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luminosity of 36.1 fb−1, recorded with the ATLAS detector at the LHC in 2015 and 2016.

The analysis targets Q→Wb decays where the W boson decays leptonically. No significant

deviation from the expected Standard Model background is observed. Upper limits are set

on the QWb coupling strength and the mixing between the Standard Model sector and

a singlet T quark or a Y quark from a (B, Y ) doublet or a (T,B, Y ) triplet, taking into

account the interference effects with the Standard Model background. The upper limits

set on the mixing angle are as small as | sin θL| = 0.18 for a singlet T quark of mass

800 GeV, | sin θR| = 0.17 for a Y quark of mass 800 GeV in a (B, Y ) doublet model and

| sin θL| = 0.16 for a Y quark of mass 800 GeV in a (T,B, Y ) triplet model. Within a (B, Y )

doublet model, the limits set on the mixing parameter | sin θR| are comparable with the

exclusion limits from electroweak precision observables in the mass range between about

900 GeV and 1250 GeV.
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1 Introduction

Vector-like quarks (VLQs) are hypothetical spin-1/2 coloured particles with left-handed

and right-handed components that transform in the same way under the Standard Model

(SM) gauge group. Therefore, their masses are not generated by a Yukawa coupling to

the Higgs boson [1]. While the discovery of the Higgs boson (H) at the Large Hadron

Collider (LHC) [2, 3] excludes a perturbative, fourth generation of chiral quarks [4], since

their contribution to loop-mediated Higgs boson couplings would significantly alter the

production cross-section and the decay rates of the Higgs boson, the effects on Higgs boson

production and decay rates from loop diagrams including VLQs are much smaller than

the uncertainty in the current measurements [1]. In many models, VLQs mix mainly
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Figure 1. Leading-order Feynman diagram for single Y /T production in Wb fusion and subsequent

decay into Wb. The production amplitude scales with sin θL,R [1] or cWb
L,R [13, 14] as described in

the text.

with the SM quarks of the third generation due to the large masses of the bottom and

top quarks [5, 6]. Vector-like quarks appear in several extensions of the SM that address

the hierarchy problem, such as extra dimensions [7], composite Higgs [8, 9] and Little

Higgs [10] models, where they are added to the SM in multiplets. They can also appear in

supersymmetric models [11] and are able to stabilise the electroweak vacuum [12].

This analysis concentrates on searches for single production of heavy vector-like quarks

Q produced in proton–proton (pp) collisions via Wb fusion, pp→ Qqb+X, with a subse-

quent decay Q → Wb. Here Q can be either a T quark with charge +2/3 or a Y quark

with charge −4/3 or their antiquarks. An example of a leading-order Feynman diagram is

presented in figure 1.

Vector-like T quarks can belong to any weak-isospin multiplet, while Y quarks cannot

exist as singlets. The interpretation used in this analysis focuses on Y quarks from a (B, Y )

doublet or a (T,B, Y ) triplet, and on singlet T quarks, since T quarks in a (T,B, Y ) triplet

do not couple to Wb [1]. For singlet T quarks, the branching ratios (Bs) are model- and

mass-dependent, but in the high-mass limit, which is considered in this analysis, they

converge towards 2:1:1 (Wb:Zt:Ht) [1]. Due to its charge, the Y quark can decay only

into Wb and therefore B(Y → Wb) = 100%. As a consequence, Y quarks can be singly

produced in pp collisions only via Wb fusion, while T quarks can be produced not only by

Wb fusion but also by Zt and Ht fusion.

Single production of vector-like quarks is enabled by their coupling to SM quarks. As

a result, searches for singly produced VLQs in pp collisions can be used to probe these

couplings as a function of the VLQ mass, whereas searches for pair-produced VLQs allow

limits to be set on VLQ masses; these mass limits are rather insensitive to the couplings,

because the signals are produced through strong couplings. At high VLQ masses, single

VLQ production can become the dominant production mechanism at the LHC, depending

on the strength of the Qqb coupling. Results are presented here for two different models

that use different formulations of the Lagrangian that describes these new particles and

their interactions. In the model discussed in ref. [1] (renormalisable theory), a mixing term

between the SM and vector-like quarks is introduced in a renormalisable extension of the
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SM, while refs. [13, 14] (non-renormalisable theory) use a phenomenological Lagrangian

that is parameterised with coupling terms, but is non-renormalisable. The main difference

between these approaches is that the Lagrangian in refs. [13, 14] has additional terms that

allow larger production cross-sections, while the Lagrangian in ref. [1] gives a complete

description of the dependence of the B on the multiplet dimension, with left- and right-

handed mixing angles θL and θR as model parameters. Within a given multiplet, θL and θR
are functionally related. Therefore, a given value of either the left- or right-handed mixing

angle fully determines all Bs for any given heavy-quark mass. For the interpretation in

terms of coupling parameters cWb
L and cWb

R as introduced in refs. [13, 14], assumptions

must be made about the Q → Wb, Q → Zt and Q → Ht Bs in case of Q = T . The

relative contribution of the left- and right-handed components of the mixing and coupling

also depends on the dimension of the VLQ multiplet. For T singlets, only the left-handed

component (sin θL or cWb
L ) contributes. For a (B, Y ) doublet model, results are interpreted

in terms of the dominant right-handed (sin θR) component; for a (T,B, Y ) triplet model,

results are interpreted in terms of the dominant left-handed (sin θL) component [1]. The

formulation of ref. [1] also allows within a certain multiplet model a comparison of the

mixing angles with constraints from electroweak precision observables, such as the ratio

Rb of the partial width for Z → bb̄ to the total hadronic Z-boson width and the oblique

parameters S and T [15]. A comparison of the respective Lagrangians of the renormalisable

models described in ref. [1] and the non-renormalisable models described in refs. [13, 14]

yields a simple relation between sin θL,R and cWb
L,R: cWb

L,R =
√

2 sin θL,R for the T singlet

model and (B, Y ) doublet model and cWb
L = 2 sin θL for the (T,B, Y ) triplet model. This

relationship is only true within the regime of validity of the renormalisable formulation,

and if one considers only the interactions between Q, W and b.

The ATLAS and CMS Collaborations have published searches for single and pair pro-

duction of vector-like T quarks in all three decay channels [16–34] and set 95% confidence

level (CL) lower limits on T - and Y -quark masses. Assuming a B of 100% for the corre-

sponding decay channel, the best observed T -quark mass limits are mT > 1430 GeV for

T → Ht [23], 1340 GeV for T → Zt [33] and 1350 GeV for T → Wb [20], independent

of the size of the cWb coupling strengths. In ref. [34], seven individual analyses searching

for BB̄ or T T̄ pair production were combined improving model-independent cross-section

limits significantly over individual analyses. T quarks with a mass lower than 1310 GeV are

excluded for any combination of decays into SM particles by this analysis. The observed

lower limit on the pair-produced Y -quark mass is 1350 GeV [26]. These searches also report

limits as a function of the assumed Bs. The best observed limits are mT > 1310 GeV and

mT > 1280 GeV for a weak-isospin doublet [23] and singlet [27] respectively. Searches for

single production of T quarks with decays into Zt [31] and single T/Y -quark production

with decays into Wb [22] were carried out by the ATLAS Collaboration using the Run-1

pp dataset at a centre-of-mass energy
√
s = 8 TeV. In the T → Zt decay channel, assum-

ing a mixing parameter sin θL as low as 0.7, T quarks with masses between 450 GeV and

650 GeV are excluded [31], while for a QWb coupling strength of
√

(cWb
L )2 + (cWb

R )2 = 1,

the observed lower limit on the T -quark mass assuming B(T →Wb) = 0.5 is 950 GeV [22].
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The CMS Collaboration studied single T - and Y -quark production using the Run-2 dataset

at
√
s = 13 TeV collected in 2015 [25, 28–30, 32] and set upper limits on the single-T -quark

production cross-section times B(T → Ht) that vary between 0.31 pb and 0.93 pb for T -

quark masses in the range 1000–1800 GeV [32], as well as on the single-T -quark production

cross-section times B(T → Zt) that vary between 0.98 pb and 0.15 pb (0.6 pb and 0.13 pb)

for T -quark masses in the range 700–1700 GeV in the right-handed (left-handed) Tb (Tt)

production channel [25]. For a mass of 1000 GeV, a T -quark production cross-section times

branching fraction above 0.8 pb (0.7 pb) is excluded for the T → Ht decay channel assum-

ing left-handed (right-handed) coupling of the T quark to SM particles [28]. For Y quarks

with a coupling of 0.5 and B(Y → Wb) = 1, the observed (expected) lower mass limit is

1.40 (1.0) TeV [29].

This paper describes a search for Q→Wb (Q = T or Y ) production, with the prompt

W boson decaying leptonically, giving a lepton + jets signature characterised by the pres-

ence of exactly one electron or muon,1 three or more jets and missing transverse momentum

from the escaping neutrino. It is assumed that T quarks are produced in Wb fusion only.

For single production of a T quark, Zt fusion could in principle contribute as well, but can

be neglected for this T -singlet search. For equal values of the TZt and TWb couplings, the

cross-section for Zt fusion is about one order of magnitude smaller than for Wb fusion [14].

For the T -singlet case, the TZt coupling is about a factor of
√

2 smaller than the TWb

coupling and as a result B(T → Zt) is about a factor of two smaller than B(T → Wb).

Since the single-VLQ production cross-section scales with coupling squared, the Zt fusion

cross-section is lowered by another factor of two compared to the Wb fusion cross-section.

In addition, the selection efficiency for tZ → T → Wb events in the search presented here

is about a factor of two smaller than for bW → T → Wb, because in tZ → T → Wb the

accompanying top quark from the gluon splitting leads to additional jets in the final state.

The analysis is optimised to search for massive VLQs with a high-momentum b-jet

in the final state. The b-jet and the charged lepton originating from the Q decay are

approximately back-to-back in the transverse plane since both originate from the decay of

a heavy object. The outgoing light quark in the process depicted in figure 1 often produces

a jet in the forward region of the detector. The second b-jet from the gluon splitting may be

observed in either the forward or central region. Since this b-jet is typically of low energy,

it often falls outside the detector acceptance.

The main background processes with a single-lepton signature arise from top-quark

pair (tt̄) production, single-top-quark production and W -boson production in association

with jets (W+jets), with smaller contributions from Z-boson production in association

with jets (Z+jets) and from diboson (WW , WZ, ZZ) production. Multijet events also

contribute to the selected sample via the misidentification of a jet or a photon as an electron

or the presence of a non-prompt electron or muon. To estimate the backgrounds from tt̄ and

W+jets events in a consistent and robust fashion, two control regions (CRs) are defined.

They are chosen to be orthogonal to the signal region (SR) in order to provide independent

data samples enriched in particular background sources. The reconstructed mass of the

heavy-quark candidate is used as the discriminating variable in a binned likelihood fit to

1Electrons and muons from decays of τ -leptons from W → τν are taken into account in the selection.
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test for the presence of a signal, taking into account the interference with SM background

processes. A background-only fit to the SR and CRs is also performed to determine whether

the observed event yield in the SR is compatible with the corresponding SM background

expectation. The results of the binned profile likelihood fits are used to estimate the cWb
L,R

coupling limits for Y/T quarks. In the case of the right-handed Y quark in a (Y,B) doublet

model, where the interference effect with the SM is much smaller than for the other models

under consideration, a limit on the production cross-section is also quoted.

2 ATLAS detector

The ATLAS detector [35] at the LHC is a multipurpose particle detector with a forward-

backward symmetric cylindrical geometry that covers nearly the entire solid angle around

the collision point.2 It consists of an inner tracking detector (ID) surrounded by a thin

superconducting solenoid magnet producing an axial 2 T magnetic field, fine-granularity

electromagnetic (EM) and hadronic calorimeters, and a muon spectrometer (MS) incorpo-

rating three large air-core toroid magnet assemblies. The ID consists of a high-granularity

silicon pixel detector, including an insertable B-layer [36, 37] added in 2014, and a sil-

icon microstrip tracker, together providing charged-particle tracking information in the

pseudorapidity region |η| < 2.5. It is surrounded by a transition radiation tracker, which

enhances electron identification information in the region |η| < 2.0. The EM calorimeter is

a lead/liquid-argon sampling detector, divided into a barrel region (|η| < 1.475) and two

endcap regions (1.375 < |η| < 3.2), which provides energy measurements of electromagnetic

showers. Hadron calorimetry is also based on the sampling technique, with either scintil-

lator tiles or liquid argon as the active medium and with steel, copper, or tungsten as the

absorber material. The calorimeters cover the region |η| < 4.9. The MS measures the de-

flection of muons within |η| < 2.7 using three layers of high-precision tracking chambers lo-

cated in a toroidal field of approximately 0.5 T and 1 T in the central and endcap regions re-

spectively. The MS is also instrumented with separate trigger chambers covering |η| < 2.4.

A two-level trigger system [38], using custom hardware followed by a software-based level,

is used to reduce the trigger rate to a maximum of around 1 kHz for offline data storage.

3 Physics object reconstruction

The data used in this search correspond to an integrated luminosity of 36.1 fb−1 of pp colli-

sions at a centre-of-mass energy of
√
s = 13 TeV recorded in 2015 and 2016 with the ATLAS

detector. Only data-taking periods with stable beam collisions and all relevant ATLAS de-

tector components functioning normally are considered. In this dataset, the average number

of simultaneous pp interactions per bunch crossing, or ‘pile-up’, is approximately 24.

2ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP)

in the centre of the detector. The positive x-axis is defined by the direction from the IP to the centre

of the LHC ring, with the positive y-axis pointing upwards, while the beam direction defines the z-axis.

Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the

z-axis. The pseudorapidity η is defined in terms of the polar angle θ by η = − ln tan(θ/2). The transverse

momentum (pT) is defined relative to the beam axis and is calculated as pT = p sin(θ).
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The final states considered in this search require the presence of one charged lepton

(electron or muon) candidate and multiple hadronic jets. Single-electron and single-muon

triggers with low transverse-momentum (pT) thresholds and lepton isolation requirements

(in 2016 only) are combined in a logical OR with higher-threshold triggers without any iso-

lation requirements to give maximum efficiency. For electrons, triggers with a pT threshold

of 24 (26) GeV in 2015 (2016) and isolation requirements (in 2016 only) are used along with

triggers with a 60 GeV threshold and no isolation requirement, and with a 120 (140) GeV

threshold with looser identification criteria. For muons, triggers with pT thresholds of

20 (26) GeV and isolation requirements in 2015 (2016) are combined with a trigger that

has a pT threshold of 50 GeV and no isolation requirements in both years. In addition,

events must have at least one reconstructed vertex with two or more tracks with pT above

0.4 GeV that is consistent with the beam-collision region in the x–y plane. If multiple ver-

tices are reconstructed, the vertex with the largest sum of the squared pT of its associated

tracks is taken as the primary vertex. For the final states considered in this analysis, the

vertex reconstruction and selection efficiency is close to 100%.

Electron candidates [39–41] are reconstructed from isolated energy deposits (clus-

ters) in the EM calorimeter, each matched to a reconstructed ID track, within the fidu-

cial region of |ηcluster| < 2.47, where ηcluster is the pseudorapidity of the centroid of the

calorimeter energy deposit associated with the electron candidate. A veto is placed on elec-

trons in the transition region between the barrel and endcap electromagnetic calorimeters,

1.37 < |ηcluster| < 1.52. Electrons must satisfy the tight likelihood identification criterion,

based on shower-shape and track-cluster matching variables, and must have a transverse

energy ET = Ecluster/ cosh(ηtrack) > 25 GeV, where Ecluster is the electromagnetic cluster

energy and ηtrack the track pseudorapidity. Muons are reconstructed [42] by combining a

track reconstructed in the ID with one in the MS, using the complete track information from

both detectors and accounting for the effects of energy loss and multiple scattering in the

material of the detector structure. The muon candidates must satisfy the medium selection

criteria [42] and are required to be in the central region of |η| < 2.5. To reduce the contri-

bution of leptons from hadronic decays (non-prompt leptons), electrons and muons must

satisfy isolation criteria that include both track and calorimeter information, and are tuned

to give an overall efficiency of 98%, independent of the pT of the lepton. Electron and muon

candidates are required to be isolated from additional tracks within a cone around their

directions with a radius of ∆R ≡
√

(∆η)2 + (∆φ)2 with ∆R = min(0.2, 10 GeV/pT) [40]

for electrons and ∆R = min(0.3, 10 GeV/pT) for muons [42]. The lepton calorimeter-based

isolation variable is defined as the sum of the calorimeter transverse energy deposits in a

cone of size ∆R = 0.2, after subtracting the contribution from the energy deposit of the

lepton itself and correcting for pile-up effects, divided by the lepton pT. The significance of

the transverse impact parameter d0, calculated relative to the measured beam-line position,

is required to satisfy |d0/σ(d0)| < 5 for electrons and |d0/σ(d0)| < 3 for muons, where σ(d0)

is the uncertainty in d0. Finally, the lepton tracks are matched to the primary vertex of the

event by requiring the longitudinal impact parameter z0 to satisfy |z0 sin θtrack| < 0.5 mm,

where θtrack is the polar angle of the track.3

3The longitudinal impact parameter z0 is the difference between the longitudinal position of the track

along the beam line at the point where the transverse impact parameter (d0) is measured and the longitu-

dinal position of the primary vertex.
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The leptons satisfying the criteria described above are used in the selection of events

in the signal and control regions. The estimation of background from non-prompt and fake

leptons with the Matrix Method [43], described in section 5.2, uses ‘loose’ leptons in addi-

tion to the above ‘tight’ leptons, where the tight sample is a subset of the loose sample. The

‘loose’ selection requires that the muon (electron) satisfies the medium (likelihood medium)

requirements, but does not need to satisfy isolation criteria as defined in refs. [40, 42].

Jets are reconstructed from three-dimensional topological calorimeter energy clus-

ters [44] using the anti-kt algorithm [45, 46] with a radius parameter of 0.4 [47]. Each

topological cluster is calibrated to the electromagnetic energy scale prior to jet reconstruc-

tion. The reconstructed jets from the clusters are then calibrated to the particle level

by the application of corrections derived from simulation and from dedicated calibration

samples of pp collision data at
√
s = 13 TeV [48, 49]. Data quality criteria are imposed to

identify jets arising from non-collision sources or detector noise, and any event containing

at least one such jet is removed [50]. Finally, jets considered in this analysis are required

to have pT > 25 GeV. The pseudorapidity acceptance for jets differs between different

selections: central jets are required to have |η| < 2.5, while forward jets are defined to

have 2.5 < |η| < 4.5. Furthermore, jets with a pT < 60 GeV and |η| < 2.4 are required to

satisfy criteria implemented in the jet vertex tagger algorithm [51] designed to select jets

that originate from the hard scattering and reduce the effect of in-time pile-up.

The identification of jets from b-quark decays (b-tagging) is beneficial in this analysis.

To identify (tag) jets containing b-hadrons (henceforth referred to as b-jets), a multivariate

discriminant is used that combines information about the impact parameters of inner-

detector tracks associated with the jet, the presence of displaced secondary vertices, and

the reconstructed flight paths of b- and c-hadrons inside the jet [52–55]. Jets are considered

to be b-tagged if the value of the multivariate discriminant is larger than a certain threshold.

The criterion in use is only calculated for central jets (|η| < 2.5) with pT > 25 GeV and

has an efficiency of approximately 85% for b-jets in simulated tt̄ events. The rejection

factor against jets originating from light quarks and gluons (henceforth referred to as light-

flavour jets) is about 34, and that against jets originating from charm quarks (c-jets) is

about 3 [54], determined in simulated tt̄ events. Correction factors are defined to correct

the tagging rates in the simulation to match the efficiencies measured in the data control

samples [54, 56].

To avoid counting a single detector response as two objects, an overlap removal proce-

dure is used. Jets overlapping with identified electron candidates within a cone of ∆R = 0.2

are removed, as the jet and the electron are very likely to be the same physics object. If

the nearest jet surviving this requirement is within ∆R = 0.4 of an electron, the electron is

discarded, to ensure it is sufficiently separated from nearby jet activity. Muons are removed

if they are separated from the nearest jet by ∆R < 0.4, to reduce the background from

muons from heavy-flavour hadron decays inside jets. However, if this jet has fewer than

three associated tracks, the muon is kept and the jet is removed instead; this avoids an

inefficiency for high-energy muons undergoing significant energy loss in the calorimeter.

The missing transverse momentum ~Emiss
T (with magnitude Emiss

T ) is a measure of the

momentum of the escaping neutrinos. It is defined as the negative vector sum of the trans-
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verse momenta of all selected and calibrated objects (electrons, muons, photons, hadroni-

cally decaying τ -leptons and jets) in the event, including a term to account for energy from

soft particles which are not associated with any of the selected objects [57]. This soft term

is calculated from inner-detector tracks matched to the selected primary vertex to make it

resilient to contamination from pile-up interactions [57].

4 Background and signal modelling

Monte Carlo (MC) simulation samples are used to model the expected signal and SM

background distributions. The MC samples were processed either through the full ATLAS

detector simulation [58] based on Geant4 [59] or through a faster simulation making

use of parameterised showers in the calorimeters [60]. Effects of both in-time and out-

of-time pile-up, from additional pp collisions in the same and nearby bunch crossings,

were modelled by overlaying minimum-bias interactions generated with Pythia 8.186 [61]

according to the luminosity profile of the recorded data. The distribution of the number

of additional pp interactions in the MC samples was reweighted to match the pile-up

conditions observed in data. All simulated samples used EvtGen [62] to model the decays

of heavy-flavour hadrons, except for processes modelled using the Sherpa generator [63].

All simulated events were processed using the same reconstruction algorithms and analysis

selection requirements as for the data, but small corrections, obtained from comparisons of

simulated events with data in dedicated control regions, were applied to trigger and object

reconstruction efficiencies, as well as detector resolutions, to better model the observed

response. The main parameters of the MC samples used in this search are summarised in

table 1. Samples for all SM background processes were generated with the full Geant4

model of the ATLAS detector.

4.1 Background modelling

Top-quark pair events were generated with the next-to-leading-order (NLO) generator

Powheg-Box 2.0 [64–66] using the CT10 parton distribution function (PDF) set [67],

interfaced to Pythia 6.428 [68] with the CTEQ6L PDF set [69] and the Perugia 2012

(P2012) set of tuned parameters for the underlying event (UE) [70]. The hard-process

factorisation scale µf and renormalisation scale µr were set to the default Powheg-Box

values µ = (m2
t + p2T,top)1/2, where mt is the top-quark mass, mt = 172.5 GeV, and pT,top

is the top-quark transverse momentum evaluated for the underlying Born configuration.

The hdamp parameter, which controls the transverse momentum of the first additional gluon

emission beyond the Born configuration, is set equal to the mass of the top quark. The main

effect of this choice is to regulate the high-pT emission against which the tt̄ system recoils.

The sample was generated assuming that the top quark decays exclusively through t→Wb.

Alternative tt̄ samples were produced to model uncertainties in this process. The

effects of initial- and final-state radiation (ISR/FSR) were explored using two alternative

Powheg-Box 2.0 + Pythia 6.428 samples: one with hdamp set to 2mt, the renormalisation

and factorisation scales set to half the nominal value and using the P2012 high-variation

UE tuned parameters, giving more radiation, and another with P2012 low-variation UE

– 8 –
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tuned parameters, hdamp = mt and the renormalisation and factorisation scales set to

twice the nominal value, giving less radiation [71]. The values of µr, µf and hdamp were

varied together, because these two variations were found to cover the full set of uncertain-

ties obtained by changing the scales and the hdamp parameter independently. To provide

a comparison with a different parton-shower model, an additional tt̄ sample was gener-

ated using the same Powheg-Box settings as the nominal Powheg-Box 2.0 + Pythia

6.428 sample, but with parton showering, hadronisation, and the UE simulated with Her-

wig++ 2.7.1 [72] with the UEEE5 tuned parameters [73] and the corresponding CTEQ6L1

PDF set. Additional tt̄ simulation samples were generated using Madgraph5 aMC@NLO

2.2.1 [74] interfaced to Herwig++ 2.7.1 to determine the systematic uncertainties related

to the use of different models for the hard-scattering generation, while maintaining the

same parton shower model.

The tt̄ prediction was normalised to the theoretical cross-section for the inclusive tt̄

process of 832+46
−51 pb obtained with Top++ [75], calculated at next-to-next-to-leading

order (NNLO) in QCD and including resummation of next-to-next-to-leading logarithmic

(NNLL) soft gluon terms [76–80]. Theoretical uncertainties result from variations of the

factorisation and renormalisation scales, as well as from uncertainties in the PDF and

strong coupling constant αS. The latter two represent the largest contribution to the

overall theoretical uncertainty in the cross-section and are calculated using the PDF4LHC

prescription [81].

Single-top-quark background processes corresponding to the Wt and s-channel produc-

tion mechanisms were generated with Powheg-Box 1.0 at NLO [82] using the CT10 PDF

set. Overlaps between the tt̄ and Wt final states were removed using the “diagram removal”

scheme (DR) [83, 84]. The “diagram subtraction” scheme (DS) [84] was considered as an al-

ternative method, and the full difference between the two methods assigned as a shape and

normalisation uncertainty [85]. Events from t-channel single-top-quark production were

generated using the Powheg-Box 1.0 [82] NLO generator, which uses the four-flavour

scheme. The fixed four-flavour PDF set CT10f4 was used for the matrix-element calcula-

tions. All single-top-quark samples were normalised to the approximate NNLO theoretical

cross-sections [86–88]. Pythia 6.428 with the P2012 set of tuned parameters was used to

model the parton shower, hadronisation and underlying event. Additional single-top-quark

samples were generated using the same Powheg-Box settings as the nominal sample, while

parton showering, hadronisation, and the UE were simulated with Herwig++ 2.7.1. The

ISR/FSR effects were explored using alternative Powheg-Box 2.0 + Pythia 6.428 sam-

ples with a set of P2012 high- and low-variation UE tuned parameters. Another set of

single-top-quark samples was generated using Madgraph5 aMC@NLO 2.2.1 interfaced

to Herwig++ 2.7.1 to determine the systematic uncertainties associated with the choice of

NLO generator.

Samples of W/Z+jets events were generated with the Sherpa 2.2.0 generator. The

matrix-element calculation was performed with up to two partons at NLO and up to four

partons at leading order (LO) using Comix [89] and OpenLoops [90]. The matrix-element

calculation was merged with the Sherpa parton shower [91] using the ME+PS@NLO pre-

scription [92]. The PDF set used for the matrix-element calculation was CT10 with a ded-
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Process Generator Tuned PDF set Inclusive cross-section

+ parton showering/hadronisation parameters order in pQCD

Y qb Madgraph5 aMC@NLO 2.2.3 A14 NNPDF2.3 NLO

+ Pythia 8.210

tt̄ Powheg-Box 2.0 P2012 CT10 NNLO+NNLL

+ Pythia 6.428

Single top Powheg-Box 1.0 P2012 CT10 NNLO+NNLL

+ Pythia 6.428

Dibosons Sherpa 2.1.1 Default CT10 NLO

WW , WZ, ZZ

W/Z + jets Sherpa 2.2.0 Default CT10 NNLO

tt̄V Madgraph5 aMC@NLO 2.2.3 A14 NNPDF2.3 NLO

+ Pythia 8.210

tt̄H Madgraph5 aMC@NLO 2.2.3 CTEQ6L1 CT10 NLO

+ Herwig++ 2.7.1

Table 1. Generators used to model the signals and different background processes. The parameter

tune for the underlying event, PDF set, and the highest-order perturbative QCD (pQCD) accuracy

used for the normalisation of each sample is given. All processes, except for Y qb signals, were

generated at NLO in QCD. The LO cross-sections calculated for the Y qb signal processes in the

simulation were normalised to the NLO theoretical cross-section taken from ref. [14].

icated parton shower tuning developed by the Sherpa authors. The W+jets and Z+jets

samples were normalised to the NNLO theoretical cross-sections for inclusive W and Z pro-

duction calculated with FEWZ [93]. Samples generated with Madgraph5 aMC@NLO

2.2.1+ Pythia 8.186 were compared with the nominal W+jets samples to determine the

systematic uncertainties associated with the choice of generator.

Diboson events (WW/WZ/ZZ+jets) with one of the bosons decaying hadronically and

the other leptonically were generated with the NLO generator Sherpa 2.1.1 and include

processes containing up to four electroweak vertices. The matrix element included up to

one (ZZ) or zero (WW , WZ) additional partons at NLO and up to three partons at

LO using the same procedure as for W/Z+jets. All diboson samples were normalised to

their NLO theoretical cross-sections provided by Sherpa. Processes producing smaller

backgrounds are also considered, and include tt̄V (V = W,Z) and tt̄H. The tt̄V processes

were simulated with Madgraph5 aMC@NLO generator using the NNPDF2.3 PDF set,

interfaced to Pythia8 [94] with the A14 UE tune. The tt̄H process was modelled using

Madgraph5 aMC@NLO interfaced to Herwig++ 2.7.1.

4.2 Signal modelling

Simulated events for signal processes were generated at LO in the four-flavour scheme with

the Madgraph5 aMC@NLO 2.2.3 generator using the NNPDF2.3 PDF set, interfaced to

Pythia8 for parton showering and hadronisation. Samples of Y qb signals were produced

for masses ranging from 800 GeV to 2000 GeV in steps of 100 GeV with equal left-handed
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and right-handed coupling strengths of κT = 0.5 [95]. The coupling parameter κT in

the model described in ref. [95] used for the signal production is related to the coupling

parameters cWb
L,R in ref. [14] via κT f(m) = cWb

L,R/
√

2, where f(m) ≈
√

1/(1 +O(m−4Q )) with

mQ the VLQ mass in GeV, and therefore κT ≈ cWb
L,R/
√

2 to a very good approximation.

These samples were processed either through the full detector simulation or through the

faster simulation. The normalisation of signal events produced with the faster simulation

was scaled up by 7.2% to correct for efficiency differences.

Since the kinematic distributions of the decay products for the T quark and Y quark

in the Wb decay channel are the same, only Y signal samples were generated and they were

used to derive the results also for the Tqb signals. Other possible decay modes of the T

quark (T → Zt, T → Ht) have negligible acceptance in this search. The kinematics of the

final-state particles are very similar for left-handed and right-handed couplings, and hence

the acceptances for the two chiralities are found to be equal. The LO cross-sections calcu-

lated for the signal processes in the simulation were normalised to the next-to-leading-order

benchmark calculation from ref. [14], which is performed in the narrow-width approxima-

tion (NWA). The single-VLQ production cross-sections and the decay widths of the VLQ

resonances are mass- and coupling-dependent. The VLQ width increases with increasing

mass and coupling values such that, for sufficiently large masses and couplings, the NWA

is no longer valid. The ratio of the single-VLQ production cross-section without the NWA

to that with the NWA, calculated at LO using Madgraph5 aMC@NLO 2.2.3, was used

to correct the NLO cross-section from ref. [14] as function of VLQ mass and coupling.

Sizeable interference effects between the amplitude for VLQ signal production and the

SM are possible. In the analysis, two scenarios are considered:

1. T -quark production in a T singlet model, in which the T quark has only a left-handed

coupling [1]. The SM process that interferes in this case is t-channel single-top-quark

production where the top quark is far off-shell as illustrated in figure 2a.

2. Y -quark production in a (T,B, Y ) triplet or (B, Y ) doublet model, in which the

Y quark has only a left-handed coupling or right-handed coupling. The SM process

that interferes with Y -quark production is electroweak W−bq production4 as shown in

figure 2b. Two cases are considered: a) the Y quark has only a left-handed coupling,

which is realised e.g. in a (T,B, Y ) triplet model, in which the right-handed coupling

is heavily suppressed [1]. Since in the (T,B, Y ) triplet model the T quark does

not couple to Wb, T -quark production does not contribute to the final state under

consideration; b) the Y quark has only a right-handed coupling, which is realised e.g.

in a (B, Y ) doublet model, in which the left-handed coupling is heavily suppressed.

The interference effect for the Y quark with a right-handed coupling is much smaller

than that for the Y quark with a left-handed coupling.

These SM contributions (i.e. σSM) were not modelled in the ATLAS MC simulations.

In order to determine the signal yield and acceptance for different signal couplings,

the samples of simulated signal events produced with the nominal coupling strength of

4The charge-conjugated state W+b̄q interferes with the Ȳ quark.
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(a) (b)

Figure 2. Leading-order Feynman diagrams for the SM processes that interfere with T -quark or Y -

quark production, respectively, as described in the text: (a) t-channel single-top-quark production

where the top quark is far off-shell and (b) electroweak W−bq production.

κT = 0.5 are corrected on an event-by-event basis using reweighting factors. These factors

are obtained by comparing the target VLQ mass distribution in generated signal samples,

at particle level, with the nominal one. The reweighting takes three effects into account:

1) the effect of interference calculated at LO, 2) the change in cross-section when going

from LO to NLO, 3) the effect from the variation of the coupling strength. The method

is validated with fully reconstructed signal samples with varied coupling strengths. The

matrix-element squared for the process pp→Wbq is given by

|M |2 = |MSM|2 + |MVLQ|2 + 2Re(M∗SMMVLQ).

As a result, the total cross-section for pp → Wbq at LO can be written as σLOtot = σLOSM +

σLOVLQ + σLOI with the LO SM cross-section σLOSM, the LO VLQ cross-section σLOVLQ and the

interference-term cross-section σLOI . Since the K-factor quantifying the ratio between NLO

and LO cross-sections is significantly larger than one for VLQ production, the interference

effect has to be modelled at NLO. This modelling uses the K-factors for SM production,

KSM, and for VLQ production, KVLQ, writing the total cross-section for pp → Wbq at

NLO as

σNLO
tot = KSMσ

LO
SM +KVLQσ

LO
VLQ +

√
KSM ·KVLQσ

LO
I . (4.1)

The KVLQ values as a function of the VLQ mass are taken from ref. [14]. There is no

dedicated NLO calculation available for the KSM factor for t-channel single-top-quark pro-

duction with t-quarks far off-shell. This KSM factor is set to unity since the K-factor for

t-channel single-top-quark production for on-shell t-quarks is very close to one [96]. Since

there is no dedicated NLO calculation in the literature for electroweak SM W−bq pro-

duction interfering with the Y production amplitude, KSM is set to unity in this case as

well. No systematic uncertainties are assigned to any of the KVLQ or KSM factors, because

it is assumed that they correspond to the particular model assumptions. To obtain the

reweighting factors r, events were generated at LO using Madgraph5 aMC@NLO 2.2.3
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Figure 3. The generated mass distributions at particle level for a Y quark with a mass of 900 GeV,

for a coupling strength of c0 = κT ≈ 0.5 and cWb
L ≈ 1/

√
2 (cWb

R = 0 , solid line) and of c0 = cWb
L =

0.14 (dotted line) as defined in ref. [95]. The distribution for a right-handed only and left-handed

only Y quark (solid line) is the same. The dashed line shows the generated vector-like quark mass

distribution at particle level of a left-handed Y signal with a mass of 900 GeV, coupling strength of

cWb
L = 0.14 and interference effects with the SM included. The interference effects lead to negative

entries in some bins of the distribution. For better visualisation of the tail distribution including the

interference effect, the bin contents of all distributions were shifted by +0.1 before normalisation.

and r calculated as

r(mWb; c, c0) =
KVLQfVLQ(mWb; c) +

√
KSM ·KVLQfI(mWb; c)

fVLQ(mWb; c0)
, (4.2)

where c0 is the nominal coupling used in the simulation, c is the coupling value of interest,

and the functions fVLQ(mWb; c) and fI(mWb; c) describe the Wb invariant mass distri-

butions at particle level scaled to the LO cross-sections σLOSM and σLOI respectively. The

reweighting assumes that the phase change as a function of mWb for the VLQ and SM

amplitudes at NLO is the same as at LO.

Figure 3 shows the generated mass distribution at particle level for a Y quark with

a mass of 900 GeV, produced with a coupling strength of 0.5 and scaled to the LO cross-

section. It is compared with the generated mass distributions reweighted to a coupling

strength of 0.14 with and without the interference term, which is also scaled to the LO

cross-section. For the case without interference, it was explicitly checked that events gen-

erated with one coupling and reweighted to another target coupling result not only in

the same VLQ mass distribution, but also in the same distributions of other kinematical

variables when generated directly with this target coupling.

– 13 –



J
H
E
P
0
5
(
2
0
1
9
)
1
6
4

5 Event selection and background estimation

This search focuses on final states with a leptonically decaying W boson and a b-quark,

originating from the decay of a singly produced Q quark. Events are required to have

exactly one isolated identified lepton (electron or muon) with pT > 28 GeV that must

be matched to the lepton selected by the trigger, large missing transverse momentum

Emiss
T > 120 GeV from the escaping neutrino, and at least one central jet with pT > 25 GeV

satisfying the quality and kinematic criteria discussed in section 3. The requirement on the

missing transverse momentum reduces the fraction of selected events originating from non-

prompt or misidentified leptons as well as diboson events. In the following, unless stated

otherwise, only events satisfying this selection, referred to as “preselection”, are considered.

If there are any forward jets in the event, their transverse momentum is required to be

larger than 40 GeV.

5.1 Signal and control regions definition

Events must have at least one b-tagged jet. The highest-pT jet in the event must be b-tagged

and have pT > 350 GeV. To further exploit the low multiplicity of high-pT jets in the signal

process, an additional requirement is applied: events containing any jet with pT > 75 GeV

and |η| < 2.5 and satisfying ∆R(jet, leading jet) < 1.2 or ∆R(jet, leading jet) > 2.7 are

rejected (hard central jet veto). This requirement reduces background from production

of tt̄ events, which are characterised by a higher multiplicity of high-pT central jets than

in signal events. A requirement on the azimuthal separation between the lepton and the

b-tagged leading jet, |∆φ (lepton, leading jet)| > 2.5, as well as on the minimum distance

∆R between the lepton and any central jet, ∆R(lepton, jet) > 2.0, increases the signal-to-

background ratio because, in signal signatures, leptons from the leptonic W -boson decays

should be isolated and recoil against the b-quark jet in the event. Furthermore, similar

to t-channel single-top production, the single production of VLQs gives rise to a forward

jet (2.5 < |η| < 4.5). Only events with at least one forward jet with pT > 40 GeV are

considered. For a Y signal with a mass between 800 GeV and 2000 GeV and a cou-

pling strength of
√

(cWb
L )2 + (cWb

R )2 ≈ 1/
√

2, the signal-to-background ratio (S/B) and

the signal-to-background significance ratio (S/
√
B) in the SR are in the range 1.0–0.003

and 22.1–0.3 respectively. The acceptance times efficiency including the leptonic W decay

branching fractions5 for these Y signals ranges from 0.7% to 1.8% in the SR.

The normalisation of W+jets and tt̄ processes is partially constrained by fitting the

predicted yields to data in CRs enriched in W+jets and tt̄ events. Two CRs are defined for

this purpose, and also provide samples depleted in expected signal events. The selection

requirements for the W+jets CR are the same as for the SR, except that each event is

required to have exactly one b-tagged jet and the requirement on the azimuthal separa-

tion between the lepton and the b-tagged jet is reversed, |∆φ (lepton, leading jet) | ≤ 2.5.

In addition, the b-tagged jet has a slightly lower transverse momentum requirement of

pT > 250 GeV and no hard central or forward jet veto is applied. The W+jets CR defini-

5Events with leptonic τ decays are included.
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tion results in a composition of W+light-jets and W+heavy-flavour-jets final states similar

to that in the SR. The selection requirements for the tt̄ CR are the same as for the SR,

except that the leading jet pT must be greater than 200 GeV and there must be at least one

high-pT jet with pT > 75 GeV and |η| < 2.5 fulfilling either ∆R (jet, leading jet) < 1.2 or

∆R (jet, leading jet) > 2.7. Table 2 summarises the main selection criteria in the SR and

the orthogonal CRs. For Y /T signals with masses of ≥ 800 GeV and a coupling strength

of
√

(cWb
L )2 + (cWb

R )2 ≈ 1/
√

2, the contamination in the tt̄ control region is at most 1% and

in the W+jets CR at most 0.6%.

A mismodelling of the W+jets background is observed at high jet pT. To correct

for this mismodelling, the leading jet pT distributions in data and MC-simulated W+jets

events are compared after applying the preselection criteria and requiring that the leading

jet is a b-tagged jet. The ratio of the distributions is taken as a scaling factor, which

is applied to the simulated W+jets events in all kinematic distributions. The correction

factors are between approximately 0.9 and 1.1 with statistical uncertainties of 4–10% for a

jet pT below 500 GeV, and 0.4–0.8 with a statistical uncertainty of about 11% for higher pT
values. These reweighting factors are treated as a systematic uncertainty in the final fit.6

5.2 Estimation of non-prompt and fake lepton backgrounds

Multijet production results in hadrons, photons and non-prompt leptons that may satisfy

the lepton selection criteria and give rise to so called “non-prompt and fake” lepton back-

grounds. The multijet background normalisation and shape in the mVLQ distributions are

estimated with a data-driven method, referred to as the Matrix Method [43]. This method

uses the efficiencies of leptons selected using loose requirements (loose leptons) to pass

the default tight lepton selection requirements. The efficiencies are obtained in dedicated

control regions enriched in real leptons or in non-prompt and fake leptons, and applied to

events selected with either the loose or tight lepton definition to obtain the fraction of mul-

tijet events. The fake-enriched control regions are defined using the preselection criteria,

except that events with electrons are required to have a reconstructed transverse W mass7

mW
T < 20 GeV and to have Emiss

T +mW
T < 60 GeV, and for events with muons it is required

that the leading muon have |d0/σ(d0)| > 5. The real lepton efficiencies are measured using

the tag-and-probe method from Z → ee and Z → µµ control regions. Further details can

be found in refs. [22, 43].

5.3 Signal candidate mass reconstruction

In the SR, the invariant mass of the reconstructed VLQ candidate mVLQ is used to discrim-

inate the signal from the background processes. It is calculated from the leading b-tagged

jet and the decay products of the leptonically decaying W -boson candidate. The W -boson

6The residual difference of about 10% between the data and the SM simulation in the tail of the invariant

mass distribution of the reconstructed VLQ candidate after applying the W+jets leading-jet pT correction

is included in this systematic uncertainty.
7The transverse W mass mW

T is computed from the missing transverse momentum ~p miss
T and the

charged lepton transverse momentum ~p`T, and is defined as mW
T =

√
2p`TE

miss
T (1− cos ∆φ(~p`T, ~p

miss
T )),

where ∆φ(~p`T, ~p
miss
T ) is the azimuthal angle between ~p`T and ~p miss

T .
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Requirement

Region
SR tt̄ CR W+jets CR

Preselection

Leptons 1

Emiss
T > 120 GeV

Central jets (pT > 25 GeV) ≥ 1

Selection

b-tagged jets ≥ 1 ≥ 1 1

Leading jet pT > 350 GeV > 200 GeV > 250 GeV

Leading jet is b-tagged Yes Yes Yes

|∆φ(lepton, leading jet)| > 2.5 > 2.5 ≤ 2.5

Jets (pT > 75 GeV) with

∆R (jet, leading jet) < 1.2 or
0 ≥ 1 –

∆R (jet, leading jet) > 2.7

∆R (lepton, jets) > 2.0 — > 2.0

Forward jets (pT > 40 GeV) ≥ 1 ≥ 1 –

Table 2. Summary of common preselection requirements and selection requirements for the SR

compared to those for the tt̄ and W+jets CRs. All other selection requirements are the same for

all three regions.

candidate is reconstructed by summing the four-momenta of the charged lepton and the

neutrino. To obtain the z-component of the neutrino momentum (pz,ν), the invariant mass

of the lepton-neutrino system is set to the W -boson mass and the resulting quadratic equa-

tion is solved. If no real solution exists, the ~Emiss
T vector is varied by the minimum amount

required to produce exactly one real solution. If two real solutions are found, the one with

the smaller |pz,ν | is used. The W -boson candidate and the leading b-tagged jet are then used

to reconstruct the Q candidate. The mass resolutions for Y signals with masses between

800 GeV and 1600 GeV for a coupling of
√

(cWb
L )2 + (cWb

R )2 ≈ 1/
√

2 are 150–550 GeV.

Figure 4 shows the VLQ candidate invariant mass distribution in the SR for three

simulated left-handed Y signal masses, 900 GeV, 1200 GeV and 1600 GeV, with couplings

of cWb
L ≈ 0.29, ≈ 0.33 and ≈ 0.91 respectively, without (left figure) and with (right figure)

interference included, together with the total SM background. The distribution provides

good discrimination between signal and background events in the SR. Depending on the

coupling and signal mass it is possible that negative entries occur in some bins of the

signal-plus-interference mVLQ distribution due to the interference effect.
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Figure 4. Distribution of VLQ candidate mass, mVLQ, in the SR for three different signal masses

(a) without and (b) with interference effects, for a left-handed Y signal with a mass of 900 GeV

(dashed line), 1200 GeV (dotted) and 1600 GeV (dash-dotted line) and a coupling of cWb
L ≈ 0.29,

≈ 0.33 and ≈ 0.91 respectively, together with the total SM background (solid line). The error

bars represent the statistical uncertainties. The signal event yield is scaled by a factor of five.

Depending on the coupling and signal mass it is possible that negative entries occur in some bins of

the signal-plus-interference mVLQ distribution due to the interference effect. The distributions for

a right-handed and left-handed Y signal without considering any interference effects are the same.

6 Systematic uncertainties

Several sources of systematic uncertainty in this analysis can affect the normalisation of the

signal and background and/or their corresponding mVLQ distributions, which are used for

the statistical study. They are included as nuisance parameters in the statistical analysis.

Sources of uncertainty include the modelling of the detector response, object reconstruction

algorithms, uncertainty in the theoretical modelling of the signals and backgrounds, as well

as the uncertainty arising from the limited size of the simulated event samples.

The following section describes each of the systematic uncertainties considered in the

search. Table 3 presents a summary of all systematic uncertainties considered in the anal-

ysis. Leading sources of systematic uncertainty in the expected SM background are uncer-

tainties that arise from the jet energy scale, flavour-tagging efficiencies (b, c and light) as

well as the background modelling, where tt̄ generator uncertainties and single-top-quark

DS/DR uncertainties are significantly constrained by the fit (see section 7.1).

6.1 Experimental uncertainties

The uncertainty in the combined 2015+2016 integrated luminosity is 2.1%. It is derived,

following a methodology similar to that detailed in ref. [97], and using the LUCID-2 detector

for the baseline luminosity measurements [98], from calibration of the luminosity scale using

x-y beam-separation scans.

Experimental sources of systematic uncertainty arise from the reconstruction and mea-

surement of jets [49], leptons [40, 42] and Emiss
T [57]. Uncertainties associated with leptons
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Systematic uncertainty Type SM background [%]

Luminosity N 2.1

Pile-up SN 0.3

Reconstructed objects:

Electron efficiency, energy scale, resolution SN 0.9

Muon efficiency, momentum scale, resolution SN 0.7

Jet vertex tagger SN 0.1

Jet energy scale SN 6.4

Jet energy resolution SN 2.7

Missing transverse momentum SN 0.3

b-tagging efficiency for b-jets SN 0.8

b-tagging efficiency for c-jets SN 1.8

b-tagging efficiency for light-flavour jets SN 8.4

Background model:

tt̄ modelling: ISR/FSR SN 0.2

tt̄ modelling: generator SN 3.8

tt̄ modelling: parton shower/hadronisation SN 4.5

tt̄ modelling: interfering background shape S 0.3

Single-top cross-section N 0.4

Single-top modelling: ISR/FSR SN 0.04

Single-top modelling: generator SN 0.3

Single-top modelling: DS/DR SN 3.1

Single-top modelling: parton shower/hadronisation SN 1.6

W+jets modelling: generator SN 0.8

W+jets modelling: reweighting S 4.6

W+jets heavy flavour S 0.04

Diboson + Z+jets normalisation N 0.2

Multijet normalisation N 3.8

Multijet reweighting S 2.1

tt̄ background scaling factor F 26

W+jets background scaling factor F 19

Table 3. Systematic uncertainties considered in this analysis. An uncertainty that affects normal-

isation only (cross-section only) for all processes and channels is denoted by “N”, whereas “SN”

means that the uncertainty affects both shape and normalisation and “F” means a floating nor-

malisation uncertainty. Some of the systematic uncertainties are split into several components for

a more accurate treatment. The relative systematic uncertainties in the inclusive expected SM

background yields determined from the VLQ candidate invariant mass distribution after the fit to

the background-only hypothesis are given in the last column in percentage. The tt̄ and W+jets

background scaling-factor uncertainties (last two rows in the table) are the relative systematic

uncertainties in the predicted tt̄ and W+jets background respectively.
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arise from the trigger, reconstruction, identification, and isolation efficiencies, as well as the

lepton momentum scale and resolution, and are studied using Z → `+`− and J/ψ → `+`−

decays in data. Uncertainties associated with jets primarily arise from the jet energy scale,

jet energy resolution, and the efficiency of the jet vertex tagger requirement. The largest

contribution is from the jet energy scale, where the dependence of the uncertainty on jet

pT and η, jet flavour, and pile-up is split into 21 uncorrelated components that are treated

independently in the analysis [49]. The systematic uncertainty in the Emiss
T reconstruction

is dominated by the uncertainties in the energy calibration and resolution of reconstructed

jets and leptons, which are propagated to Emiss
T and thus are included in the uncertainties

in the corresponding objects. In addition, uncertainties in the pT scale and resolution of

reconstructed tracks that are associated with the hard-scatter vertex but not matched to

any reconstructed objects are included.

The efficiency of the flavour-tagging algorithm to correctly tag b-jets, or to mis-tag

c-jets or light-flavour jets, is measured for each jet flavour. The efficiencies are measured

in control samples of simulated events, and in data samples of tt̄ events, D∗ mesons, and

jets with impact parameters and secondary vertices consistent with a negative lifetime.

Correction factors are defined to correct the tagging rates in the simulation to match the

efficiencies measured in the data control samples [54, 56]. The uncertainties associated

with these measurements are factorised into statistically independent sources and include

a total of six independent sources affecting b-jets and four independent sources affecting

c-jets. Each of these uncertainties has a different dependence on jet pT. Seventeen sources

of uncertainty affecting light-flavour jets are considered, and depend on jet pT and η. These

correction factors are only determined up to a jet pT of 300 GeV for b- and c-jets, and pT of

750 GeV for light-flavour jets. Therefore, an additional uncertainty is included to extrap-

olate these corrections to jets with pT beyond the kinematic reach of the data calibration

samples used; it is taken to be correlated among the three jet flavours. This uncertainty

is evaluated in the simulation by comparing the tagging efficiencies while varying, e.g., the

fraction of tracks with shared hits in the silicon detectors or the fraction of fake tracks

resulting from random combinations of hits, both of which typically increase at high jet pT
due to growing track multiplicity and density of hits within the jet. Finally, an uncertainty

related to the application of c-jet scale factors to τ -jets is considered, but has a negligible

impact in this analysis [56].

The flavour-tagging systematic uncertainties are the leading sources of experimental

uncertainties (added in quadrature, about 8.7% in the expected background yield in the

SR). Other large detector-specific uncertainties arise from jet energy scale uncertainties

(about a 6.4% effect on the expected background yield) and jet energy resolution uncertain-

ties (2.7% in the expected background yield). The total systematic uncertainty associated

with Emiss
T reconstruction is about 0.3% in the SR. The combined effect of all these uncer-

tainties results in an overall normalisation uncertainty in the SM background of approxi-

mately 6.3% taking into account correlations between the different systematic uncertainties.

For the data-driven multijet background, which has a very small contribution in the

SR and CRs, a 100% normalisation uncertainty is used, to fully cover discrepancies between

the observed data and the SM expectation in multijet-background-enriched regions. The
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large statistical uncertainties associated with the multijet background prediction, which are

uncorrelated bin-to-bin in the final discriminating variable, do not cover shape differences

in the multijet background electron pT distribution. This mismodelling is corrected by

determining reweighting factors in a multijet-background-enriched region which are used

as additional shape uncertainties in the final discriminant. These reweighting factors are

obtained for electrons with |η| < 1.2 and |η| > 1.2 separately in a region requiring the same

selection requirements as the preselection, but loosening the minimum Emiss
T requirement

to 20 GeV and requiring the leading jet is a b-jet.

6.2 Theoretical modelling uncertainties

A number of systematic uncertainties affecting the modelling of tt̄ and single-top-quark

processes as described in section 4.1 are considered: uncertainties associated with the

modelling of the ISR and FSR, uncertainties associated with the choice of NLO generator,

modelling uncertainties in single-top-quark production (for t-channel) based on comparison

of the nominal sample with an alternative MC sample described in section 4.1, differences

between single-top-quark Wt samples produced using the diagram subtraction scheme and

Wt samples produced using the diagram removal scheme, as well as an uncertainty due to

the choice of parton shower and hadronisation model. The tt̄ background normalisation

is a free parameter in the fit, while the normalisation of the single-top background has an

uncertainty of 6.8% [87].

Uncertainties affecting the modelling of the Z+jets background and diboson back-

ground processes include a 5% effect from their respective normalisations to the theoretical

NNLO cross-sections [93, 99, 100]. Since both these backgrounds are very small, this un-

certainty is applied to the sum of the predicted Z+jets and diboson background processes.

The W+jets background normalisation is a free parameter in the fit. The W+light-jets

and W+heavy-flavour-jets predictions have similar mVLQ distributions in the SR and CRs.

Since the predicted ratios of W+light-jets to W+heavy-flavour-jets events in the SR and

CRs are similar, but not identical, a systematic uncertainty is derived by comparing the

shape of the complete W+jets sample with the W+heavy-flavour-jets portion alone. In

addition, alternative W+jets samples were generated using Madgraph+Pythia8 and

compared after applying the preselection criteria plus requiring that the leading jet is a

b-tagged jet.

To account for the mismodelling of the leading-jet pT spectrum in W+jets events,

reweighting factors are obtained at preselection for W+jet events. The mVLQ distributions

with and without these W+jets jet-pT correction factors applied to W+jet events are

compared in the SR and CRs and used to quantify the systematic uncertainty in the mVLQ

shape of W+jets events in the fit.

All normalisation uncertainties in the different background processes are treated as

uncorrelated. For background estimates based on simulations, the largest sources of the-

oretical modelling uncertainties are due to the choice of parton shower and hadronisation

model (2–4%), the choice of generator (about 1–3% in the expected background yield)

and varying the parameters controlling the initial- and final-state radiation (about 0.1%
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in the expected background yield), where the theoretical modelling uncertainties from tt̄

contribute the most.

The systematic uncertainties in the modelling of the high-mass Y /T signal sample

which correspond to the choice of PDF set are evaluated following the PDF4LHC15 pre-

scription [81]. No further systematic uncertainties in the signal modelling and no uncertain-

ties in the NLO signal production cross-section are considered. In addition, a systematic

uncertainty of about 2.5% is applied to cover small differences in the reconstructed VLQ

mass between signal samples passed through the full simulation of the detector and signal

samples produced with the faster simulation (see section 4).

The ATLAS MC production used in this analysis does not contain simulated events

from the SM contributions that lead to interference with the VLQ signal. Therefore, these

SM contributions can not be explicitly considered in the background modelling of the fit.

A recent MC production at reconstruction level using the four-flavour scheme for one mass

point for a left-handed Y quark shows that the mVLQ distribution of the interfering SM

contribution is similar but not identical to that of the other background contributions

(W+jets, tt̄, single top). To account for the presence of interfering SM contributions in

the fit, an additional shape uncertainty is applied to the tt̄ mVLQ template, which leads to

an uncertainty of 0.2% in the tt̄ yield.

7 Results

7.1 Statistical interpretation

A binned maximum-likelihood fit to the data is performed to test for the presence of a

signal. A separate fit is performed for each signal hypothesis with given mass and cou-

plings. The inputs to the fit are the distributions of reconstructed VLQ candidate mass

mVLQ in the SR and the two CRs. The binned likelihood function L(µ, θ) is constructed

as a product of Poisson probability terms over all mVLQ bins considered in the search.

It depends on the signal-strength parameter µ, a multiplicative factor to the theoretical

signal production cross-section, and θ, a set of nuisance parameters that encode the effect

of systematic uncertainties in the signal and background expectations and are implemented

in the likelihood function as Gaussian constraints, as well as on the two scale factors for

the free-floating tt̄ and W+jets SM background normalisations. Uncertainties in each bin

of the mVLQ distributions due to the finite numbers of events in the simulation samples are

included using dedicated fit parameters and are propagated to µ. The nuisance parameters

θ allow variations of the expectations for signal and background according to the corre-

sponding systematic uncertainties, and their fitted values θ̂ correspond to the deviations

from the nominal expectations which globally provide the best fit to the data. This pro-

cedure reduces the impact of systematic uncertainties on the search sensitivity by taking

advantage of the well-populated background-dominated CRs included in the likelihood fit.

It also allows the CRs to improve the description of the data.

The test statistic qµ is defined as the profile log-likelihood ratio:

qµ = −2 ln(L(µ,
ˆ̂
θµ)/L(µ̂, θ̂)), where µ̂ and θ̂ are the values of the parameters that
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Source SR tt̄ CR W+jets CR

tt̄ 58 ± 21 2715 ± 295 100 ± 29

Single top 29 ± 15 271 ± 118 34 ± 18

W+jets 373 ± 45 1052 ± 143 1077 ± 84

Multijet e 22 ± 20 35 ± 40 0 ± 4

Multijet µ 7 ± 7 92 ± 71 26 ± 20

Z+jets, diboson 20 ± 5 102 ± 20 50 ± 8

tt̄ V 0.3± 0.1 21 ± 3 1.6± 0.3

tt̄ H 0 ± 0 7 ± 1 0.2± 0.1

Total 500 ± 30 4300 ± 210 1290 ± 70

Data 497 4227 1274

Table 4. Event yields in the SR and the tt̄ and W+jets CRs after the fit to the background-only

hypothesis. The uncertainties include statistical and systematic uncertainties. Due to correlations

among the SM backgrounds and the corresponding nuisance parameters, the uncertainties in the

individual background components can be larger than the uncertainty in the sum of the background,

which is strongly constrained by the data.

maximise the likelihood function (with the constraint 0 ≤ µ̂ ≤ µ), and
ˆ̂
θµ are the values

of the nuisance parameters that maximise the likelihood function for a given value of µ.

In the absence of any significant deviation from the background expectation, qµ is used

in the CLs method [101, 102] to set an upper limit on the signal production cross-section

times branching ratio at the 95% CL. For a given signal scenario, values of the production

cross-section (parameterised by µ) yielding CLs < 0.05, where CLs is computed using the

asymptotic approximation [103], are excluded at 95% CL.

7.2 Fit results

The background-only fit results for the yields in the SR and the two CRs are shown in

figure 5. Figure 6 presents the mVLQ distributions after the background-only fit in the

SR and the two CRs with the SR binning as used in the background-only fit. The overall

tt̄ (W+jets) normalisation is adjusted by a factor of 0.95 ± 0.26 (1.18 ± 0.19), where

0.26 (0.19) is the total uncertainty in the normalisation. An example distribution for a

right-handed Y signal and a coupling of cWb
R ≈ 0.5 is overlaid, which illustrates what such

a signal would look like. Good agreement between the data and the SM backgrounds is

found, in particular in the SR for the mVLQ distribution, where no peak above the expected

SM background is observed.

The numbers of data events in the SR and CRs, and the event yields after fitting the

background-only hypothesis to data, together with their systematic uncertainties, are listed

in table 4.
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Figure 5. Observed background yields in the SR and in the two CRs after the fit to the data in

the control regions and the signal region under the background-only hypothesis. The lower panel

shows the ratio of data to the fitted background yields. The error bars, being smaller than the

size of the data points and hence not visible in the top part of the plot, represent the statistical

uncertainty in the data. The band represents the total (statistical and systematic) uncertainty after

the maximum-likelihood fit.

7.3 Limits on the VLQ production

When allowing for the signal presence, no significant deviation from the expected SM

background is found. In all models considered in this search (T singlet model, right-handed

Y in a (B, Y ) doublet model, left-handed Y in a (T,B, Y ) triplet model), interference effects

with SM contributions affect the mVLQ distribution (see section 4.2). The effects of the

interfering SM contributions (σSM, see eq. (4.1)) in the fit are treated as a systematic

uncertainty in the background modelling (see section 6). Therefore, only the interference

effect itself (σI) is explicitly taken into account in the signal template. For the left-handed

Y and the T -singlet case, the size and mVLQ distribution of the interfering SM contributions

are estimated in three ways:

1. Using the shape of the reweighted template (σVLQ + σI).

2. Using simulated events in the four- and five-flavour schemes at particle level, with

the SR requirements applied.

3. Using the fully-reconstructed MC simulated events mentioned in section 6.
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Figure 6. Distribution of the VLQ candidate mass, mVLQ, in (a) the SR, (b) the W+jets CR, and

(c) the tt̄ CR, after the fit to the background-only hypothesis. The first and last bin include the

underflow and overflow respectively. The lower panels show the ratios of data to the fitted back-

ground yields. The error bars represent the statistical uncertainty in the data. The band represents

the total systematic uncertainty after the maximum-likelihood fit. An example distribution for a

Y signal with a coupling of
√

(cWb
L )2 + (cWb

R )2 ≈ 0.5 without considering any interference effects is

overlaid; for better visibility, it is multiplied by a factor of 30 in the W+jets CR and by a factor of

10 in the tt̄ CR. While the total uncertainty decreases when performing the fit, the total uncertainty

in the bins around 1450-1600 GeV and 1850-2200 GeV in (b) does not decrease due to significant

statistical MC uncertainties in these two bins.
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In the four-flavour scheme, the yield and the mVLQ distribution both agree within

statistical uncertainties for the left-handed Y in a (T,B, Y ) triplet model and the T singlet

model. For the left-handed Y , the yields in the four- and five-flavour schemes differ by

a factor of about two, while the mVLQ distributions in both schemes are very similar. A

background-only fit in the SR and CRs shows that the interfering SM contribution, the

shape of which is taken from the fully reconstructed MC simulation mentioned above,

is in agreement with the size used to simulate the interference templates (σI) and can

affect the total postfit background yield by about 4 %. This effect can be accounted

for by adding the shape of the interfering SM background as an additional systematic

uncertainty in the tt̄ template (see section 6). Studies show that the expected and observed

limits change by significantly less than one standard deviation with the addition of this

systematic uncertainty. For the right-handed Y in a (B, Y ) doublet model, the interfering

SM background contributions are much smaller than other background contributions in

the SR and the CRs and are therefore negligible. Nonetheless, the non-simulated SM

contributions mentionned above, which would lead to interference with a left-handed Y in

a (T,B, Y ) triplet model or a T singlet quark, are non-negligible and are therefore taken

into account in the fit by the same additional systematic uncertainty in the tt̄ template.

Since the interfering SM contributions are not explicitly taken into account in the fit,

upper limits on the total cross-section for pp → Wbq, σtot = σVLQ + σI + σSM, times

branching ratio can not be determined, but limits on the coupling value of the vector-like

T or Y quark to Wb in a given model based on σVLQ + σI are set.

To set a coupling-value limit, the following iterative procedure is performed: for a

fixed Q mass hypothesis and for a given coupling value cWb, a mVLQ signal-plus-interference

template hVLQ+I(mVLQ; cWb) containing the VLQ (σVLQ) and the interference contribution

(σI) (but not the interfering SM contribution (σSM)) is constructed by reweighting the

default VLQ-only signal template hVLQ(mVLQ; cWb
def ) for a default coupling value (cWb

def = c0)

using the ratio r (see eq. (4.2)) defined in section 4.2. The maximum-likelihood fit to signal

plus background is performed with the signal template hVLQ+I(mVLQ; cWb), and an upper

limit on σVLQ+σI is determined. The T -quark branching ratio is set to B(T →Wb) = 0.5,8

whereas B(Y → Wb) = 1 is used for the Y quark. The theoretical cross-section σVLQ is

taken from ref. [14], where the NLO Wb fusion cross-section is calculated in the NWA.

With rising Q mass and coupling value cWb, the Q width becomes sizeable and the NWA

calculation is no longer a good approximation. Therefore, the following correction factor

applies to the theoretical cross-section prediction:

σLO,noNWA

σLO,NWA
= CNWA,

where σLO,noNWA is the LO cross-section without the NWA and σLO,NWA the LO cross-

section with the NWA, both calculated with the Madgraph5 aMC@NLO 2.2.3 [74] gen-

erator. It is assumed that CNWA is the same to a good approximation for the calculation

of the NLO cross-section. These correction factors reduce the predicted σVLQ value. The

8For the T singlet model, B(T → Wb) = 0.5 is a very good approximation in the mass and coupling

ranges relevant to this search.
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reduction becomes stronger with increasing mass and coupling value and is about 40% at

a Q mass of 1500 GeV and a coupling value of 0.9. From the upper limit on σVLQ + σI, a

corresponding coupling value cWb′ is calculated, a new signal template hVLQ+I(mVLQ; cWb′)

is constructed using the reweighting technique described above, and the fit repeated until

convergence is observed in the coupling value cWb′. It is explicitly checked that the result

of the iterative procedure does not depend on the choice of starting value for cWb, by

repeating the full iterative process with a lower or higher starting value than the one at

convergence. If the coupling converges to a value smaller than the signal-production value

of 0.5, the iterative procedure is repeated with a coupling much lower than the value at

convergence. A systematic uncertainty of about 2.5% for the coupling reweighting and a

shape uncertainty for the interference contribution are assigned to this procedure.

Depending on the binning of the mVLQ distribution, it is possible that negative entries

occur in some bins of the signal-plus-interference template due to the interference effect

when large couplings are considered, and this poses a problem in the limit-setting pro-

cedure. To avoid this problem, the last bins in the reconstructed mVLQ distribution are

merged until no negative bin entries exist. As a result, a different binning in the mVLQ

distribution is chosen for each VLQ mass hypothesis for the T -singlet case and for the

left-handed Y case, which guarantees (independent of cWb) that all bins in the signal-

plus-interference template have positive values. The rebinning reduces the sensitivity for

high-mass T and left-handed Y signals. As an example, figure 7 shows the fitted VLQ can-

didate mass distributions for left-handed Y signals with masses of 900 GeV and 1500 GeV

and for left-handed T signals with masses of 800 GeV and 1200 GeV. For the T singlet

model, the total integral of the signal-plus-interference template at reconstruction level can

become negative for VLQ mass hypotheses above 1200 GeV. As a result, no coupling-value

limits are set for the T singlet model with masses above 1200 GeV. Tables 5, 6, and 7 sum-

marise the observed and expected 95% CLs upper limits on the coupling value and limits

on the mixing angle as a function of Q-quark mass, for the T singlet model (assuming

B(T →Wb) ≈ 0.5), the right-handed Y in a (B, Y ) doublet model, and the left-handed Y

in a (T,B, Y ) triplet model respectively. The parameterisation of ref. [1] in terms of right-

or left-handed mixing angles is chosen for the coupling limits; these can be easily trans-

lated to the parameterisation of ref. [14] for the models under consideration. In a T singlet

model, the upper exclusion limit on | sin θL| (cWb
L ) is 0.18 (0.25) for a T quark of mass of

800 GeV, rising to 0.35 (0.49) for a T quark with a mass of 1200 GeV. For a (B, Y ) doublet,

the upper exclusion limit on | sin θR| (cWb
R ) is 0.17 (0.24) for a signal with a mass of 800 GeV

and 0.55 (0.77) for Y quarks with a mass of 1800 GeV. The observed (expected) lower

mass limit for Y quarks is about 1.64 TeV (1.80 TeV) for a right-handed coupling value

of cWb
R = 1/

√
2. For Y signals in a (T,B, Y ) triplet, the upper exclusion limits on | sin θL|

(cWb
L ) vary between 0.16 (0.31) and 0.39 (0.78) for masses between 800 GeV and 1600 GeV.

In figure 8, these direct mixing-angle bounds are compared with those from electroweak

precision observables taken from ref. [1], assuming that there are no multiplets other than

the one considered. For the (B, Y ) doublet model, the bounds presented here are com-

petitive with the indirect constraints for VLQ masses between 800 GeV and 1250 GeV.

– 26 –



J
H
E
P
0
5
(
2
0
1
9
)
1
6
4

600 800 1000 1200 1400 1600 1800 2000 2200 2400

 [GeV]VLQm

0.5

0.75

1

1.25

1.5

D
a

ta
 /

 P
re

d
. 0

10

20

30

40

50

60

70

80

E
v
e

n
ts

 /
 5

0
 G

e
V

ATLAS
-1 = 13 TeV, 36.1 fbs

 Wb→Y 

SR

Post-Fit

Data

 = 0.27)
Wb

L
Y900 GeV(c

tt

Single top

W+jets

Multijets

Other SM bkg.

Uncertainty

(a)

600 800 1000 1200 1400 1600 1800 2000 2200 2400

 [GeV]VLQm

0.5

0.75

1

1.25

1.5

D
a

ta
 /

 P
re

d
. 0

10

20

30

40

50

60

70

80

90

E
v
e

n
ts

 /
 5

0
 G

e
V

ATLAS
-1 = 13 TeV, 36.1 fbs

 Wb→Y 

SR

Post-Fit

Data

 = 0.64)
Wb

L
Y1500 GeV (c

tt

Single top

W+jets

Multijets

Other SM bkg.

Uncertainty

(b)

600 800 1000 1200 1400 1600 1800 2000 2200 2400

 [GeV]VLQm

0.5

0.75

1

1.25

1.5

D
a

ta
 /

 P
re

d
. 0

20

40

60

80

100

120

140

160

E
v
e

n
ts

 /
 1

0
0

 G
e

V

ATLAS
-1 = 13 TeV, 36.1 fbs

 Wb→T 

SR

Post-Fit

Data

 = 0.25)
L

Wb
T800 GeV (c

tt

Single top

W+jets

Multijets

Other SM bkg.

Uncertainty

(c)

600 800 1000 1200 1400 1600 1800 2000 2200 2400

 [GeV]VLQm

0.5

0.75

1

1.25

1.5

D
a

ta
 /

 P
re

d
. 0

20

40

60

80

100

120

E
v
e

n
ts

 /
 1

0
0

 G
e

V

ATLAS
-1 = 13 TeV, 36.1 fbs

 Wb→T 

SR

Post-Fit

Data

 = 0.49)
L

Wb
T1200 GeV (c

tt

Single top

W+jets

Multijets

Other SM bkg.

Uncertainty

(d)

Figure 7. Distributions of the VLQ candidate mass, mVLQ, after the fit to the background-only

hypotheses for four different binnings chosen for four different signal masses. The first and last bin

include the underflow and overflow respectively. The VLQ candidate mass distributions for (a) a

left-handed Y signal with mass 900 GeV and coupling cWb
L = 0.27, (b) a left-handed Y signal with

mass 1500 GeV and coupling cWb
L = 0.64, (c) a left-handed T signal with mass of 800 GeV and

coupling cWb
L = 0.25 and (d) a left-handed T signal with mass 1200 GeV and coupling cWb

L = 0.49

are also shown; all signal distributions include interference. The lower panels show the ratio of data

to the fitted background yields. The error bars represent the statistical uncertainty in the data.

The band represents the total systematic uncertainty after the maximum-likelihood fit.
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T mass [GeV] Observed limit on Expected limit on Observed limit on Expected limit on

| sin θL| | sin θL|+1σ/+2σ
−1σ/−2σ cWb

L cWb
L

+1σ/+2σ
−1σ/−2σ

800 0.18 0.19
0.04/0.08
0.03/0.06 0.25 0.27

0.06/0.11
0.05/0.08

900 0.24 0.20
0.05/0.09
0.05/0.07 0.34 0.29

0.07/0.13
0.07/0.10

1000 0.20 0.21
0.06/0.08
0.07/0.09 0.29 0.30

0.08/0.12
0.10/0.12

1100 0.25 0.27
0.09/0.11
0.13/0.15 0.36 0.38

0.12/0.15
0.18/0.21

1200 0.35 0.35
0.13/0.14
0.22/0.23 0.49 0.49

0.18/0.20
0.31/0.33

Table 5. Observed and expected 95% CL upper limits on | sin θL| and cWb
L for a left-handed T

quark in a T singlet model with masses of 800 GeV to 1200 GeV assuming B(T →Wb) = 0.5. The

±1σ and ±2σ uncertainties in the expected limits are also given.

Y mass [GeV] Observed limit on Expected limit on Observed limit on Expected limit on

| sin θR| | sin θR|+1σ/+2σ
−1σ/−2σ cWb

R cWb
R

+1σ/+2σ
−1σ/−2σ

800 0.17 0.20
0.04/0.08
0.03/0.05 0.24 0.28

0.05/0.12
0.04/0.07

900 0.18 0.19
0.04/0.08
0.03/0.05 0.26 0.27

0.05/0.11
0.04/0.07

1000 0.17 0.17
0.03/0.07
0.03/0.05 0.25 0.25

0.04/0.10
0.04/0.07

1100 0.17 0.18
0.03/0.07
0.03/0.05 0.24 0.25

0.05/0.10
0.04/0.07

1200 0.17 0.20
0.04/0.08
0.03/0.05 0.25 0.28

0.05/0.11
0.04/0.08

1300 0.19 0.22
0.04/0.09
0.03/0.06 0.27 0.31

0.06/0.12
0.05/0.08

1400 0.24 0.25
0.05/0.10
0.04/0.07 0.35 0.36

0.06/0.14
0.05/0.10

1500 0.31 0.28
0.05/0.11
0.04/0.07 0.44 0.39

0.07/0.15
0.06/0.11

1600 0.45 0.37
0.08/0.19
0.06/0.10 0.64 0.53

0.11/0.27
0.08/0.14

1700 0.59 0.46
0.10/0.25
0.08/0.13 0.83 0.65

0.15/0.36
0.11/0.18

1800 0.55 0.43
0.09/0.22
0.07/0.12 0.77 0.61

0.13/0.32
0.10/0.17

Table 6. Observed and expected 95% CL upper limits on | sin θR| and cWb
R for a right-handed

Y quark in a (B, Y ) doublet model with masses of 800 GeV to 1800 GeV. The ±1σ and ±2σ

uncertainties in the expected limits are also given.
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Y mass [GeV] Observed limit on Expected limit on Observed limit on Expected limit on

| sin θL| | sin θL|+1σ/+2σ
−1σ/−2σ cWb

L cWb
L

+1σ/+2σ
−1σ/−2σ

800 0.16 0.20
0.04/0.09
0.03/0.05 0.31 0.40

0.08/0.19
0.06/0.11

900 0.14 0.15
0.03/0.07
0.02/0.04 0.28 0.30

0.06/0.13
0.05/0.08

1000 0.16 0.15
0.03/0.06
0.02/0.04 0.32 0.29

0.05/0.12
0.04/0.08

1100 0.23 0.22
0.03/0.08
0.03/0.06 0.47 0.43

0.07/0.15
0.07/0.12

1200 0.20 0.16
0.03/0.07
0.02/0.04 0.40 0.33

0.06/0.13
0.05/0.09

1300 0.25 0.21
0.04/0.08
0.03/0.06 0.49 0.43

0.08/0.16
0.07/0.12

1400 0.18 0.25
0.05/0.10
0.04/0.07 0.36 0.51

0.09/0.20
0.08/0.14

1500 0.32 0.35
0.08/0.18
0.06/0.10 0.64 0.70

0.16/0.37
0.12/0.20

1600 0.39 0.40
0.11/0.28
0.07/0.12 0.78 0.80

0.21/0.56
0.14/0.24

Table 7. Observed and expected 95% CL upper limits on | sin θL| and cWb
L for a left-handed

Y quark in a (T,B, Y ) triplet model with masses of 800 GeV to 1600 GeV. The ±1σ and ±2σ

uncertainties in the expected limits are also given.

Since the interference effect for the case of the right-handed Y quark is very small, and

therefore the signal+interference template is very similar to the one of a pure resonance, a

limit on σVLQ+σI times branching ratio is presented for this case in figure 9, corresponding

to the | sin θR| and cWb
R limits for a (B, Y ) doublet model presented in figure (c).

8 Conclusion

A search for the production of a single vector-like quark Q, where Q can be either a T

or Y quark, with the subsequent decay into Wb has been carried out with the ATLAS

experiment at the CERN LHC. The data used in this search correspond to an integrated

luminosity of 36.1 fb−1 of pp collisions with a centre-of-mass energy
√
s = 13 TeV recorded

in 2015 and 2016. The selected events have exactly one isolated electron or muon, a

high-pT b-tagged jet, missing transverse momentum and at least one forward jet. The

Q candidate is fully reconstructed and its mass is used as a discriminating variable in a

maximum-likelihood fit. The observed data distributions are compatible with the expected

Standard Model background and no significant excess is observed. The search result is

interpreted for Q = T in a T singlet model and Q = Y in either a (B, Y ) doublet model or

in a (T,B, Y ) triplet model, taking into account the interference effect with the Standard

Model background. Limits at 95% CL are set on the cross-section times branching ratio

as a function of the VLQ mass in the case of the (B, Y ) doublet model, where interference

has the smallest effect. The search results are translated into limits on the QWb mixing

angle or coupling. In the T -singlet case, the 95% CL limit on | sin θL| (cWb
L ) varies between

0.18 and 0.35 (0.25 and 0.49) for masses from 800 GeV to 1200 GeV. In the (B, Y ) doublet

model, exclusion limits on | sin θR| (cWb
R ) vary between 0.17 and 0.55 (0.24 and 0.77) for
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Figure 8. Observed (solid line) and expected (short-dashed line) 95% CL limits on (a) the mixing

angle | sin θL| and the coupling value cWb
L for a singlet T -quark model assuming B(T →Wb) ≈ 0.5,

(b) | sin θL| and cWb
L for a (T,B, Y ) triplet model, and (c) | sin θR| and cWb

R for a (B, Y ) doublet model

assuming a branching ratio B(Y →Wb) = 1, as a function of the VLQ mass. The surrounding bands

correspond to ±1 and ±2 standard deviations around the expected limit. The excluded region is

given by the area above the solid line. Constraints from electroweak precision observables, which are

only valid for the mixing angles, from either the S and T parameters (dashed-dotted line) or from the

Rb values (long-dashed line), are also shown. These constraints are taken from ref. [1], where they

are presented as a function of mB (in the (B, Y ) doublet case), respectively, mT (in the (T,B, Y )

triplet case) and translated to mY using the value of the corresponding mixing angle constraint.

masses between 800 GeV and 1800 GeV and the | sin θR| bounds presented here are below

the indirect electroweak constraints for masses between about 900 GeV and 1250 GeV where

exclusion limits on | sin θR| are around 0.18–0.19. In the case of the (T, Y,B) triplet, the

limits on | sin θL| (cWb
L ) vary between 0.16 and 0.39 (0.31 and 0.78) for masses from 800 GeV

to 1600 GeV. For all signal scenarios explored, this analysis is found to significantly improve

upon the reach of previous searches.
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53 (a)Dipartimento di Fisica, Università di Genova, Genova;(b)INFN Sezione di Genova; Italy
54 II. Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen; Germany
55 SUPA — School of Physics and Astronomy, University of Glasgow, Glasgow; United Kingdom
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ai Also at Louisiana Tech University, Ruston LA; United States of America
aj Also at Manhattan College, New York NY; United States of America
ak Also at Moscow Institute of Physics and Technology State University, Dolgoprudny; Russia
al Also at National Research Nuclear University MEPhI, Moscow; Russia

am Also at Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg; Germany
an Also at School of Physics, Sun Yat-sen University, Guangzhou; China
ao Also at The City College of New York, New York NY; United States of America
ap Also at The Collaborative Innovation Center of Quantum Matter (CICQM), Beijing; China
aq Also at Tomsk State University, Tomsk, and Moscow Institute of Physics and Technology State

University, Dolgoprudny; Russia
ar Also at TRIUMF, Vancouver BC; Canada
as Also at Universita di Napoli Parthenope, Napoli; Italy
∗ Deceased

– 55 –


	Introduction
	ATLAS detector
	Physics object reconstruction
	Background and signal modelling
	Background modelling
	Signal modelling

	Event selection and background estimation
	Signal and control regions definition
	Estimation of non-prompt and fake lepton backgrounds
	Signal candidate mass reconstruction

	Systematic uncertainties
	Experimental uncertainties
	Theoretical modelling uncertainties

	Results
	Statistical interpretation
	Fit results
	Limits on the VLQ production

	Conclusion
	The ATLAS collaboration

