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Abstract

We consider the boundary value problem associated with the divergence operator on a
bounded regular subset of Rn, with homogeneous Dirichlet boundary condition. We prove
the existence of a classical solution under slight assumptions on the datum.

1 Introduction

In this paper we deal with the existence of classical solutions for the first order boundary value
problem {

div u = F in Ω,

u = 0 on ∂Ω.
(1)

We look for solutions u : Ω → R
n, belonging at least to C1(Ω) ∩ C0(Ω) but, actually, we will

prove a sharper result of regularity at the boundary (see Theorem 1). Here, Ω is a smooth,
bounded, open subset of Rn, n ≥ 2, while F is a given continuous function (as expected,
F will be required to fulfill a condition slightly stronger than the bare continuity), satisfying
the compatibility condition

∫
Ω F (x) dx = 0. This is a classical problem in mathematical fluid

mechanics, strictly connected with the Helmholtz decomposition and the div-curl lemma (see
Kozono and Yanagisawa [20]). We recall that, if the boundary condition is dropped, a solution
of the divergence equation can be readily obtained by taking the gradient of the Newtonian
potential of F , provided it is in C2(Ω). These aspects are extensively covered in Galdi [15,
Ch. III], with special attention to the work of Bogovskĭı [7], where the problem (1) is solved in
the setting of the Sobolev spaces H1,p

0 (Ω). Further developments may also be found in Borchers
and Sohr [8]. For different approaches and results, the reader should consider the books by
Ladyzhenskaya [21] and Tartar [26], which especially cover the Hilbert case, while Amrouche
and Girault [1] devised an approach based on the negative norm theory developed in Nečas [23].

Our approach follows closely the Bogovskĭı’s one, where the representation formula (2)
below, in analogy with the Sobolev’s “cubature” formulae, provides explicitly a special solution
of the problem (1). We recall that, per se, problem (1) has infinitely many solutions. The
representation formula (2) turns out to be extremely flexible in the applications to many different
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settings as, for instance, in the recent results for weighted and Lp(x)-spaces (see Huber [17]).
Classical results in Hölder spaces have been shown in Kapitansk̆ı and Piletskas [18], as corollaries
of a more general result, which seems to be obtained in a way different from ours. We point out
that our methods, which can be considered as classical, can be also easily modified to obtain
the corresponding results in Hölder spaces, for which we also mention the recent review in
Csató, Dacorogna, and Kneuss [11]. In addition, we also note that the non-uniqueness feature
of the first order system (1) allows some existence results with more regularity than expected
from the usual Sobolev machinery, as the striking results of Bourgain and Brezis [9], which
come from a non-linear selection principle (see also the extensions to the Dirichlet problem and
Triebel-Lizorkin spaces setting in Bousquet, Mironescu, and Russ [10]).

Our interest in the problem is twofold: on one side, we want to investigate the results close
to the limiting case F ∈ L∞(Ω) ∩ C0(Ω), where counterexamples to the existence of a solution
are known (see Bourgain and Brezis [9], Dacorogna, Fusco, and Tartar [12]; Maremonti [22],
from the point of view of Hydrodynamics); on the other side, we are interested in relaxing as
much as possible the assumptions needed to prove the existence of classical solutions, with the
aim of finding weaker assumptions allowing to construct classical solutions to fluid mechanics
problems.

Since the bare continuity of F is not enough to that purpose, we went back to the pioneering
results by Dini [14] and Petrini [24] about the Poisson equation, and consider the problem
with the additional hypothesis that F is Dini continuous, which we denote in the following
by F ∈ CD(Ω) (see Section 2.2 for a formal definition). The main tool will be to combine
the formula (2) with a modification of an argument used by Korn to obtain a similar regularity
result for the second order derivatives of the Newtonian potential (see Gilbarg and Trudinger [16,
Ch. 4]). In fact, for the Poisson equation, these tools allow to exploit the property of the Dini
continuity to “mitigate” the singularity of the integrand in the formula representing the second
order derivatives of the potential, without the need to apply the Calderòn-Zygmund theory for
singular integral operators.

About the homogeneous boundary condition present in (1), our proof is based on some
new insight on the formula (2), in the sense that we made some simple observations on the
Bogovskĭı formula that we cannot find stated explicitly elsewhere in literature (see Theorem 2).
These observations allow us to consider the case when the datum F cannot be approximated by
compactly supported smooth functions. Such an approximation seems to play a fundamental
role for the previous results in Sobolev or Orlicz spaces, and hence the argument used in [7, 8, 15]
does not apply immediately to our setting, unless F|∂Ω = 0, which is an unnecessary assumption
(see also Remark 5).

For the sake of completeness and to put the present work into a wider perspective, we also
wish to mention that the link between Dini continuity and existence of classical solutions in
fluid mechanics started with the work of Shapiro [25] in the steady-state case and found a very
interesting application in the paper of Beirão da Veiga [2], where the 2D Euler equations for
incompressible fluids are solved in the “critical” space of vorticity C0(0, T ;CD(Ω)). This is also
very close (if one thinks about scaling) to the Besov spaces used by Vishik [27]. More recently,
the same results with Dini continuous vorticity have also been employed in Koch [19] and in [5]
to study the fine properties of the long-time behavior of the 2D Euler equations. In addition,
the interest for classical solutions of the Stokes system has been revived in the recent papers
of Beirão da Veiga [3, 4], and provided a further motivation to our analysis of the divergence
and curl operator, since they are among the basic building blocks of the theory. Finally, the
“inversion” of the divergence operator in the continuous setting is also one of the tools giving
rise to the celebrated series of results of De Lellis and Székelyhidi (see, for instance, [13, Sec. 4])
on the Onsager conjecture.
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The main result of this paper is the following theorem of classical regularity up to the
boundary (see Section 2.1 and Section 2.2 below for the definition of C2-boundary and CD(Ω)
respectively, and Remark 23 for the dependencies of the constant c).

Theorem 1. Let Ω be a bounded open subset of Rn with a C2-boundary. Then, there exists
a constant c such that, for any F ∈ CD(Ω) satisfying

∫
Ω F (x) dx = 0, there exists a solution

u ∈ C1(Ω) of the problem (1) verifying

‖u‖C1(Ω) ≤ c ‖F‖CD(Ω) .

We also want to point out that, since the system (1) is not elliptic, the well-known results
for elliptic equations (and systems) do not apply directly. While the interior regularity (see
Theorem 16) can be obtained by adapting standard results (see Section 2 and Section 3), the
regularity up to the boundary requires an ad hoc treatment (see Section 4).

To conclude the introduction, we also mention that the problem of the existence of a C1(Ω)∩
C0(Ω) solution for the curl equation (with homogeneous Dirichlet boundary condition) is treated
elsewhere (see [6]), following the same method, by using the similar (but more complicated)
representation formula valid in that case.

2 Basic concepts, notations, and preliminary results

In this section we recall the main definitions we will use, as well as some basic facts about the
representation formula developed by Bogovskĭı. Most of the results of this section are well-
known. However, some of them about the behaviour at the boundary (that will be crucial in
order to fulfill the homogeneous boundary conditions) are, as far as we know, not explicitly
available in the literature.
In the following we denote by B(x,R) = {y ∈ Rn : |y − x| < R}, the open ball of radius
R centered at x, by Sn−1 = {y ∈ Rn : |y| = 1} the unit sphere of Rn, and by |Sn−1| its
(n− 1)-dimensional measure.

2.1 Definition of a Ck,λ-boundary

By following Nečas [23], we say that ∂Ω is of class Ck,λ (and write ∂Ω ∈ Ck,λ) if, for any P ∈ ∂Ω,
there exist a rotation AP , positive numbers δP and ∆P , and hP : [−δP , δP ]n−1 → (−∆P ,∆P )
verifying hP ∈ Ck,λ([−δP , δP ]n−1) such that:

• (x′, xn) ∈ AP (Ω− P )⇐⇒ xn > hP (x′),

• (x′, xn) ∈ AP (∂Ω− P )⇐⇒ xn = hP (x′),

for any x′ ∈ [−δP , δP ]n−1 and any xn ∈ (−∆P ,∆P ).
Here Ω− P := {A− P : A ∈ Ω} and ∂Ω− P := {A− P : A ∈ ∂Ω}.

The hypothesis that ∂Ω ∈ C0,1 will be used in Section 3, to obtain a more general inner-
regularity result. For the oncoming results of Section 4.2, let us remark explicitly that, if ∂Ω
is of class C2 as in Theorem 1 (but it is enough that hP is at least differentiable in P for any
P ∈ ∂Ω), in the previous definition it is possible to choose AP so that it maps the normal to
∂Ω at P onto the xn axis, ∆P ≤ δP /2 and to have, for some 0 < RP ≤ δP , that the following
properties hold true

•
{
P +A−1

P

(
(−RP , RP )n

)
, P ∈ ∂Ω

}
is an open covering of ∂Ω,

• ΩP :=P +A−1
P

({
x′ ∈ (−RP , RP )n−1, h(x′) < xn < h(x′) +RP

})
⊆ Ω.
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If, in addition, Ω is bounded, it follows immediately that there exist a finite number of boundary
points P1, . . . , Pk such that ∂Ω ⊆ ∪ki=1ΩPi , and then Ω\ ∪ki=1 ΩPi ⊂⊂ Ω, and it may be covered
by a finite number of open balls contained in Ω. This feature, together with a localization
argument, will allow to treat the problem of the regularity at the boundary (see Section 4).

2.2 The Dini continuous functions

We denote by CD(Ω) the space of the Dini continuous functions F, i.e. the functions F ∈ C0(Ω)
such that, if one introduces the (uniform) modulus of continuity

ω(F, ρ) := sup
x,y∈Ω

|x−y|<ρ

|F (x)− F (y)|,

then the function ω(F, ρ)/ρ is integrable around 0+. The space so defined may be equipped
with the following norm

‖F‖CD(Ω) := max
x∈Ω
|F (x)|+

∫ diam(Ω)

0

ω(F, ρ)

ρ
dρ,

and turns out to be a Banach space. In literature, the space CD(Ω) is often referred to as
the space of uniformly Dini continuous functions. We remark that, by uniform continuity,
any function in CD(Ω) may be extended up to the boundary of Ω with the same modulus of
continuity. We also observe that C0,α(Ω) ⊂ CD(Ω) for any α ∈]0, 1], and recall that the relevance
of Dini continuity in partial differential equations theory comes from the result stating that, if
f ∈ CD(Ω), then the solution of the Poisson equation

∆u = f,

with zero Dirichlet conditions satisfies D2u ∈ C0(Ω) (see, e.g, Gilbarg and Trudinger [16,
Pb. 4.2]; see also Dini [14] and Petrini [24]).

As usual, we denote by C1(Ω) the space of the functions in C0(Ω) whose first order deriva-
tives are uniformly continuous in Ω, and so they may be continuously extended to the closure
Ω. We do not distinguish between scalar and vector valued functions, since the meaning is clear
from the context.

2.3 Bogovskĭı’s formula and its variants

Unless differently specified (namely, in the last two sections), the following notation and hy-
potheses are tacitly assumed throughout all the paper:

• The symbol B denotes the open unit ball of Rn, n ≥ 2, centered at the origin;

• The symbol ψ denotes a non-identically vanishing scalar function verifying ψ ∈ C∞0 (Rn)
and suppψ ⊆ B;

• By ∂jψ we denote the partial derivative of ψ with respect to its j-th argument;

• The domain Ω is a bounded open subset of Rn, star-shaped with respect to any point of
B (This strong geometric restriction on Ω will be relaxed in the last two sections).

The aim of this section is to recall the representation formula for a solution of the divergence
problem, due to Bogovskĭı [7], as well as several useful variants and consequences. We start
with a theorem, which recalls the integral formula and gives a first uniform estimate.
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Theorem 2. Let q > n and let F ∈ Lq(Ω). Then:

i) The Bogovskĭı’s formula

v(x) :=

∫
Ω
F (y)

[
x− y
|x− y|n

∫ +∞

|x−y|
ψ

(
y + ξ

x− y
|x− y|

)
ξn−1dξ

]
dy, (2)

defines for any x ∈ Rn (and not only almost everywhere) a vector-valued function v :
R
n → Rn;

ii) The vector field verifies v(x) = 0 for all x ∈ Rn\Ω;

iii) For any q > n
|v(x)| ≤ c ‖F‖Lq(Ω) ∀x ∈ Rn,

where the constant c depends only on n, ψ, diam Ω, and q;

Formula (2) can be also rewritten in the following three equivalent ways

iv) v(x) =
∫

Ω F (y)
[
(x− y)

∫∞
1 ψ (y + α(x− y))αn−1dα

]
dy;

v) v(x) =
∫

Ω F (y)
[

x−y
|x−y|n

∫∞
0 ψ

(
x+ r x−y

|x−y|

)
(|x− y|+ r)n−1dr

]
dy;

vi) v(x) =
∫
x−Ω F (x− z) z

|z|n
∫∞

0 ψ
(
x+ r z

|z|

)
(|z|+ r)n−1 dr dz,

where x− Ω = {z ∈ Rn : ∃ y ∈ Ω such that z = x− y}.

Definition 3 (Bogovskĭı’s kernel). For x, y ∈ Rn with x 6= y, we define the Bogovskĭı’s kernel
(associated to ψ) by

N(x, y) :=
x− y
|x− y|n

∫ +∞

|x−y|
ψ

(
y + ξ

x− y
|x− y|

)
ξn−1dξ,

and remark that we can rewrite the Bogovskĭı’s formula as follows

v(x) =

∫
Ω
N(x, y)F (y) dy.

Occasionally, we refer to the vector field v as the Bogovskĭı’s potential, in analogy with the
classical theory of Newtonian potentials (see [16]). Equivalent expressions for the Bogovskĭı’s
potential can be written by using the formulae iv),v), and vi) from Theorem 2.

The proof of Theorem 2 requires some preliminary results, we will use extensively later on.

Lemma 4. The following properties of the Bogovskĭı’s kernel hold true:

i) The kernel N(x, y) verifies

N(x, y) ≡ 0 ∀x /∈ Ω and ∀ y ∈ Ω;

ii) There exists a constant c > 0, depending only on n, ψ, and diam Ω, such that

|N(x, y)| ≤ c |x− y|1−n ∀x, y ∈ Rn : x 6= y.
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The proof of Theorem 2 follows immediately from the direct inspection of the kernel and

by observing that if x /∈ Ω and ψ
(
y + ξ x−y

|x−y|

)
6= 0 holds true for some ξ > |x− y|, then y /∈ Ω.

By using the above lemma, Theorem 2 follows by some straightforward arguments, left to the
reader. We just point out that since Ω is bounded, it turns out that N(x, ·) ∈ Lq′(Ω) for all
x ∈ Ω and for all q′ ∈ [1, n

n−1 [.

Remark 5. It is useful to point out explicitly that the Bogovskĭı’s potential v(x) is well-defined
and vanishes at the boundary ∂Ω for any F ∈ Lq(Ω), with q > n, without any other assumption
but those made on Ω and ψ in Theorem 2. Next, the property v|∂Ω = 0 does not come by
approximating F by C∞0 (Ω) functions and by taking limits, but it descends directly from the
formula (2) for a large class of data. This will be crucial in the rest of the paper, since a function
in CD(Ω) cannot be approximated uniformly by regular functions with compact support, unless
it vanishes at the boundary.

Very relevant consequences of the properties of N(x, y) and of Theorem 2 are the two interior
and boundary regularity results for the potential v of a smooth, compactly supported F .

Theorem 6. Under the same hypotheses of Theorem 2, if in addition
F ∈ C∞0 (Ω) then v ∈ C∞0 (Ω).

Theorem 7. Under the same assumptions of Theorem 2, it follows that
v ∈ C0(Rn) and, by restriction, v ∈ C0(Ω).

Theorem 6 is classical and the proof of may be found, e.g., in Galdi [15, Lemma III.3.1],
while the short proof Theorem 7, which is based on Theorem 2, is original and given below.

Proof of Theorem 7. Let {Fk} ⊂ C∞0 (Ω) be such that Fk → F in Lq(Ω) for some q > n, and
assume that Fk is extended by zero outside Ω. Let vk and v be the corresponding Bogovskĭı’s
potentials. By Theorem 2 ii) and iii), it follows that vk converge uniformly to v in Rn. Since,
by Theorem 6, {vk} ⊂ C∞0 (Rn), the theorem follows immediately.

We also recall some further properties of the Bogovskĭı’s kernel, which will turn out to be
useful in the following, see again Galdi [15, Ch. III.3]. First, we have an identity about the
derivatives of the kernel in Theorem 2, iv), which can be obtained observing that differentiating
under the sign of integral is completely justified also in the sense of Riemann integrals (Note
that this is the expression of N(x, y) fow which derivatives are better handled). Next, we have
the fundamental estimates for ∂xjNi(x, y) (which allowed to exploit the Calderòn-Zygmund

theory to obtain the original Bogovskĭı’s results about the H1,p
0 (Ω) regularity of v), which will

be essential for our results in the setting of Dini continuous functions.

Lemma 8. For any fixed x, y ∈ Ω, such that x 6= y let, for i = 1, . . . , n

Ni(x, y) = (xi − yi)
∫ ∞

1
ψ(y + α(x− y))αn−1 dα.

Then, it follows that for all i, j = 1, . . . , n

∂xjNi(x, y) = (xi − yi)
∫ ∞

1
∂jψ(y + α(x− y))αn−1 dα− ∂yjNi(x, y).

Moreover, ∂xjNi(x, y) = Kij(x, x − y) + Gij(x, y), where Kij(x, ·) is a Calderòn-Zygmund sin-
gular kernel and Gij is a weakly singular kernel, hence it holds

|∂xjNi(x, y)| ≤M |x− y|−n ∀x, y ∈ Rn : x 6= y,

for some constant M = M(ψ, n, diam Ω).
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2.4 The representation formula for derivatives of the Bogovskĭı’s potential

The main tool we take advantage of in this paper is an old aged argument exploited by Korn (see,
e.g., Gilbarg and Trudinger [16, Ch. 4]) in the study of the existence of classical solutions of the
Poisson equation, based on a suitable smoothing of the singularity present in the representation
formula for the second order derivatives of the Newtonian potential. A similar argument provides
us a way to approximate the Bogovskĭı’s potential by regular functions. We give full details
since the technique is different from the one with truncation, used to get results in the Lebesgue
space setting and also because we will need to use the theorems about uniform convergence of
sequences of continuous functions. To this purpose, we fix a function η ∈ C∞(R+) such that
η(t) ≡ 0 on [0, 1], η(t) ≡ 1 if t ≥ 2, and |η′(t)| ≤ 2 for all t ∈ R+.

Definition 9. For any F ∈ Lp(Ω), with p ≥ 1, and ε > 0 let us set

vε(x) :=

∫
Ω
F (y) (x− y)

[∫ ∞
1

ψ(y + α(x− y)) αn−1dα

]
η

(
|x− y|
ε

)
dy

=

∫
Ω
F (y) N(x, y) η

(
|x− y|
ε

)
dy.

We remark that

N(x, y) η

(
|x− y|
ε

)
≡ 0 for |x− y| < ε,

and therefore the above truncated kernel belongs to C∞(Rn×Rn) and is bounded by Lemma 4.
On the other hand, if |x − y| ≥ ε the set of α such that |y + α(x − y)| ≤ 1, where ψ could be
non vanishing, is bounded as well. It follows immediately that vε is well-defined for all x ∈ Rn
and it belongs to C∞(Rn). Moreover, under the same hypotheses of Theorem 6 and following
the same argument, one proves that it actually belongs to C∞0 (Ω). The following theorem is
the cornerstone of the resolution of the divergence equation.

Theorem 10. Assume the same hypotheses of Theorem 2, and let η and vε be as above.

i) If F ∈ L∞(Ω), then
lim
ε→0+

vε(x) = v(x) uniformly in Rn.

ii) If, in addition,
∫
Rn

ψ(x) dx = 1 and F ∈ C0(Ω), then

lim
ε→0+

div vε(x) = F (x)− ψ(x)

∫
Ω
F (y) dy ∀x ∈ Ω,

and consequently, if
∫

Ω F (x) dx = 0, then

lim
ε→0+

div vε(x) = F (x) ∀x ∈ Ω.

Proof. The fact that the Bogovskĭı’s potential is a right inverse of the divergence is a classical
result. Nevertheless we report the proof here since it is slightly different from that in Lebesgue
spaces (cf. [15, Lemma III.3.1]), where the truncation is not smooth and a surface integral (not
present here) has to be studied. To prove i), let us fix any x ∈ Ω. We remark that, by Lemma 4,
for any ε < dist(x, ∂Ω)/2

|vεi (x)− vi(x)|

≤
∫

Ω
|F (y)Ni(x, y)|

∣∣∣∣η( |x− y|ε

)
− 1

∣∣∣∣ dy
≤ c‖F‖L∞(Ω)

∫
|x−y|<2ε

1

|x− y|n−1
dy ≤ c‖F‖L∞(Ω)

∫
|z|<2ε

|z|1−n dz,
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and by the absolute continuity of the Lebesgue integral, it follows that the last integral tends
to zero, independently of x ∈ Ω. To complete the proof of i) it is enough to remark that, again
by Lemma 4, vε(x) = v(x) = 0 for all x /∈ Ω.

To prove ii), by differentiating vεi at any x ∈ Ω it follows that

∂xjv
ε
i (x)

=

∫
Ω
F (y) δij

[∫ ∞
1
ψ(y + α(x− y))αn−1dα

]
η

(
|x− y|
ε

)
dy

+

∫
Ω
F (y)(xi − yi)

[∫ ∞
1

(∂jψ(y + α(x− y))αndα

]
η

(
|x− y|
ε

)
dy

+

∫
Ω
F (y)(xi − yi)

[∫ ∞
1
ψ(y + α(x− y))αn−1dα

]
η′
(
|x− y|
ε

)
xj − yj
|x− y|

dy

ε

=

∫
Ω
F (y) δij

[∫ ∞
1
ψ(y + α(x− y))αn−1dα

]
η

(
|x− y|
ε

)
dy

+

∫
Ω
F (y)(xi − yi)

[∫ ∞
1

(∂jψ(y + α(x− y))αndα

]
η

(
|x− y|
ε

)
dy

+

∫
Ω
F (y)

(xi − yi)(xj − yj)
|x− y|

[∫ ∞
1
ψ(y + α(x− y))αn−1dα

]
η′
( |x− y|

ε

)dy
ε
,

and therefore we have

div vε(x)

= n

∫
Ω
F (y)

[∫ ∞
1

ψ(y + α(x− y))αn−1dα

]
η

(
|x− y|
ε

)
dy

+

n∑
i=1

∫
Ω
F (y)(xi − yi)

[∫ ∞
1

(∂iψ(y + α(x− y))αndα

]
η

(
|x− y|
ε

)
dy

+

∫
Ω
F (y)|x− y|

[∫ ∞
1

ψ(y + α(x− y))αn−1dα

]
η′
(
|x− y|
ε

)
dy

ε

=: I1 + I2 + I3.

Now,
I1 + I2

=

∫
Ω
F (y) η

(
|x− y|
ε

)
×

×
∫ ∞

1

[
ψ(y + α(x− y))nαn−1 + αn

n∑
i=1

∂iψ(y + α(x− y))(xi − yi)
]
dαdy

=

∫
Ω
F (y) η

(
|x− y|
ε

)∫ ∞
1

d

dα

[
ψ(y + α(x− y))αn

]
dα dy

= −ψ(x)

∫
Ω
F (y) η

(
|x− y|
ε

)
dy −→ −ψ(x)

∫
Ω
F (y) dy,

as ε tends to zero.
Moreover, introducing in I3 first the change of variables α := ξ/|x−y|, next ξ := r+ |x−y|,
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and finally z := ε−1(x− y) one obtains

I3 =

∫
Ω

F (y)

|x− y|n−1
η′
(
|x− y|
ε

)
1

ε

[∫ ∞
|x−y|

ψ

(
y + ξ

x− y
|x− y|

)
ξn−1 dξ

]
dy

=

∫
ε<|x−y|<2ε

F (y)

|x− y|n−1
η′
(
|x− y|
ε

)
1

ε
×

×
[∫ ∞

0
ψ

(
x+ r

x− y
|x− y|

)
(r + |x− y|)n−1 dr

]
dy

=

∫
1<|z|<2

F (x− εz)
|z|n−1

η′(|z|)
[∫ ∞

0
ψ

(
x+ r

z

|z|

)
(r + ε|z|)n−1 dr

]
dz.

We now claim that, as ε goes to 0, the latter converges to

F (x)

∫
1<|z|<2

1

|z|n−1
η′(|z|)

[∫ ∞
0

ψ

(
x+ r

z

|z|

)
rn−1 dr

]
dz. (3)

In fact, since ψ
(
x+ r z

|z|

)
vanishes when r > 1 + diam Ω, then∣∣∣∣∫ ∞

0
ψ

(
x+ r

z

|z|

)
(r + ε|z|)n−1 dr

∣∣∣∣ ≤ max |ψ| (1 + 2 diam Ω)n =: M.

Hence, we get∣∣∣∣∣
∫

1<|z|<2

F (x− ε z)− F (x)

|z|n−1
η′(|z|)

[∫ ∞
0

ψ

(
x+ r

z

|z|

)
(r + ε|z|)n−1 dr

]
dz

∣∣∣∣∣
≤ 2M

∫
1<|z|<2

|F (x− ε z)− F (x)|
|z|n−1

dz ≤ 2M

∫
1<|z|<2

ω(F, ε |z|)
|z|n−1

dz,

where we recall that ω(F, · ) is the modulus of continuity of F . By the uniform continuity of F
on Ω and the Lebesgue theorem on dominated convergence, the last integral vanishes as ε goes
to zero and therefore the claim is proved.

Finally, by introducing in (3) the radial and angular coordinates ρ := |z| and u := z/|z|, one
gets ∫ 2

1
η′(ρ) dρ

∫
Sn−1

∫ ∞
0

ψ(x+ r u) rn−1 dr du = (η(2)− η(1))

∫
Rn

ψ(w) dw = 1.

Therefore, I3 → F (x) as ε goes to 0, and the lemma follows.

The next lemma will be useful in proving the representation formula in Theorem 12.

Lemma 11.

∂xj

[
Ni(x, y) η

(
|x− y|
ε

)]
= −∂yj

[
Ni(x, y) η

(
|x− y|
ε

)]
+

+ η

(
|x− y|
ε

)
(xi − yi)

∫ ∞
1

∂jψ(y + α(x− y)) αn−1dα.

Proof. It is an immediate consequence of Lemma 8 and the opposite sign in the derivatives of
η(|x− y|/ε).

9



As usual in potential theory, getting a representation formula for the derivatives of the
function vi is a crucial goal. We will obtain it by taking the limit of the derivatives of its
“regular approximation” vεi . Thus, let us start by differentiating its components

vεi (x) =

∫
Ω
F (y)Ni(x, y) η

(
|x− y|
ε

)
dy =

∫
BΛ

F (y)Ni(x, y) η

(
|x− y|
ε

)
dy,

where F ∈ L∞(Ω) is extended by zero outside Ω andBΛ := B(0, 2 diam Ω) is a ball of radius large
enough to have Ω ⊂⊂ BΛ. By the previous lemma and Bogovskĭı’s formula in Theorem 2, iv)
it follows that, for any x ∈ Ω,

∂xjv
ε
i (x)

=

∫
BΛ

F (y) ∂xj

[
Ni(x, y) η

(
|x− y|
ε

)]
dy

=

∫
BΛ

[F (y)− F (x)] ∂xj

[
Ni(x, y) η

(
|x− y|
ε

)]
dy

+ F (x)

∫
BΛ

∂xj

[
Ni(x, y) η

(
|x− y|
ε

)]
dy

=

∫
BΛ

[F (y)− F (x)] ∂xj

[
Ni(x, y) η

(
|x− y|
ε

)]
dy

+ F (x)

∫
BΛ

η

(
|x− y|
ε

)
(xi − yi)

∫ ∞
1

∂jψ(y + α(x− y))αn−1dα dy

− F (x)

∫
BΛ

∂yj

[
Ni(x, y) η

(
|x− y|
ε

)]
dy.

Since η
(
|x−y|
ε

)
≡ 1 for any x ∈ Ω, any y ∈ ∂BΛ and ε < diam Ω/2, by the Gauss-Green formula

the last integral is equal to
∫
∂BΛ

Ni(x, y) νj(y) dσy, where νj(y) is the j-th component of the
outward unit normal vector at the point y ∈ ∂BΛ.

The previous computations suggest to put forward a conjecture about the limit as ε goes to
zero: it will be proved in the next theorem, which is the main original result of this section.

Theorem 12 (Representation formula and estimate for the derivatives of the potential). As-
sume all the hypotheses of Theorem 2, and let η, vε, and BΛ be as above. Furthermore, let∫
Rn

ψ(x) dx = 1 and let F ∈ CD(Ω). For all i, j = 1, . . . , n define

V j
i (x) :=

∫
BΛ

[F (y)− F (x)] ∂xjNi(x, y) dy

+ F (x)

∫
BΛ

(xi − yi)
∫ ∞

1
∂jψ(y + α(x− y))αn−1 dα dy

− F (x)

∫
∂BΛ

Ni(x, y) νj(y) dσy.

Then, for all i, j = 1, . . . , n, we have:

i) The function V j
i (x) is well-defined for all x ∈ Ω;

ii) As ε→ 0, the partial derivative ∂xjv
ε
i converges uniformly to V j

i on any K ⊂⊂ Ω;

iii) It holds ∂xjvi(x) = V j
i (x) for all x ∈ Ω;
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iv) The potential v ∈ C1(Ω);

v) For any K ⊂⊂ Ω there exists a constant c, depending only on n, ψ, diam Ω, and d(K, ∂Ω),
such that

‖v‖C1(K) ≤ c‖F‖CD(Ω).

Proof. To prove i), fix any x ∈ Ω. Remark that, after its extension by zero outside Ω, F ∈
L∞(Rn). Fix any ζ, with dist(x, ∂ Ω)/2 < ζ < dist(x, ∂ Ω). One has∫

BΛ

|F (y)− F (x)|
∣∣∂xjNi(x, y)

∣∣ dy
=

∫
B(x,ζ)

|F (y)− F (x)|
∣∣∂xjNi(x, y)

∣∣ dy
+

∫
{|x−y|≥ζ}∩BΛ

|F (y)− F (x)|
∣∣∂xjNi(x, y)

∣∣ dy
=: I4 + I5.

Since B(x, ζ) ⊂ Ω, by Lemma 8 it follows that

I4 ≤
∫
B(x,ζ)

|F (y)− F (x)|
|y − x|

|y − x| |∂xjNi(x, y)| dy

≤
∫
B(x,ζ)

ω(F, |y − x|)
|y − x|

M

|y − x|n−1
dy,

where ω(F, ·) is the modulus of continuity of F in Ω. By introducing the radial and angular
coordinates it follows that

I4 ≤M |Sn−1|
∫ ζ

0

ω(F, ρ)

ρ
dρ,

and, therefore, it is bounded by M |Sn−1| ‖F‖CD(Ω).
Furthermore, since both F and ∂xjNi(x, y) are bounded on {|x − y| ≥ ζ}, the term I5 is

bounded as well by M ′ ‖F‖∞, where M ′ depends only on n, ψ,diam Ω, and dist(x, ∂Ω).
Finally, since ∂jψ ∈ C∞0 (Rn) and supp ∂jψ ⊂ B, it follows that∫

Ω
(xi − yi)

∫ ∞
1

∂jψ(y + α(x− y))αn−1dα dy,

is the Bogovskĭı’s potential (2) associated to ∂jψ instead of ψ, and corresponding to the smooth
and bounded function F ≡ 1. By Theorem 2 iii), it is globally bounded by some constant M ′′,
depending only on n, ψ, and diam Ω. Since x ∈ Ω and |y| = 2 diam Ω, then Ni(x, y) is bounded
on ∂BΛ and therefore the surface integral is finite as well. Thus i) follows.
Moreover, we remark explicitly that the previous computations imply immediately that, for any
x ∈ Ω,

|V j
i (x)| ≤M |Sn−1| ‖F‖CD(Ω) + (M ′ +M ′′)‖F‖∞ ≤ c‖F‖CD(Ω) (4)

where c depends only on n, ψ,diam Ω and dist(x, ∂Ω).
To prove ii), fix any K ⊂⊂ Ω. Thus, for any x ∈ K and ε > 0 such that ε < dist(K, ∂Ω)/2, it
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follows that

|∂xjvεi (x)− V j
i (x)| ≤

≤
∣∣∣∣∫
BΛ

[F (y)− F (x)] ∂xj

{
Ni(x, y)

[
η

(
|x− y|
ε

)
− 1

]}
dy

∣∣∣∣
+

∣∣∣∣F (x)

∫
BΛ

(xi − yi)
∫ ∞

1
∂xjψ(y + α(x− y))

[
η

(
|x− y|
ε

)
− 1

]
αn−1dαdy

∣∣∣∣
≤
∫
B(x,2ε)

|F (x)− F (y)| |∂xjNi(x, y)| dy+

+

∫
B(x,2ε)

|F (y)− F (x)| |Ni(x, y)|
∣∣∣∣η′( |x− y|ε

)
xj − yj
|x− y|

1

ε

∣∣∣∣ dy
+

∫
B(x,2ε)

|F (x)| |xi − yi|
∫ ∞

1
|∂xjψ(y + α(x− y)) |αn−1dα dy

=: I6 + I7 + I8.

As above, by Lemma 8 it follows that

I6 ≤M
∫
B(x,2ε)

|F (x)− F (y)|
|y − x|n

dy ≤M |Sn−1|
∫
ρ<2ε

ω(F, ρ)

ρ
dρ.

By the Dini continuity of F and the consequent absolute continuity of the integral, the last
term vanishes as ε goes to zero, independently of x ∈ K.

In order to estimate the second term I7 remark that, by Theorem 2 v) and the hypothesis
on η′

I7 ≤
∫
ε≤|x−y|≤2ε

|F (x)− F (y)|
∣∣∣∣η′( |x− y|ε

)∣∣∣∣ |xj − yj ||x− y|
1

ε
×

× |xi − yi|
|x− y|n

∫ ∞
0

∣∣∣∣ψ(x+ r
x− y
|x− y|

)∣∣∣∣ (|x− y|+ r)n−1dr dy

≤ 4

∫
ε≤|x−y|≤2ε

|F (x)− F (y)| 1

|x− y|n
×

×
∫ ∞

0

∣∣∣∣ψ(x+ r
x− y
|x− y|

)∣∣∣∣ (|x− y|+ r)n−1dr dy.

By introducing the variable y := x+ ρ u, since∫ ∞
0
|ψ(x+ ru)|(ρ+ r)n−1 dr =

∫ 1+|x|

0
|ψ(x+ ru)| (ρ+ r)n−1 dr

≤ max
Rn
|ψ| (1 + diam Ω + 2ε)n−1,

it follows as above that the last term is bounded by a multiple of
∫ 2ε
ε

ω(F,ρ)
ρ dρ and, again

by the absolute continuity of the Lebesgue integral, the term I7 vanishes as ε goes to zero,
independently of x ∈ K.

Finally, by using ∂jψ instead of ψ, as in the proof of the previous i) from Theorem 2 iii), it
follows that for any fixed q > n and suitable constants c′, c′′

|I8| ≤ c′ max
Ω
|F (x)|

∥∥∥∥η( |x− y|ε

)
− 1

∥∥∥∥
Lq(Ω)

≤ c′′
∥∥∥∥η( |x− y|ε

)
− 1

∥∥∥∥
Lq(B(x,diam Ω))

.
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Since the last norm vanishes as ε goes to zero, for any q > n and independently of x ∈ Ω, ii)
follows.
From ii), by the classical theorem on a converging sequences of functions whose derivatives
converge uniformly, it follows iii), while iv) follows immediately from ii), iii), due to the fact
that vε ∈ C∞(Rn).

Finally, the estimate v) follows immediately from iii), the above bound for V j
i in (4), and

the bound for the potential in Theorem 2 iii).

By using a well-known argument based on translation and rescaling, as in Galdi [15, Lemma III.3.1]
with x 7→ x−x0

R , the previous results lead to the following theorem.

Theorem 13 (Interior regularity for bounded star-shaped domains). Let B(x0, R) be an open
ball in Rn, n ≥ 2, and let Ω be a bounded open subset of Rn, star-shaped with respect to every
point of B(x0, R). Then, for any F ∈ CD(Ω) verifying

∫
Ω F (x) dx = 0, there exists a solution

u ∈ C1(Ω) ∩ C0(Rn) of the problem{
div u(x) = F (x) in Ω,

u ≡ 0 on {Ω,

verifying, for any K ⊂⊂ Ω,
‖v‖C1(K) ≤ c‖F‖CD(Ω),

where the constant c depends only on n, ψ,diam Ω, R, and dist(K, ∂Ω).

3 Classical solutions for the divergence problem in the interior
of Lipschitz domains.

The aim of this brief section is to relax the very strong geometric restrictions on the domain Ω
requested in the previous results, although at the price to renounce the simplicity of the solution
in the form of a single Bogovskĭı’s potential.

The next lemma (which follows strictly the one proved in Galdi [15, Lemma III.3.4]) provides
the localization apparatus we will use to prove the existence of a classical solution in a wider
class of bounded domains including, for instance, those with a smooth boundary. We start with
a suitable “partition of unity” lemma.

Lemma 14. Let Ω ⊂ Rn be a bounded open set and G = {G1, . . . , Gm+p} be an open covering
of Ω. Assume that, if Ωi := Ω ∩Gi, then:

a) ∂Ω ⊂ ∪mi=1Gi ;

b) Gi ⊂ Ω, for any i = m+ 1, . . . ,m+ p;

c) Ω = ∪m+p
i=1 Ωi.

Next, for each i = 1, . . . ,m + p, there exist ζi ∈ C∞0 (Gi), mi ∈ N and, for k = 1, . . . ,mi,
θk ∈ C∞0 (Ωi) and φk ∈ C∞0 (Ω) such that, if one sets

Fi(x) := ζi(x)F (x) +

mi∑
k=1

θk(x)

∫
Ω
φk(y)F (y) dy,

for any F ∈ CD(Ω) with
∫

Ω F (x) dx = 0, then

13



i) Fi ≡ 0 in Ω\Ωi, for all i = 1, . . . ,m+ p;

ii) ‖Fi‖CD(Ωi) ≤ c ‖F‖CD(Ω), where c is a constant depending only on Ω;

iii)
∫

Ω Fi(x) dx = 0, for all i = 1, . . . ,m+ p;

iv) F (x) =
∑m+p

i=1 Fi(x), for all x ∈ Ω.

Proof. The proof of this result may be obtained by following that in [15, Lemma III.3.4], simply
by replacing C∞0 with CD in any occurrence involving f , fi or gi (by assuming Ω as their domain
of definition) and by extending ψi and χi by zero outside their supports.

Remark 15. In order to apply the regularity result in Theorem 13 to the divergence problem
“localized” in Ωi, we remark explicitly that:

a) The compatibility condition for the “localized” datum Fi, i.e.∫
Ωi

Fi(x) dx = 0,

follows immediately from i) and iii) of Lemma 14.

b) If ∂Ω ∈ C0,1 then, by following the proof of [15, Lemma III.3.4], it can be shown that any
Ωi, i = 1, . . . ,m+ p, in the previous lemma may be chosen as star-shaped with respect to
any point of some closed ball contained in it.

c) If ∂Ω ∈ C2, then the open sets Ωi, i = 1, . . . ,m, may be chosen as the sets ΩPi in
Section 2.1, while the remaining ones are open balls.

The next result, which extends Theorem 13 to a considerably wider class of domains, will
now be obtained by a localization argument.

Theorem 16 (Interior regularity for Lipschitz domains). Let Ω be a bounded open subset of
R
n, with ∂Ω ∈ C0,1. Then, for any F ∈ CD(Ω) with

∫
Ω F (x) dx = 0, there exists a solution

u ∈ C1(Ω) ∩ C0(Ω) of the problem{
div u(x) = F (x) in Ω,

u = 0 on ∂Ω,

verifying for any K ⊂⊂ Ω,
‖v‖C1(K) ≤ c‖F‖CD(Ω),

where the constant c depends only on n, ψ,Ω and dist(K, ∂Ω).

Proof. Let Ωi and Fi be defined as in Lemma 14 and Remark 15 b), and let ui be the solution
in C1(Ωi) ∩ C0(Rn) of the problem{

div ui(x) = Fi(x) in Ωi,

ui ≡ 0 on {Ωi,

whose existence is ensured by Theorem 13, Lemma 14, and Remark 15 a)-b). Thus, by setting

u(x) =

m+p∑
i=1

ui(x),

one obtains u ∈ C1(Ω) ∩ C0(Rn). Moreover, div u(x) = F (x) and, since ui vanishes on {Ωi,
then u = 0 on ∂Ω. The norm estimate follows immediately from the one in Theorem 13, applied
to each ui.
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Remark 17. The relevant point is the fact that Ω can be decomposed as a finite union of Ωi,
each one star-shaped with respect to some closed ball contained in it. The Lipschitz regularity
of ∂Ω is only a sufficient condition for it, without any direct relationship with the interior
regularity.

Remark 18. The constant in the norm estimate from Theorem 16 does not depend only on
diam Ω, but also on its geometry. In fact, both the number of the star-shaped subsets of its
decomposition and the radii of the closed balls with respect to whose points they are star-shaped
are to be taken into account in the expression of the constant.

4 Classical solutions regular up to the boundary

In this section we prove the main result of the paper, that is the existence of a solution of the
divergence equation regular up to the boundary and vanishing on it, as previously outlined in
Theorem 1. Our approach follows, as far as possible, the classical one for the Poisson equation,
which is essentially based on the following steps: first, a suitable localization, together with a
change of variables to reduce the domain of the problem to a special one, namely a half-ball or a
half-cube, while the portion of boundary under exam is mapped onto a subset of the hyperplane
{x ∈ Rn : xn = 0}; next, a separate treatment of the “tangential” derivatives, as opposed to
the “normal” ones in the xn-direction; finally, a suitable “reflection” of the solution across the
hyperplane {x ∈ Rn : xn = 0}, in order to put the portion of the boundary of interest in
the interior and then to be able to take advantage of the already proved result of regularity at
the interior. A favourable feature of the Laplace operator is that the regularity of any selected
second order derivative (namely the “normal” one) may be deduced from those of the other
derivatives and of the datum, simply by using pointwise the equation. On the contrary the
particular structure of the divergence operator, which is non-elliptic, allows to employ a similar
argument only for the “normal” derivative of the “normal” component un of the unknown vector
field, requiring an ad hoc treatment for all the other partial derivatives in the normal direction.

In the former of the following sections it will be established a result of regularity at the
boundary for a half-cube; in the latter, the localization in Lemma 14 and Remark 15, and a
standard “flattening” change of variables are exploited to extend the previous result to the
general domain with a C2-boundary.

4.1 The case of a half-cube

Let us define, for a > 0, the cube Qa := (−a, a)n and the upper and lower half-cubes Q+
a :=

(−a, a)n−1 × (0, a) and Q−a := (−a, a)n−1 × (−a, 0), respectively. Furthermore, we set x′ :=
(x1, . . . , xn−1).

The object of this section is to prove the following theorem.

Theorem 19. For any F ∈ CD(Q+
a ) verifying

∫
Q+
a
F (x) dx = 0, and such that suppF ⊂ Q+

a/2,

there exists a solution u ∈ C1(Q
+
a ) ∩ C0(Rn) of the problem{
div u(x) = F (x) in Q+

a ,

u ≡ 0 on {Q+
a ,

verifying
‖u‖

C1(Q
+
a )
≤ c‖F‖CD(Q+

a ),

where the constant c depends only on n, ψ, a.
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The proof will be postponed until the end of the section, and requires several considerations
and lemmas. We immediately observe that, by (possibly) extending F by zero outside its
support and rescaling the variables as in Theorem 13, we can reduce ourselves to consider only
the case where a = 1, and supp F ⊆ Q+

1/2.
To this aim, let us define

F ∗(x) :=

{
F (x) in Q

+
1 ,

F (x∗) in Q
−
1 ,

where, as usual, the starred variable x∗ := (x′, xn)∗ = (x′,−xn) denotes that one obtained by
reflection across the {xn = 0} hyperplane. We observe that∫

Q−1

F ∗(x) dx =

∫
Q+

1

F (x) dx,

and, obviously, if F ∈ CD(Q+
1 ) then F ∗ ∈ CD(Q1), with the same norm.

By the previous Theorem 13, there exists W ∈ C0(Q1) ∩ C1(Q1), such that{
divW = F ∗ in Q1,

W = 0 on ∂Q1.

Thus, we define a vector field w : Q1 → Rn by setting

w(x) :=
(
w1(x), . . . , wn−1(x), wn(x)

)
=

1

2

(
W1(x) +W1(x∗), . . . ,Wn−1(x) +Wn−1(x∗),Wn(x)−Wn(x∗)

)
,

(5)

and we observe that it satisfies
divw = F ∗ in Q1,

w = 0 on ∂Q1,

wn = 0 on
(
(−1, 1)n−1 × {0}

)
,

and hence, by restriction to the upper cube Q+
1 ,

divw = F in Q+
1 ,

wα = 0 on ∂Q+
1 \
(
(−1, 1)n−1 × {0}

)
, for α = 1, . . . , n− 1,

wn = 0 on ∂Q+
1 .

Therefore, in order to show that there exists a C1(Q
+
1 ) solution of (1), it is enough to subtract

from w any divergence-free vector field φ ∈ C1(Q
+
1 ) such that φ|∂Q+

1
= w|∂Q+

1
. In particular,

it is enough to find a function φ vanishing on ∂Q+
1 \
(
(−1, 1)n−1 × {0}

)
and verifying, for α =

1, . . . , n− 1,

φα(x′, 0) = wα(x, 0) ∈ C1((−1, 1)n−1) and φn(x′, 0) = 0.

Observe that, since suppwα(x′, 0) ⊂⊂ (−1, 1)n−1, then wα(x′, 0) can be extended by zero and
considered as it belongs to C1

0 (Rn−1).
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One may be tempted to set

Φ̃α(x) :=xn(1− xn)2wα(x′, 0) for α = 1, . . . , n− 1,

φ̃(x) :=
(∂Φ̃1

∂xn
, . . . ,

∂Φ̃n−1

∂xn
,−

n−1∑
β=1

∂Φ̃β

∂xβ

)
.

Observe that Φ̃α vanishes on ∂Q+
1 , for any α = 1, . . . , n− 1. A direct computation shows that

φ̃ assumes the requested value on ∂Q+
1 . Moreover, by the already proved inner regularity of

w in Q1, it follows that ∂xα∂xnΦ̃α is continuous and thus, by the Schwarz theorem on mixed
derivatives, φ̃ turns out to be divergence-free. Nevertheless, it is not evident as to whether
φ̃ ∈ C1(Q

+
1 ), because the function Φ̃α(x) can be differentiated, in principle, only one time with

respect to x′. To overcome this difficulty, we regularized each component Φ̃α, for α = 1, . . . , n−1,
in such a way that the trace of its normal derivative on {xn = 0} is equal to wα(x′, 0), by
adapting some classical mollification tools as those used in Nečas [23] for the extension of
traces; see also [9, 10] for related results about Sobolev spaces.

As above, by applying the rescaling already used in Theorem 13 after a possible extension
of wα(x′, 0) by zero to the whole subspace {xn = 0}, we can reduce ourselves to the case where
supp wα(x′, 0) ⊆ (−1/2, 1/2)n−1.

Definition 20 (A compactly supported regular extension to the upper half-plane). Let ρ ∈
C∞0 (Rn−1) be such that

∫
Rn−1 ρ(x′) dx′ = 1 and supp ρ ⊂ B(0, 1). Moreover, let θ ∈ C2(R) be

such that θ(0) = 1 and θ(t) = 0 for t ≥ 1
2 . We define Φα : Rn−1 × [0,+∞)→ R by setting

Φα(x′, xn) :=


θ(xn)

xn−2
n

∫
Rn−1

wα(y′, 0) ρ
(x′ − y′

xn

)
dy′ for xn > 0,

0 for xn = 0.

We observe that

Φα(x) = xn θ(xn) (wα(·, 0) ∗ ρxn(·))(x′) for xn > 0,

where the symbol “∗” denotes the convolution operator in Rn−1 and, for any function g defined
on Rn−1 and any ε > 0, we use the standard notation gε(x

′) := 1
εn−1 g

(
x′

ε

)
. We recall the

following elementary result on convolutions, which we will use extensively.

Lemma 21. Let f ∈ C0
0 (Rn−1) and g ∈ C∞0 (Rn−1). Then:

supp(f ∗ g) ⊆ supp f + supp g,

lim
ε→0+

(f ∗ gε)(x′) = f(x′)

∫
Rn−1

g(y′) dy′ uniformly on Rn−1,

|(f ∗ gε)(x′)| ≤ c ‖f‖∞ and | lim
ε→0+

(f ∗ gε)(x′)| ≤ c ‖f‖∞ ∀x′ ∈ Rn−1,

where c = ‖g‖1.

The next lemma provides the required regular extension of the boundary data and a bound
for its norm.
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Lemma 22. For α = 1, . . . , n− 1 it holds Φα ∈ C2(Rn−1 × [0,+∞)), suppΦα ⊂ Q
+
1 , and the

vector field

φ :=
(∂Φ1

∂xn
, . . . ,

∂Φn−1

∂xn
,−

n−1∑
β=1

∂Φβ

∂xβ

)
,

verifies

φ ∈ C1(Q
+
1 ), (6)

div φ = 0 in Q+
1 , (7)

φα(x′, 0) = wα(x′, 0) for α = 1, . . . , n− 1, (8)

φn(x′, 0) = 0, (9)

‖φ‖
C1
(
Q

+
1

) ≤ c ‖w‖C1(Q+
1 ∩{xn=0}), (10)

where w is defined as in Theorem 19, and c is a constant depending only on n, θ, and ρ.

Proof. We observe that, by the standard properties of the mollifiers, it follows that Φα ∈
C∞(Rn−1 × (0,+∞)), but the relevant fact is how it behaves as xn → 0+.

From Lemma 21 it follows immediately that Φα ∈ C0(Rn−1× [0,+∞)), and that supp Φα ⊂
Q+

1 , while the fact that div φ vanishes in the interior follows (formally) from direct computation,
but it will be justified only after it will be proved that Φα ∈ C2(Q+

1 ), α = 1, . . . , n− 1.
First, we consider the tangential derivatives and we have, for xn > 0,

∂xβΦα(x′, xn) =
θ(xn)

xn−1
n

∫
Rn−1

wα(y′, 0) ∂xβρ
(x′ − y′

xn

)
dy′

= θ(xn) (wα(·, 0) ∗ ηβxn(·))(x′),
(11)

with ηβ(x′) := ∂xβρ(x′). Since
∫
Rn−1 η

β(x′) dx′ = 0, by Lemma 21, it follows that

lim
xn→0+

∂xβΦα(x′, xn) = 0 = ∂xβΦα(x′, 0),

and therefore ∂xβΦα(x′, xn) ∈ C0(Rn−1 × [0,+∞)), for α, β = 1, . . . , n− 1, and moreover (9) is
satisfied.

For xn > 0, we have by direct computation that

∂xnΦα(x′, xn) =
θ′(xn)

xn−2
n

∫
Rn−1

wα(y′, 0) ρ
(x′ − y′

xn

)
dy′

+ (2− n)
θ(xn)

xn−1
n

∫
Rn−1

wα(y′, 0) ρ
(x′ − y′

xn

)
dy′

− θ(xn)

xn−1
n

∫
Rn−1

wα(y′, 0)
n−1∑
β=1

(xβ − yβ
xn

)
∂xβρ

(x′ − y′
xn

)
dy′.

By defining

Ψ(x′) :=

n−1∑
β=1

xβ∂xβρ(x′) =

n−1∑
β=1

xβ η
β(x′),

we can rewrite the normal derivative as follows

∂xnΦα(x′, xn) =
[
xnθ

′(xn) + (2− n)θ(xn)
]

(wα(·, 0) ∗ ρxn(·))(x′)

− θ(xn) (wα(·, 0) ∗Ψxn(·))(x′).
(12)
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Since, integrating by parts, one gets∫
Rn−1

Ψ(x′) dx′ = −(n− 1)

∫
Rn−1

ρ(x′) dx′ = −(n− 1),

we obtain by Lemma 21 that

lim
xn→0+

∂xnΦα(x′, xn) =
[
(2− n)θ(0)− (1− n)θ(0)

]
wα(x′, 0) = wα(x′, 0),

and then Φ ∈ C1(Rn−1 × [0,+∞)) and (8) holds true.

Next, we need to prove the continuity of the second order derivatives of Φ to show (6).

First, we consider the second order derivatives different from ∂2

∂x2
n

and, for xn > 0, by using the

commutativity of the convolution operator, we have for all α, β, γ = 1, . . . , n− 1

∂xγ∂xβΦα(x′, xn) =
θ(xn)

xn−1
n

∫
Rn−1

∂xγwα(x′ − y′, 0) ∂xβρ
( y′
xn

)
dy′

= θ(xn) (∂xγwα(·, 0) ∗ ηβxn(·))(x′),
(13)

∂xγ∂xnΦα(x′, xn)

=
xnθ

′(xn)+(2− n)θ(xn)

xn

∫
Rn−1

∂xγwα(x′− y′, 0)ρ
( y′
xn

)
dy′

− θ(xn)

xn−1
n

∫
Rn−1

∂xγwα(x′ − y′, 0) Ψ
( y′
xn

)
dy′

=
[
xnθ

′(xn) + (2− n)θ(xn)
]

(∂xγwα(·, 0) ∗ ρxn(·))(x′)

− θ(xn) (∂xγwα(·, 0) ∗Ψxn(·))(x′),

(14)

and they are all continuous up to {xn = 0}, by the C1-regularity of wα(x′, 0). The analo-
gous result about ∂xn∂xγΦα(x′, xn) follows immediately from the Schwarz theorem on mixed
derivatives.

Next, by introducing the change of variables y′ = xnz
′, we get

(wα(·, 0) ∗Ψxn(·))(x′) =

∫
Rn−1

wα(x′ − xn z′, 0) Ψ(z′) dz′,

and
∂xn∂xnΦα(x′, xn)

=
[
θ′(xn) + xnθ

′′(xn) + (2− n)θ′(xn)
]

(wα(·, 0) ∗ ρxn(·))(x′)

− θ′(xn) (wα(·, 0) ∗Ψxn(·))(x′)

+
[
xnθ

′(xn) + (2− n)θ(xn)
]

(wα(·, 0) ∗Ψxn(·))(x′)

+ θ(xn)

∫
Rn−1

n−1∑
β=1

zβ ∂xβwα(x′ − xnz′, 0) Ψxn(z′) dz′.

(15)

Therefore Φα(x′, xn) ∈ C2(Rn−1 × [0,+∞)) for α = 1, . . . , n − 1, and thus (6) follows. By the
Schwarz theorem, also (7) follows.
Finally, the estimate (10) follows directly by applying the bounds from Lemma 21 to the ex-
pressions for the first and second order derivatives of Φ in (11), (12), (13), (14), and (15).
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Now, we can get the result of regularity at the boundary for a half-cube as outlined at the
beginning of this section.

Proof of Theorem 19. By setting

u(x) = w(x)− φ(x),

where w is defined as in (5) and φ as in Lemma 22, it follows that u is the aimed classical (of
class C1) solution for the divergence equation vanishing at the boundary and regular up to it.
The estimate follows immediately from those of Theorem 13 and Lemma 22.

We observe that the solution provided by the last theorem is not simply a possibly scaled
Bogovskĭı’s potential for some B and ψ: in fact, it is the difference between a superposition of
such a potential and its “reflected” one, as in a sort of image-charge method in Electrostatics,
and a suitable regular extension of the boundary datum.

4.2 The proof of the main theorem in the general case

In order to exploit the results in the previous sections and to prove the main theorem, we first
introduce the hypothesis ∂Ω ∈ C2 and apply Lemma 14 and Remark 15 a) and c) to get an
open covering of Ω whose members are either balls contained in Ω or sets ΩP = ΩPi , defined in
Section 2.1, verifying ∪mi=1ΩPi ⊇ ∂Ω. Hence, to build up a global solution from the “localized”
ones (in the same way we have obtained it in Section 3), it will be sufficient to apply to each of
these sets ΩP a well-known regular change of variables, boundary- and divergence-preserving.
It transforms each ΩP into a half-cube where, by Theorem 19, we have a regular solution, and
then we transform it back to obtain the aimed “localized” regular solution. The argument is
well-known but some details in the classical setting are worth to be emphasized, especially to
deduce the requested regularity on the boundary of the domain.

To this purpose, fix Ξ := AP (ΩP −P ) as in Section 2.1. By the same divergence-preserving
rescaling used in Theorem 13 we may assume RP = 1. Now, let us define the smooth transfor-
mation T : Ξ→ Q+

1 by setting

y = T (x) :=
(
x′, xn − h(x′)

)
,

where we have set h := hP . The map T is invertible, its inverse being

x = T−1(y) =
(
y′, yn + h(y′)

)
.

Observe that both T, T−1 have Jacobian determinant equal to 1 and therefore, for any given
f : Ξ→ R, if one defines f̃ : Q+

1 → R by setting

f̃(y) := f(T−1(y)),

it follows immediately that ∫
Q+

1

f̃(y) dy =

∫
Ξ
f(x) dx.

Thus, given F ∈ CD(Ξ) such that
∫

Ξ F (x) dx = 0, it follows immediately∫
Q+

1

F̃ (y) dy = 0,
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while, to show that F̃ ∈ CD(Q+
1 ), it would be enough to prove that the mapping T−1 : Q+

1 → Ξ
is α-Hölder continuous for some α > 0 (see, for instance, [2, Lemma 4.1]). Since we are actually
assuming that ∂Ω ∈ C2, we have immediately that |∇h(x)| is bounded and therefore

ω(F̃ , ρ) ≤ ω(F, ‖∇h‖∞ ρ),

which proves that F̃ ∈ CD(Q+
1 ).

Hence, it is possible to apply Theorem 19, which provides a solution ũ ∈ C1(Q
+
1 ) ∩C0(Rn)

of the problem {
divy ũ(y) = F̃ (y) in Q+

1 ,

ũ ≡ 0 on {Q+
1 ,

where we denote by divy the divergence operator with respect to the variables y = (y′, yn).

Observe also that supp ũ ⊂ Q+
1 .

Now, we need to transform back the vector field ũ to find a solution in Ξ. Vector fields
u : Ξ→ Rn are transformed in the “covariant” way into ũ : Q+

1 → Rn (where x = T−1(y)) as
follows: 

ũα(y) := uα(x) for α = 1, . . . , n− 1,

ũn(y) := un(x)−
n−1∑
β=1

uβ(x) ∂xβh(x′).

Analogously, the inverse transformation (where y = T (x)) is given by
uα(x) = ũα(y) for α = 1, . . . , n− 1,

un(x) = ũn(y) +
n−1∑
β=1

ũβ(y) ∂xβh(y′).
(16)

We observe that

divx u(x) =

n∑
j=1

∂xjuj(x)

=

n−1∑
α=1

∂xα ũα(T (x)) + ∂xn
(
ũn(T (x)) +

n−1∑
β=1

ũβ(T (x)) ∂xβh(x′)
)

=

n−1∑
α=1

∂αũα(y)−
n−1∑
α=1

∂αh(y′) ∂nũα(y)

+ ∂nũn(y) +

n−1∑
β=1

∂βh(y′) ∂nũβ(y) =

n∑
j=1

∂yj ũj(y)

= divy ũ(y),

where h(y′) = h(x′), since the transformation T is the identity on the first n− 1 variables.
Furthermore, the “lower boundary” of Ξ, that is the set{

x = (x′, xn) ∈ Rn : x′ ∈ (−1, 1)n−1 and xn = h(x′)
}
,

is mapped on (−1, 1)n−1 × {0}, the lower face of the cube Q+
1 , and since

ũ(y′, 0) = 0 implies u(x′, xn − h(x′)) = 0,

21



then the vector u satisfies u|∂Ω = 0.
Thus, being u defined by (16), in order to get the regularity up to the boundary of u it will

be sufficient to recall that h ∈ C2
(
(−1, 1)n−1

)
.

Now, in order to pass from the local coordinates in each set ΩPi , i = 1, . . . ,m, to the global
ones in the original domain Ω, one can apply to each of them the inverse of the rotation and
the translation introduced in Section 2.1, which preserve regularity, divergence, and boundary
values. Finally, we observe that, by (16), the C1-norm of u on ΩPi is bounded by the C1-norm of
ũ on [−RPi , RPi ]n−1, multiplied by a constant depending on the C2-norm of hPi . Since, by (5),
the C1-norm of ũ is bounded in turn by the CD-norm of Fi it follows that

‖u‖C1(ΩPi )
≤ c ‖Fi‖CD(Ω),

and Theorem 1 follows by localization.

Remark 23. The estimate in Theorem 1 is a consequence of those in all the previous regularity
results. It follows that the constant appearing there depends on the dimension n, the diameter
and the geometry of Ω and its boundary, and the functions ψ used to define the local Bogovskĭı’s
potentials occurring in the construction of the provided global solution.
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