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Abstract 10 

The migration starting date (MSD) of 30 Eurasian teal and 8 Eurasian stone-curlews was estimated by 11 

processing tracking data with four methods. A significant difference was found for teal, with methods fitting 12 

models on Net Square Displacement postponing MSD compared to distance threshold methods. In stone-13 

curlews the four methods provided comparable MSD estimates. The reliability of teal MSD was evaluated 14 

comparing the estimated ratio between time at stopover/time in flight with the ratio expected from the 15 

optimal migration theory. Threshold methods provided estimates closer to the ratio expected for time-16 

minimizing migrants and therefore seems the most reliable approach, especially for datasets with irregular 17 

sampling and variable migratory strategies. 18 
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Introduction 33 

Understanding the phenology of migration is important for outlining bird movement strategies and for 34 

planning effective management and/or conservation actions (Arzel et al. 2006; Runge et al. 2014). The 35 

correct identification of the migration starting date (MSD) is crucial, especially to assess the species 36 

migratory time budget (Hedenström and Alerstam 1997), to investigate the environmental factors affecting 37 

the start of migratory movements (Bauer et al. 2008; Kölzsch et al. 2015; Kelly et al. 2016; Thorup et al. 38 

2017), and to make inferences on the response of migrating animals to the changing environment, for 39 

instance to assess if they are able to adjust their migratory strategy to the environmental conditions 40 

experienced (e.g. Clausen and Clausen 2013; Clausen et al. 2018).Thus, an incorrect evaluation of the 41 

seasonal onset of migration could invalidate the successive analyses of migratory phenology leading to a 42 

biased estimate of the intra-individual variability in migratory behaviour (Schmaljohann et al. 2018). 43 

A proper evaluation of the start of migration coupled with a more in-depth knowledge of bird migratory 44 

strategy is also necessary to develop sustainable management of migrants. In particular, hunting regulations 45 

of quarry species must be based on accurate scientific data regarding the migratory ecology of the species 46 

considered, including the timing of their breeding migration (Arzel et al. 2006; Madsen et al. 2015). This 47 

information should be derived not only through bird ringing and counts, as it has been done so far, but also 48 

with the help of the more precise information gained from bird tracking. 49 

However, estimating the MSD can pose several methodological problems, mostly related to the tracking 50 

devices. For instance, small tags often have to be programmed with duty cycles with long off-periods to 51 

preserve their battery life (e.g. Chan et al. 2019; Ruthrauff et al. 2019). The discontinuous tracking records 52 

obtained in this way only permit an estimation of the MSD, given that the exact departure date is usually not 53 

observed. A similar limitation applies to birds using dense vegetation cover during the day (Tedeschi et al. 54 

2019) or with a strictly nocturnal activity (English et al. 2017; Norevik et al. 2017), that may prevent the use 55 

of rechargeable tags. In addition, the spatial behaviour of tracked birds can affect the identification of MSD, 56 

as some species can visit several areas in sequence during the wintering period (Bächler et al. 2010; Lemke 57 

et al. 2013); in these cases, distinguishing wintering movements from actual migration may be quite 58 

challenging. 59 

Previous studies have often relied on subjective criteria to identify MSD. For example, distance thresholds 60 

are frequently used to identify the migration starting date (e.g. Arizaga et al. 2014; Giunchi et al. 2019; 61 

Tedeschi et al. 2019), assuming that migration starts when a bird moves more than a given distance. Even if 62 

this approach is adapted to the studied system, a comparison among studies can be difficult, as threshold 63 

choice is somewhat subjective. This limitation leads to several theoretical and practical consequences: for 64 

instance, performing meta analytical studies becomes challenging, as well as developing management 65 

strategies at continental scales by integrating the results of studies performed on different populations. These 66 

problems can be partially overcome by estimating the start of migration using a modelling approach, like 67 

fitting models to the Net Square Displacement (e.g. Bunnefeld et al. 2011, see below), but to our knowledge 68 

this technique has been rarely adopted in bird migration studies (Orgeret et al. 2019; Soriano-Redondo et al. 69 

2020). Another possible way to identify MSD is by segmenting the observed track using methods 70 

distinguishing different behavioural states basing on changes in turning angles and speeds (e.g. Gurarie et al. 71 

2016; Garriga et al. 2016; Michelot et al. 2016). These techniques however do not apply well to data sets 72 

with highly irregular sampling, such as those typically obtained with small tags and/or with Argos telemetry 73 

systems. 74 

In this paper, we compared four methods to identify the MSD, two based on thresholds and two based on 75 

modelling Net Square Displacement (NSD, the straight-line distance between the first location and the 76 

subsequent locations of an animal, Turchin 1998). The methods were tested on two species which adopt a 77 



completely different migratory strategy: the Eurasian Teal (Anas crecca, hereafter teal) that migrates for 78 

thousands of kilometers stopping several times along the journey (Giunchi et al. 2019) and the Eurasian 79 

Stone-curlew (Burhinus oedicnemus, hereafter stone-curlew) that conversely performs a rapid and direct 80 

migration towards the final goal rarely stopping along their route (Giunchi et al. 2015). Our aim was to 81 

assess whether methods based on modelling NSD provide a significant improvement with respect to 82 

threshold methods when applied to different migratory strategies and tracking systems. The outcomes of the 83 

present work will be especially beneficial for studies on species difficult to be tracked, such as small 84 

passerines or strictly nocturnal birds, that have major tracking problems with low temporal resolution. 85 

Methods 86 

We considered the pre-breeding migration of thirty teal, captured at their wintering sites and tracked using 87 

duty-cycled Argos transmitters (model PTT-100, 9.5 g, Microwave Telemetry Inc., Columbia, MD, USA), 88 

that produced an irregular tracking record, and of eight stone-curlews, captured at their breeding sites and 89 

tracked with GPS loggers (Harrier GPS logger, 16 g, Ecotone, Poland) providing 1 location/hour (Table S1 90 

and Fig. S1). Given the different temporal accuracy of the two systems, stone-curlew data were randomly 91 

resampled to obtain one location every 12-36 hours on average (median = 26.4; IQR = 24.9 – 28.4; n = 8), so 92 

to have a dataset more comparable to the teal, for which a median of 1 location every 32.9 hours (IQR 23.1–93 

53.6, n = 30), was available. Stone-curlew data were not resampled at an even lower rate because we wanted 94 

to keep some fixes along the migratory route of each bird, that was completed in a few days. The tracking 95 

instruments had a different accuracy in localizing the birds. For Argos transmitters, the location error was 96 

higher than 150 m (CLS 2016), while the GPS error was around 25 m as reported by the manufacturers. 97 

Distance threshold method  98 

We used a distance threshold (DT) to distinguish between short movements performed in the wintering area 99 

and the actual migratory movements, and this threshold was objectively defined for each species by using a 100 

finite mixture modelling approach (McLachlan and Peel 2000). We hypothesized that the distribution of 101 

distances between successive fixes collected during the tracking period (see Table S2) was actually a mixture 102 

of two distributions, one related to area-restricted movements during the wintering or stopover phases and 103 

one deriving from the longer movements during migration. 104 

We estimated the density of component distributions by assuming that each component has a completely 105 

unspecified density except that it is symmetric around zero. We then used the semiparametric Expectation-106 

Maximization (EM) algorithm for location mixtures of univariate data and symmetric component density 107 

(Bordes et al. 2007; Benaglia et al. 2009) using the package “mixtools” (v. 1.1.0; Benaglia et al. 2009) to 108 

obtain the maximum likelihood estimation of model parameters. The density distribution of each component 109 

was estimated using the Kernel approach setting the bandwidth according to the “Silverman’s rule of thumb” 110 

(Silverman 1986). For both species the DT was then identified as the distance (rounded to the nearest 111 

kilometer) where the density component related to long-range migratory movements exceeds the density 112 

component related to area restricted movements. The resulting DT were 24 km for teal and 23 km for stone-113 

curlews (see Figure S2). Considering the sampling rate of the transmitters, the migration was considered 114 

started when birds moved more than the DT in any direction without returning to the wintering site within 2 115 

days. Following Arizaga et al. (2014), the MSD was defined as the mean date between the last location in the 116 

wintering area and the first location during migration. 117 

In teal, we also compared the MSD estimated through the finite mixture model with those obtained using a 118 

more subjective method (Giunchi et al. 2019) that returned a threshold of 30 km deriving from the maximum 119 

distances travelled between successive locations by the individuals while staying in the wintering site (which 120 

in this case corresponded to the capture area).  121 



Distance and heading threshold method  122 

The distance method was implemented by adding a criterion based on the direction followed by the animal 123 

(Distance and Heading Threshold method, DHT; Fig. S3). 124 

We estimated individual headings as the beeline between two consecutive locations, which for teal were the 125 

centroids of the areas where the bird was stationary, for stone-curlews the daily resampled locations. Each 126 

heading was compared to the mean direction of the breeding grounds (BGD), estimated for teals as the mean 127 

beeline between capture and breeding sites of all tracked individuals (Giunchi et al. 2019) and for stone-128 

curlew as the mean beeline between each fix and the breeding grounds.  129 

When the distance between successive locations was >DT, we checked if the heading was included in the 130 

sector BGD±60°. If both filters were passed, we considered the migration started otherwise we iterated the 131 

same procedure with the next pair of consecutive areas. 132 

We tested both BGD±45° and BGD±60° sector as DHT thresholds but no differences were recorded in the 133 

SDM estimated for both species, so we only report the results obtained with BGD±60°. 134 

Fitting logistic models to net square displacement  135 

To assess the movement strategy adopted by a given animal, Bunnefeld and colleagues (2011) proposed to fit 136 

different models, corresponding to idealized movement strategies, to NSD. Following this approach, we used 137 

the R-package “migrateR” (v. 1.0.7; Spitz et al. 2017) to fit a sigmoid function to the NSD data of each 138 

tracked bird and we estimated the migration starting date as the time of the first inflection point of the 139 

function (Bunnefeld et al. 2011) (NSDlogi method; Fig. S4). 140 

Fitting mixture models to net square displacement  141 

Bastille-Rosseau et al. (2016) used a latent discrete-state model fitted to NSD to identify the type of 142 

movement performed. We use the R-package “lsmnsd” (v. 0.0.0.9000; Bastille-Rosseau et al. 2019) to model 143 

the NSD data of each individual and estimated the start of migration as the time of the switch between an 144 

encamped movement mode and a transitional movement mode (migration; NSDmix method;  Fig. S4). The 145 

model was run using 3 chains and 250,000 iterations and the Gelman and Rubin criterion was used to assess 146 

the convergence of the MCMC output (Gelman et al. 2003). In the 19 cases where convergence was not 147 

achieved, we increased the iterations to 500,000, but in six teal and three stone-curlews the model failed to 148 

converge.  149 

Comparison among methods 150 

Estimated MSD were compared by fitting Linear Mixed Models (LMM) for each species separately, with 151 

MSD as dependent variable and the method used to estimate it as independent variable. The animal ID was 152 

included in the model as random factor. Fixed factor significance was tested using the Likelihood Ratio (LR) 153 

test. LMM were run using package “lme” (v. 4 1.1-21; Bates et al. 2015). We used the package “multicomp” 154 

(v. 1.4-10; Hothorn et al. 2008) to test the pairwise comparisons between the two general approaches 155 

(threshold methods vs NSD methods) and within them (DT vs. DHT and NSDlogi vs. NSDmix). Marginal 156 

means and 95% confidence intervals (95% CI) were calculated and plotted using the package “ggeffects” (v. 157 

0.10.0; Lüdecke 2018). 158 

In teal we evaluated the reliability of estimated MSD by calculating the ratio between the time spent in 159 

stopover areas and the time spent travelling (St/Tr ratio; Hedenström and Alerstam 1997). We assumed that a 160 

correctly estimated MSD would lead to: 1) a relatively homogeneous St/Tr ratios among individuals, given 161 

that birds of the same species wintering in the same geographic area are supposed to follow a similar 162 

migratory strategy; 2) a St/Tr ratio close to 7:1 or even larger than that, considering that this ratio has been 163 



derived for small time-minimizing migrants (Hedenström and Alerstam 1997; Pennycuick 2008). The St/Tr 164 

ratios estimated by the different methods for birds completing spring migration were compared using the 165 

overdispersed binomial logit model (Williams 1982) implemented in the package “dispmod” (v 1.2; Scrucca 166 

2018). A two-vector response variable (the number of days spent in stopover areas and the number of days 167 

spent flying) was used as dependent variable and method as independent variable. The significance of the 168 

predictor was tested using the LR test, performing the same comparisons reported above for LMM. Pairwise 169 

comparisons of the coefficients of variation of the St/Tr ratios obtained from the four methods were 170 

performed by means of the modified signed-likelihood ratio test (Krishnamoorthy and Lee 2014) with 10,000 171 

simulations, implemented in the package “cvequality” (v. 0.1.3; Marwick and Krishnamoorthy 2018). To 172 

avoid pseudoreplication, we used only one randomly selected datum per individual, and we adjusted the p-173 

values obtained in these comparisons by using the false discovery rate technique (Benjamini and Hochberg 174 

1995). 175 

All statistical analyses were performed in R 3.5.3 (R Core Team 2019).  176 

 177 

Results and Discussion 178 

Comparison between different methods for estimating distance threshold in teal 179 

Migration starting date identified by the finite mixture modelling approach was not significantly different 180 

from that obtained with the subjective approach (Giunchi et al. 2019), both considering  DT (χ2 = 0.0, df = 1, 181 

p > 0.5, SDindividual = 22.2, n = 30) and DHT (χ2 = 0.0, df = 1, p > 0.5, SDindividual = 20.8, n = 30) methods. In 182 

the following analyses, we therefore only considered MSD estimated using DT and DHT with thresholds 183 

deriving from the more objective and replicable finite mixture modelling approach. 184 

Comparison between distance threshold and net square displacement methods 185 

The MSD estimated from the four methods on teal dataset were significantly different (Fig. 1; Table S2). 186 

NSD methods identified significantly later MSD compared to threshold methods (z = -13.6, p < 0.001), while 187 

no significant differences were recorded in the comparisons made within the two groups (NSD methods: z = 188 

3.7, p = 0.3; DT methods: z = -2.8, p = 0.5; Table S4, e.g. in Fig. S5). The MSD estimated for stone-curlews 189 

were comparable among methods (Fig.1; Table S2). The maximum difference between methods was 12 190 

days, but in most cases the differences were equal or less than 1 day. As the stone-curlew data were 191 

resampled to make them comparable with teal dataset, it is likely that the contrasting outcomes recorded in 192 

the two species were due to the different migratory strategies rather than to differences in temporal accuracy 193 

of the tracking methods.  Stone-curlew made short (distance travelled: median = 889.8; IQR = 739.4 – 194 

1218.9) and fast migratory movements with few stopovers, while teal migrated over relatively long distances 195 

(distance travelled: median = 2781.4; IQR: 1791.9 – 3280.2) and showed a large variability in stopover 196 

duration, with very long stopovers often occurring at the very beginning of the migratory journey (Giunchi et 197 

al. 2019). 198 

NSD methods significantly postponed teal MSD, often extending the wintering period till the first long 199 

stopover. This estimate seems however unreliable when looking at the time budget of migration, expressed 200 

as St/Tr ratio. The coefficient of variation of the St/Tr ratio of threshold methods was significantly lower 201 

than that of NSD methods [0.77 (n = 42) vs. 1.72 (n = 37), MSLRT = 6.73, p = 0.03], while we did not 202 

record any difference in the comparisons within the two approaches [DT vs. DHT: 0.74 (n = 21) vs. 0.82 (n = 203 

21), MSLRT = 0.09, p = 0.8; NSDlogi vs. NSDmix: 1.22 (n = 21) vs. 2.00 (n = 16), MSLRT = 0.71, p = 0.6]. 204 

This indicates that threshold methods estimate more homogeneous St/Tr ratios among individuals. Moreover, 205 

DT and DHT methods estimated significantly higher St/Tr ratios than NSD ones, with the former being 206 



closer to the 7:1 ratio expected for a time-minimizing migrant (Hedenstrӧm and Alerstam 1997) (Fig. 2). Our 207 

data suggest that modelling NSD, while useful for identifying movement strategies on animals belonging to 208 

different taxa (e.g. Allen et al. 2016; van Eeden et al. 2017; Orgeret et al. 2019; Stears et al. 2019), can not 209 

be reliably used to estimate the timing of migration, especially when dealing with datasets characterized by 210 

irregular sampling and high variability of stopover length at the very beginning of the migratory journey. It is 211 

worth considering that difference in NSD and DT methods in assessing the migration starting date were 212 

sometimes very high (in some cases more than one month), leading to important consequences not only on 213 

the evaluation of the bird migratory phenology but also for the sustainable management of species 214 

significantly affected by human activities (e.g. quarry species Arzel et al. 2006; Madsen et al. 2015). 215 

The use of a distance threshold still represents the best approach for estimating MSD. This approach not only 216 

provides more reliable estimates but can also be used when the modelling approach (e.g. NSDmix) fails in 217 

providing results (Fig. S5). The method used to determine DT does not have a significant effect on the 218 

estimation of migration starting date. Thus, the finite mixture modelling approach proposed in the present 219 

study could represent a viable solution to reliably estimate DT while mitigating the subjectivity usually 220 

implicitly linked to standard threshold estimations (e.g. Arizaga et al. 2015; Giunchi et al. 2019; Tedeschi et 221 

al. 2019). We therefore suggest authors to estimate DT following this objective method which provides 222 

repeatable results. In case a subjective method is still preferred, we recommend to describe in detail their 223 

selection criteria, possibly including a sensitivity analysis of the effects of using different, threshold values. 224 

Among threshold methods, even if we have not observed any significant difference between DT and DHT in 225 

MSD estimations and in the St/Tr ratios evaluated in teal, DHT method seems more robust in avoiding some 226 

inconsistencies in the determination of the MSD, as it was observed for some teal in our dataset (see 227 

examples in Fig. S6). 228 

Threshold methods can be used to estimate the MSD for birds with incomplete tracks, e.g. in the teal for 229 

which the tracking stopped abruptly before they completed the migration, since the estimate of a threshold is 230 

done by considering data belonging to all individuals. This is in contrast with more complex and possibly 231 

more accurate approaches (e.g. Gurarie et al. 2016; Michelot et al. 2016) which analyse individual tracks 232 

and, thus, are less reliable when tracks are incomplete and/or highly irregular. Furthermore, these methods 233 

usually identify the moment when some kind of behavioural change takes place, which may not be 234 

necessarily indicative of the start of migration and be rather due to other changes in behaviour (e.g. from 235 

roosting to foraging while still in the wintering site). In these cases, the use of a DT method, that is 236 

straightforward to adopt, may provide an independent check of the individual modelling approach, even 237 

when accurate tracking data are available such as high frequency GPS data (see also Soriano-Redondo et al. 238 

2020).  239 

In conclusion, our results indicate that relatively simple methods can provide reliable estimates of migration 240 

starting dates. Further investigation with different tracking systems, including conventional radiotracking 241 

(Taylor et al. 2017), and for more irregular duty-cycle schedules, are needed to assess the possible 242 

generalization of our results. 243 
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Figure legends  371 

Fig. 1 Marginal means ± 95% CI estimated from the model MSD ~ method + (1|individual) (teal:  χ2= 81.36, 372 

df = 3, p < 0.001, SDindividual = 18.0, n = 30; stone-curlews: χ2= 0.51, df = 3, p = 0.9, SDindividual = 10.6, n= 8). 373 

The MSD are expressed as day from 1 January. 374 

Fig. 2 Marginal means ± 95% CI estimated from the model stopover permanence/total duration of migration 375 

~ method (Overdispersed binomial logit models: χ2 = 7.94, df = 3, p = 0.04, n = 24; threshold methods vs. 376 

NSD methods: z = 0.22, p = 0.006; DT vs. DHT: z = 0.07, p = 0.56; NSDlogi vs. NSDmix: z = 0. 01, p = 377 

0.94). The horizontal dashed line corresponds to the St/Tr ratio of 7:1 expected for a time-minimizing 378 

migrant, according to (Hedenström and Alerstam 1997). 379 
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