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A B S T R A C T

Mitochondrial ribosomal protein large 24 (MRPL24) is 1 of the 82 protein components of mitochondrial ribo-
somes, playing an essential role in the mitochondrial translation process.

We report here on a baby girl with cerebellar atrophy, choreoathetosis of limbs and face, intellectual dis-
ability and a combined defect of complexes I and IV in muscle biopsy, caused by a homozygous missense mu-
tation identified in MRPL24. The variant predicts a Leu91Pro substitution at an evolutionarily conserved site.
Using human mutant cells and the zebrafish model, we demonstrated the pathological role of the identified
variant. In fact, in fibroblasts we observed a significant reduction of MRPL24 protein and of mitochondrial
respiratory chain complex I and IV subunits, as well a markedly reduced synthesis of the mtDNA-encoded
peptides. In zebrafish we demonstrated that the orthologue gene is expressed in metabolically active tissues, and
that gene knockdown induced locomotion impairment, structural defects and low ATP production. The motor
phenotype was complemented by human WT but not mutant cRNA. Moreover, sucrose density gradient frac-
tionation showed perturbed assembly of large subunit mitoribosomal proteins, suggesting that the mutation
leads to a conformational change in MRPL24, which is expected to cause an aberrant interaction of the protein
with other components of the 39S mitoribosomal subunit.

1. Introduction

Mammalian Mitochondrial Ribosomal Proteins (MRPs) are encoded
by nuclear genes and are required for the translation of the 13 mtDNA-
encoded proteins within the mitochondrion. Mitochondrial ribosomes
(mitoribosomes) consist of a small 28S subunit and a large 39S subunit.

The human MRP gene family comprises 30 genes encoding for the small
mitochondrial ribosomal subunit and 52 genes for the large subunit, all
of which are nuclear encoded (Gopisetty and Thangarajan, 2016).
Building a mitoribosome is a difficult logistical task comparable to the
complexity of assembling the entire respiratory chain, since the bio-
genesis of mitoribosomes depends on the coordinated synthesis of
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MRPs, which must be translated on cytoplasmic ribosomes and im-
ported into mitochondria (Bogenhagen et al., 2018). Mitoribosomes are
essential for the synthesis of the oxidative phosphorylation machinery.
It has indeed been proposed that the absence or deficiency of MRPs may
cause primary oxidative phosphorylation disorders (O'Brien et al.,
2000). The consequences of mutations in MRP genes are expected to
reproduce the clinical heterogeneity of oxidative phosphorylation dis-
orders, ranging from lethality to less severe phenotypes associated with
marginally impaired energy metabolism, as mutations that do not fully
inactivate the protein function may have intermediate effects (O'Brien
et al., 2005). In addition, mutations in MRP genes could cause tissue-
specific disorders (Spirina et al., 2000). The crucial role of mitoribo-
somes in OXPHOS biogenesis underlines the involvement of MRPs in a
number of conditions associated with mitochondrial dysfunction (Bieri
et al., 2018). The importance of the proper composition and structure of
mitoribosomes for human health has led to their recent structural
characterization, which provided detailed insight in the protein-rich
mammalian mitoribosome (Amunts et al., 2015; Greber et al., 2015),
and a structure-based kinetic model for its assembly (Bogenhagen et al.,
2018). Finally, very recently, dysfunction of these proteins has been
demonstrated to play a role not only in the primary mitochondrial re-
spiratory chain activity deficiencies, but also in other conditions, such
as cancer, impaired development, neurodegeneration, cardiovascular
failure, obesity and inflammatory disorders (Gopisetty and
Thangarajan, 2016).

Mitochondrial ribosomal protein large 24 (MRPL24) is one of the
protein components of the large (39S) subunit of mitochondrial ribo-
somes (Kenmochi et al., 2001). Herein, we report on the first case with
mutation in MRPL24 and provide a comprehensive investigation of its
clinical, biochemical and structural consequences. We demonstrated
the pathological role of the identified variant using human mutant cells.
Moreover, we evaluated the consequence of a dysfunctional Mrlp24 in
the developing zebrafish embryos, in order to determine the impact on
early stages of development.

2. Material and methods

2.1. Standard protocol approvals, registrations, and patient consent

The study was approved by the Ethical Committees of the Bambino
Gesù Children Hospital, Rome, Italy, in agreement with the Declaration
of Helsinki. Informed consent was signed by the parents of the patient.

2.2. Mutational analysis

Total genomic DNA underwent targeting resequencing (BGI-
Shenzhen, Shenzhen, China) using a customized probe library (Agilent
SureSelectXT Custom Kit) designed to capture the coding exons and 20
nucleotides of flanking introns of 1381 genes coding for mitochondrial
proteins (“Mitoexome”) (Calvo et al., 2012). Deep sequencing used an
Illumina Hiseq technology, with a 255× effective mean depth. The
Burrows-Wheeler Aligner (BWA, http://bio-bwa.sourceforge.net/)
software was applied for analysis, classification, and reporting of
genomic variants. After excluding previously annotated single nucleo-
tide changes occurring with high frequency in populations (> 1%), we
prioritized variants predicted to have a functional impact (i.e., non-
synonymous variants and changes affecting splice sites). Validation of
the MRPL24 variant and segregation along the family was performed by
Sanger Sequencing, using BigDye chemistry 3.1 and run on an ABI
3130XL automatic sequencer (Applied Biosystems, Life Technologies).

2.3. Human samples, biochemical and protein studies

Quadriceps muscle biopsy was obtained for diagnostic spectro-
photometric procedures (Bugiani et al., 2004). Human fibroblasts, ob-
tained from skin biopsy, were grown in high glucose DMEM with

glutamine supplemented with sodium pyruvate (0.11 g/L) 10% fetal
bovine serum, and 50 μg/mL uridine. Complex V activity (in the di-
rection of ATP synthesis) was measured in fibroblast mitochondria,
using reported spectrophotometric methods (Rizza et al., 2009).
Oxygen consumption rate (OCR) was measured in adherent fibroblasts
with an XFe24 Extracellular Flux Analyzer (Seahorse Bioscience,Agi-
lent, Santa Clara, CA), as described in Tolomeo et al., 2019. Western
blotting using monoclonal antibodies complex I – NDUFA9 and
NDUFS1; complex II – SDHA; complex III – UQCRC2; complex IV –
COXIV; complex V – ATP5A1, and porin (VDAC) was performed using
precast 4–12% denaturating gels (Bolt™ 4–12% Bis-Tris Plus Gels,
Thermo Fisher Scientific, Waltham, MA USA) as reported (Torraco
et al., 2018). All monoclonal antibodies were from MitoSciences (Eu-
gene, OR, USA). The polyclonal ab-MRPL24 was from Abcam (Cam-
bridge, UK).

Analysis of mitochondrial protein synthesis was performed as pre-
viously described (Chomyn, 1996; Fernández-Silva et al., 2007). Im-
mortalized fibroblasts at 70% confluence were labeled for 1 h with
[35S]-L-methionine in the presence of 100 μg/mL emetine, an inhibitor
of cytosolic protein synthesis. Samples were kept at −80 °C until use.
Twenty μg of total cellular protein were loaded on a Novex™ 18% Tris-
Glycine precast SDS polyacrylamide gel (Invitrogen). The gel was then
fixed and dried, and the mitochondrial translation products were vi-
sualized using a Storage Phosphor Screen and a Typhoon 9410 Variable
Mode Imager (GE Healthcare).

For all experiments, age-matched controls were used.

2.4. Model building and in silico analysis

For the analysis of the MRPL24 structure in the context of human
mitoribosome, the structure of the entire mitoribosome solved by
electron microscopy at a resolution of 3.5 Å was used (PDB ID: 3j9m,
Amunts et al., 2015). As the coordinates of the MRPL24 159–168
fragment are missing from this structure, they were comparatively
modeled with Modeller9v17 (Sali and Blundell, 1993), using as tem-
plate the structure of the 89% sequence identical homologous protein
from Sus scrofa (PDB ID: 4v19, Greber et al., 2014a, 2014b). To simu-
late the structural effect of the Leu91Pro mutation, Leu91 was mutated
to Pro and its phi (ϕ) dihedral angle was set at −63° with PyMol
(DeLano, 2002): 63° is indeed the ϕ value typically assumed by prolines
in proteins (with variations within±15°, MacArthur and Thornton,
1991). The analysis of the interface areas and of the inter-residue
contacts between MRPL24 and other proteins/RNAs on the mitoribo-
some was carried out with CoCoMaps (Vangone et al., 2011).

2.5. Analysis of the mitochondrial ribosome profile on sucrose density
gradients

Sedimentation and analysis of the mitochondrial ribosome was
performed essentially as described in (Rorbach et al., 2016). Briefly,
control or Patient MRPL24 immortalized fibroblast cells were lysed and
loaded equally on separate linear sucrose gradients (10–30%) in 50 mM
Tris–HCl (pH 7.2), 20 mM Mg(OAc)2, 100 mM NaCl, and centrifuged
for 2 h 15 min at 39,000 rpm. Fractions of 100 μL each were collected,
and 30 μL of each fraction was analyzed by western blotting using
mtLSU antibodies. The fractions within the blots were quantified using
ImageJ and normalized to the overall Control/Patient intensity ratio.

2.6. Functional studies in zebrafish

Adult male and female wild-type (WT) zebrafish (AB strains) and
transgenic line expressing GFP under a strong cardiac promoter, Tg
(cmlc2:gfp) (Huang et al., 2003) were maintained according to standard
procedures (Westerfield, 2000) on a 14 h light:10 h dark cycle. Zeb-
rafish embryos and larvae procedures complied with the guidelines of
our institutional animal care committee, and experiments were
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performed in accordance with, and under the supervision of, the In-
stitutional Animal Care and Use Committee (IACUC) of the University
of Pisa and the Italian National Research Council Institute of Clinical
Physiology (CNR-IFC). Every effort was made to minimize both animal
suffering and the number of animals needed to collect reliable scientific
data.

Total RNA was extracted using the Quick RNA miniprep (Zymo
Research, Irvine, USA) from embryos at 48 h post fertilization (hpf) and
reversely transcribed using the Transcriptor First Strand cDNA
Synthesis Kit (Roche, Hamburg, Germany). Primers for mRNA se-
quences were designed using the zebrafish sequence of mrpl24
(ENSDART00000010862.6), and the human transcript
(ENST00000361531.6 1). PCR products were cloned into pCS2+ vector
and verified for accuracy using capillary sequencing.

Whole mount in situ hybridization (WISH) was performed as de-
scribed (Thisse and Thisse, 2008) at the 48, 72, and 96-hpf time points.
Antisense riboprobe synthesis was performed using the Digoxigenin
(DIG) RNA Labeling Kit (Roche). Quantitative reverse transcription
followed by the polymerase chain reaction in real time (qRT-PCR) ex-
pression analyses was done as described (Marchese et al., 2016).

For the generation of zebrafish mrpl24 knockdown, we designed
morpholino antisense oligonucleotides (MOs) (GeneTools, Philomath,

OR) targeting either translation start site (tblockMO) or transcription at
exon 4–5 splice site (spliceMO). The MO and primers sequences are
listed in Supplementary Table 1. Concentrations of MOs were carefully
titrated to avoid nonspecific binding effects and a scrambled control
MO was used at similar concentrations to assess specificity to mrpl24.
After titration, we used in all experiments 3 ng of spliceMO against
mrpl24. The effect of the MO was evaluated through RT-PCR. Survival
was calculated comparing death rates between microinjected and non-
injected embryos. Rescue experiments were performed through co-in-
jection of 50 pg of control, mrpl24 and either human WT or mutant
(mutLeu91Pro) cRNAs with spliceMO at the same concentration used for
the knockdown experiments. Each experiment was repeated at least
three times if not otherwise stated.

Birefringence assay in 48 hpf embryos was used to test muscle
structure and compaction (Smith et al., 2013). Heart development was
analyzed using the Tg(clmc2:GFP) embryos anesthetized with 0.04 mg
of tricaine (E1052, Sigma) and set down on glass slides embedded in
1.2% low melting agarose (Agarose low gelling, Sigma). The fluores-
cence imaging was carried out using the Nikon Eclips E600 microscope,
and acquired with CoolSnap-CF camera using NIS elements software
version 2. For whole mount staining, dechorionated embryos were fixed
in 4% PFA overnight and Oil-Red-O (ORO) staining was performed as

Fig. 1. Brain MRI and genetic features of the MRPL24 patient. a. Brain MRI performed at age 3 years: (I) Axial T2 weighted image; (II) Axial FLAIR weighted image;
(III, IV) Coronal T2 weighted images. High intense T2 and FLAIR abnormalities corresponding to the putamen bilaterally are evident in a, b and c. Cerebellar atrophy
is shown in d. b. Electropherograms of the genomic region of the patient (Pt) and the parents showing the c.272T>C variant in exon 2 of MRPL24. c. Protein
sequence alignment (ClustalW) highlights the mutation (p.Leu91Pro; red) in the human MRPL24. The Leu91 is conserved in the invertebrate and vertebrate or-
thologs. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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described (Fraher et al., 2016). Images were acquired on a Leica M80
microscope with a Nikon Digital Sight DS-Fi1 camera and the NIS
Elements software package (Nikon, Nikon Corp., Europe).

Touch-evoked escape response was measured at 48 hpf on a semi-
quantitative arbitrary scale from 0 to 2, where 0 is no movement, 1 is
flicker of movement but no swimming, and 2 is normal swimming
(Marchese et al., 2016).

Western blotting in zebrafish used a polyclonal anti-MRPL24
(1:500), an anti-Total Oxphos (1:1000, Mitoprofile), an anti-complex I
(1:1000, Mitosciences), and anti-β-tubulin (1:1000, Cell Signaling) as
control.

Oxygen consumption rates in 48-hpf control embryos and mor-
phants (n = 10 per group) were measured using an extracellular flux
analyzer (XFe24, Seahorse Biosciences) as described (Gibert et al.,
2013). Single embryos were placed in individual wells of a 24-well islet
plate and a fine screen mesh was used to maintain the larvae in place.

All the sequences of the primers and morpholino used are available
in the Supplementary table 1.

2.7. Statistical analysis

All data were analyzed applying either parametric or non-para-
metric analyses. Homogeneity of variance was assessed using the
Levene test. Post hoc comparisons were performed by Mann-Whitney
test with Bonferroni's correction, or Unpaired t-test following non-
parametric analysis of variance. ANOVA with Tukey's Multiple
Comparison Test and Fisher's exact and Chi-square test were used in
specific zebrafish experiments.

For functional studies on human samples, data are presented as
mean ± SD. The Student's t-test was used for the analysis of statistical
significance.

3. Results

3.1. Clinical features and brain NMR findings

The patient was the single daughter of healthy unrelated parents.
Motor milestones were reported normal until the age of 8 months when
she almost acquired sitting position, but within a few weeks, she lost
the ability of sitting with support, and vocalisation. She was admitted to
our Hospital for the first time at 3 years of age, and clinically she was
not able to sit with support and was lying in supine position, showing
spasticity and dystonic posturing of distal upper and lower limbs to-
gether with dyskinetic facial grimacing. At that time, the MRI showed
T2 and FLAIR hyperintense bilateral alterations at the level of the pu-
tamen and cerebellar atrophy (Fig. 1A). The child was evaluated again
at the age of 8 years and was able to sit with support; but she had
intellectual disability with lack of interaction with the environment and
aspects of a pervasive behavior. Neurological examination at this age
showed choreoathetosis of limbs and face. Increased lactate was de-
tected in blood 2.2 mM (n.v.: 0.9–1.8 mM). Respiratory chain com-
plexes (RCCs) analysis in muscle biopsy revealed multiple defects
[RCCIV (−62%), RCCI (−40%) and RCCIII (−42%)]. A second biopsy
was performed 3 years later and confirmed the RCCIV defect (−58%),
while the other RCC activities were in the control range. Molecular
genetic analysis in the muscle tissue excluded deletions and depletion of
the mitochondrial DNA. The girl was re-assessed at the age of 14 years
and, although she was relatively stable, she could not stand and was
wheelchair bound; choreoathetosis persisted with spastic-dystonic tet-
raparesis. Although the patient was not able to speak, her interaction
with the environment had improved, particularly after she had been put
in treatment with Idebenone at the dose of 180 mg/day. The electro-
cardiogram disclosed a RS of 91 bpm, ventricular pre-excitation with
associated repolarization anomalies, QTc within limits; the child never
had symptoms of a paroxysmal tachycardia in the clinical history.
Echocardiogram was normal, though a Holter ECG confirmed findings

Fig. 2. Decreased levels of MRPL24 and OXPHOS subunits in MRPL24 patient muscle. a, b. Muscle homogenate from controls (Ctrls, n = 3) and MRPL24 patient (Pt)
was separated on a 4–12% SDS-PAGE and proteins were visualized by western blot analysis using specific antibodies against MRPL24. The same samples were tested
for the expression of subunits of the CI (NDUFA9), CIII (UQCRC2), CIV (COXIV), CV (F1β). The levels of the different proteins were normalized to VDAC (corre-
sponding histograms). Data are presented as a mean ± SD of at least three independent experiments; *p < .05; **p < .001; ***p < .0001.
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suggestive of a Wolff-Parkinson-White syndrome without any other
arrhythmia. She is currently on therapy with Riboflavin 200 mg/day,
Carnitine 1 g/day, and Idebenone 180 mg/day with the recommenda-
tion of careful cardiac monitoring.

3.2. MitoExome and Sanger sequencing

Bioinformatic analysis carried out on a MitoExome targeted panel,
on the hypothesis of a recessive trait, identified biallelic mutations in a
single gene, MRPL24 (NC_000001.11). Sanger sequencing confirmed
the presence of the c.272T>C (p.Leu91Pro) variant in a homozygous
state in the patient and in heterozygosity in her healthy parents
(Fig. 1b). The mutation was located in exon 2 and was not reported in
public databases (dbSNP (http://www.ncbi.nlm.nih. gov/sites/), ExAC
(http://exac.broadinstitute.org/), EVS (http://evs.gs.washington.edu/
EVS/), and gnomADv2.1 (http://gnomad.broadinstitute.org), and in in-
house databases. In silico analysis with Polyphen-2 (PPH2, http://
genetics.bwh.harvard.edu/pph2/), SIFT (http://sift.jcvi.org), and Mu-
tation Taster (http://www.mutationtaster.org) predicted a harmful ef-
fect of the p.Leu91Pro variant which affects a residue conserved along
all the invertebrate and vertebrate phyla (Fig. 1c).

3.3. Functional studies on human samples

The level of MRPL24 protein was dramatically reduced in muscle
homogenate (Fig. 2a) associated with a decreased level of subunits of
complexes I, IV and V, when normalized with the mitochondrial marker
VDAC (Fig. 2b). The fibroblasts showed a significant reduction of the
amount of MRPL24 protein as well (Fig. 3a). Specific 35S labelling of the
mtDNA-encoded peptides revealed markedly reduced synthesis of all of
them in the mutant immortalized fibroblasts (Fig. 3b), and overlapping
results were obtained measuring the amount of MRC subunits by wes-
tern blot (Fig. 3c). In addition, biochemical analysis on fibroblast mi-
tochondria documented a defect of complex V activity using either
succinate, malate or pyruvate+malate as substrate (Fig. S1). Using
microscale oxygraphy to evaluate the impact of the mutation on mi-
tochondrial respiration we observed significantly reduced basal and
maximal respiratory capacities, together with a low mitochondrial ATP
output (Fig. S2).

3.4. In silico characterization of MRPL24 mutation

Human MRPL24 is a 216 amino acid protein, highly interconnected
with other components of the human mitoribosomal large subunit. It
spans a length of over 15 nm on the surface of the large 39S

Fig. 3. Decreased levels of MRPL24 and OXPHOS subunits, as well mitochondrial protein synthesis in MRPL24 patient fibroblasts. a, c. Fibroblasts homogenate from
controls (Ctrls, n = 2) and MRPL24 patient (Pt) was separated on a 4–12% SDS-PAGE and proteins were visualized by western blot analysis using specific antibodies
against MRPL24. The same samples were tested for the expression of subunits of the CI (NDUFA9; NDUFS1), CII (SDHA), CIV (COXIV). The levels of the different
proteins were normalized to VDAC (corresponding histograms). Data are presented as a mean ± SD of at least three independent experiments; *p < .05;
**p < .001; ***p < .0001. b. Mitochondrial translation study in two controls and the mutant immortalized fibroblasts cell lines. The experiment was repeated twice
in two different batches of cells showing the same result.
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mitoribosome subunit, where it interacts with five proteins, uL29m
(MRPL47), mL41 (MRPL41), uL23m (MRPL23), mL45 (MRPL45) and
mL37 (MRPL37), and the 16S RNA, sharing with them a total interface
area as large as ≈ 5100 Å2 (Fig. 4, S3).

Leu91 in MRPL24 is located at the basis of a beta-loop-beta (or beta
hairpin) structural motif encompassing residues Thr93-Glu112. This
motif provides extensive contacts with the protein mL45 (MRPL45) and
the 16S RNA (specifically with its residues 1800–1810) (Fig. S3). The
value assumed by the Leu91 ϕ angle in MRPL24 (−147°) is clearly
incompatible with the presence of a Pro, which has the ϕ angle re-
stricted around −63° (± 15°) (MacArthur and Thornton, 1991). This
implies that the Leu91Pro mutation will cause a conformational change
on the protein main chain that will likely affect the orientation of the
following beta hairpin motif (Fig. 4) and downstream. The aberrant
folding of mutated MRPL24 may lead to reduced steady-state levels,
consistent with the above data (Fig. 2a and 3a).< it is expected to
result in a less efficient interaction of mutant MRPL24 with other
components of the mitoribosome, especially mL45 (MRPL45) and 16S
rRNA. A defective interaction between its molecular components can
cause, in turn, a disturbance in the 39S mitoribosomal subunit as-
sembly.

3.5. Mitoribosome integrity analysis

Next we set out to analyze the integrity of the mitochondrial

ribosomal large subunit in the patient fibroblasts. Upon western blot
analysis of whole cell homogenates, we observed decreased levels mi-
toribosomal proteins MRPL41 and MRPL45 (both of which are posi-
tioned adjacent to MRPL24) in patient cells when compared to control
cells (Fig. 5a-b). Similarly, upon sucrose density gradient fractionation,
we observed decreased levels of MRPL24, MRPL41 and MRPL45 in the
fractions corresponding to the large subunit of the mitoribosome
(Fig. 5c-e, fractions 6–8). This suggests the large subunit is structurally
compromised by the Leu91Pro mutation inMRPL24, which may explain
the observed phenotype and poor mitochondrial translation activity.

3.6. Functional studies in zebrafish

MRPL24 in human and Danio rerio presents about 70% of identity
for both protein and mRNA (Fig. 1c) with a high degree of synteny. By
qRT-PCR studies, we observed that mrpl24 had the highest levels of
expression at 72 hpf (Fig. 6a) and it was expressed until 120 hpf, albeit
to a lesser extent. WISH showed mrpl24 mRNA signals ubiquitously
expressed at 48hpf (Fig. 6b), whereas expression was restricted to so-
mites, brain, heart, and liver at 96 hpf (Fig. 6c-e), suggesting a higher
expression in metabolically active tissues.

Using a specific spliceMO, we observed minimal death rate and no
morphological changes until 48 hpf when MO-injected embryos showed
smaller size, less pigmentation, a slight curvature of the body, and
occasionally, heart edema (Fig. 7a) associated with a reduction of

Fig. 4. Three-dimensional representation of the entire human mitoribosome (PDB ID: 3j9m). MRPL24 and all the protein/RNA components it interacts with are
shown in a surface representation and labeled. For 16S RNA, only the surface of nucleotides 1800–1810 is shown, for the sake of clarity. The rest of the ribosome is
shown in a cartoon representation, with proteins colored pink if in the small and lightblue if in the large subunit and RNAs colored hotpink in the small and deepblue
in the large subunit. Inset: MRPL24 is shown in the same orientation as in the mitoribosome. The hypothetical orientation of the beta hairpin motif involving residues
Thr93-Glu112, in the Leu91Pro mutant is also shown, colored in hotpink. It was obtained by setting the value of the ϕ dihedral angle of residue 91 to−63° that is the
typical accepted value for prolines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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mRNA expression and protein level (Fig. S4a-b). Over 80% of 48 hpf
morphants showed altered touch evoked response test, and unlike the
wild-type could not run-off the visual field in a longer registration of
their locomotion (Fig. 7b, video S1,2). Contrary to WT larvae, 120 hpf
morphants were slowly moving or paralyzed (video S3,4). The altera-
tions of the locomotion at 48hpf were rescued after the co-injection of
the WT zebrafish mrpl24 cRNA (Fig. 7c). A similar effect was obtained
by complementing the touch evoked response phenotype of the mor-
phants with WT human but not with the mutLeu91Pro cRNA, suggesting
that the Leu91Pro allele is likely deleterious and acts with a loss of
function mechanism (Fig. 8).

Like human mutant cells, 48 hpf mrpl24 morphants showed reduced
basal respiration rates and impaired ATP production compared to WT
siblings by microscale-oxygraphy (Fig. 9a,b) and had low expression of
MRC complexes I and V when tested by Western blotting (Fig. S5). To
assess how knocking-down mrpl24 would impair organ developments,
we injected 3 ng spliceMO in a transgenic zebrafish line expressing GFP
under the promoter of myl7, at the level of cardiomyocytes and per-
formed morphological examination of heart structure and birefringence
assay. While we did not observe obvious alterations in birefringence
assay (data not shown), 72 hpf morphant embryos presented a slight
but significant increase of cardiac edema with an elongated and string-
like heart tube, a feature not appearing in WT siblings (Fig. S6). The
cardiac phenotype was complemented by co-injection of MO with the
mutLeu91Pro cRNA (Fig. 9c). Hepatic size was also increased in 5 dpf
morphants with a significant level of lipid storage, a finding suggesting
the presence of liver steatosis (Fig. 9d,e).

4. Discussion

Here we report the first case of a patient harboring a mutation in the
MRPL24 gene, which codes for a structural protein of the mitochondrial
large ribosomal subunit. Mitoribosomes comprise a 28S small subunit
(SSU) made of 12S rRNA and about 30 proteins, and a 39S large subunit
(LSU) composed of 16S rRNA and approximately 52 proteins (Greber

and Ban, 2016). As a rule, the small subunit is implicated in the de-
coding of mRNAs, while the large subunit carries out the peptidyl-
transferase activity for peptide formation (Bieri et al., 2018). In recent
years, most of yeast and mammalian mitoribosomal proteins have been
identified and further confirmed as components of the mitochondrial
ribosome by high-resolution cryo-electron microscopy structures (De
Silva et al., 2015; Greber and Ban, 2016). Moreover, it has been re-
ported that these proteins not only have a structural role but also bio-
logical functions in translation (Brodersen and Nissen, 2005), even if
the exact function of many of them is not yet clear. A hallmark of the
mitochondrial ribosome is that, despite the proteobacterial origin,
during evolution, certain ribosomal RNA segments have been lost and
replaced by mitochondria-specific ribosomal proteins (Smits et al.,
2007; Desmond et al., 2011) and this structural change was accom-
panied by the acquisition of specialized functions for the synthesis of a
small set of highly hydrophobic mitochondrial inner membrane pro-
teins (Ott and Herrmann, 2010).

Of the 82 proteins components of the human mitoribosome, up to
now only 10 have been linked to mitochondrial diseases: MRPS2
(Gardeitchik et al., 2018), MRPS7 (Menezes et al., 2015), MRPS16
(Miller et al., 2004), MRPS22 (Saada et al., 2007; Smits et al., 2011;
Baertling et al., 2015), MRPS23 (Kohda et al., 2016), MRPS25
(Bugiardini et al., 2019), MRPS34 (Lake et al., 2018) of the mt-SSU and
MRPL3 (Galmiche et al., 2011), MRPL12 (Serre et al., 2013) and
MRPL44 (Carroll et al., 2013; Distelmaier et al., 2015) of the mt-LSU.
Defects in these proteins cause heterogeneous and multi-systemic
clinical phenotypes, ranging from features common to almost all the
described cases, which include severe lactic acidosis, combined OX-
PHOS deficiency, hypotonia and developmental delay, to specific clin-
ical presentations such as cardiomyopathy (Galmiche et al., 2011; Smits
et al., 2011; Carroll et al., 2013; Distelmaier et al., 2015), neurodeve-
lopmental disabilities (Miller et al., 2004; Distelmaier et al., 2015; Lake
et al., 2018), corpus callosum agenesis (Saada et al., 2007), Leigh
syndrome (Lake et al., 2018), hypoglycemia (Kohda et al., 2016;
Gardeitchik et al., 2018), or growth delay and dysmorphic features

Fig. 5. Effect of MRPL24 mutation on the mitochondrial ribosome. a. Western blot analysis of fibroblast homogenate from control (Ctrl, n = 3) and MRPL24 patient
(Pt, n = 3) samples. b. Quantification of band intensities in (a) using ImageJ normalized to Beta actin. Data are presented as mean ± SEM; *p < .05. c-e. Sucrose
density gradient fractionation and western blot analysis of mitoribosomal large subunit proteins in Ctrl and Pt samples. Quantification of band intensities using
ImageJ normalized against the fraction of the total signal relative to control cells.
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(Saada et al., 2007; Smits et al., 2011; Lake et al., 2018; Gardeitchik
et al., 2018). Here we describe a patient presenting hyperintense bi-
lateral alterations at the level of the putamen, cerebellar atrophy and
choreoathetosis of limbs and face with a spastic-dystonic tetraparesis.
Moreover, the electrocardiogram disclosed a RS of 91 bpm and ven-
tricular pre-excitation with associated repolarization anomalies. RCC
analysis in muscle biopsy revealed a defect of complex IV activity, as-
sociated with decreased level of complexes I, IV and V subunits. The
amount of MRPL24 protein was reduced both in muscle and fibroblasts,
causing markedly reduced levels of the assembled mitochondrial ribo-
some large subunit and reduced translation of all the mtDNA-encoded
subunits. These results provided evidence of the deleterious effect of the
p.Leu91Pro MRPL24 variant in the mitochondrial translation process.
To support this, a structural analysis in the context of the human mi-
toribosome has been performed. MRPL24 is highly interconnected with
other proteins and with the 16S RNA within the LSU subunit con-
tributing, together with mL41 (MRPL41), uL23m (MRPL23), uL29m
(MRPL47) and bL34m (MRPL34), to the formation of the peptide exit
tunnel (Amunts et al., 2015; Bogenhagen et al., 2018). The exit tunnel
of the mammalian LSU subunit differs from that of the bacterial 50S
subunit due to the loss of two rRNAs and the addition of the

mitochondria-specific protein mL45 (MRPL45) and extensions of
uL23m (MRPL23), uL24m (MRPL24), and uL29m (MRPL29) (Brown
et al., 2014; Greber and Ban, 2016). mL45 (MRPL45) likely anchors the
mitoribosome to the inner mitochondrial membrane and exposes the
translated nascent polypeptide to solvent (Greber et al., 2014a, 2014b;
Brown et al., 2014). The mutation we characterized in MRPL24 is im-
mediately upstream to a conserved beta hairpin structural motif that is
in close contact with mL45 (MRPL45) (Brown et al., 2014). A proline in
this positionis incompatible with the structure of the wild-type protein,
thus necessarily leading to an aberrant folding and, consequently, to an
aberrant interaction of MRPL24 with other components of the large
mitoribosomal subunit. Overall, our data suggests that the Leu91Pro
mutation destabilizes MRPL24, leading to reduced incorporation into
the mitoribosome and preventing its efficient interaction with neigh-
bouring proteins. As a consequence, the mitochondrial large subunit is
also destabilized. A similar effect was observed for the analogous pa-
thogenic mutation Leu214Pro in MRPS2, hypothesized to cause a
conformational change leading to a decrease in the steady-state levels
of mutant MRPS2, and preventing the assembly of the small mitor-
ibosomal subunit (Gardeitchik et al., 2018).

In addition, we used an in vivo vertebrate system (zebrafish) to

Fig. 6. a. qRT-PCR analysis showing the expression of mrpl24 until 120 hpf, with highest levels of expression at 72 hpf. b. In situ-hybridization reavealing that mrpl24
mRNA is ubiquitously expressed at 48hpf, whereas, expression was restricted to somites (*, sm), brain (*), heart (*, h), intestine (int), and liver (*, liv) at 96 hpf (c-e),
compared to the sense probe (f).
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explore how dysfunctional Mrpl24 interferes with mitochondrial bioe-
nergetics and with organs development, as well as to explore how the
identified missense mutation in this gene underlies the pathological
effects. In the mrpl24 knock-down zebrafish embryos, we observed
motor impairment and a metabolic damage associated with a

considerable reduction of the basal respiration and ATP production,
highlighting the presence of mitochondrial dysfunction associated to
faulty mrpl24. The heterogeneity of MRPs patients is well represented in
our model as zebrafish embryos exhibited reduced development, he-
patomegaly and lipid accumulation (Howarth et al., 2013; Vacaru et al.,
2014). Moreover, we found that MRPL24 has a potential role in cardiac
development producing heart impairment. In fact, it has been reported
that some MRPs defects gave rise to cardiomyopathy (Galmiche et al.,
2011; Smits et al., 2011; Carroll et al., 2013; Distelmaier et al., 2015) or
to a large patent ductus arteriosus (Miller et al., 2004). The relatively
milder cardiac phenotype observed in our patient could be due to the
different mutation (missense in patient, knock-down in zebrafish).
However, overexpression of the p.Leu91Pro mutation rescues the heart
phenotype of the morphants, but not the locomotion, suggesting that
the mutation impacts mainly on motor behavior and less on cardiac
function. Conversely, liver involvement, a feature not seen in our pro-
band, could be related to impaired synthesis of ATP in zebrafish directly
influencing fatty acid oxidation, steatosis, cell death, and fibrogenesis
(Lee and Sokol, 2007). Whilst we cannot speculate on the appearance of
liver symptoms in our patient with disease progression, other mutations
affecting MRPs have been associated with liver dysfunction (Menezes
et al., 2015; Kohda et al., 2016; Lake et al., 2018).

In conclusion, our study demonstrates for the first time that
MRPL24 is required for normal mitochondrial function in zebrafish and
humans, and that mutations destabilizing this protein underlie the
clinical manifestations of mitochondrial dysfunction.
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