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ABSTRACT 

A reliable assessment of the posterior uncertainties is a crucial aspect of any Amplitude Versus Angle 

(AVA) inversion due to the severe ill-conditioning of this inverse problem. To accomplish this task 

numerical Markov chain Monte Carlo algorithms are usually employed when the forward operator is 

non-linear. The downside of these algorithms is the considerable number of samples needed to attain 

stable posterior estimations especially in high-dimensional spaces. To overcome this issue, we assess 

the suitability of Hamiltonian Monte Carlo (HMC) algorithm for non-linear target-oriented and 

interval-oriented AVA inversions for the estimation of elastic properties and associated uncertainties 

from pre-stack seismic data. The target-oriented approach inverts the AVA responses of the target 

reflection by adopting the non-linear Zoeppritz equations, whereas the interval-oriented method 

inverts the seismic amplitudes along a time interval using a 1D convolutional forward model still 

based on the Zoeppritz equations. HMC uses an artificial Hamiltonian system in which a model is 

viewed as a particle moving along a trajectory in an extended space. In this context, the inclusion of 

the derivatives information of the misfit function makes it possible long-distance moves with a high 

probability of acceptance from the current position towards a new independent model. In our 

application we adopt a simple Gaussian a-priori distribution that allows for an analytical inclusion of 

geostatistical constraints into the inversion framework and we also propose a strategy that replaces 

the numerical computation of the Jacobian with a matrix operator analytically derived from a 

linearization of the Zoeppritz equations. Synthetic and field data inversions demonstrate that the 

HMC is a very promising approach for Bayesian AVA inversion that guarantees an efficient sampling 

of the model space and retrieves reliable estimations and accurate uncertainty quantifications with an 

affordable computational cost.  

 



INTRODUCTION 

One of the main goals of seismic inversion is the estimation of the elastic subsurface properties around 

the investigated area from the acquired seismic data. From a mathematical point of view this process 

is an ill-conditioned inverse problem (Menke, 2018; Aster et al. 2018) in which many models can fit 

the observed data equally well. For this reason, the Bayesian approach is usually adopted to quantify 

the uncertainties affecting the recovered solution. The posterior probability density (PPD) function is 

the final solution of a Bayesian inversion (Tarantola, 2005) and expresses the conditional probability 

of model parameters given the observed data. An analytical derivation of the PPD is only possible in 

case of linear forward operators and Gaussian, Gaussian-mixture, or generalized Gaussian 

distributions of unknown parameters. Otherwise, numerical methods must be employed to sample the 

posterior model. To accomplish this task Markov Chain Monte Carlo methods are often used. These 

methods convert the inverse problem into a sampling problem in which the sampling density is 

proportional to the posterior, so that the sampled models can be used to approximate the statistical 

properties of the PPD (Sen and Stoffa, 1996; Sambridge and Mosegaard, 2002). The first stage of the 

MCMC sampling (usually called the burn-in period) can be viewed as a global optimization that 

moves from a random starting model to a high-probability region of the model space. The second 

stage is often called the sampling stage in which the small fluctuations of the misfit value indicate 

that the MCMC algorithm reaches the stationary regime. Usually the samples accepted during the 

burn-in period do not accurately represent the target density and for this reason they are disregarded 

when computing the posterior density.  

On the one hand, MCMC methods have been successfully applied to solve many geophysical inverse 

problems (Sambridge and Mosegaard, 2002; Malinverno, 2002; Bosh et al. 2007; Aleardi et al. 2018) 

as they can theoretically assess the posterior uncertainties in cases of non-linear forward operators 

and non-parametric prior distributions. On the other hand, these methods require a considerable 

computational effort with respect to the analytical inversion approach and for this reason specific 



MCMC recipes tailored to the problem at hand are usually needed to efficiently sample the PPD. 

Suboptimal recipes usually result in low acceptance rates and slow convergence of the chain 

especially in case of high-dimensional model spaces with posterior density highly localized within 

specific model dimensions. To partially overcome this issue many approaches have been proposed 

over the last decades: For examples adopting self-adaptive MCMC algorithms (Tierney and Mira 

1999; Haario et al. 1999; Haario et al. 2001; Malinverno 2002), hybridizing MCMC algorithms with 

global search methods (Turner and Sederberg 2012; Vrugt 2016; Aleardi and Mazzotti 2017), or 

employing sophisticated updating schemes that ensure an efficient exploration of the model space 

(Haario et al. 2006; ter Braak and Vrugt 2008). Another crucial issue of standard MCMC algorithms 

is the correlation between the sampled models. Indeed, it is known that for independent samples the 

approximation error of MCMC is inversely proportional to the square root of the number of sampled 

models (MacKay, 2003). When samples are correlated, not only the convergence is usually much 

slower, but there is risk to derive biased PPD estimations. For this reason, not all the samples collected 

after the burn-in period are usually used to numerically estimate the posterior, but several iterations 

of the algorithm are allowed to elapse in between successive samples.   

Hamiltonian Monte Carlo (HMC) was designed to circumvent the previously mentioned issues of 

MCMC algorithms. This method was particularly implemented for problems where the derivative of 

the PPD with respect to the unknown parameters can be computed quickly (Neal 2011; Betancourt 

2017). Introducing the derivative into the sampling framework, helps the algorithm to focus on the 

most promising model space regions (i.e., regions with more plausible models and then high PPD 

values), thus wasting fewer samples and computational resources. The HMC method was originally 

developed in the context of lattice quantum chromodynamics (e.g., Duane et al. 1987). Afterwards, 

the method was extended to Bayesian neural networks (Neal, 1996) and included in textbooks 

(MacKay, 2003; Bishop 2006).  



HMC has been applied to various domains for more than 20 years (e.g., Neal, 1996) but only over the 

very last years it has been applied to solve geophysical inverse problems (e.g. Muir, and Tkalcic, 

2015; Sen and Biswas 2017; Fichtner and Simuté, 2018; Fichtner et al. 2019). The growing attention 

to the HMC algorithm within the geophysical community can be easily explained by considering that 

this approach instead of completely relying on stochastic criteria (such as popular global search 

methods as genetic algorithms or particle swarm optimization), is built upon a solid theoretical 

foundation that makes it particularly well suited to tackle high-dimensional problems. More in detail, 

HMC considers a model as a particle that moves from its current position to a new position along a 

given trajectory, which is uniquely determined by a set of the particle mass, the kinetic energy, and 

the potential energy. In particular, the potential energy is interpreted as the misfit function. Note that 

the kinetic energy and the mass matrix are artificially introduced as auxiliary quantities and allow for 

the inclusion of the derivative information of the misfit function into the sampling framework. 

Similarly to standard MCMC algorithms, the ensemble of accepted HMC models after the burn-in 

period is used to numerically compute the PPD. The main benefits of HMC with respect to standard 

MCMC algorithms are its rapid convergence toward the stationary regime, so that the burn-in phase 

is drastically reduced, and its ability to make long jumps in the model space, so that the independence 

of the sampled models is guaranteed. These aspects reflect on more accurate posterior estimations 

and in a substantial reduction of the sampling stage. Indeed, for an optimal tuning of the 

hyperparameters, the acceptance rate in standard MCMC sampling (such as for the Metropolis-

Hastings method) lies between 0.2-0.4 (Sambridge and Moseggard, 2002), while in case of optimal 

tuning the acceptance rate of HMC is around 0.6 (Neal, 2011). 

In this paper we apply an HMC algorithm for target- and interval-oriented amplitude versus angle 

inversions in which the elastic properties of P-wave velocity (Vp), S-wave velocity (Vs) and density 

(ρ) are estimated from pre-stack seismic data. The target-oriented approach inverts the AVA 

responses of the target reflection extracted along a previously interpreted 2D stratigraphic horizon 

(Adriansyah, and McMechan, 2001; Mazzotti and Zamboni 2003; Zhu and McMechan, 2012; Aleardi 



and Mazzotti 2014; Gong and McMechan 2016; Aleardi et al. 2017). This method is less 

computationally expensive than the interval-oriented inversion, but it requires a previous accurate 

geological interpretation phase that accurately identifies the target reflection throughout the inverted 

3D volume. Another, crucial step is the extraction of the reflection coefficients for the target reflection 

and many methods have been proposed to reliably accomplish this task (Grion et al. 1998). Instead, 

the interval-oriented approach inverts the pre-stack seismic response extracted along a given time-

interval (Buland and Omre, 2003) assuming a 1D convolutional forward operator. In our case, both 

the target- and interval-oriented inversions adopt the non-linear, exact Zoeppritz equations as the 

forward modeling (Zoeppritz, 1919). This set of four equations expresses the complete relationship 

between the angle dependent reflection coefficients and the elastic contrasts at the reflecting interface. 

The Zoeppritz equations are non-linear and impede an analytical assessment of the posterior model. 

For this reason, linear approximations of the full Zoeppritz equations (see Thomas et al. 2016) are 

routinely used to solve the AVA inversion problem, but a linear forward model might not be 

sufficiently accurate to describe the relation between seismic data and elastic parameters at far source-

receiver offsets (i.e., incidence angles higher than 30°-35°) and significant elastic contrasts at the 

reflecting interface. In these cases, oversimplified forward operators could result in biased model 

parameter estimations. For these reasons, over the years many MCMC recipes have been proposed 

for casting the non-linear AVA inversion into a solid Bayesian framework (see, among many others, 

Bosch et al. 2007; Bosch et al. 2010; Rimstad and Omre, 2010; Zunino et al. 2015; Aleardi and 

Salusti, 2019). This work, instead of proposing another MCMC recipe targeted to non-linear Bayesian 

AVA inversion, is aimed at assessing the suitability of the HMC approach for solving this kind of 

inverse problem. In particular, the use of an analytical forward operator (i.e., the Zoeppritz equations) 

makes it possible the computation of the derivative of the PPD with an affordable computational cost. 

In addition, the AVA inversion is severely ill-conditioned (Avseth et al. 2010) and for this reason it 

is crucial including as much a-priori information as possible (e.g., expected lateral variability and 

mutual interdependence of the inverted parameters) to successfully reduce the null-space of solutions 



(de Figueiredo et al. 2018; Aleardi et al. 2019). In this work we assume a Gaussian prior model that 

makes it possible the inclusion of a variogram model into the misfit function.  

We start by presenting the HMC algorithms and the AVA inversion approaches we implemented. 

Afterward, synthetic data inversions are used to illustrate the reliability of the HMC inversion. Then, 

we focus on the synthetic interval-oriented inversion and detail the differences between a Metropolis-

Hastings MCMC and the HMC samplings. We also propose a strategy that can be used to avoid the 

numerical computation of the Jacobian in case of AVA inversion. Finally, the implemented 

algorithms are applied to invert field onshore seismic data acquired over a quite complex geological 

setting where a gas-saturated reservoir is hosted in a shale-sand sequence. To the best of our 

knowledge this paper discusses the first application of HMC algorithm to target-oriented and interval-

oriented AVA inversions 

 

METHODS 

The implemented Hamiltonian Monte Carlo algorithm 

In this section we briefly review the basic theory of HMC before discussing in more detail our 

implementation. We refer the interested reader to Neal (2011) and Betancourt (2017) for more 

theoretical insights into the HMC algorithm. 

 The HMC is based on the Bayesian inversion framework. In this context the solution of an inverse 

problem is the posterior probability density (PPD) function that is defined as follows: 

𝑝(𝐪|𝐝) =
𝑝(𝐝|𝐪)𝑝(𝐪)

𝑝(𝐝)
,     (1) 

where d is the N-dimensional observed data vector, and q is the Q-dimensional model parameter 

vector. The left-hand side term of equation 1 represents the target PPD that could be numerically 

estimated from the ensemble of models sampled after the burn-in phase by a Monte Carlo algorithm.   



HMC improves the performances of MCMC by proposing models that are distant from the current 

state but still characterized by a high probability of acceptance. The proposed models are found by 

simulating the Hamiltonian dynamics, in which a model is viewed as a moving particle with a physical 

state defined by the momentum vector and position vector: these vectors lie in the so-called phase 

space. HMC samples an auxiliary distribution defined over the 2Q-dimensional phase space, from 

which the PPD samples are drawn by neglecting the momentum component. The particle trajectory 

in the phase space is determined by the kinetic energy (K), the potential energy (U), and the mass 

matrix (M). The potential energy is the negative natural logarithm of the posterior (see equation 1) or 

in other terms is the misfit function associated to the inverse problem. In this context more plausible 

models with large PPD values are associated to low potential energies. Generally speaking, the 

potential energy is given by: 

𝑈(𝐪) = −ln(𝑝(𝐪|𝐝)).   (2) 

HMC determines the kinetic energy by introducing an auxiliary variable (momentum variable) p 

defined over a Q-dimensional space. It usually assumes that the auxiliary momentum variable has a 

multivariate normal distribution with zero mean and a covariance matrix equal to the so-called mass 

matrix:  

𝐾(𝐩) = 𝑁(𝐩; 0, 𝐌),   (3) 

where N represents the Gaussian distribution, and M is the Q×Q mass matrix (note that the number 

of rows and columns of M are equal to the number of model parameters)  that must be accurately set 

to ensure the convergence of the HMC algorithm (Fichtner et al. 2019).  The vectors p and q define 

the 2Q-dimensional phase space, whereas the Hamiltonian 𝐻(𝐩, 𝐪) gives the total energy of the 

moving particle: 

𝐻(𝐩, 𝐪) = 𝑈(𝐪) + 𝐾(𝐩).      (4)      



After defining the kinetic and the potential energies, the Hamiltonian dynamics can be simulated. In 

this context, the model q moves through the 2Q-phase space according to Hamilton’s equations:  

𝑑𝑞𝑖

𝑑𝜏
=

𝜕𝐾

𝑑𝑝𝑖
, with 𝑖 = 1, 2, … , 𝑄,   (5) 

         
𝑑𝑝𝑖

𝑑𝜏
= −

𝜕𝑈

𝑑𝑞𝑖
,    with 𝑖 = 1, 2, … , 𝑄,     (6) 

where 𝜏 indicates the artificially introduced time variable. Note that the right term of equation 6 

contains the partial derivative of the potential energy (i.e., the misfit function) with respect to the 

considered model q. This makes it possible introducing information about the gradient of the misfit 

function into the Monte Carlo sampling framework.  

For each current model 𝐪, and for each iteration, HMC executes the following steps:  

1. Determine the Q momenta 𝑝𝑖 by drawing random realizations from the normal distribution 

𝑁(𝐩; 0, 𝐌); 

2. Derive the proposed model 𝐪(𝜏) and the new momenta 𝐩(𝜏) by solving Hamilton’s equations 

5 and 6 for a given propagation time 𝜏. In this work we use the leap-frog method as the 

numerical integration method (Betancourt, 2017);  

3. Accept the proposed model with a probability α given by: 

α = min [1,
exp (−𝐻(𝐩(𝜏), 𝐪(𝜏)))

exp (−𝐻(𝐩, 𝐪))
].   (7) 

If accepted, the proposed 𝐪(𝜏) point constitutes the starting model for the next trajectory (𝐪 =

𝐪(𝜏)). Otherwise, the current model q is again used as the starting point in the next iteration; 

4. Return to step 1 and iterate until a maximum number of HMC iterations is reached. 

 

Note that standard MCMC algorithms explore model space slower than HMC, because in HMC all 

the model parameters are updated in each iteration, so that long distances in the phase space can be 



traversed with a single move. This promotes both a high level of acceptance and the independence of 

the sampled models. Differently, standard MCMC usually modifies only a subset of the model 

parameters in each iteration. This strategy ensures a high level of acceptance but at the expense of a 

high degree of correlation between successively sampled models.  

In this work we use equation 3 to define the momentum distribution. Since it is known that standard 

HMC exhibits poor performance in sampling multimodal target densities (see the discussion section), 

we employ a Gaussian prior model. In particular, we assume Gaussian-distributed Vp, Vs, and density 

in the target-oriented inversion, whereas on the line of Buland and Omre (2003) the interval-oriented 

inversion assumes log-Gaussian distributed elastic parameters. Let 𝐪 represents the vector of elastic 

parameters in the target-oriented inversion and the vector containing the natural logarithm of Vp, Vs, 

and density in the interval-oriented approach. In both cases the prior model can be compactly written 

as follows: 

𝑝(𝐪) = 𝑁(𝐪; 𝐪𝑝𝑟𝑖𝑜𝑟, 𝐂𝑞),     (8)  

where 𝐪𝑝𝑟𝑖𝑜𝑟 and 𝐂𝑞 are the a-priori mean vector and the a-priori model covariance matrix that can 

be derived, for example, from available borehole information. In both the target- and interval-oriented 

inversions we assume that the prior model is laterally and temporarily invariant.  The analytical 

Gaussian prior allows us to easily include geostatistical constraints into the inversion kernel, but an 

outstanding benefit of the HMC method is that it can be applied also for non-parametric prior models. 

In our case the matrix 𝐂𝑞 expresses both the covariances of model parameters and their spatial 

relationship. In particular, the matrix 𝐂𝑞 is computed as a Kronecker product between a stationary 

model covariance matrix and the spatial and/or temporal correlation functions expressing the spatial 

dependency of model parameters (e.g., Buland and Omre, 2003).  

In this work the potential energy is defined as: 

𝑈(𝐪) = −ln(𝑝(𝐪|𝐝)) =
1

2
[(𝐝 − 𝐺(𝐪))

𝑇
𝐂𝑑

−1(𝐝 − 𝐺(𝐪)) + (𝐪 − 𝐪𝑝𝑟𝑖𝑜𝑟)
𝑇

𝐂𝑞
−1(𝐪 − 𝐪𝑝𝑟𝑖𝑜𝑟)],    (9) 



The partial derivative of equation 9 with respect to the model parameters is equal to: 

𝜕𝑈(𝐪)

𝜕𝐪
= 𝐉𝐂𝑑

−1(𝐝 − 𝐺(𝐪)) + 𝐂𝑞
−1(𝐪 − 𝐪𝑝𝑟𝑖𝑜𝑟),    (10) 

In equations 9 and 10 G is the non-linear forward operator based on the exact Zoeppritz equations, d 

is the observed data (P-wave reflection coefficients for the target-oriented approach and partially 

stacked common-midpoint “CMP” gathers for the interval-oriented method), 𝐂𝑑
  is the data 

covariance matrix that expresses the error on the observed data (under the assumption of a Gaussian 

distribution) and/or modelling errors (Menke, 2018). 𝐉 is the Jacobian matrix that we can compute 

with a forward finite-difference approach (Aster et al. 2011), in which the partial derivative of the i-

th data points with respect to the k-th model parameter can be derived as follows: 

𝜕𝑑𝑖

𝜕𝑞𝑘
=

𝑑𝑖(𝑞𝑘 + ℎ𝑘) − 𝑑𝑖(𝑞𝑘)

ℎ𝑘
, (11) 

where ℎ𝑘 is the increment for the k-th model parameter. If needed a more accurate finite-difference 

scheme (for example a central-difference approach) can be used at the expense of an additional 

computational cost. In the following examples, computing the Jacobian with a finite-difference 

approach is computationally feasible because the Zoeppritz equations can be analytically solved with 

a minimum computational effort. However, in the following we also propose a different approach to 

significantly speeds up the computational cost of the AVA-HMC inversion, that replaces the Jacobian 

with a linear matrix operator computed from the Aki and Richards (1980) approximation of the full 

Zoeppritz equations.  

A proper setting of the mass matrix (𝐌) is of crucial importance in any HMC sampling (Fichtner et 

al. 2019) because this parameter controls the speed with which the algorithm traverses the phase 

space. In other words, the mass matrix decorrelates the target distribution (Betancourt, 2017). In 

practice, a proper setting of this matrix maximizes the exploration of independent models and 

prevents the exploration of similar model space regions. The optimal setting of the 𝐌 matrix is 



strongly case dependent, but typically 𝐌 is diagonal and a scalar multiple of the identity matrix. 

However, this strategy often hampers an efficient sampling of the parameter space.  Along the lines 

of Fichtner et al. (2019) we compute the mass matrix as a local approximation (around the considered 

model) of the inverse of the posterior covariance matrix:  

𝐌 = 𝐉𝑇𝐂𝑑
−1𝐉 + 𝐂𝑞

−1.     (12) 

Note that the mass matrix brings information on the local curvature of the misfit function. In the 

leapfrog method, we update the momentum and position variables sequentially. First, we simulate the 

momentum dynamics (changing momentum) by δ∕2 time units, then we simulate the position 

dynamics (moving in model space) for δ time units, then again completing the momentum simulation 

for the remaining half-time units, δ∕2. This process is repeated for a total of L times after which the 

algorithm reaches a new state. This leapfrog integration method is described by the following 

equations: 

𝑝𝑖(𝜏 + δ 2⁄ ) = 𝑝𝑖(𝜏) −
𝛿

2

𝜕𝑈

𝜕𝑞𝑖
|𝜏, (13) 

𝑞𝑖(𝜏 + δ) = 𝑞𝑖(𝜏) + 𝛿
𝜕𝐾

𝜕𝑝𝑖
|

𝜏+
𝛿
2

,   (14) 

𝑝𝑖(𝜏 + δ) = 𝑝𝑖 (𝜏 +
𝛿

2
) −

𝛿

2

𝜕𝑈

𝜕𝑞𝑖
|𝜏+𝛿 ,   (15) 

where 𝜏 is the time variable. Although, many other integrator methods exist (Blanes et al. 2014), here 

we use the leapfrog method for its easy implementation. However, note that the integrator methods 

used for HMC inversion have to fulfill certain properties such as reversibility and volume 

preservation (Neal, 2011).  

 In addition to the mass matrix, also the choice of L and δ plays a crucial role in the efficiency of the 

sampling and for this reason they need to be set properly to get an optimal acceptance rate (around 

0.6). In particular, they determine the trajectory of the sampling in the augmented model space. A too 



short trajectory generates proposal very close to the current model, thus slowing down the exploration 

of the parameter space. Differently, if the trajectory is too long the algorithm resamples points that 

have been already visited, thereby wasting computing time. To prevent the locking of the sampling 

in periodic trajectories we follow the strategy discussed in Mackenzie (1989). According to this 

approach, in each HMC iteration the L parameter is randomly drawn from a previously defined 

uniform distribution (see the discussion section).  

In Appendix A we summarize the different HMC hyperparameters and the statistical characteristics 

of the prior model used in the following inversion experiments. 

 

Target- and interval-oriented AVA inversions 

In the target-oriented inversion the observed data are the PP-wave reflection coefficients 𝑅𝑝𝑝 

pertaining to the target reflection. We consider a single reflecting interface that separates two 

homogeneous, and isotropic half spaces. The aim is to infer the properties of the layer below the 

reflecting interface (the target layer) by exploiting its AVA response. For a single partially stacked 

CMP gather and following a matrix formalism, the forward equation of the target-oriented inversion 

is given by:   

𝐝 = 𝐺(𝐪) + 𝐧,       (16) 

where 𝐝 are the observed data, 𝐧 is the noise (usually assumed to be Gaussian distributed), 𝐪 

represents the elastic parameters of the underlying layer, and G is the forward operator. More in detail: 

𝐝 = [𝑅𝑝𝑝(𝜃1), … , 𝑅𝑝𝑝(𝜃𝑃)]𝑇 , (17) 

𝐪 = [𝑉𝑝2, 𝑉𝑠2, 𝜌2]𝑇 ,      (18) 

where the subscript 2 refers to the layer below the reflecting interface, P is the number of data points, 

𝜃 is the incidence angle, whereas G is given by the exact Zoeppritz equations. For a target-oriented 



AVA inversion, the data vector contains all the AVA responses estimated for each CMP gather, 

whereas the model vector expresses the Vp, Vs, and density of the target layer at each CMP location. 

In this context we can write:  

𝐝 = [𝐝1, 𝐝2, … , 𝐝𝑀]𝑇 , (19) 

𝐪 = [𝐪1, 𝐪2, … , 𝐪𝑀]𝑇 , (20) 

where the superscripts identify the CMP gather position, and M is the total number of CMP gathers 

considered. Lateral constraints along the horizontal x and y directions are included into the target-

oriented approach to promote the lateral continuity of the elastic properties in the sampled models. In 

the inversion, the elastic properties of the overlying layer are kept fixed to values that in the field data 

inversion have been determined by interpolating available well-log data. However, the uncertainties 

in the definition of the elastic properties of the overlying layer are properly propagated into the 

estimated PPD. To this end, we follow Aleardi et al. (2019) who included into the data covariance 

matrix both the random noise affecting the observed AVA response, and the uncertainty on the 

assumed elastic properties of the overlying layer that are treated as modelling AVA errors (Madsen 

and Hansen 2018). In other terms we consider the forward operator to be an inexact theory due to the 

inaccuracy of the assumed elastic attributes of the overlying layer (see Menke 2018). In the field data 

example, the starting point for the HMC sampling is derived by a geostatistical interpolation of the 

available well-log data integrated by the geological knowledge about the investigated area.  

In the interval-oriented approach the forward modeling convolves the angle-dependent 𝑅𝑝𝑝 time 

series determined by the Zoeppritz equations, with the source wavelet 𝐬, thus deriving the pre-stack 

CMP gather:  

𝐝(𝜃, 𝑡) = 𝐑𝐩𝐩(𝜃, 𝑡) ∗ 𝐬(𝜃, 𝑡), (21) 

where the ∗ symbol indicate the convolution, and t is the time. In this case each CMP gather is inverted 

separately under the assumption of a local 1D subsurface model and by imposing a 1D vertical 



constraint in the sampled models. As previously introduced, the model vector is now constituted by 

the natural logarithm of the elastic properties along the considered time interval of M time samples: 

𝐪 = ln[𝑉𝑝1, 𝑉𝑝2, … , 𝑉𝑝𝑀, 𝑉𝑠1, 𝑉𝑠2, … , 𝑉𝑠𝑀, ρ1, ρ2, … , ρ𝑀]𝑇 .    (22) 

In both inversions, a Gaussian variogram model is used to include spatial/temporal constraints into 

the target- and interval-oriented inversions. These constraints act as regularization terms and 

contribute to decrease the ill-conditioning of the inverse problem. The lateral spatial constraints in 

the target-oriented inversion and the vertical temporal constraint in the interval-oriented approach can 

be generically defined as:  

τ = exp (−
ℎ2

𝛼2
),     (23) 

where ℎ is the spatial or temporal axis of the autocorrelation function, and 𝛼 is the parameter that 

defines the spatial/temporal dependency. The lateral amplitude variability of the seismic data, 

integrated by the available well-log information and by the geological knowledge of the investigated 

area, can be used to define the spatial constraints. In the interval-oriented inversion the autocorrelation 

of available well-log data is usually employed to properly set the temporal constraints. However, in 

field data inversions due to the very complex spatial relationship of the inverted parameters (i.e., non-

stationary variogram model) a quality control of the inversion results and manual adjustments of the 

so derived autocorrelation functions are often needed to obtain the desired spatial continuity of the 

results.  

In the interval-oriented approach the starting model for the HMC inversion corresponds to the so 

called low-frequency elastic background model (Buland and Omre, 2003) that is derived by 

interpolating available well-log data.  

 

Avoiding the numerical computation of the Jacobian 



We now describe an approach that significantly reduces the computational effort of the HMC-AVA 

inversion because avoids the numerical computation of the Jacobian matrix. This strategy can be 

applied to both the interval- and the target-oriented inversion, but for brevity in the following we only 

consider the former approach. In this case we take the time-interval extension of the single-interface 

Aki and Richards formula (Buland and Omre, 2003): 
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If we consider the convolutional model and adopt the matrix formalism, the linear forward matrix 

operator linking the model to the data can be analytically computed as: 

𝐆 = 𝐒𝐀𝐃,       (25) 

where S is the wavelet matrix, A contains the numerical coefficients 𝛼𝑉𝑝(𝑡), 𝛼𝑉𝑠(𝑡) and 𝛼𝜌(𝑡) of 

equation 24, D is the first-order numerical derivative operator, and 𝐆 is the linear matrix operator that 

substitutes the Jacobian. If 𝐆 replaces the Jacobian, the mass matrix can be derived as: 

𝐌 = 𝐆𝑇𝐂𝑑
−1𝐆 + 𝐂𝑞

−1.     (26) 

Note that in the target-oriented approach equation 24 is replaced by the single-interface Aki and 

Richards equation (Aki and Richards,  1980).  

According to equation 24, the knowledge of the Vp/Vs ratio along the time interval to be inverted is 

needed to derive the numerical values forming the 𝐆 matrix and for this reason we propose to 

recompute this matrix operator for each sampled model and the associated Vp/Vs ratio (i.e., the 

computational cost for computing 𝐆 is negligible). Note that if we replace the Jacobian with the matrix 

𝐆, we are inherently assuming that the curvature of the misfit function is constant over the entire 



model space. In addition, the validity of the linear operator depends on the considered angle range 

and on the elastic contrasts at the interface and for this reason the suitability of this strategy should 

be evaluated case-by-case (see the discussion section).  

 

SYNTHTETIC INVERSIONS 

Target-oriented inversion 

The true model is derived from a geostatistical simulation driven by well-log data investigating a 

productive gas field located offshore. The model represents a slice of a stratigraphic grid where a 

meandering sand delta-channel system is hosted in a shale sequence. Due to the large dimension of 

the simulated 2D model (400 in-line and 400 cross-line sections defined over a regular grid of 25×25 

m) and for computational feasibility reasons, we split the entire model in blocks with dimension of 

50 cross-lines and 50 in-lines. This result in a total number of unknowns for each block equal to 

50 × 50 × 3 = 7500. In this high-dimensional model space the inclusion of the geostatistical 

constraints is particularly useful to reduce the null-space of solution, that is the ensemble of physically 

plausible models that equally fit the observed data. The inversion is independently run for each block 

and the final 2D maps of elastic properties are obtained by merging the inversion results retrieved in 

each block. For each block we run the HMC algorithm for 50000 iterations, whereas the models 

sampled after 100 iterations are used to numerically compute the posterior model. In this case we 

assume that the elastic parameters of the overlying medium are perfectly known. The Zoeppritz 

equations are applied to the true model to simulate the observed P-wave reflection coefficients for 

each CMP gather and for an angle range between 0° and 45°. Gaussian random noise is added to the 

simulated data to get a signal-to-noise ratio (SNR) of 5.  

In Figure 1a we show the true model that simulates a complex meandering system with isolated and 

interconnected sand bodies surrounded by shales. The variogram model needed to define the lateral 



constraints has been directly determined from the spatial autocorrelation of the true model and it is 

the same for the three elastic properties we invert for. Figure 1b shows the starting point for the HMC 

inversion that is a heavily smoothed version of the true model obtained by applying a simple moving 

average filter to the true parameter values. Figure 1c shows the mean a-posteriori solution estimated 

by the HMC algorithm, where we can appreciate how the inversion correctly estimates the lateral 

variability of the three elastic properties, while the lateral constraints efficiently preserve the lateral 

transition boundaries between the shale and sand formations. 

Figure 2 shows some examples of 1D marginal posterior distributions for Vp, Vs and density 

pertaining to different CMP gather positions. Note that the peak of the posterior is always very close 

to the true model. In this case the posterior is very close to a Gaussian distribution because the 

inversion is weakly non-linear in the angle range we consider.  Finally, Figure 3 shows that less than 

100 iterations are required to converge to the stationary regime after which the misfit value fluctuates 

around a stable value.   

We implement a parallel Matlab code running on two deca-core intel E5-2630 at 2.2 GHz (128 Gb 

RAM). The parallelization of the code is particularly useful because each column of the Jacobian 

matrix can be independently computed, so that the computation of J can be distributed easily across 

different processors. The acceptance rate for this inversion was higher than 0.9 in the pre-burn in 

phase in which the chain rapidly moves from the starting model toward a high probability region in 

the model space. The acceptance rate stabilizes around 0.6 in the sampling, post-burn-in stage. The 

computational time to invert a single cell of 50 in-line and 50 cross-line is 15 minutes, approximately. 

A more efficient and scalable code is needed to invert the entire model of 400 in-line and 400 cross-

line at once. We leave a more detailed discussion about the convergence of the implemented interval-

oriented HMC algorithm for the field data inversion.  

 

Interval-oriented inversion 



In the following synthetic example, the true model is derived from the borehole information 

pertaining to a single well investigating a productive gas field located onshore, whereas the a-priori 

information are derived from five other wells drilled in the same area. To compute the synthetic 

seismic data, we employ a Ricker wavelet with a peak frequency of 50 Hz, a time sampling of 0.001 

s, and an angle range of 5°-45°. The time-interval we consider is composed of 91 time samples, thus 

resulting in 91 × 3 = 273 parameters to be determined. The vertical constraints have been derived 

by approximating the variogram of the upscaled well-log data used to compute the prior model.  

Gaussian random noise is added to the synthetic data to simulate a SNR of 5. We run the inversion 

for 5000 iterations in which the first 100 models are disregarded from the computation of the PPD to 

properly burn-in.  

Figure 4 shows that the inversion recovers the vertical variability of the actual property values and 

provides mean a-posteriori solutions with a good match with the actual Vp, Vs, and density values. 

Note that the vertical correlation included into the misfit function, efficiently constraints the vertical 

variability of the sampled elastic models, thus providing a final solution with a realistic vertical 

variability of the three elastic properties. As for the target-oriented inversion, the inclusion of the 

geostatistical a-priori constraints is particularly useful to reduce the length of the sampling stage, 

because these vertical constraints restrict the model space region containing  physically plausible 

models that are in accordance with the prior assumptions. As expected, if we move from Vp, to Vs 

and to density we observe an increase of uncertainty and an overall decrease of the match between 

the recovered solution and the true model. The good match between the observed data and the data 

computed on the estimated mean model illustrates the convergence of the algorithm to the stationary 

regime. From the evolution of the misfit function (Figure 5), we note that only 80 iterations are 

required to reach the stationary regime, after which the misfit oscillates around a stable value. The 

acceptance rate was higher than 0.95 in the burn-in phase and around 0.6 in the post burn-in stage. 

The total computational time is 10 minutes using a parallel Matlab code running on the same hardware 

configuration previously described in the target-oriented example. Again, we leave a more detailed 



discussion about the convergence of the implemented interval-oriented HMC algorithm and the 

properties of the sampled models to the following sections. 

A comparison of MCMC and HMC  

We now discuss in more detail the difference between a Metropolis-Hastings MCMC and the 

implemented HMC inversion. For brevity we limit our discussion to the interval-oriented inversion, 

but similar conclusions would have been drawn for the target-oriented approach. The true model is 

the same used in the interval-oriented inversion discussed previously. For a more quantitative 

comparison of the HMC and MCMC samplings we evaluate the convergence of the two algorithms 

toward a stable posterior model by computing the potential scale reduction factor (PSRF) for some 

model parameters. This computation requires the use of multiple chains from which the so called 

within-walk and between-walk variances can be evaluated for each unknown. The PSRF value 

decreases to 1.0 as the number of drawn samples increases. A PSRF value higher than 1.2 (Gelman 

et al. 2013) usually indicates that the within-walk variance is small compared to that between the 

walks and that additional MCMC iterations are needed to achieve a stable PPD estimation.  

We implement a Metropolis-Hastings MCMC in which at each iteration we randomly select a given 

temporal location t where the current Vp, Vs and density model must be perturbed. The perturbation 

follows a multivariate Gaussian proposal with a zero mean and a covariance properly set to ensure an 

acceptance rate around 0.2-0.3. To preserve the geostatistical constraints in all the sampled models, 

a kriging interpolation is used to propagate the perturbation for the t time instant to the neighboring 

time positions (Aleardi and Salusti, 2019). Note that we only perturb a small subset of the whole 

model parameters vector (the parameters pertaining to the selected time position and the neighboring 

ones) to maintain a sufficiently high acceptance rate. Perturbing multiple time positions permits a 

reduction of the correlation of the sampled models but at the expense of a substantial decrease of the 

acceptance rate. We use four independent MCMC chains starting from models randomly generated 

according to the a-priori assumptions and running in parallel for 100000 iterations with a burn-in of 



6000 iterations. For the HMC we replace the numerical computation of the Jacobian used in the 

previous synthetic tests with the analytical matrix operator 𝐆 as given in equation 25. Similarly, for 

the MCMC inversion, we start the sampling from randomly generated models, and adopt four 

independent chains running in parallel for 5000 iterations with a burn-in of 300. The parameter setting 

for the HMC is equal to that used in the synthetic inversion discussed in the previous section, the only 

difference is that in this case we use a longer burn-in period. 

Figures 6 and 7 compare the PPDs estimated by the two algorithms. We observe that both MCMC 

and HMC provide congruent posterior estimates with a mean value in good agreement with the true 

model, whereas the data computed on the predicted mean posterior models satisfactory match the 

amplitudes of the observed seismic data. A comparison of the evolution of L2 norm data errors for 

the MCMC and HMC samplings (Figure 8) shows that 6000 iterations, approximately, are needed by 

the MCMC to converge toward the stationary regime, while the HMC requires less than 300 

iterations.  Figure 9 shows examples of evolutions of the PSRF values for some model parameters 

(extracted at different time positions) for both the MCMC and HMC inversions. The P-wave velocity 

is the elastic property that exerts the major influence on observed seismic amplitudes, and for this 

reason we observe that for both MCMC and HMC a lower number of iterations is needed to achieve 

stable posterior estimates of Vp with respect to Vs and density. For the MCMC inversion (Figures 9a-

c) usually 50000 and 70000 iterations are enough to obtain accurate Vp, and Vs PPDs, respectively, 

while for some time positions 100000 iterations are yet not enough to achieve reliable uncertainty 

quantifications for the density. The evolution of the PSRF for the same model parameters considered 

in Figures 9a-c, shows that the HMC attains stable posterior estimations for Vp, Vs, and density in 

less than 2000 iterations (Figures 9d-f).  

Figure 10 illustrates some examples of the autocorrelations of the sampled Vp, Vs and density models 

at a given time position along the inverted 1D profile and computed after the burn-in phase. We 

observe that 1000 iterations, approximately, are needed by the MCMC to sample uncorrelated 



models, while in the HMC inversion the autocorrelation value drops to zero in less than 20 iterations. 

This result indicates that the long-distance moves of the HMC provides highly uncorrelated samples.  

This example also illustrates that in the considered case replacing the Jacobian with the analytical 

matrix operator 𝐆 is a viable and successful strategy that provides accurate model predictions and 

uncertainty quantifications with a substantial reduction of the computational cost. Indeed, replacing 

the numerical computational of the Jacobian with the linear matrix operator reduces the total 

computing time of a single chain HMC inversion from 10 minutes to about 1.5 minutes on the same 

hardware previously described. For comparison we point out that the computational cost of a gradient-

based, Gauss-Newton inversion of the same synthetic data performed with a Matlab code running on 

the same hardware configuration is 5 s, approximately, whereas a Metropolis-Hasting MCMC 

sampling runs in about 11 minutes. This value is similar to an HMC run in which the numerical 

approach to the Jacobian computation is employed, but it is much higher than that of the previous 

HMC inversion in which the matrix G replaces the Jacobian. However, note that the convergence 

toward the stationary regime is slower when the Jacobian is replaced by the linear operator (compare 

Figure 8b with Figure 5) because in this case (if we neglect the role of the data covariance matrix) we 

are assuming that the curvature of the misfit function is constant over the entire model space. This 

oversimplification decreases the convergence speed of the algorithm and increases the degree of 

correlation between successively sampled models. In other words, successively sampled models are 

maximally decoupled when the numerical approximation of the Jacobian is used instead of the 

analytical matrix operator (see the next sections).  

Finally, we point out that in this example a more efficient MCMC sampling could be obtained by 

implementing more sophisticated sampling strategies. For examples, MCMC recipes that allow for  

better mixing of the different chains (e.g., differential evolution Markov Chain, or differential 

evolution adaptive Metropolis; Vrugt 2016). However, an optimal compromise between exploration 



and exploitation, or in other terms between the independence of the sampled models and the 

convergence speed toward the stationary regime, must be found.  

 

FIELD DATA INVERSIONS 

The target- and interval-oriented HMC inversions were tested on an onshore seismic data 

investigating a gas field located within a clastic, shale-sand sequence. The seismic data are 

characterized by a maximum source-to-receiver offset of 4 km and have been processed following a 

true-amplitude processing sequence. The data have a peak frequency around 40 Hz and a time 

sampling of 4 ms. Figure 11 displays an in-line section extracted from the 3D seismic stack volume, 

where we can observe the high amplitude anomaly marking the transition between the shale (cap-

rock) and the target sands (indicated by the black arrow). The seismic data along this in-line section 

will be considered in the interval-oriented inversion, whereas the top reservoir AVA response will be 

used by the target-oriented inversion.  

Figure 12 represents the root-mean-square (RMS) amplitude map extracted around the time-slice 

representing the top reflection of the investigated reservoir interval. Low amplitudes correspond to 

shale while high amplitudes identify the sand bodies. The green rectangle encloses the area considered 

in the target-oriented inversion, whereas the black arrow indicates the main gas sand body object of 

this study characterized by significant elastic contrasts with respect to the overlying layer. This map 

shows some high-frequency noise without spatial coherency that we attribute to residual noise 

contamination in the data. The lateral constraints included into the target-oriented approach are 

devoted at attenuating the effect of this residual noise in the final solution.  

The a-priori information used to define the vertical and lateral variability, the cross-correlation of the 

elastic properties, the elastic properties of the overlying layer (for the target-oriented inversion), and 

the low-frequency elastic background model (for the interval-oriented inversion) are derived from the 



available well-log data investigating the target layer. We consider the covariance and the spatial 

correlation of this prior model to be stationary that is spatially and temporarily invariant over the 

entire inverted domain. The noise standard deviation has been derived by comparing adjacent AVA 

responses (in the target-oriented inversion) and by comparing adjacent CMP gathers (in the interval-

oriented inversion), therefore assuming that these variations are only related to noise contamination 

(see Aleardi et al. 2018). In both the target- and interval-oriented inversions we consider an angle 

range between 15° and 40°. The angle-dependent wavelets input for the inversion stage have been 

estimated through a least-square truncated SVD inversion in which the reflectivity matrix has been 

derived from available borehole data (Bianco, 2016). In the following inversions we use the 

numerically computed Jacobian to derive the mass matrix. Appendix A shows the HMC parameter 

setting and the principal characteristics of the prior model employed in the following inversion 

experiments. 

  

Target-oriented inversion 

In this case the AVA responses of the top reflections of the investigated reservoir have been extracted 

from pre-stack Kirchhoff time-migrated CMP gathers. The reliability of the available pre-stack 

seismic data has been assessed by performing seismic-well-tie and by comparing the observed and 

the synthetic AVA responses derived from available well-log data.  

Figures 13a-b show close-up images of two CMP gathers extracted from the seismic volume and 

located near the main gas sand body. Note the strong negative amplitude anomalies marking the 

transition between the overlying shale and the reservoir sand. Figures 13c-d illustrate the AVA 

responses of the top reservoir reflections extracted from the two seismic gathers shown in Figures 

13a-b.  

Figure 14 represents the actual autocorrelation functions computed from the lateral variation of 

the seismic amplitudes along the in-line and cross-line directions, together with the approximated 



(analytical) autocorrelation functions computed by assuming a Gaussian variogram model. The 

inclusion of this theoretical variogram model into the HMC inversion imposes lateral constraints to 

the elastic models sampled by the HMC algorithm, thus reducing the model null space. The elastic 

properties of the upper layer have been derived from a geostatistical interpolation of the logged elastic 

values pertaining to the cap rock shale. The uncertainty resulting from this interpolation has been 

included into the data covariance matrix as previously discussed. The same interpolation method has 

been used to derive the starting point for the HMC inversion (Figures 15a-c). In the inversion we use 

a single HMC chain running for 70000 iterations. All the models sampled after a burn-in period of 

100 iterations are considered in the computation of the final results (mean a posteriori model, 1D 

marginal distribution for the elastic parameters, and standard deviation maps).  

Figures 15d-f show the estimated Vp, Vs and density posterior mean models around the top of the 

considered reservoir layer. High Vp, Vs, and density values pertain to shale, while low elastic property 

values identify the sand bodies. The lowest Vp, Vs, and density values pertain to the gas-saturated 

sand body (see the black arrows in Figures 15d-f). Note that the lateral constraints included into the 

inversion algorithm efficiently attenuate the scattering visible in the RMS map of Figure 12 and 

provide final estimations with realistic lateral continuity of the elastic parameters. 

Figure 16 represents some examples of marginal PPDs for Vp, Vs, and density pertaining to 

different CMP gather positions. As expected, the uncertainties increase moving from Vp, to Vs and 

to density. Note that the mildly non-linear forward operator makes these distributions very close to a 

Gaussian model.  

In Figure 17 we represent the estimated posterior standard deviation map for Vp, Vs and density 

numerically computed from the ensemble of sampled models. Note, that the uncertainty for a given 

model parameter is inversely proportional to the curvature of the misfit function and so it depends on 

the likelihood function and on the prior information infused into the inversion (see equation 9 and 



Menke, 2018). In our case, the forward modeling is non-linear and for this reason such curvature, and 

then the model uncertainty, is expected to vary over the model space. 

Figure 18 shows the normalized autocorrelation coefficients computed for 2000 successively 

sampled Vp, Vs and density models. The fast drop of the autocorrelation to 0 demonstrates that the 

HMC algorithms samples highly uncorrelated models, or in other words that the long-distance HMC 

moves guarantee the mixing of the Monte Carlo chain. 

Figure 19a displays the evolution of the misfit function during the HMC iterations. It emerges that 

less than 100 iterations are needed to attain the stationary regime. However, note that both the 

extremely fast convergence rate and the independency of the sampled models are also favored by the 

weakly non-linearity of the inversion procedure and by the use of the Jacobian in the computation of 

the mass matrix. The independence of the HMC samples is also illustrated by the strongly variable 

misfit values with iterations (close-up of Figure 19b). Indeed, we observe that the variation of the 

misfit value for successively sampled models is comparable to the full range of misfit variation 

attained after the burn-in period. 

To finally illustrate the reliability of the HMC predictions, we run a more standard Bayesian non-

linear AVA inversion without lateral constraints (see Aleardi et al. 2017 for more details) on the same 

AVA responses previously considered. The comparison of the mean a-posteriori solutions provided 

by the HMC algorithm (Figure 15) and by the more standard AVA inversion approach (Figure 20) 

shows that the two methods yield congruent results. In particular, the lateral constraints included into 

the HMC inversion efficiently attenuate the noise propagation from the data to the model space and 

promote the lateral continuity of the results.  

During the HMC inversion the acceptance rate in the post-burn in phase was around 0.55, whereas, 

the total computational cost was 35 minutes on the same hardware configuration used in the synthetic 

tests.  



Interval-oriented inversion 

Now we apply the 1D interval-oriented inversion along the in-line section shown in Figure 11. In this 

case we employ a single HMC chain running for 5000 iterations with a burn-in period of 100 

iterations. The low-frequency elastic model that acts as the starting point for the HMC sampling has 

been derived from a geostatistical interpolation of well log data (Figures 21a-c). Figures 21d-f show 

the estimated posterior mean values for Vp, Vs, and density. Again, significant decreases of Vp, Vs 

and density mark the transition between the encasing shale and the target gas-sand interval (black 

arrows in Figure 11). We observe that the lateral continuity of the results decreases from Vp, to Vs 

and is particularly low for density. This can be explained by considering the relative influence played 

by each elastic parameter in the observed reflected amplitudes (see for example Aleardi 2015), and 

that each CMP gather is inverted separately with no lateral constraints included into the inversion 

kernel. In particular, it is well known that the Rpp coefficients are mainly influenced by the Vp 

parameter, while the density cannot be reliably estimated with realistic noise levels (Buland and 

Omre, 2003) and without ultra-far source-receiver offsets. For these reasons, we are less confident on 

the estimated density model. 

Figure 22 represents the 1D marginal distributions estimated for the CMP located at the horizontal 

coordinate of 1 km (see Figure 21). Again, we note that the uncertainties increase from Vp, to Vs and 

are particularly high for density. However, we also observe that the estimated posterior means are 

very different from the starting model thus demonstrating that the observed data brings valuable 

information about the subsurface properties. This is also confirmed by the good match between the 

observed CMP gather and the data computed on the estimated mean model and by the substantial 

difference between the predicted data and the data computed on the starting model.  

The estimated standard deviations along the considered in-line section are represented in Figure 23. 

Similarly to the target-oriented inversion, the standard deviation value is inversely proportional to the 

curvature of the misfit function and increases moving from sand to shale intervals. The lateral 



scattering affecting the estimated standard deviation maps is probably related to the different signal-

to-noise ratios of adjacent CMPs. Indeed, we remind that the data covariance matrices are 

independently estimated for each inverted seismic gather. 

The evolution of the misfit value for a single CMP gather inversion shows a very fast convergence 

toward the stationary regime that is reached in 60 iterations (Figure 24a). Figure 24b shows that the 

interval-oriented HMC algorithm is able to perform long jumps in the model space, thus producing 

very low correlation coefficients between successively sampled models. For brevity, we limit to plot 

the autocorrelation of the Vs models sampled at a given time position, but similar conclusions would 

have been drawn for the other elastic properties and for different time samples. The use of the 

numerical approximation of the Jacobian promotes the independence of the sampled models and 

speeds up the convergence of the algorithm toward the stationary regime, at the expense of an 

increased computational effort with respect to the case in which the Jacobian is replaced by the matrix 

G. For example, we can compare the independency of the sampled models for this field data inversion 

and for the synthetic inversion discussed previously in which the Jacobian was replaced by the 

analytical matrix G (see Figures 7-10). Both inversions consider a comparable number of unknowns, 

but we observe that when the Jacobian is employed, the autocorrelation value drops to zero in less 

than five iterations. Otherwise, when the matrix G replaces the Jacobian, 15-20 iterations are needed 

to observe an autocorrelation value close to zero.  

Finally, we compare the mean Vp model provided by the HMC inversion and the logged Vp values 

measured along three wells investigating the target reservoir (Figure 25). The good match between 

the sonic log and the Vp field provided by the HMC algorithm illustrates the reliability and the 

applicability of the implemented HMC algorithm. The acceptance rate during the post burn-in stage 

oscillates around the 50-60%, thus demonstrating an optimal setting of the HMC user-defined 

parameters. The total computational cost for inverting the entire 2D section was 13 hours, 

approximately, on the same hardware previously described. 



DISCUSSION 

The implemented HMC algorithm is aimed at efficiently sampling highly dimensional posterior 

distributions in non-linear AVA inversions. This ability rests on the exploitation of the derivative 

information of the misfit function within the sampling framework. This additional information is not 

considered by standard Monte Carlo methods, such the well-known Metropolis-Hastings algorithm. 

The main computational requirements for HMC with respect to MCMC comes from the need to 

compute derivatives. In cases of linear problems this is not an issue because the derivative is explicitly 

represented by the forward matrix operator. In this context, the outstanding benefit of HMC over the 

standard analytical inversion is the possibility to accurately sample the PPD even in cases of non-

Gaussian prior models.  

 

Jacobian matrix 

In cases of non-linear problems, a parallel implementation could be useful to speed up the numerical 

computation of the Jacobian matrix or of the gradient of the potential energy. In our AVA inversion 

examples the analytical forward modeling based on the Zoeppritz equations allows for a fast 

computation of the Jacobian both in the target- and interval-oriented inversions. However, we also 

proposed a possible strategy to significantly reduce the computational cost of the HMC inversion, in 

which the numerical approximation of the Jacobian is replaced by a matrix operator G analytically 

derived from a linearized approximation of the full Zoeppritz equations. In the synthetic interval-

oriented inversion this approach made it possible to reduce the computational cost of a single HMC 

inversion from 10 to 1.5 minutes, approximately, and still provided satisfactory model predictions 

and uncertainty quantifications. In any case this reduction of the computational effort occurs at the 

expense of a decreased convergence toward the stationary regime and to an overall decrease of the 

independence of successively sampled models. In any case, using this strategy an AVA-HMC 

inversion becomes much less computationally expensive than a MCMC run. Additional field data 



inversions on the same dataset used in this work confirmed these conclusions. We also remind that 

the validity of the analytical forward modeling G depends on the considered angle range and on the 

magnitude of the elastic contrasts at the reflecting interface. From the above considerations it emerges 

that the choice of replacing the Jacobian with the matrix G must be considered case-by-case and 

should constitute a compromise between the sampling efficiency and the computational cost of the 

HMC inversion.  

 

Geostatistical constraints and alternative model space parameterizations 

Due to the high-dimensional parameter spaces sampled in the previous AVA inversions, we found 

particularly useful the infusion of geostatistical constraints into the prior model. This inclusion 

mitigates the so-called curse of dimensionality issue, because significantly reduces the hyper-volume 

of the model space to be explored. In other words, this strategy limits the exploration of the model 

space to only those regions in which the models satisfy the a-priori assumptions. A parsimonious 

reparameterization of the model in terms of orthogonal basis functions (e.g., Legendre polynomials, 

Chebyshev polynomials, Discrete Cosine Transform) could be also useful to mitigate the curse of 

dimensionality problem. In this context the unknowns will become the numerical coefficients 

associated to each new basis function. We are now working on this research topic because we believe 

that this kind of reparameterizations of the model space could be useful to extend the time-interval 

HMC-AVA inversion to 2D or even 3D models. Indeed, preliminary experiments we carried out show 

that the current HMC implementation is too inefficient and not scalable to large 2D or even 3D 

inversions. However, note that this scalability issue (related to the curse of dimensionality issue) also 

affects the more standard MCMC approach and for this reason many strategies have been proposed 

such as starting the MCMC sampling from the results of a previous computationally fast analytical 

inversion (e.g., de Figueiredo et al. 2018).   

 



Parameter setting 

A critical aspect of HMC inversion is the choice of the phase-space trajectory length.  To this end, in 

each iteration we draw the L parameter, which controls the number of time integration steps and the 

trajectory length, from a uniform distribution. However, this parameter can be adaptively set by 

adopting the so called no U-turns sampling method (Gelman et al. 2013; Hoffman and Gelman et al. 

2014) that stops the integration process when the trajectory returns towards its starting position. In 

cases of linear problems with an optimal choice for the mass matrix, the optimal trajectory length is 

π (Fictner et al. 2019). Obviously, the setting of L is more complicated in case of non-linear problems. 

In the examples discussed here we found that 5–10 time steps are usually optimal. Fewer time steps 

leaded to very high acceptance rates but at the expense of a slow convergence of the algorithm and a 

limited exploration of the parameter space. Otherwise, more time steps resulted in low acceptance 

rates and in a decreased accuracy of the numerical integration. A critical element of HMC is the 

choice of a suitable mass matrix. We found that setting this matrix equal to the inverse of the locally 

approximated posterior covariance guarantees stable posterior estimations using only few thousands 

of samples. Similarly, deriving this matrix from a linearization of the Zoeppritz equations 

demonstrated to be a viable strategy. However, as previously mentioned, the applicability of this 

alternative approach is strongly case dependent because it assumes a constant curvature of the misfit 

function over the entire model space. This could be an oversimplified assumption in case of wide-

angle ranges and significant elastic contrasts at the reflecting interface. In practical terms this 

translates into slower convergence and not-null correlation values between successively sampled 

models. We experimented that other choices of the mass matrix, for examples a scalar multiple of the 

identity matrix, result in very slow convergence and unreliable posterior assessments because with 

this approach we are totally neglecting both the correlation and the spatial continuity of the inverted 

parameters. 



We point out that similarly to other sampling methods, the efficiency of the HMC algorithm is heavily 

context-dependent and in particular it depends on the computational effort for the Jacobian 

computation and on the parameter tuning (e.g. choice of the mass matrix and of the trajectory length 

in the phase-space). There are no general rules to optimally set the HMC parameters and for this 

reason we opted for a trial and error procedure aimed at finding a good compromise between the 

converge of the algorithm toward the stationary regime and its sampling efficiency. In particular, two 

main principles guided us in setting the HMC user-defined parameters: obtain an acceptance rate 

around 0.6 in the post burn-in phase and promote as much as possible the independency of 

successively sampled models. 

 

Future developments 

We are now extending the implemented HMC method to other parametric and even non-parametric 

prior models: for example the Cauchy or Huber distributions on model parameters could be used to 

preserve sharp geological boundaries, while a kernel density estimation of the prior model would 

permit the inclusion of more complex prior distributions within the inversion framework. We are also 

working on extending the approach to a seismic-petrophysical inversion for a direct estimation of the 

petrophysical rock properties of interest from seismic data (i.e., porosity, fluid saturation). In this case 

a properly calibrated rock-physics model should be included into the forward modeling operator to 

directly link the seismic response to the contrasts in the petrophysical rock-properties. In view of 

applications of the implemented method to reservoir characterization studies, we are extending the 

HMC to sample from a multimodal target distribution. Indeed, in this case it would be essential 

properly modeling the facies-dependent behavior of petrophysical properties. However, it is known 

that HMC faces major problems when the PPD is multimodal. Making the HMC work in cases of 

multimodal target distributions is an active research field and improved HMC implementations have 

been developed over the very last years. These implementations reformulate the geometry of the 



phase-space (e.g. Riemann manifold HMC, Girolami and Calderhead, 2011; wormhole HMC, Lan et 

al. 2014), or exploit thermodynamic principles to jump between different modes of the target 

distribution (see for example the continuously tempered HMC; Graham and Storkey, 2017), or 

include these two strategies into a single hybrid sampling algorithm (e.g., the geometrically tempered 

HMC; Nishimura and Dunson, 2016). Preliminary tests we carried out with a Gaussian mixture prior 

model show that the our actual HMC implementation can reliably sample from a multimodal 

distribution only if the Gaussian components of the mixture overlap. The sampling become inefficient 

when the Gaussian components are separated by high energy barriers (low probability regions). A 

possible strategy to extend the implemented HMC approach to multimodal, non-parametric posterior 

models could be introducing a normal score transformation into the sampling framework that converts 

the non-parametric prior into a Gaussian distribution (Aleardi and Salusti 2019).  

Another challenge is to extend the HMC inversion for solving a mixed continuous-discrete inverse 

problem in which the continuous properties are the elastic or petrophysical parameters while the litho-

fluid facies constitute the discrete property. In addition, we are extending the HMC approach to other 

highly non-linear geophysical inverse problems such as the full-waveform inversion of seismic data. 

In this context a computationally efficient method to compute the Jacobian (i.e. the adjoint state 

method) is needed to maintain the computational cost affordable.  

 

CONCLUSIONS 

We apply Hamiltonian Monte Carlo (HMC) sampling algorithms for target-oriented and interval- 

oriented elastic AVA inversions. The aim was to efficiently derive accurate posterior uncertainty 

estimations for a non-linear forward modeling operator based on the exact Zoeppritz equations. The 

assumption of a simple Gaussian prior model ensured an efficient sampling of the model space and 

allowed an easy inclusion of spatial constraints into the inversion framework. The synthetic and field 

data examples demonstrated the applicability, the reliability, and the efficiency of the implemented 



algorithm. In particular, the HMC algorithm (if properly set) showed extremely fast convergence rates 

and retrieved accurate posterior assessments, together with reliable model parameter estimations with 

a limited number of sampled models when compared to a Metropolis-Hasting MCMC. However, a 

crucial aspect of HMC inversion is the need of a computationally efficient strategy to compute the 

derivative of the misfit function. For this reason, to drastically reduces the computational cost of an 

AVA-HMC inversion we proposed to replace the numerical computational of the Jacobian with a 

matrix operator that can be analytically derived from a linear approximation of the full Zoeppritz 

equations. In our tests, this strategy still provided accurate model predictions and posterior 

estimations but at the expense of an overall decrease of the sampling efficiency of the HMC algorithm 

(e.g. slower convergence toward the stationary regime and increase of the correlation value between 

successively sampled models). The applicability of this approach should be evaluated case-by-case 

because the validity of the linearization of the Zoeppritz equations depends on the considered angle 

range and on the elastic contrasts at the reflective interfaces. 

This work demonstrates that the HMC method is a very promising approach for non-linear AVA 

inversion that could constitute a valid alternative to the more popular MCMC algorithms. For this 

reason, the HMC is surely worth of additional investigations, such as the extension of the 

implemented HMC to multimodal PPDs.  
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Appendix A: parameter setting 

The following tables summarize the main user-defined parameters of the HMC algorithm, and some 

statistical properties of the prior model used in the synthetic and field data tests. 

Prior in the Vp, Vs and density model space Gaussian with spatially variable mean value 

and stationary covariance matrix 

Number of unknowns (for each block) 50 × 50 × 3 = 7500 

Number of iterations (for each block) 50000 

Burn-in 100 

L parameter for HMC Uniformly distributed within [5, 10] 

𝛿 parameter for HMC 0.7 

CMP gridding size  25 m along the cross-line and in-line directions 

𝛼 parameter for the variogram along the in-line 

direction 

60 m 

𝛼 parameter for the variogram along the cross-

line direction 

45 m 

Table 1: Parameters for the target-oriented synthetic inversion test. 

  



Prior in the Vp, Vs and density model space Log-Gaussian with temporarily variable mean 

value and stationary covariance matrix 

Number of unknowns  91 × 3 = 273 

Number of iterations 5000 

Burn-in 100 

L parameter for HMC Uniformly distributed within [5, 10] 

𝛿 parameter for HMC 0.06 

Time sampling  0.001 s 

𝛼 parameter for the vertical variogram  0.003 s 

Table 2: Parameters for the interval-oriented synthetic inversion test. 

Prior in the Vp, Vs and density model space Gaussian with spatially variable mean value 

and stationary covariance matrix 

Number of unknowns  71 × 80 × 3 = 17040 

Number of iterations 70000 

Burn-in 100 

L parameter for HMC Uniformly distributed within [5, 10] 

𝛿 parameter for HMC 0.5 

CMP gridding size  25 m along the cross-line and in-line directions 

𝛼 parameter for the variogram along the in-line 

direction 

60 m 

𝛼 parameter for the variogram along the cross-

line direction 

40 m 

Table 3: Parameters for the field target-oriented inversion. 

  



Prior in the Vp, Vs and density model space Log-Gaussian with temporarily variable mean 

value and stationary covariance matrix 

Number of unknowns for each CMP gather 75 × 3 = 225 

Number of iterations 5000 

Burn-in 100 

L parameter for HMC Uniformly distributed within [5, 10] 

𝛿 parameter for HMC 0.1 

Time sampling  0.004 s 

𝛼 parameter for the vertical variogram  0.010 s 

Table 4: Parameters for the field interval-oriented inversion. 

  



FIGURES 

 

Figure 1: a) The true model. b) A heavily smoothed version of the true model used as starting point 

for the HMC inversion. c) The estimated posterior mean. In a), b), and c) the Vp, Vs, and density are 

represented from left to right columns, respectively.  

  



 

Figure 2: Examples of 1D marginal posterior distributions for Vp (a), Vs (b), and density (c) 

pertaining to different CMP gather positions. The red and green lines represent the true elastic 

properties and the starting model, respectively. d) The CMP locations are identified by the colored 

circles overlapped to the estimated mean Vp model. 

  



 

Figure 3: Evolution of the misfit function value for the synthetic target-oriented inversion. 

  



 

 

Figure 4: Results for the interval-oriented inversion on synthetic data. In a), b) and c) the black 

lines represent the true property values, the blue lines are the estimated mean models, the green lines 

show the starting model, whereas the colormap codes the estimated PPD. d) Comparison of observed 

(black) and predicted (red) seismic data computed on the a-posteriori mean model. 

  



 

Figure 5: Evolution of the misfit function value for the synthetic interval-oriented inversion. 

  



 

Figure 6: Results for the interval-oriented MCMC inversion on synthetic data. In a), b) and c) the 

black lines represent the true property values, the blue lines are the estimated mean models, the green 

lines show the starting model, whereas the colormap codes the estimated PPD. d) Comparison of 

observed (black) and predicted (red) seismic data computed on the a-posteriori mean model. 

 

  



 

Figure 7: As in Figure 6 but for the HMC inversion in which the Jacobian is replaced by the analytical 

matrix operator G. 

 

  



 

 

 

Figure 8: Evolution of the L2 norm data misfit for the four chains. a) MCMC. b) HMC. 

 

  



 

Figure 9: Examples of evolution of the PSRF value computed for five different time positions and for 

Vp, Vs and density. a), b), and c) pertain to MCMC. d), e) and f) pertain to HMC. The red dotted lines 

represent the theoretical threshold value of 1.2 that indicates the convergence toward a stable 

posterior model. 

  



 

Figure 10: Examples of normalized autocorrelations functions computed from the Vp (a), Vs (b), and 

density (c) models sampled by the MCMC at a given time position. Examples of normalized 

autocorrelations functions computed from the Vp (d), Vs (e), and density (f) models sampled by the 

HMC at a given time position.  

  



 

Figure 11: In-line section extracted from the 3D seismic volume. The black arrow shows the top 

reflection of the investigated reservoir. The dotted line evidences the time slice considered in the 

target-oriented inversion. 

  



 

 

Figure 12: RMS amplitude map at the top of the investigated reservoir. The green rectangle 

encloses the area considered in the target-oriented inversion. The black arrow points toward the 

main gas sand body. 

  



 

Figure 13: a) and b) show close-ups of two pre-stack seismic gathers. The strong amplitude 

anomaly at 0.88 s, approximatively (red dotted lines), identifies the top reservoir reflection. c), and 

d) represent the AVA responses of the target reflection extracted from the CMPs shown in a) and b), 

respectively. 

  



 

Figure 14: Actual (red lines) and approximated (blue lines) lateral autocorrelation functions for 

the cross-line (a) and in-line (b) directions. 

  



 

Figure 15: a), b) and c) show the starting Vp, Vs and density models, respectively. d), e), and f) 

show the a-posteriori mean Vp, Vs and density models, respectively. The black arrows highlight the 

very low elastic property values associated to the main gas-saturated sand body.  

  



 

Figure 16: a), b) and c), show some examples of 1D Marginal PPDs for Vp, Vs, and density, 

respectively, extracted for different CMP gather positions. Red and green lines represent the a-

posteriori mean and the starting model values, respectively. d) The CMP locations are identified by 

the colored circles overlapped to the estimated mean Vp model.  

  



 

Figure 17: Maps of estimated standard deviations for Vp (a), Vs (b), and density (c) represented 

for each inverted CMP position. 

  



 

Figure 18:  Examples of normalized autocorrelation coefficients for 2000 successively sampled 

models of Vp (a), Vs (b), and density (c) at a given CMP location.  

  



 

Figure 19: a) Evolution of the misfit function during the HMC sampling. b) Close-up of a) showing 

the highly variable misfit value versus the iteration number. 

  



 

Figure 20: The a-posteriori mean values for Vp (a), Vs (b), and density (c) provided by a standard 

non-linear Bayesian AVA inversion at the top of the target reservoir.  

  



 

 

Figure 21: a), b, and c) represent the low frequency Vp, Vs and density models, respectively, used 

as starting point for the HMC inversion. d), e), and f) show the estimated a-posteriori Vp, Vs, and 

density mean models, respectively. 

  



 

Figure 22: a)-c) Comparison between the estimated marginal distribution for Vp, Vs and density 

(color scale), the starting models (green line), and the posterior mean (black line). d) Comparison 

between the observed data (black), the predicted data computed on the posterior mean (red) and the 

data computed on the starting model (green).  These results pertain to the CMP gather located at the 

horizontal coordinate of 1 km (see Figure 21). 

  



 

Figure 23: Estimated standard deviations for Vp (a), Vs (b), and density (c). 

 

  



 

Figure 24: a) Example of evolution of the misfit function during the HMC sampling for a given 

CMP position. b) Example of autocorrelation for the Vs parameter. 

  



 

Figure 25: A Comparison of the mean Vp solution provided by the HMC inversion and the logged 

Vp values recorded in three wells. The dotted and continuous black and gray lines delineate the target 

zone. 

 

  

 

 

 

 


