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We compute the electric dipole moment (EDM) of the deuteron in the holographic QCD model of
Witten-Sakai-Sugimoto. Previously, the leading contribution to the EDM of nucleons was computed,
finding opposite values for the proton and the neutron, which then cancel each other in the deuteron state.
Here we compute the next-to-leading order contribution, which provides a splitting between their absolute
value. At large Nc and large ‘t Hooft coupling λ, nuclei are bound states of almost isolated nucleons.
In particular, we find that in this limit the deuteron EDM is given by the splitting between proton and
neutron EDMs. Our estimate for the deuteron EDM extrapolated to the physical values of Nc, λ,MKK, and
mq is dd ¼ −0.92 × 10−16θ e · cm. This is consistent, in sign and magnitude, with results found previously
in the literature and obtained using completely different methods.
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I. INTRODUCTION

The action of QCD can be supplemented with a
topological θ-term without spoiling its gauge and
Lorentz invariance: this term, however, introduces CP
violation in the theory, as it can be regarded as an analog
of the B⃗ · E⃗ term in electromagnetism.
The most studied CP-violating observables arising from

this term are electric dipole moments of baryonsDB that are
linear in the θ parameter. Until recent years, following the
pioneering work of Purcell and Ramsey in 1950 [1], most
efforts were directed at predicting the electric dipole
moment of the neutron Dn, which was the most accessible
one using direct measures: Experimentally, an upper bound
amounting to jDnj < 3.0 × 10−26 e · cm has been estab-
lished for this observable [2], while most estimates set the
value of the θ-induced contribution to the dipole moment to
about 10−16θ e · cm. This implies a somewhat unnatural
smallness for the θ parameter, which is then set to less than
about θ ≲ 10−10. This unnaturally small, but eventually
nonvanishing amount of CP violation goes under the name
of the “strong CP problem.”

For the deuteron, the state-of-the-art of the electric dipole
momentDD is less rich at the moment. On the experimental
side especially there are no direct measures, due to the fact
that it is electrically charged, making it unfit for measure-
ments that involve placing it in electric fields. Theoretical
estimates are essentially obtained through QCD sum
rules [3,4] and via models of nuclear potential [5]1: the
tool that provided the most estimates for Dn, the chiral
Lagrangian, tends to produce electric dipole moments that
are equal in magnitude and opposite in sign for the neutron
and the proton, so that the single nucleon contributions,
which are expected to be important, tend to cancel each
other inside the deuteron. Nevertheless, some results in this
context are available for the θ-induced electric dipole
moment (EDM) as lower bounds [7,8], while two-nucleon
terms can also be computed [9,10].
In recent years, both the experimental and theoretical

fields have acquired new tools to tackle the problem of the
determination of DD. On the experimental side, the devel-
opment of storage-ring technology allows one to measure
the electric dipole moment of charged particles with
relevant precision: The JEDI2 Collaboration in Jülich has
a goal of reaching a potential sensitivity of 10−29 e · cm
[11], so that there is the possibility, if good theoretical
predictions are available, that the strongCP problem can be
pushed to even more restrictive regimes, lowering the upper
bound on θ. The other possibility is that instead the
experiments find a finite value for DD, in which case it

*lorenzobartolini89@gmail.com
†stefano.bolognesi@unipi.it
‡gudnason@henu.edu.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

1For a review on the topic of EDMs of light nuclei, see [6].
2http://collaborations.fz-juelich.de/ikp/jedi/

PHYSICAL REVIEW D 101, 086009 (2020)

2470-0010=2020=101(8)=086009(19) 086009-1 Published by the American Physical Society

https://orcid.org/0000-0001-9255-5940
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.101.086009&domain=pdf&date_stamp=2020-04-06
https://doi.org/10.1103/PhysRevD.101.086009
https://doi.org/10.1103/PhysRevD.101.086009
https://doi.org/10.1103/PhysRevD.101.086009
https://doi.org/10.1103/PhysRevD.101.086009
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


would be of paramount importance to have a quantitatively
meaningful theoretical estimate, to infer the value of θ.
On the theory side, instead, the holographic model of

Witten-Sakai-Sugimoto (WSS) [12–14] has been used to
successfully compute the electric dipole moments of the
neutron and the proton [15,16]: Despite the computation
leading to the old chiral Lagrangian cancellation issue
(Dn ¼ −Dp), the result was obtained at leading order in
few parameters of the theory, in particular, neglecting
time derivatives, leaving open the possibility of the appear-
ance of a splitting in the magnitudes of the electric
dipole moments of the nucleons at next-to-leading order
or beyond.
It is not a simple task to make an estimate of DB since it

lies beyond the possibilities of the usual perturbative
approach to QCD, and even the lattice approach is tricky
due to the presence of the sign problem (as examples of a
lattice estimate, see Refs. [17–20]). Throughout the years,
many attempts with effective theories, such as the chiral
Lagrangian [21] and the Skyrme model [22,23] have
achieved some good estimates for the neutron. Since the
introduction of the AdS=CFT duality by Maldacena in
1997 [24], it has been a major goal for theoretical physicists
to develop a holographic theory of QCD, which could then
be used to explore its rich nonperturbative sector: the model
which has achieved the best degree of success so far is that
of Witten-Sakai-Sugimoto.
The WSS model is based on a D4–D8-brane setup in

type IIA string theory. In the limit where a simple holo-
graphic dual description is given, the model reduces to a
3þ 1-dimensional large-Nc SUðNcÞ gauge theory with Nf

massless quarks. Additionally, it also contains a tower of
massive adjoint matter fields whose mass scale is set by a
dimensionful parameter denoted as MKK (which gives the
scale of the glueballs as well). Despite this feature, at low
energies, the model shares all the expected features with
QCD, like confinement, chiral symmetry breaking, and so
on. The WSS is the top-down holographic theory closest to
QCD. It incorporates automatically the whole tower of
vector mesons and exhibits complete vector dominance in
the hadron electromagnetic form factors. It has very few
parameters to fit. Flavor dynamics is encoded in the low-
energy action for the gauge field on the flavor branes, and
the baryons of QCD are instantonic configurations of
that gauge theory [25–28]. Quantization of the degrees
of freedom for an instantonic field of charge one creates a
quantum system of states, whose transformation properties
and quantum numbers are just right to interpret them as
nucleons. Nuclear physics at low energy is thus turned into
a multi-instanton problem in a curved five-dimensional
background.
Just like baryons in the large-Nc limit can be seen as

solitons of the chiral Lagrangian, in theWSSmodel they are
identified with instantons of the holographic Lagrangian
describing the mesonic sector [25,26].

If quarks are massless, any θ dependence is washed out
by a chiral rotation of the quarks. A (small) mass term for
the quarks can be introduced using a prescription suggested
in Refs. [29,30].
In this work we use the WSS model, supplemented with

a finite quark mass, to carry out a novel independent
computation of DD from first principles; i.e., the model of
Witten-Sakai-Sugimoto adopts a top-down approach,
which provides us with valuable physical insights through
the calculations performed. It is, to our knowledge, the first
holographic attempt at performing this task.
The paper is organized as follows. In Sec. II, we will

review the main features of the nucleons in the WSS model,
the inclusion of the θ-term, and the electric dipole moment.
In Sec. III, we perform the next-to-leading order analysis.
In Sec. IV, we use the newly found perturbations to
compute their contributions to the nucleon EDM, showing
that it is of isoscalar nature. In Sec. V, we relate the EDMs
of the nucleons to that of the deuteron. We conclude in
Sec. VI. In Appendix A, we provide the explicit form of all
the equations. In Appendix B, we describe the numerical
solution.

II. HOLOGRAPHIC QCD,
NUCLEONS, AND EDM

A. Background and effective action

The starting point in the construction of the model is
Witten’s confining background in type IIA supergravity: it
is generated by a stack of Nc coincident D4-branes, which
encode color degrees of freedom, making the theory
holographically dual to SUðNcÞ Yang-Mills theory. The
field content of the background includes the metric, dilaton,
and Ramond-Ramond 3-form C3,

ds2 ¼
�
u
R

�
3=2

ðημνdxμdxν þ fðuÞdx24Þ

þ
�
R
u

�
3=2

�
du2

fðuÞ þ u2dΩ2
4

�
;

eϕ ¼ gs

�
u
R

�
3=4

; F4 ¼ dC3 ¼
2πNc

Vol4
ϵ4;

fðuÞ ¼ 1 −
u3KK
u3

: ð2:1Þ

The x4 and u directions form a subspace with the shape of a
“cigar,” as can be seen from the fact that the geometry ends
smoothly at a finite value of the u coordinate, viz. u ¼ uKK.
The x4 direction is compactified on an S1 whose radius
shrinks to zero at u ¼ uKK: absence of conical singularities
fixes the periodicity of the x4 coordinate in terms of the
radius of the background S4 (given by R and fixed by the
flux of F4) and the value of uKK, which is a free parameter.
The relation is given by
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δx4 ¼
4π

3

R3=2

u1=2KK

≡ 2π

MKK
; ð2:2Þ

where we have traded the free parameter uKK for another
one, i.e., the energy scaleMKK that defines the radius of x4.
It is useful to work in units such that

MKK ¼ uKK ¼ 1; ð2:3Þ

that is to say that we measure distances and energies in
units ofM−1

KK andMKK. Restoring the factors ofMKK at the
end of the computations will be easy using simple dimen-
sional analysis.
The inclusion of flavor degrees of freedom is performed

via the addition of two stacks of Nf D8=D̄8-branes in the
probe regime: we engineer them to be localized in the x4
direction and antipodal on the S1. This way the branes are
found to merge into a single stack at the cigar tip, realizing
a holographic version of chiral symmetry breaking. It is
then useful to trade the bulk coordinate uwith one that runs
on the D8 world volume, call it z, related by (in the
antipodal setup)

� u3 ¼ u3KK þ uKKr2

x4 ¼ 2R3=2

3u1=2KK

θ

⇒

�
y ¼ r cos θ

z ¼ r sin θ
: ð2:4Þ

The effective action at low energies is then given by the
D8-branes world-volume action in the curved background
generated by the D4-branes: after a trivial dimensional
reduction on S4, it amounts to a Yang-Mills (YM) and
Chern-Simons (CS) theory on a five-dimensional curved
space

S ¼ SYM þ SCS;

SYM ¼ −κTr
Z

d4xdz

�
1

2
hðzÞF 2

μν þ kðzÞF 2
μz

�
;

SCS ¼
Nc

384π2
ϵα1α2α3α4α5

Z
d4xdzÂα1

× ½6trðFa
α2α3F

a
α4α5Þ þ 2trðF̂α2α3F̂α4α5Þ�; ð2:5Þ

where κ ≡ aNcλwith a≡ ð216π3Þ−1, and kðzÞ ¼ ð1þ z2Þ,
and hðzÞ ¼ kðzÞ−1=3. In Eq. (2.5) we introduced the D8
gauge field A, a UðNfÞ connection, which we expand as

A ¼ Â
1ffiffiffiffiffiffiffiffiffi
2Nf

p þ AaTa; ð2:6Þ

where Ta are the generators of SUðNfÞ normalized as
trðTaTbÞ ¼ 1

2
δab (i.e., Ta ¼ τa

2
in the Nf ¼ 2 case). We

adopt the following notation for space and time indices: α
labels all of the five directions of the effective spacetime
(α ¼ 0;…; 3; z), greek letters μ and ν label the four-
dimensional spacetime but not the bulk coordinate
(μ; ν ¼ 0;…; 3), capital latin letters label all spatial direc-
tions (M;N;… ¼ 1; 2; 3; z), while small latin letters are
reserved for the three spatial directions that do not extend
into the bulk (i; j;… ¼ 1, 2, 3).

B. Baryons as holographic solitons

Despite the model having mesons as fundamental
degrees of freedom, it can successfully describe baryons
as a solitonic configuration with a nontrivial instanton
number. From a string theory point of view, this would
correspond to a D4-brane wrapped on S4, with Nc
fundamental strings connecting it to the color branes.
An approximate solution [26] is found by restricting the

analysis to a region near the cigar tip, where the warp
factors hðzÞ and kðzÞ can be approximated by unity. This is
a good approximation in the large-λ limit since the baryon
size is found to be of order λ−1=2. The static configuration is
given by the SUð2Þ Belavin-Polyakov-Schwarz-Tyupkin
instanton in flat space, with the addition of an electromag-
netic potential in the Abelian sector,

Acl
M ¼ −ifðξÞg∂Mg−1; Â0 ¼

Nc

8π2κ

1

ξ2

�
1 −

ρ4

ðξ2 þ ρ2Þ2
�
;

A0 ¼ ÂM ¼ 0; ð2:7Þ

with

fðξÞ ¼ ξ2

ξ2 þ ρ2
; g ¼ ðz − ZÞ − iðx⃗ − X⃗Þ · ⃗τ

ξ
;

ξ2 ¼ ðz − ZÞ2 þ jx⃗ − X⃗j2: ð2:8Þ

Note that ρ and Z are not real moduli of the soliton since
they have a potential

Uðρ; ZÞ ¼ 8π2κ

�
1þ ρ2

6
þ Nc

2

5ð8π2κÞ2ρ2 þ
Z2

3

�
; ð2:9Þ

which is minimized by the classical values

ρ2cl ¼
Nc

8π2κ

ffiffiffi
6

5

r
; Zcl ¼ 0: ð2:10Þ

Time dependence can be implemented in the moduli of
the soliton: XMðtÞ describes the position of the center of
mass in four-dimensional space, ρðtÞ is the instanton size,
and yIðtÞ describes the SUð2Þ orientation. yI and ρ are not
independent, they are actually related by

P
y2I ¼ ρ2, so it is

useful to introduce aI ≡ yI=ρ. Other than promoting the
moduli to be time-dependent quantities, a transformation
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on the static gauge fields is also implemented: it looks like a
gauge transformation, but it is not since it does not act on
the A0 field,

AM ¼ VAcl
MV

−1 − iV∂MV−1: ð2:11Þ

This way the field strength transforms as

FMN ¼ VFcl
MNV

−1;

F0M ¼ Vð _Xα∂αAcl
M −Dcl

MΦÞV−1; ð2:12Þ

with Φ given by

Φ≡ −iV−1 _V: ð2:13Þ

To find a solution for Vðx; tÞ requires one to find the
function Φðx; tÞ and perform a path-ordered integration,
but we will not need this function, since Vðx; tÞ will only
appear in our computations in the form of Φðx; tÞ.
A solution for the function Φðx; tÞ is then found to be

Φðx; tÞ ¼ − _XNAcl
N þ χaðtÞΦaðxÞ;

Φa ¼ fðξÞg τ
a

2
g−1;

χa ¼ −itrða−1 _aτaÞ; ð2:14Þ

where the SUð2Þ moduli only appear in the combination
aðtÞ ¼ a4 þ iacτc. The full time-dependent solution is
given in singular gauge in Ref. [27]: the motion of the
center of mass is not relevant for our computation, so we set
_XM ¼ _ρ ¼ 0. Also we will use the regular gauge, so our
baryonic configuration reads

AM ¼ −ifðξÞVðg∂Mg−1ÞV−1 − iV∂MV−1;

A0 ¼ 0;

Âi ¼ −
Nc

16π2κ

ρ2

ðξ2 þ ρ2Þ2 ϵ
iabχaxb;

Âz ¼ −
Nc

16π2κ

ρ2

ðξ2 þ ρ2Þ2 χ⃗ · x⃗;

Â0 ¼
Nc

8π2κ

1

ξ2

�
1 −

ρ4

ðξ2 þ ρ2Þ2
�
: ð2:15Þ

This configuration can be quantized in the moduli space
approximation to obtain the spectrum of baryons: the
baryon states are labeled by four quantum numbers
ðl; I3; nρ; nzÞ, to which the third component of the spin
(labeled by s) and the three-dimensional space momentum
p⃗ should be added for each baryon. The spin and isospin
operators are constructed in terms of the SUð2Þ moduli
yI as

Ia ¼
i
2

�
y4

∂
∂ya − ya

∂
∂y4 − ϵabcyb

∂
∂yc

�
; ð2:16Þ

Ja ¼
i
2

�
−y4

∂
∂ya þ ya

∂
∂y4 − ϵabcyb

∂
∂yc

�
; ð2:17Þ

from which it follows that I2 ¼ J2, so only states with I ¼
J ¼ l=2 enter the spectrum. The moduli yI are related to
their canonical momenta by

ΠI ¼ −i
∂
∂yI ¼ 16π2κ _yI: ð2:18Þ

Using the definition of aI, and Eqs. (2.16)–(2.18), we can
write down the following relations:

Ik¼−i4π2κρ2trða _a−1τkÞ ⇒ a _a−1¼ i
8π2κρ2

ðI⃗ · τ⃗Þ; ð2:19Þ

Jk ¼ −i4π2κρ2trða−1 _aτkÞ ¼ 4π2κρ2χk: ð2:20Þ

Finally, we recall that another useful gauge choice is the
singular one (we will use it later in the development of the
set of equations to be solved). It is reached from the regular
gauge by a transformation

Aα → GAαG−1 − iG∂αG−1; ð2:21Þ

with G ¼ aðtÞgV−1. In this gauge, the SUð2Þ moduli a
appear explicitly in the field configuration rather than being
“hidden” in the asymptotics of the function V, making it
easier to use all the machinery developed in the context of
other solitonic models of baryons.
We will often exploit the relation gðr̂ · ⃗τÞg−1 ¼

g−1ðr̂ · ⃗τÞg ¼ ðr̂ · ⃗τÞ, since this quantity will appear often
after gauge transformations of both the source terms
introduced by finite quark-mass deformation and the
perturbations it induces. The explicit form of the fields
in this gauge can be computed from Eqs. (2.15) and (2.21),
but we will not need it throughout this article.

C. Quark masses

The presence of the D8-branes alone accounts for the
inclusion of massless quarks in the model: We know from
QCD that in this setup the chiral anomaly eliminates the
dependence on θ from physical observables, thus making
every CP-violating quantity vanish, such as intrinsic
electric dipole moments. To include θ dependence in the
model, we need to account for nonvanishing bare masses
for each flavor. This deformation of the D4–D8 setup was
explored in Ref. [29]: An open Wilson line operator on the
field theory side is dual to a fundamental string world sheet
whose boundary is given by said Wilson line.
In the Sakai-Sugimoto model, the Wilson line stretches

along the x4 direction between the two stacks ofD8-branes,
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i.e., the string world sheet extending in the cigar subspace.
This is realized by adding the following term to the action:

SAK ¼ c
Z

d4xTrP½M2×2e
−i
R þ∞
−∞

dzAz þ H:c:�;

c ¼ λ3=2

39=2π3
: ð2:22Þ

Wewill work in the mass-degenerate scenario, since we are
not interested in the effects of explicit isospin breaking, and
hence we can identify

M2×2 ¼ m12×2: ð2:23Þ
In the antipodal setup of the flavor branes, this is the only
effect we need to take into account. Of course the string
tension would deform the shape of their embedding in the
cigar space, but in this setup which is particularly sym-
metric, the contributions from strings on both sides of the
x4 circle are equal and thus cancel out.

D. Holographic θ term

This holographic model can successfully account for the
presence of a QCD θ-term. This can be seen by looking at
the action for the color D4-branes: it includes a coupling to
the Ramond-Ramond 1-form C1 given by

SWZ
D4−C1

¼ ð2πα0Þ2
2!

μ4tr
Z
M4×S1

C1 ∧ G ∧ G: ð2:24Þ

If we take the Gμν components of the D4 gauge field to
correspond to the QCD gluonic field strength, then the x4
component of C1, after integration, plays the role of a θ
angle,

Z
S1x4

C1 ¼ θ þ 2πk: ð2:25Þ

The reproduction of the shift of θ under an axial chiral
transformation is also included through a nontrivial mecha-
nism of anomaly inflow. In the presence of the flavor
branes, the C7 Ramond-Ramond form action includes,
other than a kinetic term, a coupling to the flavor gauge
field Â,

SC7
¼ −

1

4π
ð2πlsÞ6

Z
dC7 ∧ ⋆dC7 þ

1

2π

Z
C7 ∧ trF ∧ ωy;

ð2:26Þ

where ωy is a form that describes the distribution of the
branes in the y direction of the cigar [i.e., in our setup it is
simply ωy ¼ δðyÞdy]. The coupling of C7 to the trace
part of the flavor gauge field translates into an anomalous
Bianchi identity for the field strength F̃2 related to
F8 ¼ dC7 by Hodge duality

dF̃2 ¼ trF ∧ ωy: ð2:27Þ

This equation can be solved by giving up the condition that
F̃2 ¼ dC1 [this is why we used the tilde notation: we would
call F2 ¼ dC1, while F̃2 corresponds to the solution of
Eq. (2.27)], so that F̃2 reads

F̃2¼ dC1þ trA∧ωy ¼ dC1þ
ffiffiffiffiffiffi
Nf

2

r
Â∧ δðyÞdy: ð2:28Þ

This formula implies that the presence of D8-branes makes
the formC1 a nongauge invariant quantity: only F̃2 is gauge
invariant. A gauge transformation along the z direction
reduces on the UV boundary to an axial transformation,
hence reproducing the shift of the θ angle. If the fermions
are massive, we expect the shifted θ to appear as a phase in
the mass matrix of the quarks: it is easy to see that the
action (2.22) reproduces exactly this feature when the
corresponding gauge transformation is performed on Âz.

E. Nucleon EDM at leading order

Here we briefly review the results of Refs. [15,16], i.e.,
the leading order EDM of the nucleons, which will be the
starting point from which to build and expand in order to
obtain an estimate for the deuteron EDM. From now on, we
set Nf ¼ 2.
The first thing to notice is that the Âz vacuum in the

presence of the θ-term is nontrivial: adopting a pure gauge
Ansatz for it, such as Âvac ¼ fðzÞdz, the supergravity action
for F̃2 imposes the following condition through the
equation of motion (integrated over z):

−
1

2

Z
dzÂvac

z ¼ θ

2
: ð2:29Þ

From now on, we define

φ̃ðrÞ≡ −
1

2

Z
dzðÂvac

z þ ÂzÞ ¼
θ

2
þ φðrÞ: ð2:30Þ

The function φ̃ will enter the equations of motion through
the mass term (2.22), thus generating θ-dependent pertur-
bations in the baryon configuration of the fields. We use the
unperturbed baryon configuration to evaluate this term (i.e.,
we neglect terms of order m2). This term will be a source
for the first-order mass perturbation of the baryon.
It is possible to identify the pion field with

πaðxÞ ¼ −
fπ
2

Z þ∞

−∞
dzAa

z : ð2:31Þ

So we can actually identify the holonomy appearing in
Eq. (2.22) with
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e−i
R þ∞
−∞

dzAz ≡ eiðθ2þφÞU; ð2:32Þ

where we have made use of Eq. (2.29).
Plugging in the baryon configuration (in singular gauge,

which we will use in the rest of this section) with full time
dependence, we can write the pion matrix U as

U¼ exp ½−iπaðr̂ · τ⃗Þa−1ð1−αÞ�

¼−cosα− isinα
xa

r
aτaa−1; α≡ πffiffiffiffiffiffiffiffiffiffiffi

1þ ρ2

r2

q : ð2:33Þ

The equations of motion, in singular gauge, for the Az
fields read

−κkðzÞ∂μF̂
zμ þ ðCSÞ ¼ 2 cmðcos αþ 1Þ sin φ̃; ð2:34Þ

−κkðzÞ½DνFzν�a þ ðCSÞ ¼ cm sin α cos φ̃
xk

r
trðaτka−1τaÞ:

ð2:35Þ

In these equations, we neglected the Chern-Simons term,
regarding each coordinate as being of the order xM ∼ λ−1=2

and, correspondingly, each field AM ∼ λ1=2.
We now extract the θ dependence by expanding sin φ̃ and

cos φ̃ to first order in θ, obtaining the set

−κkðzÞ∂μF̂
zμ þ ðCSÞ ¼ cmθðcos αþ 1Þ cosφ;

−κkðzÞDνFzν þ ðCSÞ ¼ −
cmθ

2
sin α sinφ

xk

r
aτka−1:

ð2:36Þ

Weemploy aperturbative approach, expanding every field as
A ¼ Abar þ δA, where δA is intended to be linear inmθ and
Abar is the unperturbed baryon configuration. Let us now
neglect time derivatives of the moduli for the moment: if we
do so, we can approximate cosφ ∼ 1 and sinφ ∼ 0, so that
only theAbelian field Âzwill have a source term that is linear
in θ. A solution to the equations of motion (consistent with
the ones for Âi and Ai) in this approximation is given by

δÂz ¼
cmθ

κ

uðrÞ
kðzÞ ; ð2:37Þ

δAM ¼ 0; ð2:38Þ
with uðrÞ defined by

∇2uðrÞ ¼ cos αþ 1: ð2:39Þ

This equation can be solved via Green’s function,

uGðr; r0Þ ¼
�−r0; r < r0;

−r0ðr0rÞ; r > r0:
ð2:40Þ

Then the solution is given by

uðrÞ¼
Z þ∞

0

dr0uGðr;r0Þ
�
1þ cos

πffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þρ2=r02

p
�
: ð2:41Þ

However, we did not analyze every equation of motion yet.
We still need to solve the one for A0. For this equation the
Chern-Simons term is not subleading in λ, and it contains the
Abelian field strength F̂zk. The newly found perturbation
(2.37)will thenproducea source forδA0when inserted in this
term. The full equation reads

− κðhðzÞδ½DiF0i� þ δ½DzðkðzÞDzF0zÞ�Þa

þ Nc

32π2
ϵijkFa

ijδF̂zk ¼ 0: ð2:42Þ

Employing the Ansatz

δA0 ¼ 27π
cmθ

λκ
aWðx⃗ · ⃗τÞa−1; ð2:43Þ

we find the following equation for the function Wðr; zÞ to
be solved numerically:

hðzÞ
�
W00 þ 4

r
W0 þ 8ρ2

ðξ2 þ ρ2Þ2W
�
þ ∂zðkðzÞ∂zWÞ

¼ ρ2

ðξ2 þ ρ2Þ2
1

r
u0

kðzÞ : ð2:44Þ

It is precisely the function Wðr; zÞ that will produce the
leading-order term in the EDM of the nucleons. A
numerical solution is shown in Fig. 1. The electromagnetic
holographic current is given by

Jμem ¼ trðJμVτ3Þ þ
1

Nc
ĴμV; ð2:45Þ

where J μ
V is defined as

FIG. 1. The function Wðr; zÞ that solves Eq. (2.44) for the
semiclassical value of the size ρ ¼ ρcl.
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J μ
V ¼ −κ½kðzÞF μz�þ∞

−∞ : ð2:46Þ

Of this current we are interested in the component J0em,
since we want to compute the EDM of nucleons, defined by

Di
N ¼ e

Z
d3x xihNjJ0emjNi ¼ DNhsjσijsi: ð2:47Þ

The EDM of the nucleon will consist of two terms with
different symmetry properties under isospin transforma-
tions. We employ the following notation for these iso-
vectorial and isoscalar parts:

DN ¼ dN þ ΔN ; dn ¼ −dp; Δn ¼ Δp: ð2:48Þ

We can immediately see that the Abelian part of Eq. (2.45)
vanishes with the approximation employed, while the part
constructed with the non-Abelian fields will contribute,
having precisely a dipole structure (2.43). From this
observation alone, we can already predict that the EDM
DN will be proportional to the third component of the
isospin operator I3, and hence will be of equal magnitude
and opposite sign for proton and neutron, and thus only dN
is nonvanishing at this order.
The computation confirms this, yielding the semiclass-

ical (Z ¼ 0, ρ ¼ ρs:c:) results presented in [15],

dn ¼ −dp ¼ 0.78 × 10−16θ e · cm: ð2:49Þ

Effects of the nucleon wave function have been included
in the results of [16] and turn out to be quantitatively
important, but are not relevant for the purpose of this article
since they do not change the isovectorial nature of DN at
this level of approximation.

III. PERTURBING THE BARYON
AT NEXT-TO-LEADING ORDER

We will now take the perturbative approach to the
next-to-leading order. The values of the parameters θ
and m=MKK will remain small, also in the phenomeno-
logically relevant portion of the parameter space, so we will
still keep terms that are first order with respect to them. On
the other hand, higher orders in λ−1, Nc

−1 will provide
relevant corrections, in particular, the leading contribution
to the splitting of the magnitude of EDMs of nucleons.
For a field to give a nonvanishing EDM, it must be odd in

the x⃗ coordinate. Since the holographic electromagnetic
current is built from F z0, we are looking for perturbations
in any field A that can result in perturbations δAz and δA0,
which are odd in x⃗. Since those fields are scalars under
three-dimensional spatial rotations, the odd powers of x⃗
should come in scalar products (or combined with the
antisymmetric tensor ϵijk) with other vectors: natural
guesses are the angular velocity χ⃗, the isospin I⃗; and the
SUð2Þ generators ⃗τ.

As shown by the results for the leading-order contribu-
tion to the nucleon EDM, a δA0;z ∝ ax⃗ · ⃗τa−1 would not
produce any splitting in the EDM magnitudes. More
generally, it can be stated that the SUð2Þ part alone of
the current Ja¼3

μ cannot produce a splitting of the EDMs
due to its symmetry properties. Once evaluated on isospin
eigenstates (i.e., the nucleons), it is bound to give results
proportional to I3, hence producing EDMs of equal
magnitude (and opposite sign). The Abelian part of the
current Ĵμ instead is an isoscalar. It acts blindly on nucleon
states, so that also its action alone would produce EDMs of
equal magnitude (and equal sign). When both terms are
present, their combination is not isovectorial nor isoscalar,
hence the EDMs will be split in magnitude.
Sincetheleadingresult for thenucleonEDMisgivenbythe

SUð2Þ current, we now look for the leading θ-dependent
contribution to Ĵ0. The only possible spatial vectors that can
appear in Ĵ0 are χ⃗ and x⃗,hencewewill lookforperturbationsin
all the fields that can lead to a dipole structure

Ĵ0 ∝ Mðr; zÞðx⃗ · χ⃗Þ: ð3:1Þ

It is now clear in what sense we need to move to the next-to-
leading order: since χ⃗ is first order in time derivatives (which
are to be regarded asNc

−1), we will now include such terms
in the equations of motion and neglect higher-order terms.
Thismeans thatwe cannot drop time derivatives in theYang-
Mills part anymore, and we cannot approximate sinφ ∼ 0,
but instead we need to include sinφ ∼ φ. Since we are
stopping at the linear order in time derivatives, we can still
approximate cosφ ∼ 1.
With this in mind, we can move to look at the equations

of motion and seek for terms that could work as sources for
the perturbations of order mθ.

A. Relevant equations

We begin by recalling the equations in singular gauge,
starting with the ones with explicit source terms coming
from the Aharony-Kutasov action (i.e., the ones forAz). Up
to first order in time derivatives and in the limit of small φ,
they read

−κkðzÞ∂μF̂
zμ þ ðCSÞ ¼ cmθðcos αþ 1Þ;

−κkðzÞDνFzν þ ðCSÞ ¼ −
cmθ

2
sinðαÞφaðr̂ · ⃗τÞa−1; ð3:2Þ

with

φ ¼ −
1

2

Z þ∞

−∞
dz Âz −

θ

2
¼ Nc

64πκ

ρ2

ðρ2 þ r2Þ3=2 rðr̂ · χ⃗Þ:

ð3:3Þ

The other equations we are interested in are
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−κ½hðzÞDνFiν þDzðkðzÞFizÞ� þ ðCSÞ ¼ 0; ð3:4Þ

− κ½hðzÞ∂νF̂
0ν þ ∂zðkðzÞF̂0zÞ�

−
Nc

32π2
ϵijkðFa

ijF
a
kz þ F̂ijF̂kzÞ ¼ 0: ð3:5Þ

The current Ĵ0 we are interested in is built from the field
strength F̂z0. Still, the δÂz field is suppressed with a time
derivative and also cannot acquire both a factor χ⃗ and θ as
can be argued from Eq. (3.2). The only perturbation that
will directly enter the current is then δÂ0, but we will keep
the leading order solution for δÂz given by Eq. (2.37).
As in Ref. [16], the Chern-Simons term will act as a

source for this perturbation: the Abelian part of the Chern-
Simons term in Eq. (3.5) reads

−
Nc

32π2
ϵijkF̂ijδF̂kz ¼

Nc

16π2
ρ2

ðξ2þρ2Þ2
1

r
∂rδÂzðx⃗ · χ⃗Þ: ð3:6Þ

Hence, it is linear both in θ and χ⃗ as desired.
However, at the same order, new sources may appear

from the non-Abelian fields in the same Chern-Simons
term. Since the unperturbed field strength FMN does not
contain neither χ⃗ nor θ, the perturbed δAM can only
contribute if they are of order θχ⃗ themselves. In the next
section, we show how Eqs. (3.4) and (3.2) precisely contain
sources of that order and must then be solved before
moving to perturb Eq. (3.5).

B. Sources for δAM

The possible source terms come from two parts of the
equations: the perturbed Yang-Mills terms containing δA0

and the Aharony-Kutasov term (since the function φ
contains χ⃗). We will compute the Yang-Mills part in regular
gauge for the sake of simplicity and to avoid possible
singularities in the numerical integration that will follow.
The perturbation δA0 was obtained in Refs. [15,16] in

singular gauge, but it is simple to bring it back to the regular
one, since the transformation acts on δA0 as

δAðregÞ
0 ¼ Vga−1δAðsingÞ

0 ag−1V−1

¼ Wðr; zÞVðr̂ · ⃗τÞV−1: ð3:7Þ

The field δA0 (2.43) is already of the order of θ and appears
in Eqs. (3.2) and (3.4) with time derivatives, which will act
on the functions V and V−1 to generate Φðx; zÞ.
We will not follow the usual approach of solving first the

static equations and then implementing time dependence
modifying the static solution. We already know that we
want to keep time derivatives up to first order, so we use the
following Ansatz for the time dependence of the perturbed
non-Abelian fields:

δAðx; z; tÞ≡ VδÃðx; z; χ⃗ÞV−1: ð3:8Þ
The field δA0 also shares this very same form if we
consider δÃ0 ¼ Wðx⃗ · χ⃗Þ.
The unperturbed fields are instead of the form

Aðx; z; tÞ≡ VAcl
MV

−1 − iV∂MV−1: ð3:9Þ

With these choices, the functions V and V−1 can be
factorized out, respectively, on the left and right of the full
perturbed Yang-Mills term as follows:

−κkðzÞVfDcl
j δF̃

zjþi½δÃj;F
zj
cl �þi½Φ;∂zδÃ

0�
−½Φ;½Acl

z ;δÃ
0��þi½δÃ0;F

z0
cl �gV−1¼ðAKtermÞreg; ð3:10Þ

− κhðzÞVfDcl
j δF̃

ij þ i½δÃj;F
ij
cl�gV−1

− κVfkðzÞDcl
z δF̃iz þ 2zδF̃iz þ kðzÞi½δÃz;F

iz
cl �gV−1

− κhðzÞVfi½Φ;∂iδÃ
0�− ½Φ; ½Acl

i ;δÃ
0�� þ i½δÃ0;Fi0

cl �gV−1

¼ 0; ð3:11Þ

where we have neglected second-order time derivatives
and made use of Eqs. (2.12) and (2.13). We do not need
the explicit expression of the Aharony-Kutasov term in
this gauge. It is evident that the last row of every equation
is now a source term for the new perturbations δÃM.
However, cast this way, the equations are hard to solve,
since we would need the full knowledge of the function
Vðx; z; tÞ. To overcome this problem, we now transform
the gauge back to singular gauge: the Yang-Mills term
transforms covariantly, so it is simply obtained by the
substitution V → ag−1. In singular gauge, we already
computed the Aharony-Kutasov term, so we can restore
its explicit form. Putting all the pieces together, we finally
obtain the following set of equations:

ag−1fDcl
j δF̃

zj þ i½δÃj; F
zj
cl �

þ i½Φ; ∂zδÃ
0� − ½Φ; ½Acl

z ; δÃ
0�� þ i½δÃ0; F

z0
cl �gga−1

− a

�
Nccmθ

128πκ2
ρ2

ðρ2 þ r2Þ3=2
r

kðzÞ sin αðr̂ · χ⃗Þðr̂ · ⃗τÞ
�
a−1 ¼ 0;

ð3:12Þ

hðzÞag−1fDcl
j δF̃

ij þ i½δÃj; F
ij
cl�gga−1

þ ag−1fkðzÞDcl
z δF̃iz þ 2zδF̃iz þ kðzÞi½δÃz; F

iz
cl �gga−1

þ hðzÞag−1fi½Φ; ∂iδÃ
0� − ½Φ; ½Acl

i ; δÃ
0��

þ i½δÃ0; Fi0
cl �gga−1 ¼ 0: ð3:13Þ

As can be seen, the last two rows of Eq. (3.12) and the last
row of Eq. (3.13) are the source terms we were looking
for: we now only need to factorize away the a, a−1 on
each side of the equations and exploit the fact that
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g−1ðr̂ · ⃗τÞg ¼ gðr̂ · ⃗τÞg−1 ¼ ðr̂ · ⃗τÞ to finally obtain our set
of equations to solve

fDcl
j δF̃

zjþ i½δÃj;F
zj
cl �

þ i½Φ;∂zδÃ
0�− ½Φ; ½Acl

z ;δÃ
0��þ i½δÃ0;F

z0
cl �g

−
Nccmθ

128πκ2
ρ2

ðρ2þ r2Þ3=2
r

kðzÞsinαðr̂ · χ⃗Þðr̂ · τ⃗Þ¼ 0; ð3:14Þ

hðzÞfDcl
j δF̃

ij þ i½δÃj; F
ij
cl�g

þ fkðzÞDcl
z δF̃iz þ 2zδF̃iz þ kðzÞi½δÃz; F

iz
cl �g

þ hðzÞfi½Φ; ∂iδÃ
0� − ½Φ; ½Acl

i ; δÃ
0�� þ i½δÃ0; Fi0

cl �g ¼ 0:

ð3:15Þ

C. The Ansatz

We now want to solve Eqs. (3.14) and (3.15): doing so is
not an easy task since they are actually 12 coupled
differential equations in four variables. Luckily enough,
symmetry can be exploited to construct suitable Ansätze for
the fields δÃM: First of all, we note that three-dimensional
radial symmetry of each field is only broken by the
presence of the vectors χ⃗ and ⃗τ. This means we can
construct every structure that combines χ⃗, ⃗τ, and x⃗, and
multiply each one of them by a function of ðr; zÞ,
δÃz ≡ Kfβðr; zÞðr̂ · χ⃗Þðr̂ · ⃗τÞ þ γðr; zÞðχ⃗ · ⃗τÞ

þ δðr; zÞϵabcχar̂bτcg; ð3:16Þ
δÃi ≡KfBðr; zÞχiðr̂ · τ⃗Þ þCðr; zÞðr̂ · χ⃗Þτi þDðr; zÞr̂iðχ⃗ · τ⃗Þ

þEðr; zÞϵiabχaτb þFðr; zÞr̂iðr̂ · χ⃗Þðr̂ · τ⃗Þ
þGðr; zÞr̂iϵabcχar̂bτc þHðr; zÞϵiabχar̂bðr̂ · τ⃗Þ
þ Iðr; zÞðr̂ · χ⃗Þϵiabr̂aτbg: ð3:17Þ

We choose to use unit vectors r̂ instead of x⃗. With this
choice it will be easier to impose regularity of the fields at
r ¼ 0, which will translate into simple Neumann condi-
tions for the radial functions (exploiting ∂rr̂ ¼ 0), and also
every function will now have the same length dimension,
regardless of how many coordinate vectors enter the
respective group structure.
The complete set of 11 equations (with the corresponding

boundary conditions) originating from this Ansatz plugged
into Eqs. (3.14) and (3.15) is given inAppendixA. Since one
of the fields that act as a source in this case is given by
Eq. (2.43), we also choose the overall constant (factorized
away in the equations in Appendix A) to be

K ≡ 27πcmθ

λκ
¼ Nccmθ

8π2κ2
: ð3:18Þ

The Ansatz for the field δÂ0 is easier since now there is
no group structure: the only possibility is

δÂ0 ≡ϒMðr; zÞðr̂ · χ⃗Þ; ð3:19Þ

and since the perturbed fields δÃM appear as sources in
Eq. (3.5) via the Chern-Simons term, we choose the overall
constant ϒ to be

ϒ≡ NcK
32π2κ

¼ Nc
2cmθ

256π4κ3
: ð3:20Þ

With all these choices, the resulting equation for M
obtained by plugging Eqs. (3.17), (3.16), (2.37), and
(3.19) into Eq. (3.5) reads

−hðzÞ
�
M00 þ 2

r
M0 −

2

r2
M

�
− 2z _M− kðzÞM̈

þ 16ρ2

ðξ2þ ρ2Þ2
�
2E0 þ 2

r
G− 2Hþ 2I0 þ 4

r
Iþ β0

þ2

r
βþ γ0− _B− 3 _C− _D− _F−

1

8

u0

kðzÞ
	

þ 64ρ2

ðξ2þ ρ2Þ3 ðzBþ 3zCþ zD− 2rE− 2rI− rβ− rγÞ ¼ 0:

ð3:21Þ

Consistency requires that all the perturbations we turned on
do not change the baryonic number of the soliton solution.
This is trivially guaranteed by the dipole structure of the
perturbation. The baryon number density is given by the
isoscalar charge density as

J0B ≡ −
2

Nc
κ½kðzÞF̂0z�z¼þ∞

z¼−∞ ; ð3:22Þ

so its perturbation amounts to

δJ0B ¼ 2

Nc
κ½kðzÞ∂zδÂ

0�z¼þ∞
z¼−∞

¼ 2

Nc
κϒ½kðzÞ∂zMðr̂ · χ⃗Þ�z¼þ∞

z¼−∞ ; ð3:23Þ

which is odd in x⃗ and thus vanishes upon integration over
the solid angle.

IV. NEUTRON-PROTON EDM SPLITTING

We now move to compute the splitting in the EDM
magnitude of the nucleons: we recall the definition of the
electric dipole moment for a baryon

Di
B ¼ e

Z
d3x xihB; sjJ0emjB; si ¼ DBhsjσijsi; ð4:1Þ

where jB; si is a baryonic state and the last equality defines
DB, requiring the EDM vector to be proportional to the spin
(since it is the only physical vector intrinsic to the baryon).
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We call the subleading correction we are about to
compute Δi

N following (2.48), since it will correspond to
the isoscalar contribution. Of course, it will still obey the
relation

Δi
N ¼ ΔNhsjσijsi: ð4:2Þ

Our aim now is to compute the value of ΔN. As we already
mentioned, only the Abelian part of the current (2.45) will
give contributions to it, so for our purpose, the perturbed
current effectively reads

δJ0em ¼ −κ½kðzÞδF̂0z�þ∞
−∞ ¼ κ

Nc
½kðzÞ∂zδÂ

0�þ∞
−∞

¼ ϒ
κ

Nc
½kðzÞ∂zM�þ∞

−∞ðr̂ · χ⃗Þ: ð4:3Þ

Plugging this expression into the EDM formula yields

Δi
N ¼ eϒ

κ

Nc

Z
d3x xihNj½kðzÞ∂zM�þ∞

−∞ðr̂ · χ⃗ÞjNi: ð4:4Þ

Since we approximate the massive moduli by their classical
values, we can just keep the angular velocity in the
expectation value. We further switch to spherical coordi-
nates and integrate over dΩ,

Δi
N ¼ eϒ

κ

Nc

4π

3

Z
drr3½kðzÞ∂zM�þ∞

−∞hNjχijNi: ð4:5Þ

Now, making use of (2.20) (setting again ρ ¼ ρcl) and
writing Jk ≡ 1

2
σk, we finally obtain

Δi
N ¼ ecmθ

192π3κ2

ffiffiffi
5

6

r Z
drr3½kðzÞ∂zM�þ∞

−∞hNjσijNi: ð4:6Þ

To make a prediction for ΔN we use, other than Nc ¼ 3, the
most common parameter choices for the Sakai-Sugimoto
model, i.e.,

κ¼0.00745; MKK¼949MeV; m¼2.92MeV: ð4:7Þ

The quark mass m is chosen such that it correctly
reproduces mπ ¼ 135 MeV in the Gell-Mann–Oakes–
Renner relation 4 cm ¼ f2πm2

π , and it turns out to be a
physically reasonable value that lies in between those of the
up and down quark masses. The pion decay constant is
given in Ref. [13] in terms of κ,

f2π ¼ 4
κ

π
: ð4:8Þ

With these choices, and restoring factors ofMKK by simple
dimensional analysis, our prediction is

ΔN ¼ −4.6 × 10−17θ e · cm: ð4:9Þ

It is possible to repeat the computation for different
values of λ in order to extract the scaling of the EDM in the
large-λ limit. Of course, there is a limitation to how large we
can take λ, since for λ → ∞ the instanton becomes pointlike
and the precision of the numerical solution is lost.
Nevertheless, we manage to reach λ ¼ 103.5 while keeping
a trustable solution.
The result we obtain for the scaling at large λ is

ΔN ∼ −2.393 × 10−14λ−2.324θ e · cm; ð4:10Þ

see Fig. 2.
Note that this contribution is consistently suppressed

with respect to the isovectorial one, which scales as λ−2

[15], but not strongly, which allows us to obtain the
correct order of magnitude with extrapolation to phenom-
enological λ.

V. FROM THE NUCLEONS TO THE DEUTERON

Computing the EDM of the deuteron requires us to have
B ¼ 2 quantum states: Of course, we need, in particular, the
ground state of that topological sector. There are at least two
different consistent ways of obtaining such state, following
from the noncommutativity of the two large-Nc and large-λ
limits. Nonetheless, at leading order, our computation is not
dependent on such details, so it yields the same result no
matter how we build the Sakai-Sugimoto deuteron state, as
long as it has the correct quantum numbers.
A few considerations on such numbers: We know from

phenomenology that the ground state is in the isospin
singlet, spin triplet configuration ðI ¼ 0; J ¼ 1Þ, and its
orbital wave function is mostly composed of the L ¼ 0
state, with a small part of the L ¼ 2 one. We will assume

FIG. 2. The logarithmic plot of ΔN for increasing values of λ,
starting with the phenomenological one. As can be seen, the λ
dependency tends to a definite power law in the large-λ limit.
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L ¼ 0 from now on, since from the holographic point of
view the L ¼ 2 component has to be suppressed by powers
of λ−1; this can simply be understood by considering
that the L ¼ 2 component is geometrically realized by
the two nucleons spinning around an axis orthogonal to
their separation. In this configuration, we can estimate the
moment of inertia for rotations around this axis as 2MBR2:
The separation between the nucleons’ cores is of order
R ∼Oð1Þ, as verified in Ref. [31], while the leading order
of the baryon mass is given by MB ¼ 8π2κ. Hence, it is of
order λ and so is the moment of inertia.
On the other hand, the L ¼ 0 configuration involves no

other angular momentum than the spin of the nucleons, as it
can be thought of as the two spins lying along the
separation between the nucleons and pointing in the same
direction. Thus, the moment of inertia for this angular
momentum is given by the sum of the ones of the single
solitons, each amounting to 4π2κρ2. Since the classical
value of the size is given by Eq. (2.10), this moment of
inertia does not scale with λ, hence the L ¼ 0 component
dominates the orbital wave function once the large-λ limit
is taken.

A. Deuteron EDM

The deuteron is shaped by placing two solitons at the
distance R that minimizes the nucleon-nucleon potential
and assigning to each of them the SUð2Þ orientation
described, respectively, by the matrices B and C,

A ¼ BAcl
ð1Þ

�
x⃗þ R⃗

2
; z

�
B† þ CAcl

ð2Þ

�
x⃗ −

R⃗
2
; z

�
C†: ð5:1Þ

The two approaches in the construction of the deuteron
treat the moduli of SUð2Þ differently: The solitons are
either treated as spinning independently or as having a
locked relative orientation. Since we are interested in the
Abelian part of the current, such details will not play any
role, as the SUð2Þ moduli will only enter the computation
via the total angular momentum. The full EDM can be
computed as two separate contributions,

DD
i ¼ e

Z
d3xðxi − xi0ÞhD; sjtrðδJ0Vτ3Þ þ

1

Nc
δĴ0V jD; si

¼ ðdD þ ΔDÞhjjσijji: ð5:2Þ

In the following sections, we will show that, in both
approaches to the deuteron, we obtain the simple results

dD ¼ 0; ð5:3Þ

ΔD ¼ 2ΔN: ð5:4Þ

The SUð2Þ part of the electromagnetic charge density
comes in the form

trðδJ0Vτ3Þ¼Kκ½kðzÞ∂zWð1Þr̂1 · trðBτ⃗B†τ3Þ
þkðzÞ∂zWð2Þr̂2 · ðCτ⃗C†τ3Þ�þ∞

−∞ : ð5:5Þ

The complete field strength δF0z would also include a term
of the form ½δA0

ð1Þ þ δA0
ð2Þ, A

z
ð1Þ þ Az

ð2Þ�, but it can easily be

checked to vanish, since δA0 and Az share the same group
structure fðr; zÞx⃗ · a⃗τa−1.
The new Uð1Þ part reads

δĴ0em ≡ 1

Nc
δĴ0V

¼ ϒ
κ

Nc
½kðzÞ∂zMð1Þðr̂1 · χ⃗ð1ÞÞ

þ kðzÞ∂zMð2Þðr̂2 · χ⃗ð2ÞÞ�þ∞
−∞ : ð5:6Þ

In both equations, we have defined r̂1 ¼ x⃗þR⃗
2

jx⃗þR⃗
2
j and r̂2 ¼

x⃗−R⃗
2

jx⃗−R⃗
2
j.

B. Approach 1

In this approach, given in Ref. [31], the deuteron state
jDi is obtained by quantizing the B ¼ 2 zero modes
manifold: the massless SUð2Þ × SUð2Þmoduli correspond-
ing to global iso- and spatial rotations are given by the
matrices U≡ u4 þ iukτk and E≡ e4 þ iekτk. They can be
related to the single soliton moduli B and C via the
embedding law

B ¼ UE†; ð5:7Þ

C ¼ iUτ3E†; ð5:8Þ

where the factor iτ3 in Eq. (5.8) is present because the
relative orientation of the nucleons is not a massless
modulus. The nucleon-nucleon potential is found to be a
function of the moduli ðρ1; ρ2; Z1; Z2; B†CÞ, hence the iτ3
factor selects the attractive channel, performing a relative
rotation in isospin space of π around an axis orthogonal to
the separation between nucleons.
The found deuteron state can be written in terms of the

global moduli eI ,

heI; uIjDi ¼
1

π2
ð2ðe23 þ e24Þ − 1Þ; ð5:9Þ

but it is more useful to write it using the single soliton
moduli bI , cI,

hbI; cIjDi ¼
1

π2
ðb4c3 − b3c4 þ b1c2 − b2c1Þ: ð5:10Þ

As a first step, we show that the dipole moment of Eq. (5.5)
vanishes on the deuteron state. We have to compute the
quantity
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diD ¼ eKκhDj
Z

d3x xi½kðzÞð∂zWð1Þr̂1 · trðB⃗τB†τ3Þ

þ ∂zWð2Þr̂2 · ðC⃗τC†τ3ÞÞ�þ∞
−∞ jDi:

To begin with, we note that the two integrals of _Wð1Þ and
_Wð2Þ give the same result, since it is sufficient to perform
separately the change of variables x⃗ → x⃗ ∓ ⃗r

2
to make them

explicitly the same integral. Then we note that Eq. (5.10) is
antisymmetric under the exchange of bI with cI. Thus, to
obtain the full result, we only need to compute

hDjtrðBτiB†τ3ÞjDi; ð5:11Þ

which turns out to vanish for every i ¼ 1, 2, 3. Hence, we
conclude that the SUð2Þ part of the current does not
contribute to the deuteron EDM: this is in line with what
we expected, a result proportional to the total isospin,
which is zero for the deuteron. In principle, one could
expect the contributions of the two nucleons to cancel each
other, as the classical picture of a neutron with I3 ¼ − 1

2
and

a proton with I3 ¼ þ 1
2
would suggest. The fact that each

contribution vanishes on its own instead is due to the fact
that the quantum state (5.10) does not assign a definite I3 to
each nucleon, but both are in an equally probable super-
position of neutron and proton states (as shown in Fig. 3);
hence, the average I3 of each soliton vanishes.
Now we turn to the computation of Δi

D,

Δi
D ¼ eϒ

κ

Nc
hDj

Z
d3x xi½kðzÞ∂zMð1Þðr̂1 · χ⃗ð1ÞÞ

þ kðzÞ∂zMð2Þðr̂2 · χ⃗ð2ÞÞ�þ∞
−∞ jDi: ð5:12Þ

As before, the integrals can be evaluated separately, and
each of them reproduce the result of Eq. (4.5), so we are left
with

Δi
D¼eϒ

κ

Nc

4π

3

Z
drr3½kðzÞ _M�þ∞

−∞hDjχið1Þþχið2ÞjDi: ð5:13Þ

By making use of (2.20), we trade the angular velocities for
the angular momenta

Δi
D ¼ eϒ

3πρ2Nc

Z
drr3½kðzÞ∂zM�þ∞

−∞hDjJið1Þ þ Jið2ÞjDi:

ð5:14Þ

The last step is to use the fact that L ¼ 0, so effectively
JiD ¼ Jið1Þ þ Jið2Þ, and thus we obtain the aforementioned

result

Δi
D ¼ ecmθ

96π3κ2

ffiffiffi
5

6

r Z
drr3½kðzÞ∂zM�þ∞

−∞hDjJiDjDi

¼ 2ΔNhDjJiDjDi; ð5:15Þ

which is the full result for the EDM of the deuteron

DD ¼ 2ΔN ¼ −0.92 × 10−16θ e · cm: ð5:16Þ

C. Approach 2

Another possible setup is the one adopted in Ref. [32].
Since the two solitons are placed at a distance much greater
than their size, they can be treated as independent identical
particles. Since each of them is quantized as a fermion,
we can build the global wave function jDi as an antisym-
metric combination of the two single soliton states with
SUð2Þ quantum numbers l ¼ 1, jNi ¼ jl=2 ¼ 1

2
; ms; mii.

Antisymmetry in the I3 quantum number leads us to

jD; mji ¼
1ffiffiffi
2

p ðjp; msijn; msi − jn; msijp; msiÞ; ð5:17Þ

with mj ¼ 2ms. This configuration still does not assign a
definite third component of the isospin to any of the two
solitons (it is still of the type illustrated on the right-hand
side of Fig. 3), so the argument for the vanishing of dD we
used in the previous section is still valid here.
It is also still true that JiD ¼ Jið1Þ þ Jið2Þ, so Eq. (5.16) also

holds its validity.

VI. CONCLUSION

Using the holographic model of Witten-Sakai-Sugimoto,
we were able to extend the computation of the EDMs of
baryons to the isoscalar part. It turns out to be of a
comparable magnitude with the isovectorial one, once
extrapolation to phenomenological values of the parameters
of the model is performed, despite it being a subleading

FIG. 3. Configuration of the two solitons in the (left) L ¼ 2 and
(right) L ¼ 0 sectors. The arrows denote the directions of spatial
angular momentum (red), single soliton spin (green), and single
soliton iso-orientation (on the soliton). The size of each soliton is
of order λ−1=2, while the separation between them is of order λ0. In
the quantum ground state, each soliton is in a superposition of
opposite isospin direction.
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correction in λ−1 and Nc
−1. In particular, we observe the

scalings ΔN=dN ∼Oðλ−1Nc
−2Þ.

Using the deuteron description emerging from the same
model and the results for the EDMs of nucleons, we were
able to estimate the EDM of the deuteron bound state,
obtaining a value close to the estimate given in Ref. [3].
Even if this numerical closeness may be regarded as an
accident, considering the many approximations implicit in
our computations (and the lack of the inclusion of two-
body contributions that are expected to give comparable
EDMs), it is still remarkable that we obtain the correct
order of magnitude and sign, despite this term being
formally subleading in λ and Nc before phenomenological
extrapolation of the parameters. This can be ultimately
traced back to the known fact that the perturbative regime in
the Sakai-Sugimoto model is not well established at
phenomenological values of the model parameters, espe-
cially for the baryonic sector. In this sense, it is clear that
our result for the deuteron EDM can receive significant
corrections at subsequent orders in this perturbative expan-
sion (as happens explicitly for the single nucleons) and is
thus to be regarded as order of magnitude estimates of the
EDMs. While it is not really significant in this sense to
change the estimates of the single nucleon EDMs previ-
ously obtained in Refs. [15,16], as the exact value can be
further modified with higher-order corrections, it is indeed
relevant for the newly computed deuteron EDM, being the
leading order and thus establishing the order of magnitude
and sign for the quantity within this model. Moreover, we
stress that, unlike the single nucleon EDMs, the deuteron
EDM receive corrections only from terms in the perturba-
tive expansion that can contribute to the isoscalar charge
density δĴ0z: extending the mechanism that generates
source terms for the perturbations from the mass term in
the equations of motion, it is clear that the next contribution
to the isoscalar current would arise at next-to-next-to-next-
to-leading order, as the one at next-to-next-to-leading order
is isovectorial.
Two-body terms can be divided into two conceptually

different classes: polarization terms [DðpolÞ
D ] and exchange

terms [DðexcÞ
D ]. The first ones account for P-wave compo-

nents in the wave function of the deuteron and pion-

nucleon coupling ḡð1ÞπNN . The second class arises from the
exchange of currents between the nucleons and can
potentially receive contributions from both the isospin-

preserving, CP-breaking pion-nucleon couplings ḡð0ÞπNN and

ḡð1ÞπNN. The term that dominates, however, is expected to be
the polarization one, and in the exchange term the bigger

role is played by pieces proportional to ḡð1ÞπNN . However, in
the setup we employed, we only expect two-body con-

tributions to arise from ḡð0ÞπNN , since we did not include
isospin-breaking terms in the quark-mass matrix, so we lose
all the larger pieces of this two-body term.

To be fully self-consistent, we only need to account for
the exchange term that picks up ḡð0ÞπNN : Conceptually, one
would need to perturb the full two-soliton configuration
and look for θ-induced perturbations of the soliton tail. This
looks like an overly hard task, but it is reasonable to expect
that such term is subleading in λ−1, being the outcome of
the perturbation of a solitonic tail (which can be regarded as
a perturbation to the soliton core) induced by a perturbation
of the cores (that is, the θ-induced perturbations we found).
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APPENDIX A: EXPLICIT EQUATIONS
OF MOTION

Here we provide the equations of motion to be solved for
every group structure of the Ansatz we employed. The
function Wðr; zÞ is defined by Eq. (2.44). The functions β,
γ, and δ appear with only the first derivative with respect to
z, while the functionsD, F, andG appear with only the first
derivative with respect to r. All the other functions appear
with all the derivatives up to second order with respect to
both coordinates. Note that every function has a definite
parity under z → −z, so the boundary condition at infinity
for the z coordinate can be imposed either at z ¼ þ∞ or
z ¼ −∞. The equations will take care of the behavior of the
functions on the other side of the z axis. The boundary
conditions at z ¼ 0 can instead be guessed from the parity
of each function: β, γ, E, G, H, and I are even, while δ, B,
C, D, and F are odd. The boundary conditions we impose
are as follows:

β0ð0; zÞ ¼ γ0ð0; zÞ ¼ δ0ð0; zÞ ¼ 0;

βðþ∞; zÞ ¼ γðþ∞; zÞ ¼ δðþ∞; zÞ ¼ 0;

βðr;∞Þ ¼ γðr;∞Þ ¼ δðr;∞Þ ¼ 0;

B0ð0; zÞ ¼ C0ð0; zÞ ¼ E0ð0; zÞ ¼ H0ð0; zÞ ¼ I0ð0; zÞ ¼ 0;

Xðþ∞; zÞ ¼ 0; for X ¼ B;…; I;

Bðr; 0Þ ¼ Cðr; 0Þ ¼ Dðr; 0Þ ¼ Fðr; 0Þ ¼ 0;

_Eðr; 0Þ ¼ _Gðr; 0Þ ¼ _Hðr; 0Þ ¼ _Iðr; 0Þ ¼ 0;

Xðr;∞Þ ¼ 0; for X ¼ B;…; I: ðA1Þ
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(i) ðr̂ · χ⃗Þðr̂ · ⃗τÞ

_B0 −
1

r
_Bþ _C0 −

1

r
_Cþ _F0 þ 2

r
_F − β00 −

2

r
β0 þ 6

r2
β

þ 2

ξ2 þ ρ2

�
r _Bþ 2r _Cþ rE0 − rG0 þ z _G − 3G − z _H þ 2z_I − 3I − 6β − 2zδ0 þ 2

z
r
δ

�

þ 4

ðξ2 þ ρ2Þ2 ½−2zrC − zrDþ r2Eþ ðr2 − ρ2ÞGþ ρ2H þ 2ðr2 − ρ2ÞI þ 2ξ2β þ r2γ þ zrδ�

þ 2r2

ξ2 þ ρ2

�
z _W −

ρ2

ξ2 þ ρ2
W

�
−

π

16

ρ2

ðρ2 þ r2Þ3=2
r

kðzÞ sin
�

πffiffiffiffiffiffiffiffiffiffiffiffi
1þ ρ2

r2

q
�

¼ 0; ðA2Þ

(ii) ðχ⃗ · ⃗τÞ

1

r
_Bþ 1

r
_Cþ _D0 þ 2

r
_D −

2

r2
β − γ00 −

2

r
γ0

þ 2

ξ2 þ ρ2

�
−r _Bþ 2z _E − rE0 − 2E − z _Gþ rG0 þ 3Gþ z _H þ I þ 2β þ 2zδ0 þ 2

z
r
δ

�

þ 4

ðξ2 þ ρ2Þ2 ½ð2z
2 þ r2Þγ − zrδþ zrDþ ðr2 − 2ρ2ÞEþ ðρ2 − r2ÞG − ρ2H�

þ 2r2

ξ2 þ ρ2

�
−z _W þ ρ2

ξ2 þ ρ2
W

�
¼ 0; ðA3Þ

(iii) ϵabcχar̂bτc

− _E0 þ _G0 þ 2

r
_Gþ 1

r
_H þ 1

r
_I − δ00 −

2

r
δ0 þ 2

r2
δ

þ 2

ξ2 þ ρ2

�
−z _B − Cþ z _D − rD0 − 3D − r _E − r _H þ 2

z
r
β − 2zγ0 − 2δ

�

þ 4

ðξ2 þ ρ2Þ2 ½ρ
2Bþ ðr2 − ρ2ÞD − zrEþ zrGþ zrγ þ ð2z2 þ r2Þδ�

þ r
ξ2 þ ρ2

�
−ðz2 − r2Þ _W þ 2ρ2

ξ2 þ ρ2
zW

�
¼ 0; ðA4Þ

(iv) χiðr̂ · ⃗τÞ

hðzÞ
�
−B00 −

1

r
B0 þ 1

r2
Bþ 1

r
C0 −

1

r2
Cþ 1

r
F0
�
þ kðzÞ

�
1

r
_β − B̈

�
þ 2z

�
1

r
β − _B

�

þ 2hðzÞ
ξ2 þ ρ2

�
−2Bþ Cþ rD0 þ 2D − zE0 þ zG0 þ z

r
Gþ z

r
I

�

þ 4hðzÞ
ðξ2 þ ρ2Þ2 ½ξ

2Bþ ðρ2 − r2ÞDþ zrE − zrG�

þ 2kðzÞ
ξ2 þ ρ2

½z_δþ δþ r_γ� þ 4z
ξ2 þ ρ2

½rγ þ zδ�

þ 4kðzÞ
ðξ2 þ ρ2Þ2 ½−z

2δþ ρ2δ − zrγ�

þ hðzÞ W
ðξ2 þ ρ2Þ2 2zrρ

2 ¼ 0; ðA5Þ
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(v) ðr̂ · χ⃗Þτi

hðzÞ
�
þ 1

r
B0 −

1

r2
B − C00 −

1

r
C0 þ 1

r2
Cþ 1

r
F0
�
þ kðzÞ

�
1

r
_β − C̈

�
þ 2z

�
1

r
β − _C

�

þ 2hðzÞ
ξ2 þ ρ2

�
−rB0 − B − rC0 − 2C − rD0 − 2Dþ 2zE0 − rF0 − 2F þ z

r
G − 3

z
r
H þ 2zI0 þ 4

z
r
I

�

þ 4hðzÞ
ðξ2 þ ρ2Þ2 ½ðξ

2 − ρ2ÞBþ ð4z2 þ r2 − 2ρ2ÞCþ ðξ2 − ρ2ÞD − 3zrEþ ðξ2 − ρ2ÞF − 3zrI�

þ 2kðzÞ
ξ2 þ ρ2

½−2r _E − 2r_I − r _β − r_γ − δ� þ 4z
ξ2 þ ρ2

½−rE − rI − rβ − rγ�

þ 4kðzÞ
ðξ2 þ ρ2Þ2 ½r

2Cþ zrEþ zrI� þ hðzÞ W
ðξ2 þ ρ2Þ2 2zrðξ

2 − ρ2Þ ¼ 0; ðA6Þ

(vi) r̂iðχ⃗ · ⃗τÞ

hðzÞ
�
1

r
B0 −

1

r2
Bþ 1

r
C0 −

1

r2
C −

2

r2
F
�
þ kðzÞ½ _γ0 − D̈� þ 2z½γ0 − _D�

þ 2hðzÞ
ξ2 þ ρ2

�
−rB0 þ Bþ 2Cþ zE0 þ 2F þ zH0 þ z

r
H −

z
r
I

�
þ 4hðzÞ
ðξ2 þ ρ2Þ2 ½ρ

2Bþ ξ2D�

þ 2kðzÞ
ξ2 þ ρ2

½2r _E − 2r _G − z_δ − δþ rδ0� þ 4z
ξ2 þ ρ2

½rE − rG − zδ�

þ 4kðzÞ
ðξ2 þ ρ2Þ2 ½r

2D − zrEþ zrGþ zrγ þ ðz2 − ρ2Þδ�

þ hðzÞ
�
−

W0

ξ2 þ ρ2
2zr2 −

W
ðξ2 þ ρ2Þ2 2zrξ

2

�
¼ 0; ðA7Þ

(vii) ϵiabχaτb

hðzÞ
�
−E00 −

1

r
E0 −

1

r
G0 −

3

r2
H −

3

r2
I

�
þ kðzÞ

�
−
1

r
_δ − Ë

�
þ 2z

�
−
1

r
δ − _E

�

þ 2hðzÞ
ξ2 þ ρ2

�
−3

z
r
C − zD0 −

z
r
D − Eþ 4H

�
þ 4hðzÞ
ðξ2 þ ρ2Þ2 ½−zrBþ zrDþ ðξ2 − ρ2ÞE − r2H�

þ 2kðzÞ
ξ2 þ ρ2

½−z_γ − γ� þ 4z
ξ2 þ ρ2

½−zγ� þ 4kðzÞ
ðξ2 þ ρ2Þ2 ½ðz

2 − ρ2Þγ�

þ hðzÞ W
ξ2 þ ρ2

ðz2 − r2Þ ¼ 0; ðA8Þ

(viii) r̂iðr̂ · χ⃗Þðr̂ · ⃗τÞ

hðzÞ
�
B00 −

3

r
B0 þ 3

r2
Bþ C00 −

3

r
C0 þ 3

r2
C −

2

r
F0 þ 6

r2
F

�
þ kðzÞ

�
_β0 −

2

r
_β − F̈

�
þ 2z

�
β0 −

2

r
β − _F

�

þ 2hðzÞ
ξ2 þ ρ2

�
2rB0 − 2Bþ 3rC0 − 3Cþ rF0 − 4F − zG0 þ 2

z
r
G − zH0 þ 2

z
r
H

�

þ 4hðzÞ
ðξ2 þ ρ2Þ2 ½r

2Cþ r2Dþ ðξ2 þ ρ2ÞF þ zrGþ zrI�

þ 2kðzÞ
ξ2 þ ρ2

½2r _Gþ 2r_I þ r _β − rδ0 þ δ� þ 4z
ξ2 þ ρ2

½rGþ rI þ rβ�

þ 4kðzÞ
ðξ2 þ ρ2Þ2 ½−r

2C − r2D − zrG − zrI� þ hðzÞ W0

ξ2 þ ρ2
2zr2 ¼ 0; ðA9Þ
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(ix) r̂iϵabcχar̂bτc

hðzÞ
�
−E00 þ 1

r
E0 −

1

r
G0 þ 2

r2
Gþ 1

r
H0 −

2

r2
H þ 1

r
I0 −

2

r2
I

�
þ kðzÞ

�
_δ0 −

1

r
_δ − G̈

�
þ 2z

�
δ0 −

1

r
δ − _G

�

þ 2hðzÞ
ξ2 þ ρ2

�
−zB0 þ z

r
B − zD0 þ z

r
D − rE0 þ 2

z
r
F − 2G − rH0 þ 3H

�

þ 4hðzÞ
ðξ2 þ ρ2Þ2 ½−zrBþ zrDþ ξ2Gþ ðρ2 − r2ÞH� þ 2kðzÞ

ξ2 þ ρ2
½2r _D − rγ0� þ 4z

ξ2 þ ρ2
½rD�

þ 4kðzÞ
ðξ2 þ ρ2Þ2 ½−zrD − r2Eþ r2Gþ zrδ� þ hðzÞ

�
−

W0

ξ2 þ ρ2
rðz2 − r2Þ − W

ðξ2 þ ρ2Þ2 2r
2ρ2

�
¼ 0; ðA10Þ

(x) ϵiabχar̂bðr̂ · ⃗τÞ

hðzÞ
�
−H00 −

2

r
H0 þ 6

r2
H

�
þ kðzÞ½−Ḧ� þ 2z½− _H� þ 2hðzÞ

ξ2 þ ρ2
½−rE0 þ rG0 þ 2G − 6H þ 3I�

þ 4hðzÞ
ðξ2 þ ρ2Þ2 ½zrBþ r2Eþ ðρ2 − r2ÞGþ ðz2 þ 2r2ÞH� þ 2kðzÞ

ξ2 þ ρ2
½r_δ� þ 4z

ξ2 þ ρ2
½rδ�

þ 4kðzÞ
ðξ2 þ ρ2Þ2 ½−zrδ� þ hðzÞ W

ðξ2 þ ρ2Þ2 2r
2ξ2 ¼ 0; ðA11Þ

(xi) ðr̂ · χ⃗Þϵiabr̂aτb

hðzÞ
�
−I00 −

2

r
I0 þ 6

r2
I

�
þ kðzÞ½−Ï� þ 2z½−_I� þ 2hðzÞ

ξ2 þ ρ2

�
−zB0 þ z

r
B− 3zC0 þ 3

z
r
C− zF0 −H − 4I

�

þ 4hðzÞ
ðξ2 þ ρ2Þ2 ½zrB− zrC− zrDþ r2Eþ r2H þ ðz2 þ 2r2 − ρ2ÞI� þ 2kðzÞ

ξ2 þ ρ2
½2r _C− z _β − 2β� þ 4z

ξ2 þ ρ2
½rC− zβ�

þ 4kðzÞ
ðξ2 þ ρ2Þ2 ½−zrCþ r2Eþ r2I þ ðξ2 − ρ2Þβþ r2γ� þ hðzÞ W

ðξ2 þ ρ2Þ2 4r
2ρ2 ¼ 0: ðA12Þ

APPENDIX B: NUMERICAL SOLUTION

We perform a change of coordinates

x ¼ arctan r; y ¼ arctan z ðB1Þ

and discretize the latter variables on an equidistant lattice of
5122 points and use a fourth-order five-stencil finite
difference scheme to calculate the derivatives. We solve
the 11 coupled partial differential equations using a custom

built CUDA C code using the relaxation method. To this end,
we calculate the solutions for each source term (the latter
terms in each of the equations in Appendix B) separately
and add the resulting solutions to get a final solution for the
fields β, γ, δ, B, C, D, E, F, G, H, and I. Using this
solution, we check that the total solution is still satisfying
the full system of equation and then we use Eq. (3.21) to
calculate M, from which the EDM can be computed using
Eq. (5.15). The solution is shown in Figs. 4 and 5.
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FIG. 4. The numerical solution to the equations given in Appendix A, part one.
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FIG. 5. The numerical solution to the equations given in Appendix A, part two.
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