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Abstract - The paper is concerned with the IBVP of the Navier-Stokes equations. The

goal is the construction of a weak solution enjoying some new properties. Of course, we look

for properties which are global in time. The results hold assuming an initial data v0 ∈ J2(Ω).
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1 Introduction

This note concerns the 3D-Navier-Stokes initial boundary value problem:

vt + v · ∇v +∇πv = ∆v, ∇ · v = 0, in (0, T )× Ω,

v = 0 on (0, T )× ∂Ω, v(0, x) = v0(x) on {0} × Ω.
(1)

In system (1) Ω ⊆ R
3 is assumed bounded or exterior, and its boundary is smooth. The

symbol v denotes the kinetic field, πv is the pressure field, vt :=
∂
∂t
v and v·∇v := vk

∂
∂xk

v.

In several papers, related to the Navier-Stokes initial boundary value problem, the
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innovative per problemi classici di equazioni alle derivate parziali”. The research activity of F. Crispo

and P. Maremonti is performed under the auspices of GNFM-INdAM and is partially supported by

MIUR via the PRIN 2017 “Hyperbolic Systems of Conservation Laws and Fluid Dynamics: Analysis

and Applications”.

1

http://arxiv.org/abs/1904.07641v2


2 Francesca Crispo, Carlo Romano Grisanti and P. Maremonti

authors give results concerning the partial regularity of a suitable weak solution (see

Definition 2 below). This is made in order to highlight the properties of a weak solution,

corresponding to a data v0 ∈ L2(Ω), divergence free, that can be suitable to state

the well posedness of the equations, see e.g. [19, 18, 4, 10, 33, 5, 8, 7, 21, 9]1. We

believe that, in connection with the non-well posedeness of the Navier-Stokes Cauchy

or IBVP problem, this kind of investigation achieves a further interest. Actually, in the

recent paper [3], it is considered the possibility of non uniqueness of a weak solution to

the Navier-Stokes equations. This is proved for very weak solutions, that is solutions

satisfying a variational formulation of the Navier-Stokes equations and simply belonging

to C([0, T );L2(Ω)). As a consequence of the weakness of the solutions, the result of

non uniqueness fails to hold for regular solutions, but a priori it also does not work

for a suitable weak solution, that is a solution verifying an energy inequality. So that,

in order to better delimit the validity of a possible counterexample to the uniqueness

in the set of weak solutions corresponding to an initial data in L2(Ω), it seems of a

certain interest to support the energy inequality, or its variants, by means of a wide

set of global properties of the weak solutions not necessarily only consequences of the

energy inequality, but of the coupling of other a priori estimates.

The aim of this note is to prove some new properties of a weak solution. We

investigate two questions. One is related to a sort of energy equality for a suitable

weak solution. It is easy to understand that the possible validity of the energy equality

achieves a mechanical interest that goes beyond the above question concerning the well

posedeness. Actually, we construct a weak solution (v, πv) to the Navier-Stokes initial

boundary value problem such that the “energy equalities” of the kind

||v(t)||22 + 2

t∫

s

||∇v(τ)||22dτ − ||v(s)||
2
2 = −H(t, s), a.e. in t ≥ s > 0 and for s = 0 (2)

and

2

t∫

s

||∇v(τ)||22dτ = F (t, s)
(
||v(s)||22 − ||v(t)||

2
2

)
, a.e. in t ≥ s > 0 and for s = 0 (3)

are fulfilled. The functions H(t, s) and F (t, s) have suitable expressions, see formula

(6) and formula (7). If H(t, s) ≤ 0, then the energy equality holds (that is a fortiori

H(t, s) = 0). If F (t, s) ≥ 1, then the energy equality holds (that is a fortiori F (t, s) =

1 There is a wide literature concerning extension to the IBVP of results proved for the Cauchy

problem. One of the most interesting of these kinds of extensions is sure the energy inequality in

strong form, see e.g. [15, 27]
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1). These results are a consequence of the fact that we are able to prove that an

approximating sequence {(vm, πvm)} is strongly converging in Lr(0, T ;W 1,2(Ω)) for

all r ∈ [1, 2). The strong convergence, in turn, is a consequence of the property:

P∆vm ∈ L
2

3 (0, T ;L2(Ω)) for all m ∈ N and T > 0. Unfortunately we are not able to

put r = 2, that should give the energy equality. For 2D-Navier-Stokes equations one

proves that H(t, s) = 0. It is important to stress that the term H(t, s) is equal to zero

in 2D-case thanks to our approximating approach, without appealing to the regularity

of the limit. Another result proves that v ∈ Lµ(p)(0, T ;Lp(Ω)), with µ(p) := p

p−2
and

p ∈ (6,∞]. This result is not new in literature. A first contribution in this sense is

proved in [12] for a particular geometry and it is reconsidered in [10]. The proof given

in [10] for exterior domains is not completely clear to the present authors. However

our proof is alternative with respect to the ones of the quoted papers.

In order to better state our result we recall the following definitions. We denote

by J2(Ω) and J1,2(Ω) the completion of C0(Ω) in L2(Ω) and in W 1,2(Ω) respectively,

where C0(Ω) is the set of smooth divergence free functions. Moreover (·, ·) represents

the scalar product in L2(Ω).

Definition 1. Let v0 ∈ J2(Ω). A pair (v, πv), such that v : (0,∞) × Ω → R
3 and

πv : (0,∞)× Ω→ R, is said a weak solution to problem (1) if

i) for all T > 0, v ∈ L2(0, T ; J1,2(Ω)) and, for some q, r, πv ∈ L
r
ℓoc([0, T );L

q
ℓoc(Ω)),

ii) lim
t→0
||v(t)− v0||2 = 0,

iii) for all t, s ∈ (0, T ), the pair (v, πv) satisfies the equation:

t∫

s

[
(v, ϕτ )− (∇v,∇ϕ) + (v · ∇ϕ, v) + (πv,∇ · ϕ)

]
dτ + (v(s), ϕ(s)) = (v(t), ϕ(t)),

for all ϕ ∈ C1
0 ([0, T )× Ω).

In [4] and in [30], in order to investigate the regularity of a weak solution, it is

introduced an energy inequality having a local character:

Definition 2. A pair (v, πv) is said a suitable weak solution if it is a weak solution in

the sense of the Definition 1 and, moreover,

∫

Ω

|v(t)|2φ(t)dx+ 2

t∫

s

∫

Ω

|∇v|2φ dxdτ ≤

∫

Ω

|v(s)|2φ(s)dx

+

t∫

s

∫

Ω

|v|2(φτ +∆φ)dxdτ +

t∫

s

∫

Ω

(|v|2 + 2πv)v · ∇φdxdτ,

(4)
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for all t > s, for s = 0 and a.e. in s ≥ 0, and for all nonnegative φ ∈ C∞
0 (R× Ω). We

denote by Σ ⊆ [0,∞) the set of the instants s for which inequality (4) holds.

Thanks to the properties of the pressure field furnished by the existence theorem,

from inequality (4) one deduces the classical one:

||v(t)||22 + 2

t∫

s

||∇v(τ)||22dτ ≤ ||v(s)||
2
2, for all t > s and s ∈ Σ . (5)

We are going to prove the following result.

Theorem 1. For all v0 ∈ J
2(Ω) there exists a suitable weak solution (v, πv) to problem

(1) that is the weak limit in L2(0, T ; J1,2(Ω)) × Lq
ℓoc([0, T );L

2
ℓoc(Ω)), q ∈ (1, 12

11
), of a

sequence {(vm, πvm)} of solutions to (16). The sequence {vm} converges strongly to v

in Lp(0, T ;W 1,2(Ω)) for all p ∈ [1, 2). Further, for any q ∈ (6,∞], v ∈ Lµ(q)(0, T ;Lq(Ω))

with µ(q) := q

q−2
, and v satisfies relation (2) with

H(t, s) :=






lim
α→0

lim
m→∞

α

t∫

s

‖vm(τ)||22

(K + ‖∇vm(τ)‖22)
α+1

d

dτ
‖∇vm(τ)‖22 dτ, for s > 0,

lim
s→0

lim
α→0

lim
m→∞

α

t∫

s

‖vm(τ)||22

(K + ‖∇vm(τ)‖22)
α+1

d

dτ
‖∇vm(τ)‖22 dτ, for s = 0 ,

(6)

for any arbitrary constant K > 0, as well as v satisfies relation (3) with

F (t, s) := lim
α→0

lim
m→∞

1(
K1 + ||∇vm(tα,m)||2

)α (7)

for any arbitrary constant K1 ≥ 0. Finally, the following inclusion holds: G1 :=

{t, s such that (2) is true} ⊆ G2 := {t, s such that (3) is true}.

Remark 1. Since the proprieties of the pressure field πv are not our main interest in

this paper, we limit ourselves to point out the one that allows us to state that (v, πv)

is a suitable weak solution. Actually, in our construction the pressure πv enjoys the

properties that one can deduce by means of Lemma9. For more exhaustive properties

relative to the pressure field of a suitable weak solution (that is with an initial data

only in J2(Ω)) a possible reference is [26].

We note that the quantity H(t, s) is independent of the constant K. This fact is

intriguing and somehow leads to conjecture that H(t, s) = 0.
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If v0 ∈ J
2(Ω) \J1,2(Ω), almost everywhere in t > 0, following the proof idea we also

get

||v(t)||22 + 2

t∫

0

||∇v(τ)||22dτ = − lim
α→0

lim
m→∞

t∫

0

‖vm(τ)||22

(K + ‖∇vm(τ)‖22)
α+1

d

dτ
‖∇vm(τ)‖22 dτ .

One proves that there exists an instant θ > 0 such that vm(t, x) ∈ C([θ,∞); J1,2),

in particular there exists a M such that ||∇vm(t)||2 ≤M for all t ≥ θ and m ∈ N (one

proves this result by repeating the arguments employed for the structure theorem by

Leray). Hence, via estimate (21) and taking into account the energy inequality, we can

deduce

for all t > θ, lim
α→0

lim
m→∞

α

t∫

θ

‖vm(τ)||22

(K + ‖∇vm(τ)‖22)
α+1

d

dτ
‖∇vm(τ)‖22 dτ = 0 .

Hence we get that function H(t, s) = H(θ, s) for all t > θ, and H becomes a constant

function for t > θ.

Concerning the function F we remark that its values are independent of K1 ≥ 0.

The fact that K1 can be chosen equal to zero makes a difference with K in function

H , as well as G1 ⊆ G2 is another difference.

In the introduction we remarked that if F (t, s) ≥ 1, then the energy equality holds,

that is F (t, s) = 1. Since we are not in a position to prove F (t, s) ≥ 1, a priori we

have to consider that F (t, s) ≤ 1. However, we can claim that almost everywhere in

t > 0, F (t, 0) > 0 holds. Actually, more in general, assume that s ∈ Σ and ||v(s)||2 6= 0

and that exists a sequence {tp} converging to s such that F (tp, s) = 0. Then, from

formula (3), we deduce that ||v(τ)||2 = 0 a.e. in τ ∈ (s, tp) holds for all p ∈ N. Hence

we can select a new sequence {t′p} ⊂ (s, tp) such that ||v(t′p)||2 = 0. By virtue of the

right-L2-continuity in s, we get lim
t′p→s
||v(t′p)− v(s)||2 = 0, which is a contradiction with

||v(s)||2 6= 0.

From formulas (2)-(3), a.e. in t ∈ G1 and for s = 0, we easily deduce that

H(t, 0) = (1− F (t, 0))
(
||v(0)||22 − ||v(t)||

2
2

)
.

Therefore, via (2) we deduce

H(t, 0) =
(

1
F (t,0)

− 1
)

t∫

0

||∇v(τ)||22dτ . (8)

Recalling that, for t ≥ θ, H(t, 0) = H(θ, 0), then from (8) we deduce that F (t, 0) is a

continuous function for t ≥ θ.
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Remark 2. In paper [28] a new energy inequality is proposed:

||v(t)||22 +N(t) + 2

t∫

0

||∇v(τ)||22dτ ≤ ||v0||
2
2, for all t > 0 .

Function N(t) := lim sup
δ→0

t∫

δ

∥∥∥∥
u(τ)− u(τ − δ)

δ
1

2

∥∥∥∥
2

2

dτ ≥ 0 can be intepretred as 1
2
-time

derivative. It is not known if N(t) > 0 holds. In the two dimensional case one proves

that N(t) = 0. Of course, we are not able to compare the solution furnished in [28]

and the one of Theorem1.

In paper [21] the compatibility between an energy equality and an initial data

v0 ∈ J
2(Ω) is proved. This supports the idea that H(t, s) can be equal to zero.

Remark 3. We point out that by a proof completely similar to the one of Theorem 1,

one can prove the validity of the following generalized energy equality

∫

Ω

|v(t)|2φ(t)dx+ 2

t∫

s

∫

Ω

|∇v|2φ dxdτ =

∫

Ω

|v(s)|2φ(s)dx

+

t∫

s

∫

Ω

|v|2(φτ +∆φ)dxdτ +

t∫

s

∫

Ω

(|v|2 + 2πv)v · ∇φdxdτ − H̃(t, s),

(9)

a.e. in t ≥ s > 0 and for s = 0, where

H̃(t, s) :=





lim
α→0

lim
m→∞

α

t∫

s

‖φ
1

2 (τ)vm(τ)||22

(K + ‖∇vm(τ)‖22)
α+1

d

dτ
‖∇vm(τ)‖22 dτ, for s > 0,

lim
s→0

lim
α→0

lim
m→∞

α

t∫

s

‖φ
1

2 (τ)vm(τ)||22

(K + ‖∇vm(τ)‖22)
α+1

d

dτ
‖∇vm(τ)‖22 dτ, for s = 0 ,

for any arbitrary constant K > 0 and for all nonnegative φ ∈ C∞
0 (R× Ω).

The plan of the paper is the following. In Section 2 we give some preliminaries and

auxiliary lemmas. In Section 3 we give the proof of the theorem. In the appendix we

recall some known properties of the pressure field that are employed in Section 2.
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2 Some preliminary results

For p ∈ (1,∞) we set Jp(Ω) :=completion of C0(Ω) in Lp(Ω). By Pp we denote the

projector from Lp(Ω) onto Jp(Ω). In the case of p = 2 we write P2 ≡ P . For any R > 0

we set BR = {x ∈ R
3 : |x| < R}.

We start with the following a priori estimate:

Lemma 1. Let Ω ⊆ R
n and let u ∈ W 2,2(Ω) ∩ J1,2(Ω). Then there exists a constant c

independent of u such that

||u||r≤c||P∆u||
a
2||u||

1−a
q , a

(
1
2
− 2

n

)
+ (1− a)1

q
= 1

r
, (10)

provided that a ∈ [0, 1).

Proof. The result of the lemma is a special case of a general one proved in [20, 22].

Lemma 2 (Friedrichs’s lemma). Let Ω be bounded. For all ε > 0 there exists N ∈ N

such that

||u||22 ≤ (1 + ε)
N∑
j=1

(u, aj)2 + ε||∇u||22, for any u ∈ W
1,2(Ω) , (11)

where {aj} is an orthonormal basis of L2(Ω) .

Corollary 1. Assume that {uk(t, x)} is a sequence with

T∫

0

||uk(t)||2W 1,2(Ω)dt+ ess sup
(0,T )

||uk(t)||2 ≤M <∞, for all k ∈ N , (12)

and
||uk(t)||2

L2(|x|>R) ≤ ||u
k
0||

2
L2(|x|>R

2
)
+ c(t)ψ(R), for all k ∈ N,

with c(t) ∈ L∞((0, T )), and lim
R→∞

ψ(R) = 0.
(13)

Also, assume that

uk0 → u0 strongly inL2(Ω) and, a.e. in t∈(0, T ), uk(t)→ u(t) weakly inL2(Ω) . (14)

Then there exists a subsequence of {uk} strongly converging to u in L2(0, T ;L2(Ω)) .

Proof. The result for Ω bounded is well known, a proof is given in [18]. In the case of

Ω exterior, a proof is due to Leray in [19]. For the sake of the completeness we furnish

the following proof.
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Let u be the weak limit of {uk} in L2(0, T ;L2(Ω)). By virtue of (13), for any R > 0

we have

T∫

0

∫

|x|>R

|uk − u|2 dx dt ≤

T∫

0

∫

|x|>R

|uk|2 + |u|2 dx dt

≤ ||uk0||
2
L2(|x|>R

2
)
+ ψ(R)

T∫

0

c(t) dt+

T∫

0

∫

|x|>R

|u|2 dx dt

≤ 2
[
||uk0 − u0||L2(|x|>R

2
) + ||u0||L2(|x|>R

2
)

]
+ ψ(R)

T∫

0

c(t) dt+

T∫

0

∫

|x|>R

|u|2 dx dt.

By (13) for ψ(R) and (14) for uk0, and by the absolute continuity of the integral, we

get that, for any ε > 0, there exist R and k, such that

T∫

0

∫

|x|>R

|uk − u|2 dx dt < ε for all R > R and k > k .

In the bounded set Ω ∩ BR we apply Lemma 2 and we use estimate (12), obtaining,

for any k ∈ N,

T∫

0

∫

Ω∩BR

|uk − u|2 dx dt ≤ (1 + ε)

N∑

j=1

T∫

0




∫

Ω∩BR

(uk − u)aj dx




2

dt+ 2Mε. (15)

By the uniform bound (12) we have that




∫

Ω∩BR

(uk − u)aj dx




2

≤ 2M2‖aj‖22,

and we use the dominated convergence theorem to pass to the limit as k →∞ in (15).

The property (14) allows us to complete the proof.

We recall also two basic results.

Lemma 3. Let Ω be a measurable subset of Rn and let v ∈ Lq(Ω) for any q ≥ q ≥ 1.

If lim inf
q→∞

‖v‖q = l then v ∈ L∞(Ω) and ‖v‖∞ = l.
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Proof. There exists an increasing sequence {qh} such that qh →∞ and lim
h→∞
‖v‖qh = l.

Hence, for any ε > 0 we can find h̄ such that ‖v‖qh ≤ l + ε for any h ≥ h̄. Moreover,

if q > qh̄ we can find h ≥ h̄ such that qh ≤ q < qh+1. By interpolation, there exists

θh ∈ [0, 1] such that

‖v‖q ≤ ‖v‖
θh
qh
‖v‖1−θh

qh+1
≤ l + ε.

It follows that ‖v‖q ≤ l + ε for any q > qh̄. Hence v ∈ L
∞(Ω) and

l = lim inf
q→∞

‖v‖q ≤ lim sup
q→∞

‖v‖q ≤ l + ε

for any ε > 0. It follows that

‖v‖∞ = lim
q→∞
‖v‖q = l.

Lemma 4. Let {gk} and g be summable functions such that gk → g almost everywhere

and

lim
k→∞

∫
gk dx =

∫
g dx.

If {fk} and f are measurable functions such that |fk| ≤ gk almost everywhere and

fk → f almost everywhere, then

lim
k→∞

∫
|fk − f | dx = 0.

Proof. The result of lemma is contained in Theorem1.20 of [11].

It is well known that in [4] and in [30] it is furnished an existence theorem of suitable

weak solutions to the Navier-Stokes Cauchy problem. Here, in order to achieve the

same result in the case of problem (1), that is, in the case of the initial boundary

value problem in bounded or exterior domains Ω, we give the chief steps of the proof

in Lemma5 and in the Appendix. For this goal we consider a mollified Navier-Stokes

system. Hence problem (1) becomes

vmt + Jm[v
m] · ∇vm +∇πvm = ∆vm, ∇ · vm = 0, in (0, T )× Ω,

vm = 0 on (0, T )× ∂Ω, vm(0, x) = vm0 (x) on {0} × Ω,
(16)

where Jm[·] is a mollifier and {vm0 } ⊂ J1,2(Ω) converges to v0 in J2(Ω). The result of

existence is established proving that the sequence of solutions {(vm, πvm)} to problem

(16) converges with respect to the metric stated in Definition 1, as well as proving that

the limit satisfies the energy inequality (4). All this is a consequence of the following
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Lemma 5. There exists a sequence of solutions {(vm, πvm)} such that, for all m ∈ N

and T > 0, vm ∈ C([0, T ); J1,2(Ω)) ∩ L2(0, T ;W 2,2(Ω)). Moreover, for Ω exterior

domain, for R sufficiently large, we get

||vm(t)||2L2(|x|>R) ≤ ||v
m
0 ||

2
L2(|x|>R

2
)
+ c(t)ψ(R) for any t > 0, R > 2R and m ∈ N , (17)

with c(t) ∈ L∞(0, T ) and ψ(R) = o(1).

Proof. The above result is well known. The existence and uniqueness of the solutions

and related properties of regularity can be proved as in Theorem3 of [16] (see also

[6]). Concerning estimate (17), in the case of the Cauchy problem it was due to Leray

in [19]. Subsequently the result is extended to the initial boundary value problem

in exterior domains by several authors, in different contexts. Actually, the technique

employed by the authors is essentially the same. In this connection, without the aim

of being exhaustive, we refer to [15, 27]. In Appendix we give the details of the proof

of (17).

Lemma 6. For all T > 0 the sequence of solutions to problem (16) furnished by

Lemma5, uniformly in m ∈ N, satisfies the estimate




T∫

0

(
||P∆vm(t)||22 + ||v

m
t (t)||

2
2

) 1

3 dt




3

≤ c

(
1

1 + ||∇vm(T )||22
+ ||v0||

6
2

)
. (18)

Proof. By virtue of the regularity of (vm, πvm) stated in Lemma5, we multiply equation

(16)1 by P∆vm − vmt . Integrating by parts on Ω, and applying the Hölder inequality,

we get

||P∆vm − vmt ||2 ≤ ||v
m · ∇vm||2 , a.e. in t > 0 . (19)

Applying inequality (10) with r = ∞ and q = 6, by virtue of the Sobolev inequality,

we obtain

||vm · ∇vm||2 ≤ ||v
m||∞||∇v

m||2 ≤ c||P∆vm||
1

2

2 ||∇v
m||

3

2

2 . (20)

By inequalities (19) and (20), we get

d
dt
||∇vm||22 + ||P∆v

m||22 + ||v
m
t ||

2
2 = ||P∆v

m − vmt ||
2
2 ≤ c||P∆vm||2||∇v

m||32

≤
1

2
‖P∆vm‖22 + c||∇vm||62,

(21)

for all m ∈ N and a.e. in t > 0 . We can divide by (1 + ||∇vm(t)||22)
2, and the following

holds
d
dt
||∇vm||22

(1 + ||∇vm||22)
2
+

1
2
||P∆vm||22 + ||v

m
t ||

2
2

(1 + ||∇vm||22)
2
≤ c||∇vm||22 .
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Integrating on (0, T ), we have

1

1 + ‖∇vm0 ‖
2
2

−
1

1 + ‖∇vm(T )‖22
+

∫ T

0

1
2
||P∆vm||22 + ||v

m
t ||

2
2

(1 + ||∇vm||22)
2

dt ≤ c

∫ T

0

‖∇vm‖22 dt.

Employing the reverse Hölder inequality (see [1, Theorem 2.12]) with exponents 1
3
and

−1
2
, we get

T∫

0

1
2
||P∆vm||22 + ||v

m
t ||

2
2

(1 + ||∇vm||22)
2

dt ≥
[ T∫

0

[
1
2
‖P∆vm‖22 + ‖v

m
t ‖

2
2

] 1

3dt
]3[ T∫

0

(1 + ‖∇vm‖22)dt
]−2

.

Coupling the above inequalities with the energy inequality (5), estimate (18) follows.

3 Proof of Theorem1

The idea of the proof is the following. We consider the sequence of solutions to problem

(16) furnished by Lemma5. It is well known that there exists a subsequence {(vm, πvm)}

whose weak limit (v, πv) in L
2(0, T ; J1,2(Ω)) is a weak solution in the sense of Defini-

tion 2. All this is contained in [19] or, for example, also in [4]. Now, our aim is to prove

further estimates on the extract {(vm, πvm)} that ensure the thesis of Theorem1.

3.1 The strong convergence in Lp(0, T ;L2(Ω)) for all p ∈ [1, 2)

We start by proving that the sequence {vm} strongly converges in Lp(0, T ;W 1,2(Ω)),

for p ∈ [1, 2) and for all T > 0. We recall that

||∇u||2 ≤ ||P∆u||
1

2

2 ||u||
1

2

2 , for all u ∈ W
2,2(Ω) ∩ J1,2(Ω) .

Hence, integrating on (0, T ) and applying the Hölder inequality, we get

T∫

0

||∇vk(t)−∇vm(t)||2 dt ≤
[ T∫

0

||P∆vk(t)−P∆vm(t)||
2

3

2 dt
] 3

4
[ T∫

0

||vk(t)− vm(t)||22 dt
] 1

4

.

By virtue of Lemma6, we get the existence of a M(T ) such that

T∫

0

||∇vk(t)−∇vm(t)||2 dt ≤ (2M(T ))
3

4

[ T∫

0

||vk(t)− vm(t)||22 dt
] 1

4

, for all, k,m ∈ N ,
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and, via (17), we can apply Corollary 1 to deduce the strong convergence of the se-

quence {vm} in L1(0, T ;W 1,2(Ω)). Since the energy inequality holds uniformly with

respect to m ∈ N, by interpolation we arrive at the strong convergence of {vm} in

Lp(0, T ;W 1,2(Ω)), for any p ∈ [1, 2). In order to identify the limit point, we remark

that {vm} weakly converges to v in L2 (0, T ;W 1,2(Ω)), hence v has to coincide with the

strong limit in each space Lp (0, T ;W 1,2(Ω)). Thus for all T > 0 we deduce that

t∫

s

||∇v(τ)||22dτ = lim
p→2−

t∫

s

||∇v(τ)||p2dτ

= lim
p→2−

lim
m→∞

t∫

s

||∇vm(τ)||p2dτ , for all t, s ∈ (0, T ) .

(22)

3.2 Proof of formula (2)

By the strong convergence in L1 (0, T ;W 1,2(Ω)), there exists a negligible set (for the

Lebesgue measure) I ⊂ (0, T ), such that for any t ∈ G1 := (0, T ) − I the following

limits are finite

lim
m→∞

||vm(t)||2 = ||v(t)||2 and lim
m→∞

||∇vm(t)||2 = ||∇v(t)||2 . (23)

From the energy equality for the approximating solutions {vm} we obtain, for any

t ∈ G1 and any α,K > 0,

1

(K + ||∇vm(t)||22)
α

d

dt
||vm(t)||22 +

2||∇vm(t)||22
(K + ‖∇vm(t)‖22)

α = 0 . (24)

Integrating by parts we get

α

t∫

s

||vm(τ)||22

(K + ||∇vm(τ)||22)
α+1

d

dτ
||∇vm(τ)||22dτ + 2

t∫

s

||∇vm(τ)||22
(K + ‖∇vm(τ)‖22)

α dτ

=
||vm(s)||22

(K + ||∇vm(s)||22)
α −

||vm(t)||22
(K + ||∇vm(t)||22)

α .

We remark that, for almost every τ ∈ (0, T ), by (23),

‖∇v(τ)‖22
(K + ‖∇v(τ)‖22)

α ←
‖∇vm(τ)‖22

(K + ‖∇vm(τ)‖22)
α ≤ ‖∇v

m(τ)‖2−2α
2 → ‖∇v(τ)‖2−2α

2

and that, for α ∈
(
0, 1

2

]
, by virtue of the strong convergence in L2−2α (0, T ;W 1,2(Ω)),

lim
m→∞

∫ t

s

‖∇vm(τ)‖2−2α
2 dτ =

∫ t

s

‖∇v(τ)‖2−2α
2 dτ.
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Hence we can apply Lemma 4 to obtain that, for any t, s ∈ G1,

lim
m→∞

α

t∫

s

‖vm(τ)||22

(K + ‖∇vm(τ)‖22)
α+1

d

dτ
‖∇vm(τ)‖22 dτ + 2

t∫

s

||∇v(τ)||22
(K + ‖∇v(τ)‖22)

α dτ

=
||v(s)||22

(K + ||∇v(s)||22)
α −

||v(t)||22
(K + ||∇v(t)||22)

α .

(25)

Applying once again Lemma 4, we get

lim
α→0

t∫

s

||∇v(τ)||22
(K + ‖∇v(τ)‖22)

α dτ =

t∫

s

||∇v(τ)||22 dτ.

Then, letting α→ 0 in (25), we deduce (2) with

H(t, s) := lim
α→0

lim
m→∞

α

t∫

s

‖vm(τ)||22

(K + ‖∇vm(τ)‖22)
α+1

d

dτ
‖∇vm(τ)‖22 dτ . (26)

3.3 Proof of formula (3)

We denote by G2 the set of t ≥ 0 such that the estract {vm} is strongly convergent in

L2(Ω). Recalling the definition of G1, we have G1 ⊆ G2. By virtue of Lemma11 we

claim that ||∇vm(t)||2 6= 0 for all t > 0 and m ∈ N. Hence we consider formula (24)

that rewrite with K1

1

(K1 + ||∇vm(t)||22)
α

d

dt
||vm(t)||22 +

2||∇vm(t)||22
(K1 + ‖∇vm(t)‖22)

α = 0 ,

where, by the above claim, we can consider K1 ≥ 0. Integrating on (s, t), for s, t ∈ G2,

and applying the mean value theorem for the integrals, we get

1(
K1 + ||∇v(tα,m)||22

)α =
(
||vm(s)||22 − ||v

m(t)||22
)−1

2

t∫

s

||∇vm(τ)||22
(K1 + ‖∇vm(t)‖

2
2)

αdτ .

Since the right hand side admits limit as m → ∞ and as α → 0, the limit F (t, s) :=

lim
α→0

lim
m→∞

1

(K1 + ‖∇vm(tα,m)‖22)
α is well posed and (3) is proved.
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3.4 The Lµ(q)(0, T ;Lq(Ω)) property

By virtue of estimate (10) we get

||vm(t)||∞ ≤ c||P∆vm||
1

2

2 ||∇v
m||

1

2

2 .

Employing the energy relation (5) and estimate (18), applying Hölder’s inequality, for

all T > 0, we deduce that, for any m ∈ N,

T∫

0

||vm(τ)||∞dτ ≤ c
[ T∫

0

||P∆vm(τ)||
2

3

2 dτ
] 3

4
[ T∫

0

||∇vm(τ)||22dτ
] 1

4

≤ C(v0),

where, here and in the following, C(v0) are constants depending only on ‖v0‖2. There-

fore, by Lp-interpolation and recalling that vm ∈ L∞ (0, T ; J2(Ω)), uniformly in m ∈ N

and T > 0, we arrive at

T∫

0

||vm(τ)||
q

q−2

q dτ ≤ sup
(0,T )

||vm(τ)||
2

q−2

2

t∫

0

||vm(τ)||∞dτ ≤ C(v0).

This allows us to claim that, for all T > 0, the weak solution v to problem (1), limit

of the sequence {vm}, belongs to L
q

q−2 (0, T ;Lq(Ω)), for all q ∈ (6,∞), with

T∫

0

||v(τ)||
q

q−2

q dτ ≤ C(v0).

This limit property and Fatou’s lemma ensure that, for all T > 0 and for any sequence

qh →∞, the following estimate holds true

T∫

0

lim inf
h→∞

||v(τ)||qh ≤ lim
h→∞

T
2

qhC(||v0||2)
qh−2

qh = C(v0) . (27)

The thesis of the theorem in the case q =∞ follows straightforward by Lemma 3.
�

Remark 4. We verify that H(t, s) = 0 in the case of 2D-Navier-Stokes equations. It is

important to realize the result in the framework of the construction given in the above

proof, that is, not relying on the regularity of the limit solution v. We start remarking

that estimate (20), for Ω ⊂ R
2, via (10), becomes

||vm · ∇vm||2 ≤ c||vm||
1

2

2 ||P∆v
m||

1

2

2 ||∇v
m||2 .
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Hence, in place of (21), we deduce the differential inequality

d

dt
||∇vm||22 + ||P∆v

m||22 + ||v
m
t ||

2
2 ≤ c||vm||22||∇v

m||42 ≤ c||vm0 ||
2
2||∇v

m||42 . (28)

Hence we achieve the result of Lemma 6 also for Ω ⊂ R
2, with the only difference that

on the right hand side of estimate (18) we have 1
(1+‖∇vm(T )‖2

2
)
+ c‖v0‖

2
2. By the same

arguments of the three-dimensional case, we obtain that {vm} strongly converges in

Lp(0, T ;W 1,2(Ω)), for all p ∈ [1, 2), that is the key ingredient to arrive at the identity

(2).

Now we prove that H(t, s) ≤ 0, which implies, by virtue of the energy inequality

(5), that H(t, s) = 0. By (28), (5) and the Hölder inequality, we have

α

∫ t

s

‖vm(τ)‖22

(K + ||∇vm(τ)||22)
α+1

d

dτ
||∇vm(τ)||22dτ

≤ αc‖vm0 ‖
2
2

∫ t

s

‖vm(τ)‖22
‖∇vm‖42

(K + ‖∇vm‖22)
α+1 dτ ≤ αc‖vm0 ‖

4
2

∫ t

s

‖∇vm(τ)‖2−2α
2 dτ

≤ αc‖vm0 ‖
4
2(t− s)

1

α

(∫ t

s

‖∇vm(τ)‖22 dτ

)1−α

≤ αc‖vm0 ‖
6−2α
2 (t− s)

1

α .

Passing to the limit for m→∞ and then for α→ 0, we get that H(t, s) ≤ 0.

4 Appendix

4.1 Some results related to the construction of the weak so-

lution

In this section we recall some results which are fundamental in order to construct a

suitable weak solution. These results essentially concern estimates of the pressure field

πvm which appears in (16). Of course we look for estimates that are uniform with

respect to m ∈ N. Our aim is to justify estimate (17).

We start by recalling that the energy relation holds uniformly in m ∈ N:

||vm(t)||22 + 2

t∫

0

||∇vm(τ)||22dτ = ||vm0 ||
2
2 ≤ ||v0||

2
2 for all t > 0 .
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We introduce the following functionals:

λ ∈ (0, 1), q ∈ (1,∞), < a >λ
q :=

[ ∫

∂Ω

∫

∂Ω

|a(x)− a(y)|q

|x− y|2+λq
dσydσx

] 1

q

,

||a||
W

1−1
q ,q

(∂Ω)
:= ||a||Lq(∂Ω)+ < a >

1− 1

q
q .

We consider the following Neumann problem:

∆π = 0, π → 0 for |x| → ∞,
dπ

dν
= ν · ∇ × a on ∂Ω . (29)

Lemma 7. In (29) assume a ∈ W
1− 1

q
,q(∂Ω). Then for all λ ∈ (0, 1 − 1

q
] and R0

sufficiently large there exists a constant c independent of a such that

||π||Lq(Ω∩BR0
) ≤ c < a >λ

q . (30)

The lemma is due to Solonnikov in [31, 32]. A recent proof of the same result, by

similar techniques, can be found, for example, in [23].

Applying the Hölder inequality and the Gagliardo trace theorem, one gets

||π||Lq(Ω∩BR0
) ≤ c < a >λ

q≤ c||a||β
Lq(∂Ω)

[
< a >

1− 1

q
q

]1−β

≤ c
[
||a||Lq(Ω∩BR0

) + ||a||
1

q′

Lq(Ω)||∇a||
1

q
q

]β
||∇a||1−β

q

(31)

with β := q(1−λ)−1
1+q

. Now, we consider (U, π) as a solution to the Stokes problem

Ut +∇π = ∆U , ∇ · U = 0 , in (0, T )× Ω ,

U = 0 on (0, T )× ∂Ω , U = v0 on {0} × Ω .
(32)

We estimate π by means of (31). That is, we set a := curlU , we assume v0 ∈ J
2(Ω),

and, via the semigroup properties of U (see, e.g., [24]), for q = 2, for all T > 0, we get

||π(t)||L2(Ω∩BR0
) ≤ c(T )||v0||2

[
t−1+β

2 + t−1+β

4

]
, for all t ∈ (0, T ) , (33)

with β = 1−2λ
3

. Keeping this in hand, we can also deduce an estimate in the exterior

of BR0
. Actually, by means of a cut of the equation (29) in BR0

, we get

∆(πhR0
) = π∆hR0

+ 2∇π · ∇hR0
,
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with hR0
smooth function such that hR0

(x) = 1 for |x| > R0, hR0
(x) = 0 for |x| < R0

2
.

Then, by the representation formula of the solution, we obtain

π(t, x) = −

∫

R3

E(x− y)π∆hR0
dy − 2

∫

R3

∇E(x− y)∇hR0
πdy,

with E fundamental solution. So that, for r > 3 and for |x| > 2R0, we easily get

||π(t)||Lr(|x|>R0) ≤ c||π(t)||L2(Ω∩BR0
)

≤ c(T )||v0||2

[
t−1+β

2 + t−1+β

4

]
, for all t ∈ (0, T ) .

(34)

Consider the following initial boundary value problem for the Stokes system:

Wt −∆W +∇πW = F , ∇ ·W = 0 , on (0, T )× Ω ,

W = 0 on (0, T )× Ω , W = 0 on {0} × Ω .
(35)

Lemma 8. In problem (35) assume F ∈ Lr(0, T ;Ls(Ω)), 3
s
+ 2

r
= 4, s ∈ (1, 3

2
). Then

there exists a unique solution to problem (35) such that

T∫

0

[
||D2W (τ)||rs + ||∇πW (τ)||rs + ||Wτ (τ)||

r
s

]
dτ ≤ c

T∫

0

||F (τ)||rsdτ , (36)

with c independent of F and T .

Proof. This result is well known, a proof can be found in [24, 25].

Lemma 9. Let {(vm, πvm)} be the sequence of solutions to problem (16) furnished by

Lemma5. Then there exist functions π1
vm , π

2
vm such that πvm = π1

vm + π2
vm , and, for all

r > 3, R0 > 0 and λ ∈ (0, 1
2
), we also obatin

||π1
vm(t)||L2(Ω∩BR0

) + ||π
1
vm(t)||Lr(|x|>R0) ≤ c(T )||v0||2t

−1+β

4 , with β := 1−2λ
3

,

and
T∫

0

||∇π2
vm(τ)||

r
sdτ ≤ c||v0||

2r
2 , 3

s
+ 2

r
= 4 .

(37)

Proof. The result of the lemma is an immediate consequence of the following decom-

position:

for all m ∈ N, vm = Um +Wm and πvm = πUm + πWm
,

with (Um, πUm) solution to problem (32) with initial data Um = vm0 , and (Wm, πWm)

solution to problem (35) with Fm = Jm(v
m) · ∇vm. Since vm ∈ L2(0, T ; J1,2(Ω)), one

easily deduces that Fm ∈ Lr(0, T ;Ls(Ω)) provided that 3
s
+ 2

r
= 4.
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From estimate (37)2, via the Sobolev embedding theorem (cf. Lemma5.2 of [13]),

there exists a function π0
vm(τ) such that

T∫

0

||π2
vm(τ)− π

0
vm(τ)||

r
3s
3−s

dτ ≤ c

T∫

0

||∇π2
vm(τ)||

r
sdτ ≤ c||v0||

2r
2 , (38)

for 3
s
+ 2

r
= 4. In the sequel we assume that πvm := π1

vm(t, x) + π2
vm(t, x)− π

0
vm(t).

Now, we are in a position to prove estimate (17).

We consider R > 0 such that R > 2R0. We denote by hR a smooth function such

that hR(x) = 1 for |x| > R, hR = 0 for |x| < R
2
with |D2hR|+ |∇hR| ≤

c
R
. We multiply

equation (16)1 by vm(t, x)hR(x). Integrating by parts on (0, T )× Ω, we get

||vm(t)||2
L2(|x|>R) ≤ ||v

m
0 ||

2
L2(|x|>R

2
)
+ cR−1

t∫

0

[
||vm||22 + ||v

m||33 + ||πvm |v
m|||L1(R<|x|<2R)

]
dτ

=: ||vm0 ||
2
L2(|x|>R

2
)
+ cR−1

t∫

0

[
I1(τ) + I2(τ) + I3(τ)

]
dτ.

Applying the Gagliardo-Nirenberg inequality and the energy relation, we deduce

I1(τ) + I2(τ) ≤ ||v
m
0 ||

2
2 + c||vm0 ||

3

2

2 ||∇v
m(τ)||

3

2

2 .

By virtue of Lemma9, assuming r ∈ (3, 6) and 3
s
+ 2

r
= 4, by applying the Hölder

inequality, for I3 we get

||πvm |v
m|||L1(R<|x|<2R) ≤

[
cR3 r−2

2r ||π1
vm(τ)||Lr(|x|>R

2
) + cR

5s−6

2s ||π2
vm − π

0
vm || 3s

3−s

]
||vm||2

≤ c
[
R3 r−2

2r ||π1
vm(τ)||Lr(|x|>R

2
) +R

5s−6

2s ||∇π2
vm ||s

]
,

for all R > 2R0. Increasing the terms Ii, i = 1, 2, 3, by means of the above estimates,

we arrive at

||vm(t)||2
L2(|x|>R) ≤ ||v

m
0 ||

2
L2(|x|>R

2
)
+ cR−1

t∫

0

[
||vm0 ||

2
2 + c||vm0 ||

3

2

2 ||∇v
m(τ)||

3

2

2

+R3 r−2

2r ||π1
vm(τ)||Lr(|x|>R

2
) +R

5s−6

2s ||∇π2
vm ||s

]
dτ .

Via estimates (37), applying the Hölder inequality and the energy relation we prove

that

||vm(t)||2L2(|x|>R) ≤ ||v
m
0 ||

2
L2(|x|>R

2
)
+cR−1

[
t+t

1

4 ||vm0 ||2+t
β

4R3 r−2

2r +t1−
1

r ||vm0 ||2R
5s−6

2s

]
||vm0 ||

2
2 ,

which furnishes (17).
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4.2 Uniqueness backward in time for the sequence {vm}

For the sake of the completeness we prove a result concerning the uniqueness back-

ward in time for solutions (vm, πm) to the IBVP (16), whose existence is furnished by

Lemma5. A wide literature on the topic can be found in [29] and [2]. Here we employ

the logarithmic convexity method developed in [17, 14]. In order to prove the result

we premise a result

Lemma 10. Let vm0 ∈ C0(Ω) and (vm, πvm) the solution to problem (16). Then, for all

T > 0, there exists a constant Am such that

||vm(t)||∞ ≤ Am for all t ∈ [0, T ] . (39)

Proof. The result of the lemma is classical in the case of a solution to problem (1),

provided that one considers [0, T ] as a subset of the local interval of existence of the

solution. In the case of a solution to problem (16), by employing the properties of the

mollifier, one can prove property (39) on [0, T ] for all T > 0 with a bound depending

on m. Actually, for all T > 0, one proves Ladyzhenskaya’s estimate (see [18] or [16]),

that is ||vm(t)||2,2 ≤ Am for any t ∈ [0, T ]. These considerations allow us to omit further

details related to estimate (39).

We are going to prove

Lemma 11. If vm0 6= 0, then the solution (vm, πm) to problem (16) enjoys the property

||∇vm(t)||2 > 0 for all t > 0 .

Proof. We start from (19), that furnishes:

d
dt
||∇vm||22 + ||P∆v

m||22 + ||v
m
t ||

2
2 ≤ ||v||

2
∞||∇v

m||22 , a.e. in t>0 . (40)

We recall that the following estimates hold:

||∇vm||22 ≤ ||P∆v
m||2||v

m||2 and ||∇vm||22 ≤ ||v
m
t ||2||v

m||2 . (41)

By virtue of the energy equation for (vm, πm), we get

Ė(t) = −2||∇vm||22 , Ë(t) = −2
d

dt
||∇vm||22 , (42)

where we set E(t) := ||vm||22. Therefore, by (39) and (40)-(42) we arrive at

− Ë +
Ė2

E
≤ 2A2

m||∇v
m||22 . (43)
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We prove the result of the lemma claiming that if t > 0 is the first instant such that

||∇vm(t)||2 = 0, then ||vm(t)||2 = 0 for all t ∈ [0, t], that is a contradiction. Since, for

all T > 0, vm ∈ C([0, T ); J1,2(Ω)), if there exists t > 0 such that ||vm(t)||2 = 0, then

there exists δ > 0 such that ||vm(t)||2 ≤ 1 for all t ∈ [t − δ, t]. So that, for a suitable

h > 0, the inequality (43) can be written as

Ë −
Ė2

E
≥ hĖ ⇒

ËE − Ė2

E2
≥ h

Ė

E
⇔

d

dt

[
e−ht Ė

E

]
≥ 0 , for all t ∈ [t− δ, t] .

Set σ = e−ht, we deduce
d

dσ

[ 1
E

d

dσ
E
]
≥ 0 .

This last implies that logE is a convex function. That is, for all h ∈ [0, 1],

logE(ht+ (1− h)t0) ≤ h logE(t) + (1− h) logE(t− δ) . (44)

Since in t > 0 it is ||vm(t)||2 = 0, then we arrive at ||vm(t)||2 = 0 for all t < t, which is

a contradiction with the hypothes vm0 6= 0.
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