles with
jump dynamics34, revealing strong heterogeneous dynamics in
agreement with the higher NGP peak than the A and B sets.

It is worth noting that the six states of the present study are
designed to emphasise the noted universal scaling between the
fast vibrational dynamics and the long-time relaxation in viscous
liquids20,21,30,31,33,35–48. The scaling states that, considering any
ensemble-averaged time-dependent quantity X(t), if two physical
states exhibit equal value of X(t) at very short times (t ∼ 1, cor-
responding to a few picoseconds49), the time evolution of X(t)
in the two states is the same up to τα at least. Fig.1 illustrates
the scaling for ISF, MSD and NGP by showing that their curves
referring to six different states are groupable over the whole time
window in three separate pairs, each labelled by a specific τα value.
The scaling also holds for the van Hove function31,33 and explains
the grouping of the van Hove functions in Fig.1(bottom). On this
basis, a further goal of the present study is to test the scaling in
the framework of MI correlations in the isoconfigurational ensem-
ble.

3.2 Mutual Information
3.2.1 Global distribution

Fig.2(a) presents representative plots of the distribution p(Iµ , t) of
the MI values at time t for a single ICE of the liquid, i.e. p(Iµ , t)dIµ

is the probability that the MI between two particles at time t is
located in the range [Iµ , Iµ +dIµ ]. The MI of the particle pair (i, j)
is evaluated, according to Eq.1, by the relation

Iµ

i j(t) = I(δ~r µ

i (t),δ~r µ

j (t)) (8)

where δ~r µ

i (t) is the displacement of the i-th particle in a time t
starting from the initial position in the selected ICE. The particles
i and j are said to be correlated at time t if Iµ

i j(t)> I0 with I0 = 0.2.
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Fig. 3 Time-dependence of the average number of particles correlated
with a central one n(t). Color codes as in Fig.1. Insets: time-dependence
of the standard deviation σ(t) (top) and the gyration radius of the clus-
ters of correlated particles Rg(t)18 (bottom). r0 and rc denote the bond
length and the average distance between the monomers belonging to the
same molecule, respectively. States with equal relaxation time, marked
by dots, exhibit coincident time dependence of n(t), σ(t) and Rg(t), thus
supporting the universal scaling between the fast vibrational dynamics
and the long-time relaxation in viscous liquids 20,21,30,31,33,35–48.

The threshold value I0 has been chosen in agreement with other
studies18 to filter out the contributions at small MI values where
the MI estimator is less reliable11 . Fig.2 (a) shows that for
t� τα the distribution p(Iµ , t) exhibits a bimodal structure above
I0 which develops as two well separated peaks at t � τα . The
two peaks stem from the permanent bonds linking a monomer
to the other two ones of the trimer, establishing permanent MI.
Preliminary runs show that nine peaks are seen in decamers at
long times. The multi-modal structure of p(Iµ , t) is missing in
atomic liquids18. Fig.2(b) plots, for the same state considered
in Fig.2(a), the distribution of the number of particles correlated
to a central one at time t, p(n, t). The distribution is averaged
over all the ICEs of the state. In the ballistic regime p(n, t) peaks
at very small n values, but the maximum steeply increases with
time for t . τα due to rapid exploration of the cage by the cen-
tral particle, establishing correlations with the neighbours. For
t ∼ 0.1τα , the distribution p(n, t) broadens and becomes skewed.
At t ∼ τα the distribution narrows. Finally, at t ∼ 4τα , the distri-
bution broadens asymmetrically again with a notable change of
the shape indicating two distinct families of correlated particles.
A similar behaviour has been reported in atomic liquids18.

Fig.3 plots two characteristic parameters of of the distribution
p(n, t), i.e. the average number of correlated particles with a
central one n(t) (main panel) and the standard deviation σ(t)
(top inset). It also plots the gyration radius Rg(t), the average
distance between correlated particles18 (bottom inset). Notably,
states with equal relaxation time exhibit, within the errors, the
same time dependence of n(t), σ(t) and Rg(t) in the whole range,
covering both vibrational and relaxation time scales. We inter-
pret the finding as a manifestation of the aforementioned scaling
between the fast vibrational and the slow dynamics in glassform-
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Fig. 4 Time-dependence of the average number of particles correlated
with a central one n(t) belonging to the same molecule (top panel) or
different molecules (bottom panel). Color codes as in Fig.1. The insets of
both panels refer to the time-dependence of the standard deviation σ(t)
and the gyration radius of the clusters of correlated particles Rg(t)18. r0
and rc as in Fig.3 . States with equal relaxation time, marked by dots,
exhibit coincident time dependence of n(x)(t), σ (x)(t) and R(x)

g (t) with x
∈ {inter, intra} over all the time window, supporting the universal scaling
between the fast vibrational dynamics and the long-time relaxation.

ing systems20,21,30,31,33,35–48. Fig.3 shows that the average n(t)
vanishes at short times, peaks at t ∼ τα and eventually reaches
at long time the plateau level corresponding to the fact that in
a molecule each particle has permanent correlations with two
other monomers. The gyration radius starts at very short times
at Rg ∼ r0, i.e. the bond length, and levels off at long times at the
plateau rc, corresponding to the average distance between the
monomers of a molecule, as evaluated by, e.g., the intrachain ra-
dial distribution function50. The complex pattern of the standard
deviation is rather close to the one of atomic liquids18 and will
be discussed in a forthcoming paper.

Fig.3 shows a central result of the paper. It is seen that, chang-
ing the relaxation time by a factor of ∼ 40 does not change the
maxima of two metrics of the spatial correlations, i.e. the aver-
age number of correlated particles with a central one n(t) and the
gyration radius Rg. This is in striking contrast with the behaviour
of atomic liquids where the maxima of both n(t) and Rg are seen to
increase with the structural relaxation time18. We have checked
that changing I0 in the range 0.1 ≤ I0 ≤ 0.3 does not affect this
finding.
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3.2.2 Intermolecular and intramolecular distribution

Fig.4 provides further insight into the time evolution of the dis-
tribution of the correlated particles to a central one belonging
to the same molecule (top) or other molecules (bottom). As in
Fig.3, we focus on the average, the standard deviation and the
gyration radius, i.e. the average distance between correlated par-
ticles. They are referred to as n(x)(t), σ (x)(t) and R(x)

g (t) for in-
tramolecular (x = intra) and intermolecular (x = inter) correla-
tions, respectively. Fig.4(top) shows that the average number of
correlated particles belonging to the same molecule grows with
two distinct regimes. A fast increase, developing within t ∼ 1, cor-
responding to the full exploration of the surrounding cage by the
monomer30, and a much slower growth to reach the asymptotic
level, 2, which completes within the structural relaxation time
τα . The standard deviation exhibits a fast increase followed by
a slow decay denoting the stable character of the intramolecular
correlation due to monomer mutual bonding, whereas the gyra-
tion radius increases qualitatively above the bond length value,
r0, to reach the same asymptotic value of the global gyration ra-
dius, see Fig.3. Fig.4(bottom) refers to the correlation between
a monomer and other ones belonging to different molecules. It
is seen that the time evolution of the average number of corre-
lated particles belonging to different molecules, n(inter)(t), behaves
qualitatively like the global average n(t) for t . τα . In particular,
the maximum value of n(inter)(t), reached close to t ∼ τα , does
not increase by increasing the structural relaxation times and one
has n(inter)(τα ) ' n(τα )− 2. This approximate relation points out
that most particles correlating to a monomer belong to a different
molecule. Consistent with the latter finding, a near coincidence
between the global and the intermolecular gyration radiuses is
also observed R(inter)

g (t) ' Rg(t) for t . τα , including their maxi-

mum value. At long times, differently from Rg(t), R(inter)
g (t) van-

ishes since the central particle has no permanent correlations with
the ones of other molecules. Finally, we notice that the standard
deviation of the global distribution of correlated particles, σ(t) is
set by the intermolecular contribution. In fact, σ (inter)(t) ' σ(t),
see the top inset of Fig.4(bottom).

3.2.3 Molecular center-of-mass distribution

Instead of considering the molecular liquid as a collection of N
monomers, we may picture it in a coarse-grained way as a col-
lection of N/3 point particles, each localised at the molecular
center of mass. The MI distribution between the molecular cen-
ters of mass is of interest to investigate the MI correlations at the
molecular level going beyond the local fast modes internal to the
molecule itself. It is also useful as a tool to compare the MI cor-
relations of our monodisperse molecular liquid with the reported
ones of a polydisperse atomic liquid16–18 in that maps the for-
mer to an effective atomic one. Fig.5 plots the average number
n(cm)(t) and the standard deviation σ (cm)(t) of the MI distribution
between the molecular centers of mass. We see that the maximum
of n(cm)(t), as the maximum of n(t) (see Fig.3), does not increase
by increasing the relaxation time. Notably, the maximum occurs
at a time earlier than τα close to - but not coincident with - the
time where the maximum of the non-gaussian parameter α2(t)
is located, see inset of Fig.1 (top). A qualitative resemblance of
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Fig. 5 Time-dependence of the average number of center-of-mass cor-
related with a central one according to MI ( n(cm)(t) ). Inset: standard
deviation (σ (cm)(t)). Color codes as in Fig.1. States with equal relaxation
time, marked by dots, exhibit coincident time dependence of n(cm)(t) and
σ (cm)(t) over all the time window, supporting the universal scaling be-
tween the fast vibrational dynamics and the long-time relaxation.

σ (cm)(t) with the global standard deviation σ(t) (Fig.3, top inset)
is noted.

3.2.4 Dynamical correlation lengths

To better scrutinize the MI spatial correlations, we consider the
average MI value, Ī(r, t) which is defined as the average of Iµ

i j(t)
defined in Eq.8, over all the i and j particles spaced by r in the
initial configuration of a given ICE and further averaged over all
the ICEs. We focus on t = τα . Fig.6 plots the average MI spatial
correlations at τα , Ī(r,τα ) for all the states under investigation.
Apart from a mild modulation, in-phase with the radial distri-
bution function, only a weak dependence on the state is seen,
consistently with Fig.3. The slope ξI of the exponential tail in
a log-lin plot provides a measure of the MI correlation length18.
We point out that the above definition of the correlation length,
involving an average over all the monomers, parallels the aver-
age performed over all the particles of the five-component atomic
mixture carried out in ref.18. Picturing our system not as a collec-
tion of monomers but as a coarse-grained collection of molecular
centers of mass and repeating the above procedure yields the al-
ternative dynamical correlation length ξICM . The inset of Fig.6
shows that, in agreement with the findings of Fig.3 and Fig.6,
both ξI and ξICM increase very weakly on approaching the glass tran-
sition (the former by about 8.5% and the latter by about 2.5%, to
be compared with ∼ 30% in atomic liquids in nearly the same
range of relaxation time values18). Notice that evaluating ξICM

not at τα but at the time when n(cm)(t) is maximum upshifts the
correlation length to ξ ′ICM

. The latter differs from ξICM by less than
3% and increases like ξICM by increasing the structural relaxation
time.

Alternative dynamical correlation lengths may be drawn
by considering spatial displacement-displacement correlations
(DDC) via suitable correlation functions averaged in the NVE en-
semble20,21. To this aim, we define two distinct correlation func-
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tions considering DDC restricted to the direction (D-DDC) and
the modulus, i.e. mobility, (M-DDC)20,21. More explicitely, the
D-DDC, C~u(r, t) and M-DDC, Cδu(r, t) correlation functions are de-
fined as

C~u(r, t) = 〈ûi(t0, t) · û j(t0, t)〉, (9)

Cδu(r, t) =
〈δui(t0, t)δu j(t0, t)〉
〈[δu(t0, t)]2〉

. (10)

ûk(t0, t) is the versor of the displacement of k-th monomer in a
time interval from t0 to t0 + t:

uk(t0, t) = rk(t0 + t)− rk(t0) (11)

whereas the deviation from the average of the modulus of the dis-
placement of k-th monomer in the same time interval is defined
as:

δuk(t0, t) = |uk(t0, t)|− 〈|u(t0, t)|〉 (12)

An average over all the i-th and j-th monomers spaced by r at time
t0 is understood in Eq.9 and Eq.10. On increasing r, both C~u(r,τα )

and Cδu(r,τα ) exhibit an exponential tail with slopes ξu and ξδu
in a log-lin plot, respectively20,21. It has been reported that ξu

and ξδu behave in a different way by increasing the structural
relaxation time τα , i.e. the former is virtually constant whereas
the latter shows a marked increase20,21. This distinction is not
related to the molecular character of the liquid in that it has been
also reported in a binary atomic mixture51. The different charac-
ter of ξu and ξδu may be rationalised. First, let us consider ξu. In
the present model molecular liquid the D-DDCs between a central
particle and the closer ones, following their mutual collisions, are
apparent only in the nearest shells where set in very fast ( within

t ∼ 1, corresponding to a few picoseconds49)52. The above find-
ings suggest that D-DDCs are very local, as also confimed by the
fact that ξu is of the order of the monomer size, and then less
related to the large-scale cooperative rearrangements setting the
structural relaxation. Now, let us consider ξδu. The latter pro-
vides a measure of the size of the regions where the local mobility
differs from the average global mobility. In the phenomenon of
dynamical heterogeneity the liquid may be thought as partitioned
in clusters of particles with different mobility8,9,20. Then, one ex-
pects that, on cooling from high temperature where the liquid
is dynamically homogeneous, ξδu increases on approaching the
glass transition. Even if related to the dynamic heterogeneity, the
detailed microscopic mechanism leading to the increase of ξδu
needs further investigation. Given the known link between re-
laxation and elasticity in molecular liquids and polymers53,54, an
interesting approach is provided by the rigidity percolation sce-
nario55.

The inset of Fig.6 shows that ξ I ∼ ξu, i.e. the MI length is
nearly constant and rather close to the one of the D-DDC, whereas
it is rather decoupled from the correlation length of the mo-
bility which senses more effectively the dynamical heterogene-
ity. The finding that MI correlation decouple from M-DDC will
be investigated in future studies. Preliminarily, we note that
Eq.1 is invariant under affine changes. As a consistency test, we
have found that Eq.8 is invariant under the global scale change
δ~r µ

k (t)→ λδ~r µ

k (t).

4 Conclusions

We studied by MD simulations the transport and the relaxation
of a model molecular liquid in the NVE and the isoconfigurational
ensembles by changing considerably both the molecular mobility
and the degree of dynamical heterogeneity. We focus on the MI cor-
relation length which is observed to increase in atomic liquids on
approaching the glass transition. We find that the time evolution
of the MI spatial correlations complies with the scaling between
the fast vibrational dynamics and the long-time relaxation. We
evidence that the MI correlations between monomers are largely
due to inter-molecular correlations. We also find that, considering
the liquid as a collection of monomers, the MI correlation length
is weakly dependent on the structural relaxation time, virtually co-
incident with the length scale of the direction correlation of the
particle displacement and decoupled from mobility spatial corre-
lations sensing the dynamical heterogeneity. Similarly, adopting
the coarse-grained picture of the molecular liquid as a collection
of point particles localised at the molecular centers of mass leads
to an alternative MI correlation length being nearly constant too.
Our findings suggest that the characteristics of the MI length scale
are markedly system-dependent and pose the question if they can
capture the key features of the dynamical heterogeneity and other
quasi-universal aspects of fragile glassformers.
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