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Abstract: Biogas is a fuel obtained from organic waste fermentation and can be an interesting solution
for producing electric energy, heat and fuel. Recently, many European countries have incentivized
the production of biomethane to be injected into natural gas grids or compressed and used as biofuel
in vehicles. The introduction of an upgrading unit into an existing anaerobic digestion plant to
convert biogas to biomethane may have a strong impact on the overall energy balance of the systems.
The amount of biomethane produced may be optimized from several points of view (i.e., energy,
environmental and economic). In this paper, the mass and energy fluxes of an anaerobic digestion
plant were analyzed as a function of the biogas percentage sent to the upgrading system and the
amount of biomethane produced. A numerical model of an anaerobic digestion plant was developed
by considering an existing case study. The mass and energy balance of the digesters, cogeneration unit,
upgrading system and auxiliary boiler were estimated when the amount of produced biomethane was
varied. An internal combustion engine was adopted as the cogeneration unit and a CO2 absorption
system was assumed for biogas upgrading. Results demonstrated that the energy balance of the plant
is strictly dependent on the biomethane production and that an excess of biomethane production
makes the plant totally dependent on external energy sources. As for the environmental impact,
an optimal level of biomethane production exists that minimizes the emissions of equivalent CO2.
However, high biomethane subsides can encourage plant managers to increase biomethane production
and thus reduce CO2 savings.
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1. Introduction

In recent years, interest in biomass as an alternative to fossil fuels has been steadily increasing.
Besides the classical combustion process, which is mostly suitable for wooden residues [1], several
types of thermochemical and biological processes are considered attractive for producing energy
and biofuels. Thermochemical processes are based on gasification [2] or pyrolysis [3] of biomass to
obtain energy and biofuels [4,5]. Biological processes are based on bacterial, or in some cases, algal
fermentation to obtain ethanol from sugary biomass [6] or biogas from water-rich organic material [7].
In particular, the production of biogas from anaerobic digestion has become widespread in Europe.
Many European countries are encouraging the development of anaerobic digestion systems since
they produce clean energy starting from organic waste [8] and promote the diffusion of a circular
economy [9]. In addition, anaerobic digestion can also provide sanitation services by using sewage
and municipal organic waste as an input [10]. Biogas produced in an anaerobic digestion system is
normally burned in a cogeneration unit to produce heat for the digestion process and electricity [11].
This approach has been widely investigated in the literature. Whiting et al. [12] estimated the lifecycle
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impact of anaerobic digestion operating with agricultural waste to produce electricity and heat as a
function of the type of waste fed into the process.

Several authors have focused on improving the efficiency of the cogeneration by recovering the
heat from the cogeneration unit. In a previous work, the authors assessed the feasibility of recovering
the thermal energy to supply a district heating and cooling system [13]. They found that trigeneration
can be economically feasible (with high payback periods) only under the condition that the final user
is located near the plant due to the high cost of the connection. A similar result was obtained by Pöschl
et al. [14], who concluded that cogeneration is profitable only if the final user is located at a relatively
short transmission distance. Gebrezgabher et al. [15] used the heat rejected from the cogenerator
to feed a drying system to reduce the moisture content of the digestate, thus reducing the volume
and therefore the cost of digestate transportation and disposal. Organic Rankine cycles (ORCs) are
another opportunity to improve the efficiency of the cogeneration system by increasing the electric
power output. Many authors in the literature have analyzed the feasibility of adopting an ORC in a
biogas plant, and have mainly focused on the optimization of the cycle parameters such as expander
geometry [16], type of architecture [16], and cycle parameters [17]. In a previous work, the authors
showed that simple modifications to the digestion plant can lead to efficiency improvements over one
year of operation [18].

All these technologies are interesting solutions for reducing the amount of thermal energy losses
and have been extensively adopted in existing plants. However, many countries are now using
governmental subsides to promote the production of biomethane to be injected in the natural gas
grid and eventually be used as a fuel for the transportation sector [19]. Biomethane produced from
biogas upgrading is an attractive biofuel as it is mostly made up of methane (more than 97%) [20,21].
The adoption of biomethane does not require any conversion of traditional natural gas-fueled engines
and can be easily stored on board as compressed gas [22] or in a liquid state after a liquefaction
process [23,24]. Many authors have investigated the potential of producing biomethane from anaerobic
digestion plants: Salama et al. [25] focused on maximizing biomethane production by improving
the digester diet. De Clercq et al. [26] built a machine learning algorithm to forecast biomethane
production as a function of the digester feed. Cucchiella et al. [27] analyzed the economic benefits of
biomethane production in the Italian context for each type of feeding biomass. None of these or other
similar studies has considered the integration of the upgrading systems in the anaerobic digestion
plant from an energy balance point of view.

The introduction of a new process in an anaerobic digestion plant may change the overall energy
balance and requires careful design. As an example, Yuan et al. [28] studied the effect of implementing a
thermal pre- and post-treatment of the organic wastes in an anaerobic digestion plant. This modification
had a positive effect on the performance of the plant, but a detailed energy analysis of the system
was necessary. Bohutskyi et al. [29] developed a numerical model to predict biogas production in an
anaerobic digestion plant where the synergic action of micro-algae and bacteria takes place. In the
study they also focused on the electric and heat balance of the plant. Sung et al. [30] considered the
average energy balance of an anaerobic digestion plant to assess the optimal design of an organic
Rankine cycle unit recovering the cogenerator waste heat.

When producing biomethane, it is important to estimate the impact of the upgrading system
on the energy balance of the plant since upgrading and biomethane production impact the optimal
size of the cogeneration unit [31]. Careful choice of the cogeneration unit and of the plant operation
is therefore required. This study aims to evaluate the energy balance, CO2 saving and revenues of
a reference plant as a function of the amount of biomethane produced. By varying the fraction of
produced biogas sent to the upgrading system, the net balance of electricity and heat was evaluated.
The economic and environmental analysis (avoided CO2 emissions) showed that the biomethane prices
encourages interest in operating conditions with no cogeneration (low energy efficiency) and high
CO2 emissions.
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2. Case Study

As a reference case study, an anaerobic digestion plant that processes the sludge from a municipality
waste-water treatment plant was considered [32,33]. The system is made up of two anaerobic digesters,
a biogas/methane fueled boiler, an internal combustion engine (ICE) and a biogas upgrading system.
The plant scheme is shown in Figure 1a. The heat management is performed by means of two heat
exchange sections named Loop 1 and Loop 2, which are thermally connected through the upgrader.
The mass and energy streams between the components are highlighted in different colors in Figure 1b.
Two digesters (D1 and D2) of 3000 m3 and 1300 m3 co-digest sewage and bio-wastes and produce
235 Nm3/h of biogas with about 65%vol methane concentration. Sludge recirculation with a 1:23 mass
flow ratio value is thought to prevent the achievement of high temperatures during sludge heating.
This means that the sludge mass flow circulating in the heat exchangers is much greater than the actual
sludge mass flow treated by the plant.

The boiler operates with both natural gas and biogas to produce heat for the digesters and the
upgrading system when the cogeneration unit is not sufficient. The upgrading system is assumed
to be an absorption unit from Green Methane based on hot potassium carbonate absorption (Green
Methane hot potassium carbonate, GM-HPC) [34]. According to the manufacturer of the system,
the unit produces biomethane with a CO2 content less than 1%vol. The upgrader requires electricity
and thermal energy at a temperature of 120 ◦C. However, 75% of the thermal energy may be recovered
at a temperature of 80 ◦C and can be used for sludge heating. The upgrader scheme is shown in
Figure 2.

An internal combustion engine (ICE) has been used as a cogeneration unit. In order to perform the
analysis of the system as a function of the amount of upgraded biogas, different internal combustion
engines (i.e., with different sizes) operating in nominal conditions were considered according to the
literature on biogas-fueled ICEs [35,36]. The minimum and the maximum size that was considered is
68 kW and 550 kW, respectively. For each size, the flue gases thermal output referred to a temperature
of 120 ◦C (Qexhaust), the cooling water thermal output (Qwater) and the electric efficiency (η) at nominal
operating conditions were considered [35,36]. These quantities linearly fitted as a function (y = mx + q,
where m is the angular coefficient of the linear line and q is the intercept) of the electric power Pel
(i.e., x is Pel, and y can be Qexhaust, Qwater or the ICE efficiency η). For a given value of the engine
power, the corresponding fitted value of efficiency, heat content in the exhaust and heat dissipated in
cooling water could be determined. The results of the fitting are reported in Table 1, together with the
coefficient of determination, R2.

Table 1. Coefficients from linear fitting of the engine curves at nominal conditions.

y m x q R2

Qexhaust [kW] 0.54 Pel [kW] 6.06 0.99
Qwater [kW] 0.54 Pel [kW] 17.16 0.97

η [%] 0.007 Pel [kW] 38.79 0.89

The cooling circuit of the upgrading system (i.e., water at about 80 ◦C) provides thermal energy to
sludge through the heat exchanger HE-01. The additional thermal energy required to keep the sludge
at 37 ◦C is provided through the heat exchanger HE-02 by a water loop connected to the boiler and the
cogeneration system. The cogeneration system provides low temperature heat Qwater (below 90 ◦C)
in the Loop 1 circuit, and high temperature heat Qexhaust (above 120 ◦C) on the Loop 2 side. Qexhaust

may be limited by diverting some of the flue gases to ensure proper temperature control of Loop 2.
Similarly, Qa may be removed from Loop 1 through an air cooler to keep the temperatures within the
constraint range.
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Figure 1. Plant scheme (a) and the mass and energy fluxes involved (b).

The boiler may also be used to maintain the water temperature at the upgrading system inlet
at a minimum of 120 ◦C as required by the manufacturer’s specifications. Internal electric energy
consumption of the plant (i.e., power required by the auxiliary system such as sludge pre-treatment,
handling and pumping) is proportional to the sludge mass flow rate and is estimated as 225 kW
(constant value). This power is provided by the ICE or by the electric grid when the first one is not
enough. In the case of a power surplus, the excess of power may be sold to the grid. From this
perspective, the plant produces three main products, that is, power, thermal energy and bio-methane
and their amounts are strictly dependent on each other. To assess this nexus, a simulation of the system
was carried out. The energy and mass streams between plant components were analyzed as a function
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of the fraction of the amount of biogas used in the upgrading system. In general terms, biogas can be
used in the upgrading system, in the ICE and in the boiler. The mass flow rate of biogas sent to the
upgrading system was considered as a variable input. The remaining amount of biogas was used first
in the ICE and then in the boiler. Methane from the grid was used only when no biogas was available,
and the recovered thermal energy was not enough to keep the sludge at the required temperature.
Exhaust gas thermal energy was used first in the upgrading system as a large portion of it is recovered
to provide heat to the sludge. If necessary, other thermal surpluses may be used to achieve the target
sludge temperature.
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3. Material and Methods

Steady-state mass and energy conservation equations were adopted to model the system according
to the scheme shown in Figure 1. The ICE was modeled according to the equations reported in Table 1.
For each operating condition, power output, exhaust gas mass flow rate and temperature were
estimated. The total thermal power requested by sludge (

.
Qt) was the sum of the power requested to

heat up sludge from inlet to digestion conditions (37 ◦C) and of the thermal losses from the digesters
(Equation (1)):

.
Qt =

.
Ql +

.
Qh (1)

where
.

Ql is the digesters’ loss and
.

Qh is the thermal power requested to heat the sludge.
The thermal loss from the digesters was estimated by considering the heat transfer convection

from the lateral wall, roof and ground, according to the equivalent electric scheme reported in Figure 3
(Equation (2)).

.
Ql =

2∑
i=1

Ur·Ar,i·(Td − Ta) + Uw·Aw,i·(Td − Ta) + Ug·Aground,i·
(
Td − Tg

)
(2)

where U is the overall heat transfer coefficient, A is the heat transfer surface, Td is the digestion
temperature, Ta is the ambient temperature and Tg is the ground temperature, which is assumed to be
20 ◦C. The subscript r refers to roof, w to lateral wall and g to the bottom part of the digester exchanging
heat with the ground.
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Heat exchangers were simulated by considering the constant effectiveness ε, as reported in
Equations (3) and (4). For HE-01 (Figure 1) the energy balance equation was expressed as:

mS·CpS·
(
THE01

s,out − THE01
s,in

)
= εHE01·mLOOP1

w ·Cpw·
(
THE01

w,in − THE01
s,in

)
(3)

and for HE-02 the energy balance was expressed as:

mS·CpS·
(
THE02

s,out − THE02
s,in

)
= εHE02·mLOOP2

w ·Cpw·
(
THE02

w,in − THE02
s,in

)
(4)

where mi is the mass flow rate and the Cpi is the specific heat of the i-th fluid (i.e., flue gases f, sludge
s or water w). In and out subscripts indicate the flow direction according to the scheme presented
in Figure 1a. Since the solid portion of the sludge is less than 5%, and the remaining 95% is water,
the physical properties of water were assumed for sludge. Obviously, this approximation is a source of
error but by considering the small amount of solid in the mixture, the resulting error can be considered
negligible for the purpose of the study. This is confirmed by the literature as reported in [37]. A constant
efficiency of 0.85 was assumed for the boiler. The analysis was conducted for a typical day that
was considered as representative of the average conditions of the site. In particular, the simulation
was made by adopting a daily average value for air temperature (Ta), sludge temperature (THE01

s,in ),
and sludge and biogas flow rates (msludge and Vbiogas, respectively). The value of these parameters is
reported in Table 2. The upgrader water inlet temperature in Loop 1 and Loop 2, TLOOP1

up,in and TLOOP2
up,in ,

the water temperature after the ICE cooling system TLOOP1
ICE,out , the water temperature after the ICE exhaust

gas heat exchanger TLOOP2
ICE,out and the anaerobic digestion temperature Tdigester were assumed as the

problem constraints (see Table 2).

Table 2. Boundary conditions used in the simulation.

Tsludge Ta TLOOP1
up,in TLOOP2

up,in TLOOP1
ICE,out TLOOP2

ICE,out Tdigester msludge Vbio CH4/CO2 bio

[◦C] [◦C] [◦C] [◦C] [◦C] [◦C] [◦C] [t/h] [Nm3/h] [%vol/%vol]

16.3 14.5 >120 <80 <90 120 37 ◦C 8.3 235 65/35

The thermal energy dissipated in the exhaust in Loop 2 (Qloop2) and by the air cooler in Loop
1 (Qloop1) were considered as system losses. The heat contained in the cogenerator exhaust gas is
provided by the manufacturer and thus a reference temperature of 120 ◦C was used.

The percentage of biogas used in the upgrading system was indicated by the variable F, i.e.,
the ratio between the mass flow rate of biogas used in the upgrading process and the total biogas
production of the plant (Equation (5)).

F = mupgrading
biogas /mtot

biogas (5)
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It is clear, that (1-F) is the fraction of biogas that is processed by the internal combustion engine
or by the boiler. The boiler is assumed to operate with both methane and biogas. However, from
an economic point of view, natural gas operation is preferred due to the availability of government
subsidies for biomethane production (as shown in the sections below). Therefore, biogas use for
heating is only considered when no other choices are available (i.e., when high F is considered, or
when the ICE is shut down). Within this framework, F has a strong impact on plant operation. A set of
non-linear constrained systems from the mass and energy balance is implemented in Matlab® [38] and
solved separately for each loop. Specifically, two different objective functions were chosen to control
the behavior of Loop 1 and 2. For Loop 1, the outlet sludge temperature from HE-01 was maximized,
while for Loop 2 the heat provided by the boiler, Qc, was minimized. As a result, the plant operates
according to the provided constraints in a physically consistent way.

In the study, the value of F was varied, and the different operating conditions of the plant were
investigated. The size of the cogeneration unit was changed according to the value of F up to a
minimum value. After this value, a no-cogeneration condition was considered, and the thermal energy
was assumed to be produced by the boiler and the necessary electric energy bought from the electric
grid. In addition, as the heat recovered from the ICE is dependent on its size, when F assumes high
values, the boiler must provide the necessary heat to the digesters and the upgrader. To investigate
the net outputs of the system, the value of F was varied between 0% and 100%. For each value of F,
the cogeneration unit size and energy output were determined. As the heat request from the upgrading
system is known (and depending on F), both the thermal loop insisting on the upgrading system and
the amount of heat transferred to the sludge in HE-01 and HE-02 may be calculated by considering the
constraints regarding maximum and minimum temperatures in Loop 1 and 2. Finally, if the thermal
energy requested is more than that recovered in the previous stages, the boiler independently provides
the remaining heat to the sludge or to the upgrading system.

4. Results and Discussion

The results of the simulations are presented in Figure 4a–d as a function of F. In more detail,
Figure 4a is focused on the thermal energy fluxes through HE-01 and HE-02 or wasted through the
radiator or the Qexhaust bypass (see Figure 1a). Figure 4b shows the electric power source and users,
Figure 5c shows the methane production and Figure 4d the net system outputs. Figure 5 also reports the
main events driving the system behavior, which are deduced from the scheme presented in Figure 1b,
the constraints showed in Table 2, and the related cogeneration unit and boiler activities. Therefore,
four operation patterns were detected according to the F range (Figure 4).

When F is below 50% the ICE produces a significant heat surplus and both Qexhaust bypass and
Qa lead to a thermal energy output from the plant, therefore each single term (i.e., biomethane, heat
and electricity) has a positive output balance. Above 50%, the heat output from the engine is in
excess only in Loop 2 and the ICE power production is reduced. In particular, when F > 59% the net
electric balance became negative (Figure 4b). When 64 < F < 89%, the ICE heat production is no longer
enough to ensure a proper thermal input to the upgrader on Loop 2, and the boiler starts to operate.
Since in the first instance the biogas is fully employed for the ICE operation, natural gas is required for
heating purposes as shown on Figure 4c. Above F = 89%, not enough biogas input is provided to the
engine, according to the minimum power size considered in the simulation (i.e., 68 kW). As shown by
Figure 4c, the methane consumption is significantly reduced due to the major availability of biogas (ICE
is switched off) and to the better thermal efficiency of the boiler. In this phase, the heat necessary to the
plant is completely produced by the boiler. When F is lower than 50% the plant produces electricity
and biomethane without any external integration (Figure 5a), but a large amount of heat is wasted.
As expected, electric production results are inversely proportional to biomethane production. As can
be observed in Figure 5b–d, when F is about 59%, the electric power produced is totally self-consumed.
For a further increase in biomethane production and therefore of F, electric energy from the grid is
required. For F higher than 89%, the plant can only produce biomethane, and the ICE is shut down.
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Therefore, the (1-F) biogas fraction is burned in the boiler to provide heat to the process. It is obvious
that the production of a high amount of bio-methane and electrical power is not currently possible due
to internal constraints. It is worth noting that the plant produces biomethane without any integration
from external sources as long as F is below 59%. For higher biomethane production, electric energy
from the grid is requested. When F is higher than 64 %, the heat produced from the biogas-fueled
cogenerator is lower than that requested by the plant and an external integration of natural gas to be
burned in the auxiliary boiler is necessary.
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4.1. Carbon Dioxide Balance

To further investigate the behavior of the plant, the CO2 emissions for the different operating
conditions were estimated. The plant consumes natural gas and electricity from the grid according
to the operating condition. Since natural gas was used in the boiler, the amount of CO2 emitted was
assumed as 0.202 kgCO2/kWh [39]. Emissions related to power consumption were assumed according
to the average CO2 emissions per kWh for the typical Italian production mix (i.e., 0.325 kgCO2/kWh [39]).
Biogas was considered as a carbon neutral source. Therefore, self-consumption of electric and thermal
energy leads to an emission saving of 0.202 kgCO2/kWh and 0.325 kgCO2/kWh, respectively. A saving
of 0.202 kgCO2/kWh was also assumed for the biomethane produced.

Two scenarios were considered for thermal energy surplus recovery. In a first case, thermal
energy surplus (i.e., waste terms in Figure 1b) was considered as dissipated and hence no CO2

saving for that component was considered. In the second case, CO2 saving according to the methane
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required to produce the same amount of heat was considered. These two scenarios are reported in
Figure 6a,b, respectively.
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Biomethane production leads to a negative CO2 emission profile for all the working conditions
considered. As expected, the main reduction comes from the biomethane production due to biogas
upgrading, and the ICE operation. In both cases, the minimum carbon dioxide net emissions are
obtained when F = 64%. This condition occurs when the plant is near self-sustaining conditions from
an electrical point of view (Figure 5) and only a small amount of electricity is bought from the grid
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to drive auxiliary and upgrading systems. From the thermal point of view, the cogenerator unit is
sufficient to satisfy the thermal requirements of the plant. Therefore, in this operating condition the
boiler is not necessary.

When thermal energy recovery is considered, CO2 saving is significantly increased. Moreover, no
influence of ICE behavior can be detected in the net balance slope in Figure 6a, while more pronounced
variations can be found in Figure 6b due to the two different contributions of the ICE to heat production
(flue gas and cooling water).

4.2. Revenues

The analysis was further extended to investigate the operative conditions that maximize the
economic gain of the plant. In this analysis, the costs of acquired electricity and natural gas were
assumed as 0.15 $/kWh and 0.24 $/Nm3, respectively, as these are typical in the Italian context [40].
The revenues derived from the self-consumed electric energy were estimated by multiplying the daily
production for the same acquiring price of 0.15 $/kWh (avoided cost). The revenues from electric
energy production were quantified by considering a selling tariff of 0.04 $/kWh. Finally, the biomethane
production was accounted for by considering three different selling prices since governmental subsides
are largely dependent on the digesters’ supply. Therefore, three final selling prices considering subsides
(0.4, 0.8 and 1.2 $/Nm3) were considered for this purpose. For a tariff of 0.4 $/Nm3, the revenues and
costs are reported in Figure 7a, together with the net gain. The revenues from selling the biomethane
are represented by a straight line, which naturally grows with F. The revenues from selling the electric
energy are maximum for low values of F, when electricity production is the highest contributor.
These revenues decrease linearly with F until the electric production is larger than the sum of the plant
and the upgrading system request (internal request). The revenues from the self-consumption of the
electric energy are almost constant with F and start to decrease when the ICE power output is lower
than the internal request. This contribution became zero when the engine is shut down at F = 89%.
As expected, the cost of acquired electric energy (represented as a negative value) is zero if the ICE
production is higher than the internal request. After that point it increases and becomes constant when
ICE is shut down. The cost of acquired natural gas is zero when the boiler is off and begins to grow
when the cogeneration unit does not provide enough thermal energy (F > 64%).

With this biomethane selling tariff, the maximum revenue of the plant was obtained for a F of
about 56%. This value of F is the same value that minimizes the CO2 balance. By increasing the
biomethane tariff to 0.8 $/Nm3, Figure 7b, the revenues and costs contribution are the same but for
biomethane revenues. The value of the economic gain increases but the value of F where the maximum
is achieved does not change.

For a further increase in the tariff to 1.2 $/Nm3, Figure 7c, biomethane gains are so high that the
optimal value of F becomes 1. This condition of operation is obviously not reasonable as CO2 would
be higher and the cogeneration system would be useless. A boiler fed by methane from the grid would
be the best option for the plant. This means that high subsides can lead plant managers to operate
according to nonsensical conditions, which decreases the CO2 savings.

In this first analysis, thermal energy surplus was not considered. If this thermal energy (i.e.,
previously wasted as shown in Figure 1b) was sold to a third party, revenue of 0.25 $/Nm3 could be
assumed (natural gas savings) [40]. In this case, the net gain for each F value is increased but the
optimal values are still achieved for the same F range (Figure 8).

In conclusion, from the analysis of the results several optimal values of F were found, depending
on the objective of the plant design: self-sustainability of the plant, maximization of CO2 saving or
maximization of the revenues. It is clear that in contexts where there are high governmental subsides
for biomethane production and the possibility of injecting it into the natural gas grid, the interest could
shift to practices that are detrimental to the energy and environmental aspects.
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5. Conclusions

In this paper, an analysis of the mass and energy fluxes of an anaerobic digestion plant producing
biomethane was carried out as a function of the amount of biomethane produced. The study is based
on data available from an existing case study and for average boundary conditions. An energy model
of the plant was developed in steady-state conditions by considering the mass and energy balances
of the plant. The amount of produced biomethane has a strong impact on the energy balance of the
plant. The system turned out to be self-sustaining when the percentage of the biogas processed in the
upgrading unit is 56% of the overall biogas produced (F). Above this value, the plant required electric
energy from the grid. When the value of F is increased further, the plant requires extra thermal energy
to operate. By increasing F above 86% only biomethane can be generated as the size of the cogeneration
unit would be out of the range of investigation. In the Italian context, the maximum CO2 saving was
achieved with an F value of 64%, i.e., when the plant is self-sustainable from the thermal point of view
and part of the electricity requested by the process is bought from the electric grid. The economic gain
of the plant was maximum for the same value of F if the biomethane tariff is below 1 $/Nm3. Higher
incentive tariffs for selling biomethane shift the optimal economic plant configuration toward the full
production of biomethane sustained by a boiler fed by grid natural gas. Thus, the cogeneration system
would no longer be the optimal solution and CO2 savings would be reduced. These results should send
an alert that an improper incentive tariff on biomethane production could lead producers to choose a
production configuration that is not optimized from an energy and environmental point of view.
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