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Abstract

We consider the model of a point-vortex under a periodic perturbation and
give sufficient conditions for the existence of generalized quasi-periodic so-
lutions with rotation number. The proof relies on Aubry-Mather theory to
obtain the existence of a family of minimal orbits of the Poincaré map asso-
ciated to the system.
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1. Introduction

We study the advection of a passive particle in a two-dimensional ideal
fluid. This phenomena can be described by the Lagrangian version of fluid
mechanics: the particle moves according to a Hamiltonian system with the
streamfunction playing the role of the Hamiltonian.

Given the vorticity ω of the incompressible fluid, the streamfunction is
defined as a solution of the Poisson equation −∆Ψ = ω. From a physical
point of view, a vortex is a zone of high vorticity. Mathematically, a vortex in
the plane can be defined in different ways. It can be defined as a singularity
of the vorticity or through a compact set of finite vorticity (vortex patch).
See [1, 7, 8, 10, 18] for a summary on the various definitions.

We will be concerned with a point-vortex, defined as a Dirac delta of
the vorticity. Under this definition, the streamfunction is the fundamental
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solution of the 2-dimensional Laplacian. These ideas were introduced in
the seminal works of Helmholzt and Kirchhoff in the XIXth century and
nowadays point-vortices are studied as a branch of Fluid Mechanics with
deep connections with Celestial Mechanics and Hamiltonian systems.

A point-vortex induces a streamfunction Ψ0 = Γ
4π ln(x2 + y2) where Γ is

the circulation (or strength) of the vortex and, up to a rescaling of unit, it
can be set Γ = 2π. The solutions of the corresponding Hamiltonian system
are circular paths around the origin and describe the trajectories of a pas-
sive particle under the influence of the vortex. The frequency of rotation is
inversely proportional to the radius of the path and tends to infinity as the
radius tends to zero.

We will study how this integrable dynamics is affected by the superposi-
tion of an external periodic time dependent streamfunction p(t, x, y). More
precisely, we consider the Hamiltonian

Ψ(t, x, y) =
1

2
ln(x2 + y2) + p(t, x, y), (1)

and the associated Hamiltonian system ẋ = ∂yΨ(t, x, y),
(x, y) ∈ U \ {0} ,

ẏ = −∂xΨ(t, x, y)
(2)

defined in a neighborhood U of the origin.
Physically, system (2) can be interpreted to model the advection of a par-

ticle under the action of a steady vortex placed at the origin and a periodic
time dependent background flow.

The dynamics of advected particles in non-stationary flows including
vortices have been intensively studied from different perspectives [4, 6, 9,
23, 24, 27]. In particular, numerical tests suggest the presence of complex
dynamics.

From an analytical point of view, in [22] the authors studied the stability
properties of the vortex. More precisely, they proved that if the external
streamfunction is analytic, then KAM theory applies and invariant curves
of the Poincaré map exist close to the singularity. As a byproduct, there
exist quasi-periodic solutions of the Hamiltonian systems with (sufficiently
large) Diophantine frequencies. These can be seen as a reminiscent of the
trajectories of the unperturbed Hamiltonian with Diophantine frequency.

In this paper, we will prove that, close to the singularity, quasi-periodic
solutions exist for all frequency sufficiently large. Actually, our solutions
will be a generalization of standard quasi-periodic solutions and in case of
commensurable frequencies, we will get periodic solutions. These solutions
exist also when KAM theory cannot be applied. Indeed, we will require very
low regularity that prevents standard KAM theory from being applied.

To prove our result, we will apply a suitable version of Aubry-Mather
theory [3, 14] to the Poincaré map of system (2). A similar scheme have
been used to describe the dynamics of different systems [11, 13, 20, 25, 28].
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For each sufficiently large real number α, we will prove the existence
of an invariant setMα (called Aubry-Mather set) with very interesting dy-
namical properties, among them each orbit inMα has rotation number α.
For irrational rotation numbers, the corresponding Aubry-Mather sets are
either curves or a Cantor sets. Solutions of system (2) with initial condi-
tions in these sets will be our generalized quasi-periodic solutions. In the
rational case, the Aubry-Mather sets contain a periodic orbit.

In suitable variables, the Poincaré map will be an exact symplectic twist
map of the cylinder. However, it will not be defined on the whole cylinder.
Hence we cannot apply directly the result of Mather and we will prove an
adapted version to this situation.

To apply our theorem, we will need to prove that the Poincaré map is
exact symplectic and twist. The first property comes from the Hamiltonian
character of the system. The twist condition is more delicate and relies
on the behavior of the variational equation. We will give a proof following
a perturbative approach. Here, we will ask that the perturbation has the
origin as a zero of order 4.

From the point of view of dynamics of symplectic diffeomorphisms, we
will describe some aspects of the dynamics around a singularity. In the
integrable case, the flow can be continuously extended to the singularity,
defining it as a fixed point. However, this extension is not C1. In the per-
turbed case, in general is not even possible to guarantee continuity of this
extension. Since the flow is not regular, all the results coming from the
theory of elliptic fixed points and transformation to Birkhoff normal form
cannot be applied directly. We will overcome the problem of the singularity
performing a change of variable that sends the singularity at infinity and
has a regularizing effect. At this stage, the assumption of having the zero
of order 4 in the perturbation plays a fundamental role.

The paper is organized as follows. In Section 2 we state the problem
and the main result. The definition of generalized quasi-periodic solution
will be given in this section. In Section 3 we introduce the regularizing
variables and the Poincaré map together with some preliminary estimates.
In Section 4 we state and prove the suitable version of the Aubry-Mather
theorem. In Section 5 it is proved the property of exact symplectic and
Section 6 is dedicated to the proof of the twist property. The proof of the
main result will be given in Section 7. Finally, we draw some conclusions
in Section 8. Some technical lemmas are relegated to the Appendix.

2. Statement of the problem and main result

Let us consider the perturbed Hamiltonian system given by (1)-(2). We
suppose that the perturbation p(t, x, y) belongs to the following class

Definition 2.1. Given ε > 0, consider the open disk around the origin Dε ={
(x, y) ∈ R2 : x2 + y2 < ε2

}
. We say that a continuous function p : R×Dε −→

R belongs to the class Rkε if
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i) p(t+ 1, x, y) = p(t, x, y),

ii) p ∈ C0,k(R× Dε) i.e. p is Ck w.r.t the spatial variables (x, y) and all the
partial derivatives are continuous w.r.t. (t, x, y).

Now, given any N ∈ N we give the notion of zero of order N of a function
p ∈ Rkε . The following definition will be of particular interest in the case
N > k.

Definition 2.2. Given a function p ∈ Rkε we say that the origin is a zero of
order N if there exist TN , p̃ ∈ C0,k(R× Dε) such that,

p(t, x, y) = TN (t, x, y) + p̃(t, x, y)

and satisfying the following properties:

• TN (t, x, y) =
∑
i+j=N αi,j(t)x

iyj is a homogeneous polynomial of degree
N with C1 coefficients,

• there exists a constant C such that, for all (t, x, y) ∈ R× Dε,

|p̃(t, x, y)| ≤ C(|x|N+1 + |y|N+1),

|∂(m)p̃(t, x, y)| ≤ C(|x|N−m+1 + |y|N−m+1) for 1 ≤ m ≤ k.

Our result gives the existence of particular families of solutions: periodic
and quasi-periodic solutions in a generalized sense. To define them, given
a solution (x(t), y(t)) of (2), consider the functions

r(t) =
1

2(x(t)2 + y(t)2)
, θ(t) = −Arg[x(t) + iy(t)], (3)

having a relation with the standard polar coordinates. Actually θ(t) repre-
sents the angle in the clockwise sense, while r(t) is, up to a scaling constant,
the inverse of the square of the radius.

Definition 2.3. We say that the solution (x(t), y(t)), defined for t ∈ R

• is non-singular if
sup
t∈R

r(t) <∞,

• is bounded if there exists A > 0 such that

inf
t∈R

r(t) > A,

• has monotone argument if θ(t) is monotone,

• has rotation number α if

1

2π
lim
t→∞

θ(t)

t
= α.

4



Remark 2.1. A non-singular bounded solution with monotone argument
rotates clockwise in a closed annulus around the origin. Moreover, the rota-
tion number represents the average angular velocity.

We are ready to state the main result.

Theorem 2.1. Suppose that p ∈ R3
ε is such that the origin is a zero of order

4.
Then there exists ᾱ sufficiently large such that for every α > ᾱ there exists

a family of non-singular, bounded solutions

{(x(t), y(t))ξ}ξ∈R

with monotone argument and rotation number α. These solutions are such
that the related functions r(t), θ(t) defined in (3) satisfy, for every t, ξ ∈ R,

(r(t), θ(t))ξ+2π = (r(t), θ(t))ξ + (0, 2π), (4)
(r(t+ 1), θ(t+ 1))ξ = (r(t), θ(t))ξ+2πα. (5)

Remark 2.2. If α = s/q ∈ Q, then the solutions satisfy

(r(t+ q), θ(t+ q))ξ = (r(t), θ(t))ξ + (0, 2πs)

and are said (s, q)-periodic. These solutions make s revolutions around the
singularity in time q. If α ∈ R \Q, solutions satisfying (4)-(5) can be seen as
generalized quasi-periodic. Actually, consider the function

Φξ(a, b) = (r(a), θ(a))b−2παa+ξ.

This function is doubly-periodic in the sense that

Φξ(a+ 1, b) = (r(a+ 1), θ(a+ 1))b−2παa+ξ−2πα = Φξ(a, b),

Φξ(a, b+ 2π) = (r(a), θ(a))b−2παa+ξ+2π = Φξ(a, b) + (0, 2π).

and Φξ(t, 2παt) = (r(t), θ(t))ξ. If the function ξ 7→ Φξ is continuous, then
these solutions are classical quasi-periodic solutions with frequencies (1, α)
in the sense of [26] (see also [21]). We will not guarantee the continuity,
however, the function ξ 7→ Φξ will have at most jump discontinuities and
if ξ is a point of continuity then so are ξ + 2πα, ξ + 2π. Finally, the set
Cl{(x(0), y(0))ξ : ξ ∈ R} is either a curve or a Cantor set, recovering the clas-
sical definition of quasi-periodic solution in the case of having an invariant
curve.

3. Some estimates on the solutions and the Poincaré map

Let us consider system (2) and, following section 4.1 of [22], consider the
change of variables (x, y) = ϕ(θ, r) defined by

x =
cos θ√

2r
, y = − sin θ√

2r
.
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These variables comes from applying first the Kelvin transform and subse-
quently the change to symplectic polar coordinates. System (2) transforms
into {

ṙ = 4r2 ∂θH(t, r, θ),

θ̇ = −4r2 ∂rH(t, r, θ)
(6)

where H(t, r, θ) = − 1
2 ln(2r) + h(t, r, θ) and h(t, r, θ) = p

(
t, cos θ√

2r
,− sin θ√

2r

)
.

System (6) is still a periodic planar Hamiltonian system with symplectic
form λ̃ = 1

4r2 dr ∧ dθ. Moreover, the change of variables ϕ transforms the
domain R× Dε into the domain R×D with

D =

{
(r, θ) ∈]r∗,∞[×T : r∗ =

1

2ε2

}
.

Let us write the Cauchy problem associated to system (6), in the following
form: 

ṙ = F (t, r, θ),

θ̇ = 2r +G(t, r, θ),
(r(0), θ(0)) = (r0, θ0),

(7)

where

F (t, r, θ) = 4r2∂θ

[
p

(
t,

cos θ√
2r
,
− sin θ√

2r

)]
,

G(t, r, θ) = −4r2∂r

[
p

(
t,

cos θ√
2r
,
− sin θ√

2r

)]
. (8)

Since p ∈ R3
ε, the vector field in (7) is continuous and C2 in the spatial

variables. This guarantees existence and uniqueness of the solution.

Remark 3.1. The change of variables ϕ has the effect to transform the phase
space from the plane to the cylinder. The singularity is moved from the origin
to r → ∞. In this sense, the change of variables has a regularizing effect
since the functions F,G in (7) are bounded for r → ∞. The fact that the
origin is a zero of order 4 plays a fundamental role in this discussion. See
estimate (10) in the following Lemma 3.1 for more details.

Since the domain D is not invariant, we need to control the growth of
the solutions. For this purpose, given a > r∗ we introduce the set

Σ(a) =]a,∞[×T ⊂ D

and prove the following lemma, whose meaning is illustrated in Fig. 1.

Lemma 3.1. Let us assume that the origin is a zero of order 4 of the func-
tion p ∈ R3

ε. Then there exists a∗ > r∗ such that if (r0, θ0) ∈ Σ(a∗), the
corresponding solution of (7) is well defined on t ∈ [0, 1] and (r(t), θ(t)) ∈ D
for all t ∈ [0, 1]. Moreover, the following estimate holds

|r(t)− r0|+ |θ(t)− θ0 − 2r0t| ≤ K if t ∈ [0, 1] (9)

for some K > 0.
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r∗

r

θ

a∗

(r0, θ0)1

(r(1), θ(1))1
(r0, θ0)2

(r(1), θ(1))2

Figure 1: Domains and evolution of two solutions over a period. (r(t), θ(t))1 represents the
solution with (r0, θ0)1 ∈ Σ(a∗) and (r(t), θ(t))2 represents the solution with (r0, θ0)2 /∈ Σ(a∗).
Note that the solution (r(t), θ(t))1 remains in the domain D.

Proof. Since the origin is a zero of order 4 of p, there exists a constant C > 0
such that ∣∣∣∂(1)p (t, x, y)

∣∣∣ ≤ C(|x|3 + |y|3) in R× Dε.

Then, from the definition of Fand G, we have

|F (t, r, θ)|+ |2r| |G(t, r, θ)| ≤ C1 (10)

for any t ∈ R and (r, θ) ∈ D.
We shall prove that a∗ = r∗+C1 satisfies the lemma. Fix (θ0, r0) ∈ Σ(a∗)

and consider the corresponding solution (θ(t), r(t)). By continuity there ex-
ists τ such that r(t) is well defined and r(t) > r∗ for t ∈ [0, τ ]. Suppose that
τ < 1 otherwise we are done. Integrating the first equation of (7) and using
(10) we have

|r(t)− r0| ≤ C1t if t ∈ [0, τ ].

In particular, r(τ) ≥ r0 − C1τ > r∗. Hence we can continue the solution
until time τ + τ1. Suppose that τ + τ1 < 1 otherwise we are done. Hence,
as before r(τ + τ1) ≥ r0 − C1(τ + τ1) > r∗. Repeating this procedure we can
reach τ = 1.

Finally, integrating the second equation of (7), we deduce that

|θ(t)− θ0 − 2r0t| ≤ 2C1 +
C1

2(r0 − C1)
.

Here we have employed (10) and the above estimates on r(t).

Now, let us introduce the Poincaré map P as

P : Σ(a∗) = ]a∗,∞[× T −→ D ⊂ R× T
(r0, θ0) 7−→ (r1, θ1) = (r(1; r0, θ0), θ(1; r0, θ0))
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where (r(t; r0, θ0), θ(t; r0, θ0)) is the solution with initial condition (r(0), θ(0)) =
(r0, θ0). Lemma 3.1 together with existence and uniqueness of the solutions
of problem (7) guarantee that the Poincaré map is well defined.
Due to the regularity of the vector field of (6), P ∈ C2(Σ(a∗)), concretely it is
a diffeomorphism of a section of the cylinder.

The proof of the theorem will be a consequence of a suitable version of
the so called Aubry-Mather theory applied to the previous Poincaré map.
The following section is dedicated to the statement and proof of this result.

4. A generalized Aubry-Mather theorem

We denote by C = R × T, T = R/2πZ the cylinder and consider the strip
Σ := (a, b)× T and the corresponding lift Σ̃ := (a, b)× R.
Consider a C2 diffeomorphism

Φ : Σ −→ C
(r, θ) 7−→ (r1, θ1) = (F(r, θ),G(r, θ)) .

We denote the lift by

Φ : Σ̃ −→ R2

(r, x) 7−→ (r1, x1) = (F(r, x),G(r, x))
(11)

where

F(r, x+ 2π) = F(r, x),

G(r, x+ 2π) = G(r, x) + 2π.

Consider a C2 function with Lipschitz inverse

f : (a, b) −→ R
r 7−→ f(r),

such that f ′ never vanishes. Without loss of generality we fix f ′ > 0.
We suppose that Φ is exact symplectic with respect to the form

λ̃ = df(r) ∧ dθ = f ′(r)dr ∧ dθ

that is, there exists a C2 function

S : Σ −→ R
(r, θ) 7−→ S(r, θ)

such that
dS(r, θ) = f(r1) dθ1 − f(r) dθ, ∀(r, θ) ∈ Σ.

Remark 4.1. Note that the function S(r, θ) is defined in the cylinder, hence
the lift S(r, x) must be a 2π-periodic function in the variable x such that

Sr(r, x) = f(F(r, x))Gr(r, x), Sx(r, x) = f(F(r, x))Gx(r, x)− f(r). (12)
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We also suppose that Φ is twist, that is

∂rG(r, θ) > 0 ∀(r, θ) ∈ Σ. (13)

Suppose additionally that the following uniform limits (w.r.t. x) exist

α+(x) :=
1

2π

(
lim
r→b
G(r, x)− x

)
,

α−(x) :=
1

2π

(
lim
r→a
G(r, x)− x

)
.

Note that α±(x) are 2π-periodic C2 functions and define

W+ = min
x
α+(x), W− = max

x
α−(x).

The main result of this section deals with the existence of special orbits
of the diffeomorphism Φ. To state the Theorem, we recall that a sequence
(xn)n∈Z of real numbers is increasing if xn < xn+1 for all n ∈ Z and we say
that any two translates are comparable if for any (s, q) ∈ Z2 only one of the
following alternatives holds

xn+q + 2πs > xn ∀n, xn+q + 2πs = xn ∀n, xn+q + 2πs < xn ∀n.

We are now ready to state the main result of this section:

Theorem 4.1. With the previous setting, suppose that W+ −W− > 8π and
fix α such that 2πα ∈ (W− + 4π,W+ − 4π). Then

• if α = s/q ∈ Q there exists a (s, q)-periodic orbit (rn, xn)n∈Z such that

rn+q = rn, xn+q = xn + 2πs ∀n ∈ Z;

• if α ∈ R \ Q there exists a compact invariant subset Mα ⊂ Σ (and a
corresponding subset M̃α ⊂ Σ̃ ) with the following properties:

– denoting π : Σ → T the projection, π|Mα is injective and Mα =
graphu for a Lipschitz function u : π(Mα)→ R,

– each orbit (rn, xn)n∈Z ∈ M̃α is such that the sequence (xn) is in-
creasing and any two translates are comparable,

– each orbit (rn, xn)n∈Z ∈ M̃α has rotation number α, i.e.

1

2π
lim
n→∞

xn
n

= α;

– the setMα is either an invariant curve or a Cantor set.

The following corollary gives an equivalent interpretation of the result
and has been proven in [11].
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α+(x) + x

W
+ +

x

W
− +

x α−(x) + x

x

x1

B

Figure 2: Domain B.

Corollary 4.1. For each α there exists two functions φ, η : R→ R such that,
for every ξ ∈ R

φ(ξ + 2π) = φ(ξ) + 2π, η(ξ + 2π) = η(ξ),

Φ(φ(ξ), η(ξ)) = (φ(ξ + 2πα), η(ξ + 2πα))

where φ is monotone (strictly if α ∈ R \Q ) and η is of bounded variation.

The proof of Theorem 4.1 will make use of the generating function. We
introduce it in the following

Lemma 4.1. There exists an open connected set B ⊂ R2 and a function
h : B → R, called generating function such that

o) B is invariant under the translation (x, x1) 7→ (x+ 2π, x1 + 2π);

i) h ∈ C3(B);

ii) h(x+ 2π, x1 + 2π) = h(x, x1) for all (x, x1) ∈ B;

iii) ∂2
xx1

h(x, x1) < 0 for all (x, x1) ∈ B;

iv) a sequence (rn, xn)n∈Z is an orbit of Φ̃ iff for all n ∈ Z

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0 and f(rn) = −∂1h(xn, xn+1).

Proof. By the twist property, α+(x) > α−(x) ∀x ∈ R, so that we can con-
sider the open connected set (see figure 2)

B =
{

(x, x1) ∈ R2 : α−(x) < x1 − x < α+(x)
}
.
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From the periodic property of the functions α±(x) this set is invariant under
the translation

T2π,2π(x, x1) = (x+ 2π, x1 + 2π).

By the twist condition we can solve the implicit function problem

x1 = G(r, x)

and obtain a unique C2 function R(x, x1) : B −→ (a, b) such that

x1 = G(r, x)⇐⇒ r = R(x, x1)

and, by implicit differentiation,

Gr(R, x)Rx + Gx(R, x) = 0, Gr(R, x)Rx1
= 1. (14)

Moreover, uniqueness implies that R(x + 2π, x1 + 2π) = R(x, x1). Analo-
gously we get

r1 = F(r, x)⇐⇒ r1 = F(R(x, x1), x) := R1(x, x1)

with R1(x+ 2π, x1 + 2π) = R1(x, x1). Hence, the map (11) is equivalent to{
r1 = R1(x, x1),
r = R(x, x1)

with (x, x1) ∈ B.

Now, we use the exact symplectic condition and define the generating
function

h(x, x1) := S(R(x, x1), x).

This maps is clearly C2(B), and, a posteriori, we will get C3 regularity. From
the periodicity conditions of S and R, one can prove the periodicity condi-
tion ii).
To prove point iii), we use (12),(14) to get that for all (x, x1) ∈ B,

∂xh(x, x1) = ∂xS(R(x, x1), x) = Sr(R(x, x1), x)Rx + Sx(R(x, x1), x)

= f(F(R, x))Gr(R, x)Rx + f(F(R, x))Gx(R, x)− f(R) (15)
= −f(R),

so that the twist condition and the monotonicity of f imply

∂x,x1
h(x, x1) = −∂x1

f(R(x, x1)) = −f ′(R)∂x1
R(x, x1) = − f ′(R)

∂rG(x, x1)
< 0.

To prove the last point, a similar computation as (15) gives for all
(x, x1) ∈ B,

∂x1h(x, x1) = ∂x1S(R(x, x1), x) = Sr(R(x, x1), x)Rx1

= f(F(R, x))Gr(R, x)Rx1 = f(F(R, x)) (16)
= f(R1).
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Equations (15)-(16), together with the regularity of f,R,R1 have the conse-
quence that h ∈ C3(B), proving point i).

Less formally (15)-(16) also imply that the map Φ can be expressed im-
plicitly: {

∂x1
h(x, x1) = f(r1)

∂xh(x, x1) = −f(r)
with (x, x1) ∈ B.

It means that an orbit (rn, xn)n∈Z is such that for every n ∈ Z{
f(rn+1) = ∂2h(xn, xn+1)
f(rn) = −∂1h(xn, xn+1).

This implies f(rn) = −∂1h(xn, xn+1) = ∂2h(xn−1, xn) so that

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0, ∀n ∈ Z.

Remark 4.2. The equation

∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0, ∀n ∈ Z

is known as discrete Euler-Lagrange equation.

The usual Mather’s theorem (see Theorem 4.2), gives sufficient condi-
tions on the generating function in order to get orbits with rotation number.
In particular it is required h ∈ C2(R2) and properties ii) and iii) of Lemma
(4.1) should hold in the whole plane. For this reason we need the follow-
ing extension lemma. A version of this lemma is stated in [15, chapter 8]
and for the sake of completeness, we report here a detailed proof (see also
[12, 13]).

Lemma 4.2. Let B+,B− : R −→ R be Cr diffeomorphisms satisfying

B±(x+ 2π) = B±(x) + 2π

for some r ≥ 2. Suppose that

B+(x) > B−(x) ∀x ∈ R.

Define the following set

W =
{

(x, x1) ∈ R2 : B−(x) ≤ x1 ≤ B+(x)
}

and let h :W −→ R be a Cr+1 function such that:

• h(x+ 2π, x1 + 2π) = h(x, x1), (x, x1) ∈ W;

• ∂x,x1
h(x, x1) < 0, (x, x1) ∈ W.

Then there exists h̃ ∈ Cr(R2) such that:
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• h̃(x+ 2π, x1 + 2π) = h̃(x, x1), (x, x1) ∈ R2 ;

• ∂x,x1
h̃(x, x1) < −δ < 0, with δ > 0 (x, x1) ∈ R2 ;

• h̃ = h onW.

Proof. The domain W is invariant under the translation T2π,2π, in conse-
quence the quotient setW/(2πZ)2 is compact so that

∂x,x1h(x, x1) ≤ −δ′, (x, x1) ∈ W

for some δ′ > 0. Consider the Cr−1-extension of ∂x,x1h(x, x1) to R2 satisfying
the translation invariance under T2π,2π and keep denoting it ∂x,x1h. By
continuity, there exists ε > 0, δ′ ≥ δ > 0 such that ∂x,x1

h ≤ −δ in the
domain

Wε =
{

(x, x1) ∈ R2 : B−(x)− ε ≤ x1 ≤ B+(x) + ε
}
.

Consider a C∞ real valued function χ : R2 → [0, 1] such that χ(x + 2π, x1 +
2π) = χ(x, x1) and {

χ = 1 (x, x1) ∈ W,
χ = 0 (x, x1) ∈ R2 \Wε.

Let’s define the function

D(x, x1) := χ∂x x1
h− (1− χ)δ .

Then by the definition of χ we have that D ∈ Cr−1(R2) and D(x + 2π, x1 +
2π) = D(x, x1). Moreover,{

D = ∂x x1
h(x, x1) (x, x1) ∈ W

D = −δ (x, x1) ∈ R2 \Wε.

In particular, with the hypotheses on h we have :

D ≤ −δ < 0 (x, x1) ∈ R2.

Now, let us consider the Cauchy problems for the wave equation (with peri-
odic boundary conditions):

∂x x1
u(x, x1) = D(x, x1),

u(x,B±(x)) = h(x,B±(x)),
(∂x1u− 1

(B±)′(x)∂xu)(x,B±(x)) = (∂x1h− 1
(B±)′(x)∂xh)(x,B±(x)).

(17)

The change of variable

t =
x1 − B±(x)

2
, y =

x1 + B±(x)

2

conjugates system (17) to the classical wave equation
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 vtt − vyy = f(t, y),
v(0, y) = φ(y)
vt(0, y) = ψ(y)

(18)

where, denoting x(t, y) = (B±)−1(y − t), x1(t, y) = t+ y,

v(t, y) = u (x(t, y), x1(t, y)) , f(t, y) = − 4

(B±)′(x(t, y))
D (x(t, y), x1(t, y)) ,

φ(y) = h(x(0, y), x1(0, y)), ψ(y) =

(
∂x1h−

1

(B±)′(x(0, y))
∂xh

)
(x(0, y), x1(0, y)).

Note that f, ψ ∈ Cr, φ ∈ Cr+1 and r ≥ 2 so that problem (18) has a unique
solution v(t, y) ∈ Cr (see [17]). Moreover, since f(t, y + 2π) = f(t, y), φ(y +
2π) = φ(y) and ψ(y + 2π) = φ(y), the solution satisfies v(t, y + 2π) = v(t, y).
Undoing the change of variable, we get a unique solution u ∈ Cr(R2) of
problem (17) such that u(x + 2π, x1 + 2π) = u(x, x1). Hence, setting h̃ = u
proves the lemma.

Using the terminology introduced in Theorem 4.1, we recall some of the
conclusions of Mather theory

Theorem 4.2 (Mather [5, 15]). Consider a C2 function h : R2 → R such
that h(x + 2π, x1 + 2π) = h(x, x1) and ∂2

xx1
h ≤ δ̄ < 0 for all (x, x1) ∈ R2. Fix

α ∈ R. Then

(i) if α = s/q ∈ Q there exists an increasing sequence (xn)n∈Z and an
homeomorphism of the circle gα such that

– gα(xn) = xn+1 and |xn − x0 − 2πnα| < 2π for every n ∈ Z,
– ∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0 and xn+q = xn + 2πs for every
n ∈ Z;

(ii) If α ∈ R \ Q there exists a set Mα of increasing sequences x = (xn)n∈Z
such that

– if x ∈ Mα then ∂1h(xn, xn+1) + ∂2h(xn−1, xn) = 0 for every n ∈ Z,
any two translates are comparable and |xn − x0 − n2πα| < 2π for
all n ∈ Z,

– there exists a Lipschitz homeomorphism of the circle gα with ro-
tation number α and a closed set Aα ⊂ R such that x ∈ Mα iff
x0 ∈ Aα and gnα(x0) = xn for all n,

– the set Rec(gα) ⊂ Aα of recurrent points of gα is either the whole
R or a Cantor set.
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Remark 4.3. We recall that the homeomorphism gα satisfies gα(x + 2π) =
gα(x) + 2π for all x ∈ R and the set Rec(gα) is defined as the set of accumu-
lation points of {gnα(x) + 2πk : (n, k) ∈ Z2} and is independent on the choice
of the point x ∈ R. Moreover, the condition |xn − x0 − n2πα| < 2π, ∀n ∈ Z
implies that

1

2π
lim
n→∞

xn
n

= α,

and α is called the rotation number of the orbit.

We are now ready for the proof of our result.

Proof of Theorem 4.1. We apply Lemma 4.1 and get the generating function
h defined on the set

B =
{

(x, x1) ∈ R2 : α−(x) < x1 − x < α+(x)
}
,

and satisfying the corresponding properties o)–iv).
Consider the case in which both W+,W− are finite. Since W+ −W− > 8π,
for every α such that

W− + 4π < 2πα < W+ − 4π,

we can choose ε > 0 such that

W− + ε < 2πα− 4π < 2πα+ 4π < W+ − ε.

Now, consider the set

W =
{

(x, x1) ∈ R2 : W− + ε ≤ x1 − x ≤W+ − ε)
}
⊂ B,

and apply Lemma 4.2 with B±(x) := x+W± ∓ ε that clearly are diffeomor-
phisms. We can extend the function h to the whole R2 getting a function h̃
satisfying the conditions in Theorem 4.2 and such that h̃ = h inW.

By applying Theorem 4.2 we obtain sequences (x̃n), such that

∂1h̃(x̃n, x̃n+1) + ∂2h̃(x̃n−1, x̃n) = 0, ∀n ∈ Z

and
|x̃n − x̃0 − n2πα| < 2π, ∀n ∈ Z.

From this inequality we obtain:

2πα− 4π < x̃n+1 − x̃n < 2πα+ 4π, ∀n ∈ Z,

that means that for every n ∈ Z, (x̃n+1, x̃n) ∈ W. But since h̃ = h inW,

∂1h(x̃n, x̃n+1) + ∂2h(x̃n−1, x̃n) = 0, ∀n ∈ Z.

Hence, in case of rational α we define

r̃n = f−1(−∂1h(x̃n, x̃n+1)) = f−1(−∂1h(x̃n, gα(x̃n)))
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such that (x̃n, r̃n) ⊂ Σ is the (s, q)-periodic orbit of Φ. In the irrational case,
the set M̃α is given by

M̃α = {(ξ, η) ∈ R2 : ξ ∈ Rec(gα), η = f−1(−∂1h(ξ, gα(ξ)))} ⊂ Σ.

Note that the Lipschitz regularity of f−1 plays a role at this stage.
In case −∞ < W− < W+ = ∞ is enough to choose α such that 2πα >

W− + 4π and fix M > 2πα+ 8π. Fix ε such that

W− + ε ≤ 2πα− 4π

and apply extension lemma with B−(x) = x + W− + ε and B+(x) = x + M ,
in order to get the same result.

The other cases are similar.

5. Exact symplectic properties of the Poincaré map

Fix r ≥ 2 and a Cr+1 function f : (a, b) −→ R such that f ′(r) never
vanishes and consider the associated differential form λ̃ = df(r) ∧ dθ =
f ′(r)dr ∧ dθ on (a, b) × R. In local coordinates, the corresponding time de-
pendent Hamiltonian system takes the form

ṙ = 1
f ′(r) ∂θH(t, r, θ)

θ̇ = − 1
f ′(r) ∂rH(t, r, θ),

r(0) = r0

θ(0) = θ0.

(19)

Suppose that H : R× (a, b)×R→ R is continuous in t and Cr+1 in the phase
variables (r, θ) and the following periodicity hold

H(t+ 1, r, θ) = H(t, r, θ) and H(t, r, θ + 2π) = H(t, r, θ).

By the periodicity in θ we have the phase space is the cylinder (a, b)× T.

Remark 5.1. In our problem (a, b) = (r∗,∞), f(r) = − 1
4r and

H(t, r, θ) = −1

2
ln(2r) + p

(
t,

cos θ√
2r
,− sin θ√

2r

)
.

Let us consider the Poincaré map P(r0, θ0) = (r1, θ1) associated to the
Cauchy problem (19). By the hypothesis on H and f , the map P belongs to
Cr((a, b)× R) and satisfies:

P(r0, θ0 + 2π) = P(r0, θ0) + (0, 2π).

Lemma 5.1. The Poincaré map P is exact symplectic with respect to the
form λ̃.
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Proof. To simplify the notation, let us denote (r(t), θ(t)) the solution
(r(t; r0, θ0), θ(t; r0, θ0)) of (19). Consider the Cr function

S(r0, θ0) = −
∫ 1

0

[
f(r(t))

f ′(r(t))
∂rH(t, r(t), θ(t))−H(t, r(t), θ(t))

]
dt,

and note that by the periodicity assumptions in θ, and the uniqueness, we
have

S(r0, θ0 + 2π) = S(r0, θ0).

Let us now prove that

dS(r0, θ0) = f(r1) dθ1 − f(r0) dθ0.

We start with

∂r0S(r0, θ0) = −
∫ 1

0

[
−f(r(t))f ′′(r(t))

[f ′(r(t))]2
[∂r0r(t)]∂rH(t, r(t), θ(t))

+
f(r(t))

f ′(r(t))
∂r0 [∂rH(t, r(t), θ(t))]− ∂θH(t, r(t), θ(t)) [∂r0θ(t)]

]
dt. (20)

Note that the term ∂rH(t, r(t), θ(t))[∂r0r(t)] is canceled. Now, using the first
equation in (19), and integrating by parts the last term, we obtain∫ 1

0

∂θH(t, r(t), θ(t)) [∂r0θ(t)] dt =

∫ 1

0

ḟ(r(t)) [∂r0θ(t)] dt

= [f(r(t))∂r0θ(t)]
t=1
t=0 −

∫ 1

0

f(r(t))
[
∂r0 θ̇(t)

]
dt.

Replacing in (20) and using the second equation in (19), we get

∂r0S(r0, θ0) = [f(r(t))∂r0θ(t)]
t=1
t=0 .

Analogously,
∂θ0S(r0, θ0) = [f(r(t))∂θ0θ(t)]

t=1
t=0 .

Hence,

dS(r0, θ0) = ∂r0S dr0 + ∂θ0S dθ0 = [f(r1)∂r0θ1 − f(r0)∂r0θ0] dr0+

+ [f(r1)∂θ0θ1 − f(r0)∂θ0θ0] dθ0 = f(r1) dθ1 − f(r0) dθ0.

6. The twist property for the vortex problem

In this section we consider the Poincaré map P associated to system (7).
We recall the notation

P : Σ(a∗) =]a∗,+∞[×T −→ R2

(r0, θ0) 7−→ (r1, θ1) = (F(r0, θ0),G(r0, θ0)) .

The following theorem will clearly imply the twist condition (13),
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Theorem 6.1. Suppose that p ∈ R2
ε and the origin is a zero of order 4. Then

∂G
∂r0

−→
r0→∞

2 , uniformly in θ0. (21)

To prove the theorem, let us fix a solution (r(t; θ0, r0), θ(t; θ0, r0)) of prob-
lem (7). Note that, since p ∈ R2

ε, the vector field of system (7) is C1 in
the variables (r, θ) so that the solution is unique and we can consider the
associated variational equation{

Ẏ =M(t, r(t; r0, θ0), θ(t; r0, θ0))Y ,
Y (0) = I2

(22)

where
M(t; r, θ) =

∂ (F (t, r, θ), 2r +G(t, r, θ))

∂ (r, θ)

is the Jacobian of the vector field in (7). We denote the matrix solution

Y(t; r0, θ0) =

(
∂r0r(t; r0, θ0) ∂θ0r(t; r0, θ0)
∂r0θ(t; r0, θ0) ∂θ0θ(t; r0, θ0)

)
and by the definition of the Poincaré map,

∂G
∂r0

(r0, θ0) = ∂r0θ(1; r0, θ0).

In the integrable case p = 0, the Jacobian matrix is

A =

(
0 0
2 0

)
and the solution of the corresponding variational equation is

Yint(t; r0, θ0) =

(
1 0
2t 1

)
, (23)

that shows that the Poincaré map of the unperturbed problem is twist.
To prove the result in the non integrable case, we will follow a pertur-

bative approach. More precisely, we will prove that the solution remains
close to that of the integrable case over a period t ∈ [0, 1]. For this pur-
pose we begin considering the following splitting. To simplify the notation
we will denote a solution of (7) by (r(t), θ(t)) where we have dropped the
dependence on the initial conditions.

Lemma 6.1. Under the hypothesis of Theorem (6.1), we have the following
splitting:

M(t; r(t), θ(t)) = A+B(t, r0, θ0) + C(t, r0, θ0)

where B(t, r0, θ0) is bounded, the entries satisfy b11 = b21 = b22 = 0 and
∀ϕ ∈ C∞([0, 1])∣∣∣∣∫ t

0

b12(s, r0, θ0)ϕ(s) ds

∣∣∣∣ −→r0→∞
0 uniformly in t ∈ [0, 1], θ0 ∈ T. (24)
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Moreover,

‖C(t, r0, θ0)‖ −→
r0→∞

0 uniformly in t ∈ [0, 1], θ0 ∈ T.

Proof. Since the origin is a zero of order 4 for p, we can split the perturba-
tion as

p(t, x, y) = T4(t, x, y) + p̃(t, x, y),

where T4 is a homogeneous polynomial of degree 4. From system (7)

F (t, r, θ) = 4r2∂θp

[(
t,

cos θ√
2r
,
− sin θ√

2r

)]
,

so that p induce the following splitting on F

F (t, r, θ) = F∗(t, θ) + F̃ (t, r, θ),

where, using the homogeneity of T4 w.r.t the variable r,

F∗(t, θ) = ∂θ[T4 (t, cos θ,− sin θ)], F̃ (t, r, θ) = 4r2∂θ

[
p̃

(
t,

cos θ√
2r
,
− sin θ√

2r

)]
.

Therefore we write

M(t, r(t), θ(t)) =

(
∂rF (t, r, θ) ∂θF (t, r, θ)

2 + ∂rG(t, r, θ) ∂θG(t, r, θ)

)∣∣∣∣
(r(t),θ(t))

=

(
0 0
2 0

)
+

[(
0 b12

0 0

)
+

(
c11 c12

c21 c22

)]
(r(t),θ(t))

where b12 = b12(t, r, θ) and cij = cij(t, r, θ) defined as

b12 := ∂θF∗(t, θ) = ∂θθ [T4 (t, cos θ,− sin θ)]

and

c11 := ∂rF̃ (t, r, θ) c12 := ∂θF̃ (t, r, θ)

c21 := ∂rG(t, r, θ) c22 := ∂θG(t, r, θ)

Concerning the matrix C, one can first explicitly write the expression of
the entries cij recalling that F̃ has just been introduced and G is defined
in (8). Note that they depend on the derivatives up to second order of the
functions p

(
t, cos θ√

2r
, − sin θ√

2r

)
, p̃
(
t, cos θ√

2r
, − sin θ√

2r

)
w.r.t the variables (r, θ). These

derivatives are estimated in Lemma A.1 of Appendix A and can be used to
get the following estimate

r3/2 |c11|+ r1/2 |c12|+ r2 |c21|+ r |c22| ≤ K
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withK independent on r, θ. We evaluate the entries cij on a solution (r(t), θ(t))
and we remember that from Lemma 3.1 we have that for r0 > a∗

|r(t)− r0| ≤ K1 ∀ θ0 ∈ T and t ∈ [0, 1]. (25)

This proves that ‖C(t, r0, θ0)‖ −→ 0 as r0 →∞ uniformly in θ0 ∈ T, t ∈ [0, 1].
Let us study the matrix B. Since T4 (t, cos θ,− sin θ) is a trigonometric

polynomial, |b12| ≤ K and B is bounded. To obtain (24) we note that being
T4 (t, cos θ,− sin θ) a trigonometric polynomial of degree 4, ∂θ [T4 (t, cos θ,− sin θ)]
will be another trigonometric polynomial (of the same degree) that we de-
note T̃4 (t, cos θ,− sin θ). Let us define

P4(t, η, ξ) := T̃4(t, η, ξ)

We show that we can apply Lemma A.2 (see Appendix A) choosing the poly-
nomial of degree N = 4

q(t, η, ξ) = −ξ ∂P4

∂η
(t, η,−ξ)− η ∂P4

∂ξ
(t, η,−ξ).

Since P4(t, cos θ,− sin θ) is a periodic primitive in the variable θ of the func-
tion q(t, cos θ, sin θ) the condition (A.1) holds. Moreover, the regularity as-
sumptions in Definition 2.2 guarantee that q has C1 coefficients in the vari-
able t.
Let us define the function β(t) := θ(t)−2r0t. The estimate (9) on the angular
evolution gives a bound of ‖β‖∞. To get a bound of ˙‖β‖∞ we observe that

β̇(t) = θ̇(t)− 2r0 = 2 (r(t)− r0) +G(t, r(t), θ(t)).

And again from (9) and (10), we have

˙‖β‖∞ ≤ 2K +
C1

(r0 −K)
.

Finally, Lemma A.2 in Appendix A can be applied to deduce that for all
ϕ ∈ C∞([0, 1]) and t ∈ [0, 1],∣∣∣∣∫ t

0

b12(s, r0, θ0)ϕ(s)ds

∣∣∣∣ =

∣∣∣∣∫ t

0

b12(s, θ(s))ϕ(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

0

∂θθT4 (s, cos θ(s),− sin θ(s))ϕ(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

0

∂θP4(s, cos θ(s),− sin θ(s))ϕ(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

0

q(s, cos θ(s), sin θ(s))ϕ(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

0

q(s, cos(2r0s+ β(s)), sin(2r0s+ β(s)))ϕ(s)ds

∣∣∣∣
≤ CRL

2r0
.
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Let us write the variational equation (22) as{
Ẏ = (A+B(t, r0, θ0) + C(t, r0, θ0))Y ,
Y (0) = I2.

We claim that the solution Y(t; r0, θ0) converge uniformly, as r0 →∞, to the
solution Yint(t; r0, θ0) of the integrable case (23).

We prove it applying Lemma A.3 of Appendix to the family of matrices
M(t, r0, θ0) = B(t, r0, θ0)+C(t, r0, θ0) as r0 → +∞. From Lemma 6.1 we have
that M(t, r0, θ0) is uniformly bounded and C(t, r0, θ0) converge uniformly to
0 so that it converge also in the weak* topology. To study the convergence
of the matrix B(t, r0, θ0) it is enough to consider the term b12. From (24) and
using the density of C∞ in L1 we have∣∣∣∣∫ t

0

b12(s, r0, θ0)ϕ(s) ds

∣∣∣∣ −→r0→∞
0, ∀ϕ ∈ L1([0, 1]), t ∈ [0, 1].

Hence, we can apply Lemma A.3 and get

Y(t; r0, θ0) −→
r0→∞

Yint(t; r0, θ0) uniformly in t ∈ [0, 1], θ0 ∈ T,

from which (21) follows evaluating in t = 1.

7. Proof of the main Theorem

In this section we apply Theorem 4.1 and Corollary 4.1 to the Poincaré
map P of system (7) and get the so called Aubry-Mather orbits of rotation
number α. These orbits determine the solutions we announced in our main
theorem 2.1.

By Lemma 3.1 the map P is well defined in Σ(a∗) and is a C2-diffeomorphism
since p ∈ R3

ε. For every initial condition in Σ(a∗), the corresponding solu-
tion satisfies |r(t) − r0| ≤ K for all t ∈ [0, 1]. Moreover, from (10), we can
find a1 > 0 such that, in Σ(a1),

|θ̇| = |2r +G(t; r, θ)| ≥ 2r − C1

2r
> 0.

By theorem 6.1, the map P is twist in Σ(a2) for some a2 large enough. Let
us consider the strip Σ(r̄) where r̄ = max{a∗, a1, a2}+ K. Theorem 6.1 also
imply that the following limits hold:

W+ := min
x
{ lim
r→+∞

G(r, x)− x} = +∞,

W− := max
x
{ lim
r→r̄
G(r, x)− x} = c < +∞.

so that W+ −W− > 8π.
Since, from Lemma 5.1, the map P is exact symplectic w.r.t the form

λ = 1
4r2 dr ∧ dθ = d(− 1

4r ) ∧ dθ and 1/(4r) is Lipschitz for r > r̄, we can apply
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Theorem 4.1 and Corollary 4.1 to the Poincaré map restricted to the strip
Σr̄. For every α > (c + 2)/2π, we get two functions φ, η : R → R such that,
for every ξ ∈ R

φ(ξ + 2π) = φ(ξ) + 2π, η(ξ + 2π) = η(ξ), (26)
P(φ(ξ), η(ξ)) = (φ(ξ + 2πα), η(ξ + 2πα)). (27)

For every ξ ∈ R, let us consider the solution of the Cauchy problem (7)
with initial condition (r(0), θ(0)) = (η(ξ), φ(ξ)) and denote it (r(t), θ(t))ξ. By
(26) and uniqueness we have that

(r(t), θ(t))ξ+2π = (r(t), θ(t))ξ + (0, 2π),

and from (27) and the definition of P,

(r(t+ 1), θ(t+ 1))ξ = (r(t), θ(t))ξ+2πα

so that conditions (4)-(5) are satisfied.
The function ξ 7→ Φξ(a, b) introduced in Remark 2.2 has the same reg-

ularity of the functions φ, η that can have at most jump discontinuities.
Moreover, from properties (26),(27), if ξ is a point of continuity, so are ξ+2π
and ξ + 2πα.

Finally, these solutions have rotation number α, actually,

lim
t→∞

θξ(t)

t
= lim
k→∞

θξ(k)

k
= lim
k→∞

θξ+2πkα(0)

k
= lim
k→∞

φ(ξ + 2πkα)

k

= lim
k→∞

φ(ξ + 2π{kα}) + 2π[kα]

k
= 2πα.

where [x] denote the integer part of x and {x} = x− [x].

8. Conclusions

This paper can be seen as an example of the study of twist dynamics
around a singularity in Hamiltonian systems. As a paradigmatic example
we choose the point-vortex model. In suitable variables we applied a version
of Aubry-Mather theory to get similar results as in the case of exact area-
preserving maps of the annulus [14].

We suppose that the origin was a zero of order 4 for the perturbation.
This condition played a role in the regularizing change of variable ϕ. For
this reason, it seems unclear how to weaken this assumption.

Our result leaves open the distinction between classical and general-
ized quasi-periodic solutions. This relies on the nature of the corresponding
Mather set with irrational rotation number. Actually it can be either a in-
variant curve or a Cantor set. A possible future development of the present
work could be finding conditions that break invariant curves.
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A. Appendix

This appendix is intended to present some technical results that are
required for the proof of the twist condition in Section 6.

Lemma A.1. Suppose the p ∈ R2
ε and that the origin is a zero of order N .

Consider the decomposition given in Definition 2.2

p(t, x, y) = TN (t, x, y) + p̃(t, x, y)

and set the functions

x = x(r, θ) =
cos θ√

2r
, y = y(r, θ) =

− sin θ√
2r

defined for r > 1
2ε2 and θ ∈ T. Then, there exists a constant C > 0 such that

1) r(N+1)/2 (|∂θ p̃(t, x, y)|+ |∂θθ p̃(t, x, y)|) ≤ C,

2) r(N+3)/2 |∂rθ p̃(t, x, y)| ≤ C,

3) r(N+2)/2 (|∂r p(t, x, y)|+ |∂rθ p(t, x, y)|) ≤ C,

4) r(N+4)/2 |∂rr p(t, x, y)| ≤ C.

Proof. To get the estimate 1), let us compute explicitly the derivatives with
respect to θ:

∂θp̃(t, x(r, θ), y(r, θ)) = − 1

(2r)1/2
[sin θ ∂xp̃(t, x, y) + cos θ ∂yp̃(t, x, y)]

and

∂θθp̃(t, x(r, θ), y(r, θ)) =
1

(2r)1/2
[sin θ ∂yp̃(t, x, y)− cos θ ∂xp̃(t, x, y)]

+
1

(2r)

[
sin2 θ ∂xxp̃(t, x, y) + 2 cos θ sin θ ∂xyp̃(t, x, y) + cos2 θ ∂yyp̃(t, x, y)

]
.

From the definition of zero of order N we have:

|∂θ p̃(t, x, y)|+ |∂θθ p̃(t, x, y)| ≤ C1

r1/2
(|∂x p̃(t, x, y)|+ |∂y p̃(t, x, y)|)

+
C2

r
(|∂xx p̃(t, x, y)|+ |∂xy p̃(t, x, y)|+ |∂yy p̃(t, x, y)|)

≤ C1

r1/2
(|x|N + |y|N ) +

C1

r
(|x|N−1 + |y|N−1)

≤ C1

r(N+1)/2
+

C2

r1+(N−1)/2
≤ C

r(N+1)/2
.

To obtain 2), 3) and 4), the computations are similar.
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The following result is a lemma of Riemann-Lebesgue type.

Lemma A.2. Let q(t, η, ξ) be a polynomial of degree N ,

q(t, η, ξ) =
∑

j+h≤N

αj,h(t)ηjξh

with αj,h(t) ∈ C1(R/Z). Assume in addition that for each t∫ 2π

0

q(t, cos θ, sin θ) dθ = 0 . (A.1)

Let β ∈ C1([0, τ ]) with [0, τ ] ⊂ [0, 1] and ϕ ∈ C∞([0, 1]). Then there exists
CRL > 0 such that∣∣∣∣∫ t

0

q(s, cos (λs+ β(s)), sin (λs+ β(s)))ϕ(s) ds

∣∣∣∣ ≤ CRL
|λ|

if t ∈ [0, τ ] and λ ∈ R \ {0}. Moreover, the constant CRL depends upon N ,
maxj,h

[
‖αj,h‖∞ + ‖α̇j,h‖∞

]
, ‖β‖∞, ‖β̇‖∞ ‖ϕ‖∞ and ‖ϕ̇‖∞.

Proof. The function q(t, cos θ, sin θ) has a finite Fourier expansion with
respect to θ, say

q(t, cos θ, sin θ) =
∑
|k|≤N

qk(t)eikθ.

The coefficients qk can be expressed in terms of the functions αj,h and be-
long to C1(R/Z),

qk(t) =
1

2π

∫ 2π

0

q(t, cos θ, sin θ)e−ikθ dθ.

The condition (A.1) implies that q0(t) vanishes everywhere and so the inte-
gral I(t) we want to estimate can be expressed as the sum

I(t) =
∑

0<|k|≤N

Ik(t) with Ik(t) =

∫ t

0

qk(s)eikβ(s)eikλs ϕ(s) ds.

Since we have excluded k = 0 these integrals can be estimated by a stan-
dard procedure in the theory of oscillatory integrals, see for instance [2].
After integrating by parts

Ik(t) =
1

ikλ

[
qk(t)eikβ(t)eikλt ϕ(t)− qk(0)eikβ(0) ϕ(0)

−
∫ t

0

(
qk(s)eikβ(s) ϕ(s)

)′
eikλs ds

]
.
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Therefore,

|Ik(t)| ≤ Ck
|k| |λ|

with

Ck = ‖qk‖∞
[
2 ‖ϕ‖∞ + |k|

∥∥∥β̇∥∥∥
∞
‖ϕ‖∞ + ‖ϕ̇‖∞

]
+ ‖q̇k‖∞ ‖ϕ‖∞ .

Finally, we state the following lemma concerning the uniform conver-
gence of the solution of a linear ODE whose time-dependent coefficients are
bounded and converging weak* in L∞. Similar results can be found in [16]
and [19]. For the proof we will follow the lines of the proof of Lemma 2.1 in
[19].

Consider the following linear system depending on the parameters
(r, θ) ∈ (a, b)× T, a > b {

Ẏ = (A+M(t; r, θ))Y ,
Y (0) = I2,

(A.2)

whereA, M are 2×2 matrices, A is constant andM ∈ C1([0, 1]×(a, b)×T).
We denote the matrix solution of this system as Y(t; r, θ).

Lemma A.3. Suppose that the family {M(t; r, θ)} is uniformly bounded in
L∞([0, 1]) and that M(t; r, θ) converges to M̃(t; θ) ∈ L∞([0, 1]) in the weak*
sense as r → b. Then

Y(t; r, θ) −→
r→b
Ỹ(t; θ) uniformly, t ∈ [0, 1] ∀θ ∈ T

where Ỹ(t; η) is the matrix solution of the problem{
Ẏ =

(
A+ M̃(t; θ)

)
Y ,

Y (0) = I2 .
(A.3)

Proof. The solution of (A.2) can be written as

Y(t; r, θ) = I2 +

∫ t

0

(A+M(s; r, θ))Y(s; r, θ) ds, t ∈ R, (A.4)

from which we get the following estimate on the matrix norm

‖Y(t; r, θ)‖ ≤ 1 +

∫ t

0

‖A+M(s; r, θ)‖ ‖Y(s; r, θ)‖ ds. (A.5)

Gronwall lemma applied on the interval [0,1] gives us

‖Y(t; r, θ)‖ ≤ 1 +

∫ t

0

‖A+M(s; r, θ)‖ e
∫ t
s
‖A+M(ξ;r,θ)‖ dξ ds, t ∈ [0, 1].
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Since {M(t; r, θ)} is uniformly bounded, ‖Y(t; r, θ)‖ is uniformly bounded.
Moreover, from (A.4) also ‖Ẏ(t; r, θ)‖ is uniformly bounded. Hence, we can
apply Ascoli-Arzelà theorem to get a subsequence rk → b as k → ∞ and a
matrix Φ ∈ C1([0, 1]× T) such that

Y(t; rk, θ) −→
k→∞

Φ(t; θ), uniformly in t ∈ [0, 1] θ ∈ T.

The matrices Y(t; rk, θ) satisfies

Y(t; rk, θ) = I2 +

∫ t

0

(A+M(s; rk, θ))Y(s; rk, θ) ds

= I2 +

∫ t

0

AY(s; rk, θ) ds+

∫ t

0

M(s; rk, η)Φ(s; θ) ds

+

∫ t

0

M(s; rk, θ)(Y(s; rk, θ)− Φ(s; θ)) ds.

Using the uniform convergence, and the weak* convergence of M(t; r, θ)
(recall Φ ∈ L1([0, 1])), we have the limit

lim
k→∞

Y(t; rk, θ) = I2 +

∫ t

0

AΦ(s; η) ds+

∫ t

0

M̃(s; θ)Φ(s; θ) ds, t ∈ [0, 1] ∀θ ∈ T.

Finally, by uniqueness we observe that this limit is the solution of sys-
tem (A.3) and we obtain

lim
r→b
Y(t; r, θ) = Φ(t; θ) = Ỹ(t; θ) t ∈ [0, 1] ∀θ ∈ T.
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