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Personalized Market Basket Prediction with
Temporal Annotated Recurring Sequences

Riccardo Guidotti, Giulio Rossetti, Luca Pappalardo, Fosca Giannotti and Dino Pedreschi

Abstract—Nowadays, a hot challenge for supermarket chains is to offer personalized services to their customers. Market basket
prediction, i.e., supplying the customer a shopping list for the next purchase according to her current needs, is one of these services.
Current approaches are not capable of capturing at the same time the different factors influencing the customer’s decision process:
co-occurrence, sequentuality, periodicity and recurrency of the purchased items. To this aim, we define a pattern Temporal Annotated
Recurring Sequence (TARS) able to capture simultaneously and adaptively all these factors. We define the method to extract TARS
and develop a predictor for next basket named TBP (TARS Based Predictor ) that, on top of TARS, is able to understand the level of the
customer’s stocks and recommend the set of most necessary items. By adopting the TBP the supermarket chains could crop tailored
suggestions for each individual customer which in turn could effectively speed up their shopping sessions. A deep experimentation
shows that TARS are able to explain the customer purchase behavior, and that TBP outperforms the state-of-the-art competitors.

Index Terms—Next Basket Prediction, Temporal Recurring Sequences, User-Centric Model, Market Basket Analysis, Data Mining.
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1 INTRODUCTION

D ETECTING the purchase habits of customers and their
evolution in time is a crucial challenge for effective

marketing policies and engagement strategies. In such con-
text one of the most promising facilities retail markets can
offer to their customers is market basket prediction, i.e., the
automated forecasting of the next basket that a customer
will purchase. Indeed, an effective basket recommender can
act as a shopping list reminder suggesting the items that the
customer could probably need.

A successful realization of this application requires an
in-depth knowledge of an individual’s general and recent
behavior [1]. In fact, purchasing patterns of individuals
evolve in time and can experience changes due to both
environmental reasons, like seasonality of products or retail
policies, and personal reasons, like diet changes or shift in
personal preferences. Thus, a satisfactory solution to next
basket prediction must be adaptive to the evolution of a
customer’s behavior, the recurrence of her purchase patterns
and their periodic changes.

In this paper we propose the Temporal Annotated Re-
curring Sequences (TARS), adaptive patterns which model
the purchasing behavior of an individual by four main
characteristics. Firstly TARS consider the co-occurency: a
customer systematically purchases a set of items together.
Secondly TARS model the sequentiality of purchases, i.e.,
the fact that a customer systematically purchases a set of
items after another one. Third TARS consider periodicity:
a customer can systematically make a sequential purchase
only in specific periods of the year, because of environmen-
tal factors or personal reasons. Fourth, TARS consider the
recurrency of a sequential purchase during each period, i.e.,
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how frequently that sequential purchase appears during a
customer’s period of the year. Modeling these four aspects
– co-occurrence, sequentiality, periodicity and recurrency –
is fundamental to detect the behavior of an individual and
its evolution in time. On one hand, future needs depend on
the needs already satisfied: what a customer will purchase
depends on what she already purchased last time. On the
other hand, the needs of a customer depend on her specific
habits, i.e., recurring purchases she makes over and over
again. However, habits are far from being static, since they
are affected by both endogenous and personal factors [2],
[3]. Therefore, periodicity is a crucial characteristic of an
adaptive model for market basket prediction.

We exploit the TARS and the multiple factors they are
able to capture for constructing a parameter-free TARS Based
Predictor (TBP). TBP is able to solve the market basket pre-
diction problem and to provide a reliable list of items to be
reminded in the next purchase as basket recommendation.

We demonstrate the effectiveness of our approach by ex-
tracting the TARS for thousands of customers in three real-
world datasets, including unique datasets covering seven
years long period. We show how TARS are easily readable
and interpretable, a characteristic which allows gaining
useful insights about the purchasing patterns of products
and customers. Then, we implement a repertoire of state-of-
the-art methods and compare them with TBP. Our results
show that (i) TBP outperforms the state-of-the-art methods,
(ii) it is able to predict up to the next 20 baskets, and (iii) the
quality of its predictions stabilizes after about 36 weeks.

Finally, TARS and TBP are user-centric approaches: they
only use the individual data of a customer to make pre-
dictions about that customer [4], [5]. This aspect eases
the customers’ personal data management and allows for
developing tailored recommenders that can run on personal
the customers’ mobile devices [6], [7].

In summary, our contributions are the following: (i) we
introduce TARS and a parameter-free algorithm to extract
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them from transactional data (Section 4); (ii) we develop
TBP, a predictor based on TARS able to solve next basket
prediction and to produce a shopping list reminder (Section
5); (iii) we extract TARS from real-world datasets and show
how they are easily interpretable (Section 6); (iv) we charac-
terize TBP and compare it with state-of-the-art methods on
real datasets (Section 6). The rest of the paper is organized as
follows. Section 2 reviews existing approaches and Section
3 formalizes the problem. Finally, Section 7 concludes the
paper suggesting future research directions1.

2 RELATED WORK

In this section, we briefly review the related work on trans-
action data mining for predictions and recommendations,
and general works recommender systems. There are several
studies addressing the problem of predicting the items in the
next basket by using various and diversified approaches.
Next basket prediction is an application of recommender
systems based on implicit feedback where only positive
observations (e.g. purchases or clicks) are available [8], [9],
and no explicit preferences (e.g. ratings) are expressed [10].
The implicit feedback are given in a form of sequential
transactional data obtained by tracking the users’ behavior
over time [11], e.g. a retail store records the transactions of
customers through fidelity cards.

Next basket prediction is mainly aimed at the con-
struction of effective recommender systems (or recom-
menders). Recommenders can be categorized into general
recommenders, sequential recommenders, pattern-based min-
ing recommenders and hybrid recommenders. General rec-
ommenders are based on collaborative filtering and produce
recommendations for a customer based on general cus-
tomers’ preferences [12], [13]. They do not consider any se-
quential information (i.e., which item is bought after which)
and do not adapt to the customers’ recent purchases. In con-
trast, sequential recommenders are based on Markov chains
and produce recommendations for a customer exploiting
sequential information and recent purchases [14]. Pattern-
based recommenders base predictions on frequent itemsets
extracted from the purchase history of all customers while
discarding sequential information [15], [16], [17]. Pattern-
based approaches frequently exploit or extend the Apriori
algorithm [18] for extracting the patterns.

The hybrid approaches combine the ideas underlying
general and sequential recommenders. In [19] the authors
use personalized transition graphs over Markov chains and
compute the probability that a customer will purchase an
item by using the Bayesian Personalized Ranking [20] opti-
mization criterion. HRM [21] and DREAM [22] exploit both
general customers’ preferences and sequential information
by using recurrent neural networks. A different hybrid ap-
proach is described in [23] where is developed a probability
model merging Markov chain and association patterns.

All the approaches described above suffer from several
limitations. General recommenders and pattern-based rec-
ommenders do not take into account neither the sequential
information (i.e., which item is bought after which) nor the

1. This paper is an extended version of the ICDM’17 paper entitled
“Market Basket Prediction using User-Centric Temporal Annotated
Recurring Sequences”.

customers’ recency. On the other hand, sequential recom-
menders assume the independence of items in the same
basket and do not capture factors like mutual influence.
Furthermore, all of them require transactional data about
many customers in order to make a prediction for a single
customer. For this reason, they do not follow the user-
centric vision for data protection as promoted by the World
Economic Forum [4], [5], [24], which incentives personal
data management for every single user of a data-based
service. Cumby et al. [25] propose a basket predictor which
embraces the user-centric vision by reformulating next bas-
ket prediction as a classification problem: they build a dis-
tinct classifier for every customer and for every item hence
performing predictions by relying just on her personal data.
However, this approach also assumes the independence of
items purchased together.

Finally, the main drawback of the existing hybrid ap-
proaches [21], [22], [23] based on neural networks is that
their predictive models are hardly readable and inter-
pretable by humans. Interpretability of a predictive model,
i.e., the possibility to understand the mechanisms underly-
ing the predictions [26], is highly valuable for a retail chain
manager interested in interpreting the predictive model to
improve the marketing strategies and the service offered.
Moreover, interpretability is also important to the customers
to gain insights about their personal purchasing behavior.

In this paper we propose a pure personalized and easy-
to-interpret approach to next basket prediction which is
compliant with the user-centric vision, i.e., just the data of
a customer are used to make predictions for that customer.
In order to do that we model the interactions among items
in the same basket as well as the interactions between items
in consecutive baskets by considering simultaneously co-
occurrence, sequentiality, periodicity and recurrency.

3 MARKET BASKET PREDICTION PROBLEM

We refer to market basket prediction as the task of predicting
which items a customer will purchase in her next transac-
tion. Formally, let C = {c1, . . . , cz} be a set of z customers
and I = {i1, . . . , iv} be a set of v items. Given a customer
c, Bc = 〈bt1 , bt2 , . . . , btn〉 is the ordered purchase history of
her baskets (or transactions), where bti ⊆ I represents the
basket composition and ti ∈ [t1, tn] is the transaction time.
We indicate with B = {Bc1 , Bc2 , . . . , Bcz} the set of all
customers’ purchase histories.

Given the purchase history Bc of customer c and the
time tn+1 of the next transaction, market basket prediction
consists in providing the set b∗ of k items that customer c
will purchase in the next transaction btn+1

.
Our approach to market basket prediction aims at over-

coming the main limitations of existing methods illustrated
in Section 2. To this purpose, we propose a hybrid predictor
which combines ideas underlying sequential and pattern-
based recommenders. The approach consists of two main
components. The first one is the extraction of Temporal
Annotated Recurring Sequences (TARS) from the customer’s
purchase history, i.e., sequential recurring patterns able to
capture the customer’s purchasing habits. The second one
is the TARS Based Predictor (TBP), a predictive method that
exploits the TARS of a customer to forecast her next basket.
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4 CAPTURING PURCHASING HABITS

In this section we formalize TARS and we describe how to
extract them from the purchase history of a customer.

4.1 Temporal Annotated Recurring Sequences
Temporal Annotated Recurring Sequences (TARS) model recur-
rent and sequential purchases of a customer – i.e., the fact
that a set of items are typically purchased together and that
a set of items is typically purchased after another set of items
– and the recurrence of the sequential purchase – i.e., when
and how often such pattern occurs in the purchase history
of the customer. To understand how TARS capture all these
features at the same time, we need to define its components.

Definition 1 (Sequence). Given the purchase history of a cus-
tomer Bc = 〈bt1 , . . . , btn〉, we call S = 〈X,Y 〉 = X → Y
a sequence if the pair of itemsets X ⊆ bth and Y ⊆ btl ,
X,Y 6= ∅, th < tl and @ S′ = X ′ → Y ′, X ′ ⊆ X ⊆ bt′h and
Y ′ ⊆ Y ⊆ bt′l such that t′h, t

′
l ∈ (th, tl). X and Y are called the

head and the tail of the sequence, respectively.

We denote with TS = 〈tj1 , . . . , tjm〉 the head time list of S,
i.e., the ordered list of the head’s time of all the occurrences
of S in the purchase history of the customer. The support |TS |
of a sequence S is the size of its head time list. We call length
of a sequence |S| = |X|+ |Y | the sum of sizes of the head and
of the tail. We say that a sequence S′ is a subsequence of S′′,
S′ ~⊆ S′′ if X ′ ⊆ X ′′ ∧ Y ′ ⊆ Y ′′.

Definition 2 (Intra-Time). We define αh = tl−th as the
intra-time of an occurrence of a sequence S, i.e., the difference
between the time of the head and the time of the tail. We denote
with AS = 〈α1, . . . , αm〉 the ordered intra-time list of all the
occurrences of S in B.

Definition 3 (Inter-Time). Given the head time list TS , we
define δj = tli − tlj with tli , tlj ∈ TS and tlj < tli as the inter-
time of a sequence S, i.e., the difference between the times of
the heads of two consecutive occurrences of S. We denote with
∆S = 〈δ1, . . . , δm〉 the ordered inter-time list of S. We impose
δm = αm by construction.

To clarify the concepts defined above, let us consider
the example in Table 1 which shows the purchase history
of a customer. Based on this example, Figure 1 shows the
occurrences of sequence S = {a} → {b}. The head time list
TS consists of the times of the heads of all the occurrences
of S, hence TS = 〈01-05, 01-09, 01-13, 01-29, 02-06, 02-14〉.
The intra-time list AS consists of the differences between
the heads and the tails of all the occurrences of S, hence
AS = 〈4, 4, 16, 8, 4, 8〉. The inter-time list ∆S consists of
all differences between the head times of two consecutive
sequences, hence ∆S = 〈4, 4, 16, 12, 8, 8〉. Note that: (i) for

TABLE 1
Example of customer purchase history Bc.

timestamp basket timestamp basket
01-01 a, b, g, h 01-29 a, b, c, g, h
01-05 a, c, d 02-02 b, c, d
01-09 a, b, e, f, h 02-06 a, c, d, e, f, i
01-13 a, b, c, d, h 02-10 b, e, f, h
01-17 c, d, e, f, g 02-14 a, b, c, d, e, f, g, h
01-21 e, f, g 02-22 a, b, g, h, i

Fig. 1. Head time list TS , intra-time listAS , inter-time list ∆S and periods
P

(1)
S , P (2)

S of sequence S = {a} → {b}.

each tj ∈ TS we have that αj ≤ δj , i.e., the intra-time of a
sequence is always lower or equal than its inter-time; (ii) for
S = X → X , we have AS = ∆S .

Definition 4 (Period). Given a maximum inter-time δmax, a
minimum number of occurrences qmin, the head time list TS and
the inter-time list ∆S of a sequence S, we call period an ordered
time list P (j)

S = 〈th, . . . , tl〉 ⊆ TS such that ∀tw ∈ P (j)
S , δw ≤

δmax, P (j)
S is maximal, i.e., δh−1 > δmax, δl+1 > δmax, and

|P (j)
S | ≥ qmin. We denote with PS = {P (1)

S , . . . , P
(m)
S } the set

of periods of S.

The period of a sequence S captures a temporal interval
in which S occurs at least qmin times and the time between
any two occurrences is at most δmax. The support |P (j)

S |
of a period indicates how many times S occurs in P

(j)
S .

In the example of Figure 1, for δmax = 14 and qmin = 2

we have two periods P (1)
S = 〈01-05, 01-09〉 and P

(2)
S =

〈01-29, 02-06, 02-14〉 with support 2 and 3 respectively.

Definition 5 (Recurring Sequence). Let PS = {P (1)
S , . . . ,

P
(m)
S } be a set of periods, we define rec(S) = |PS | as the

recurrence of S, i.e., the number of periods PS in the purchase
history. Given a minimum number of periods pmin, S is a
recurring sequence if rec(S) ≥ pmin.

In the example of Figure 1, for pmin = 2 we have
rec(S) = 2, meaning that S is a recurring sequence.

In summary, a sequence captures items which are pur-
chased together and after other items, the period of a
sequence is a time list respecting intra and inter time con-
straints, and a recurring sequence is a sequence appearing in
a certain number of periods. Given these basic components,
we define a TARS as:

Definition 6 (Temporal Annotated Recurring Sequence).
Given the purchase history B of a customer, a tempo-
rally annotated recurring sequence (TARS) is a quadruple
γ = (S, α, p, q), where S = 〈X,Y 〉 = X → Y is the sequence
of itemsets, α = (α1, α2) ∈ R2

+, α1 ≤ α2 is the temporal
annotation, p is the number of periods in which the sequence
recurs, and q is the median of the number of occurrences in
each period. A TARS will also be represented as follows:

γ = X
α−−→
p,q

Y

We refer to Γc = {γ1, . . . , γm} as the set of all the
TARS of a customer c. A TARS is based on the concept of
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Algorithm 1: extractTars(B)

1 S ← extractBaseSequences(B);
2 {δmaxS }, {qminS }, {pminS } ← parametersEstimation(B,S);
3 S∗ ← sequenceF iltering(B,S, {δmaxS }, {qminS }, {pminS });
4 Ψ← buildTars-Tree(B,S∗, {δmaxS }, {qminS }, {pminS });
5 Γ← extractTarsFromTree(Ψ);
6 return Γ;

sequence, S = 〈X,Y 〉 = X → Y , which intuitively indicates
that itemset Y is typically purchased after another itemset
X . The itemsets themselves point out which items are
purchased together. For example, a sequence {a} → {b, c}
indicates that {b, c} are purchased together after {a}. The
temporal annotation α = (α1, α2) indicates the minimum
intra-time α1 and maximum intra-time α2 intra-time of
the sequence, i.e., the range of time elapsing between the
purchase of X and the purchase of Y . A sequence can
appear in several distinct periods, i.e., time intervals where
the sequence occurs continuously. The number of periods p
characterizes these recurrences, that is, in how many periods
the sequence S appears. Finally, q indicates how many times
S typically occurs in a period.

TARS are an evolution of both recurring patterns [27]
and temporally annotated sequences [28]: the former models
recurrency but do not model sequentiality and periodicity,
while the latter models sequentiality and periodicity but do
not model recurrency. TARS, besides co-occurrence, fills the
gaps by modeling all the three aspects.

By specifying the maximum inter-time δmax, the mini-
mum number of occurrences qmin, and the minimum num-
ber of periods pmin, we can determine the set Γc of TARS
that can be extracted from the purchase history Bc.

4.2 TARS Extraction Procedure

To extract the TARS from a customer’s purchase history
Bc we use an extension of the well-known FP-Growth al-
gorithm [29]. FP-Growth builds a FP-tree which captures
the frequency at which itemsets occur in the dataset. It has
been shown in the literature [30], [31], [32] that FP-Growth
can be extended by attaching additional information to
an FP-tree node in order to calculate the desired type of
pattern. In our approach, we extend the FP-tree into a TARS-
tree. Every node of a TARS-tree stores a sequence S, the
time list TS , its support |TS |, the intra-time list AS , the
inter-time list ∆S and the periods PS derived from TS
with respect to δmax and qmin.

The TARS extraction procedure is described in Algo-
rithm 1. In the first step it extracts from the purchase history
B the base sequences S , i.e., the sequences of length 2 (line
1). Then, a set of parameters {δmaxS }, {qminS }, {pminS } is
estimated for each base sequence S ∈ S with respect to B
(line 2). The base sequences S are then filtered with respect
to these parameters and the base recurring sequences S∗
are extracted, while the other base sequences are discarded
to reduce the search space (line 3). Finally, the TARS-tree
Ψ is built on the base recurring sequences S∗ (line 4), and
the set Γ of TARS annotated with α, p, q is extracted from Ψ
(line 5) according to FP-Growth.

Algorithm 2: parametersEstimation(S, B)

1 Dδmax ← ∅; Dqmin ← ∅; Dpmin ← ∅;
2 foreach S ∈ S do
Dδmax ← Dδmax ∪ {δ̂S = median(∆S)};

3 Cδmax ← groupSimilar(Dδmax);
4 for Ch ∈ Cδmax do
5 foreach S assignedTo(Ch) do δmaxS ← median(Ch);

6 for S ∈ S do
7 TCS�getT imeCompliantPeriods(S,B, {δmaxS });
8 Dqmin�Dqmin∪{median({q̂S=|TC (j)

S ||TC
(j)
S ∈TCS})};

9 Cqmin ← groupSimilar(Dqmin);
10 for Ch ∈ Cqmin do
11 foreach S assignedTo(Ch) do qminS ← median(Ch);

12 for S ∈ S do
13 PS ← getPeriods(S,B, {δmaxS }, {qminS });
14 wS�

∑
P

(j)
S

∈PS |P (j)
S |;eS�wS/|PS |;Dpmin�Dpmin∪{eS};

15 Cpmin ← groupSimilar(Dpmin);
16 for Ch ∈ Cpmin do
17 for S assignedTo(Ch) do
18 pminS ← median({rec(PS′)=|PS′ |S′assignedTo(Ch)});

19 return {δmaxS }, {qminS }, {pminS };

4.2.1 Data-Driven Parameters Estimation

In order to make the parameters δmax, qmin, pmin adaptive
not only to the individual customer [33], but also to the
sequences in Bc, we apply two pre-processing steps on on
the base sequences S (lines 1–2 Algorithm 1).

The first pre-processing step is the data-driven esti-
mation of the sets of parameters {δmaxS }, {qminS }, {pminS }
described in Algorithm 2. Let S be the set of base sequences
and δ̂S be the median of inter-times in ∆S (Algorithm 2, line
2). Given a base sequence S, we estimate parameter δmax by
the following two steps: δmax is estimated as follows: (i) we
group the base sequences with similar inter-times δ̂S (line
3) obtaining a set of clusters Cδmax = {C1, . . . , Cv}; (ii) if
S ∈ Ch, Ch ∈ Cδmax , we set δmaxS as the median of the δ̂S
values in cluster Ch (lines 4–5).

Then, we calculate the periods TCS compliant only with
the temporal constraint δmaxS (lines 6–8) and we estimate
{qminS } as follows: (i) we group the base sequences with
similar median number of occurrences per period q̂S , pro-
ducing a set of clusters Cqmin = {C1, . . . , Cg} (line 9);
(ii) if S ∈ Ch, Ch ∈ Cqmin we set qminS as the median
of the q̂S in Ch (lines 10–11).

Similarly, we estimate {pminS } as follows: (i) we compute
the sum of the number of occurrences of a base sequence
in the periods wS and we calculate the expected number of
occurrences per period eS as wS/|PS | (lines 12–14); (ii) we
group the base sequences with similar eS producing a set of
clusters Cpmin = {C1, . . . , Cd} (line 15); and (iii) if S ∈ Ch,
Ch ∈ Cpmin , we set pminS as the median of the number of
periods of the base sequences in Ch (lines 16–17).

We group the base sequences by dividing the values
into equal-sized bins [34], whose number is estimated as
the maximum between the number of bins suggested by the
Sturges [35] and the Freedman-Diaconis methods [36].
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Algorithm 3: getActiveTARS(B, tn+1,Γ)

1 Γ̂← ∅; Q← ∅; L← ∅; Υ← Γ;
2 for btj , btj−1 ∈ sort-desc(B) do
3 αj−1 ← tj − tj−1;
4 for X ⊆ btj−1 do
5 for Y ⊆ btj do
6 if ∃ γ ∈ Υ | γ = (S, α, p, q) ∧

α1 ≤ αj−1 ≤ α2 ∧ S = 〈X,Y 〉 = X → Y
then

7 if γ ∈ Γ̂ then
8 Qγ ← Qγ + 1; Lγ ← tj−1;
9 if Qγ > q then Γ̂← Γ̂/{γ};

Υ← Υ/{γ};
10 if Lγ − tj−1>q · (α1-α2) then

Υ← Υ/{γ};
11 else
12 Γ̂← Γ̂ ∪ {γ}; Qγ ← 1; Lγ ← tj−1;

13 if Υ = ∅ then return Γ̂, Q;

14 return Γ̂, Q;

4.2.2 Sequence Filtering
The second pre-processing step consists in the selection of
the base recurring sequences, i.e., the base sequences satisfying
the sets of parameters {δmaxS }, {qminS }, {pminS }. We apply
this filtering to reduce the search space so that the building
of the TARS-tree and the TARS extraction (lines 4–5 Algo-
rithm 1) are employed only on the super-sequences of the
base recurring sequences. In other words, if S1 is not a base
recurring sequence and S1

~⊆S2, then we assume as a heuris-
tic that S2 is not recurring too, and we eliminate it through
the sequence filtering process. We adopt the sequence fil-
tering heuristic for reducing the search space because the
antimonotonic property [37] does not apply to TARS.

Consider S1 = {c} → {c} and S2 = {c, d} → {c} in the
example of Table 1, we have that S1

~⊆ S2. Given δmax =
14, qmin = 2 and pmin = 2, we have rec(S1) = 1 and
rec(S2) = 2. Hence, S2 is recurrent while S1 is not, and the
anti-monotonic property is not satisfied.

However, it is clear from this example that a TARS
like S1 could be useful for the prediction because, despite
rec(S1) = 1 in total it occurs six times |P (1)

S1
| = 6. In real-

world, {c} could be a fresh product (like milk or salad) that
is repeatedly and frequently purchased. Hence, an imposed
parameter setting could be not appropriate because (i) it
could remove too many TARS which are in fact useful for
the prediction; (ii) it could consider too many valid base
sequences and not prune enough the search space.

For these reasons, we developed the pre-processing steps
for parameters estimation described in this section.

5 TARS BASED PREDICTOR

On top of the set Γc of TARS extracted from the purchase
history Bc of customer c we build the TARS Based Predictor
(TBP), an approach for market basket prediction that is
markedly personalized and user-centric [4], [5]: the predictions
for a customer c are performed using only the model build
on her purchase history Bc, i.e., her TARS Γc.

Algorithm 4: calculateItemScore(B, Γ̂, Q)

1 Ω← ∅; foreach i ∈ I do Ωi ← 0;
2 for γ = (S = 〈X,Y 〉, α, p, q) ∈ Γ̂ do
3 foreach i ∈ Y do Ωi ← Ωi + (q −Qγ);

4 for i ∈ {i | ∃ γ = (S = 〈X,Y 〉, α, p, q) ∈ Γ̂, i ∈ Y } do
5 Ωi ← Ωi + sup(i)

6 return Ω;

TBP exploits TARS to simultaneously embed complex
item interactions such as the co-occurrence (which item is
bought with which), sequential relationship (which items are
bought after which), periodicity (which item is bought when)
and typical times of re-purchase (after when re-purchases
happen). These factors enable TBP to observe the recent
purchase history of a customer and understand which are
the active patterns, i.e., the patterns that the customer is
currently following in her purchasing. In turn, by realizing
which are the active patterns TBP can provide the set of
items that she will need at the time of the next purchase. It is
worth noting that TBP is parameter-free: all the parameters
of the TARS model Γc are automatically estimated for each
customer on her personal data Bc, avoiding the usual case
where the same parameter setting is used indiscriminately
for all the customers [33].

Given the purchasing history Bc of customer c, the
time tn+1 of c’s next transaction, and c’s TARS set Γc,
the TBP approach works in two steps. First, it selects
the set Γ̂c of active TARS. Second, it computes a score
Ωci for every item i belonging to an active TARS in Γ̂c,
ranks the items according to Ωci , and selects the top k
items as the basket prediction for c.

Algorithm 3 shows the procedure of the TBP to select
the active TARS of a customer Γ̂. First, it sorts the purchase
history B ordering it chronologically from the most recent
basket to the oldest one, then it loops on pairs of consecutive
baskets (line 2) searching for a set Υ of potentially active TARS
(lines 4–7). When it finds a potentially active TARS γ, it
considers two cases. If the sequence S of γ is encountered
for the first time, the algorithm adds γ to the set Γ̂ of active
TARS and initializes two variables: the number of times γ
has been encountered Qγ and its last starting time Lγ (line
13). In the second case, the algorithm increments Qγ and
updates Lγ (line 9). If Qγ > q the algorithm removes γ
from the set of active TARS and from the set of potentially
active TARS (line 9). If too much time has passed between
the last beginning of TARS γ and its next occurrence (line
11), the algorithm does not look for that TARS γ anymore
and removes it from Υ. Algorithm 3 stops either when the
set of potentially active TARS is empty (line 14), or when
the entire purchase history B has been scanned (line 15).
Finally, it returns the set Γ̂ of active TARS and the number
of times Q the sequences of the active TARS have occurred
in the last period.

Algorithm 4 shows the procedure of TBP to compute
the items’ scores. First, it sets to zero the score of each item
Ωi (line 1) Then, for every active TARS γ containing item
i∈Y , it increases Ωi with the difference between the typical
number of occurrences q of γ and Qγ indicating the number
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of times that the sequence of γ occurred in the recent history
(lines 2–3). Finally, Ωi is augmented with the support of item
i for the items in the tail of the active TARS (lines 4–5).

After this procedure, TBP ranks the items’ scores Ωc in
descending order and returns the top-k items as prediction.

6 EXPERIMENTS ON RETAIL DATA

In this section, we report the experiments performed on
three real-world datasets to show the properties of the TARS
and the effectiveness of TBP in market basket prediction.

6.1 Experimental Settings
State-of-the-art methods [19], [21], [22], [25] fix the size of
the predicted basket to k = 5 or k = 10. However, we think
that the size k of the predicted basket should adapt to the
customer’s personal behavior.

Indeed, if a customer typically purchases baskets with
a few items it is useless to predict a basket with a large
number of items. On the other hand, if a customer typically
purchases baskets with a large number of items, the pre-
diction of a small basket will not cover most of the items
purchased. In this paper, we report the evaluation of the
predictions made using both a fixed length k ∈ [2, 20] for
all the customers and using a customer-specific size k = k∗c ,
where k∗c indicates the average basket length of customer c.

According to the literature [19], [21], [22], [25], we
adopt a leave-one-out strategy for model validation: for each
customer c we use the baskets in the purchase history
Bc = {bt1 , . . . , btn} for extracting the TARS, and the basket
btn+1 to test the performance. For each customer, we evalu-
ate the agreement of the predicted b∗ and the real basket b
using the following metrics:

• F1-score, the harmonic mean of precision and recall
[38]:

F1-score(b, b∗) =
2 · Precision(b, b∗) ·Recall(b, b∗)
Precision(b, b∗) +Recall(b, b∗)

Precision(b, b∗) = |b ∩ b∗|/|b∗|

Recall(b, b∗) = |b ∩ b∗|/|b|

• Hit-Ratio, the ratio of customers who received at least
one correct prediction (a hit) [39]:

Hit-Ratio(b, b∗) = 1 if b ∩ b∗ 6= ∅, 0 otherwise.

• normalized F1-score: the F1-score calculated only for
the customers having at least one hit.

Furthermore, for each customer we compute both learn-
ing and prediction time. The learning time is the amount of
time required to extract the model. The prediction time is the
amount of time the predictor needs to predict the next bas-
ket of a customer. We perform the experiments on Ubuntu
16.04.1 LTS 64 bit, 32 GB RAM, 3.30GHz Intel Core i7.

According to the literature, we report the evaluation
metrics by aggregating the quality measures calculated for
each customer by using mean, median and percentiles.

It is important to notice that, due to the nature of our
problem formulation, and in line with [25], we do not adopt

TABLE 2
Statistics of the datasets used in the experiments.

Dataset cust. # baskets # items avg basket
per cust.

avg basket
length

Coop-A 10,000 7,407,056 4,594 432.4±353.4 9.4±5.8
Coop-C 10,000 7,407,056 407 432.4±353.4 8.6±4.9
Ta-Feng 2,319 24,304 5,117 10.4±7.5 1.8±1.1

measures of ranking quality like NDCG and DCG [40]. Such
choice is supported by three motivations.

First, since we are dealing with retail transactions we do
not have a rating provided by the customers for each item
purchased, i.e., an explicit feedback like the voting assigned
to movies, songs, restaurants, hotels, etc., that can be used
as ground truth for the ranking measures.

Second, we can not use implicit feedback like the indi-
vidual (or collective) purchase frequency because this would
mean to assume that every user would prefer to have in
her recommendation the items most frequently purchased
– rather than items that are easily forgettable because not
very frequent or subjected to seasonality: ranking measures
assume that very important items are more useful when
appearing earlier in the result list.

Finally, in the market basket prediction problem formu-
lation, both the predicted b∗ and the real basket b are set
without any order among their items.

6.2 Datasets

We performed our experiments on three real-world trans-
actional datasets: Coop-A, Coop-C (both extracted from
the private Coop repository) and the open source Ta-Feng
dataset. Table 2 shows the details of the datasets.

The Coop repository is provided by Unicoop Tirreno2,
a big retail supermarket chain in Italy. It stores 7,407,056
transactions made by 10,000 customers in 23 different shops
in the province of Leghorn, over the years 2007-2014. The
set of Coop items includes food, household, wellness, and
multimedia items. There are 7,690 different articles classified
into 520 market categories. From the repository, we extract
two datasets: Coop-A and Coop-C. The two datasets differ in
the items categorization. In Coop-A (articles) the items of a
basket are labeled with a fine-grained categorization which
distinguishes, for example, between blood orange and navel
orange. In Coop-C (categories) the items are mapped to a
more general category: in the example above blood orange
and navel orange are considered the same generic item
(orange). All the customers in Coop-A and Coop-C have at
least one purchase per month.

Ta-Feng3 is a dataset covering covers food, stationery
and furniture, with a total of 23,812 different items. It con-
tains 817,741 transactions made by 32,266 customers over 4
months. We remove customers with less than 10 baskets and
we consider only the remaining 7% customers.

Since we act experiments on retail data we adopt the day
as time unit: both the parameters and the TARS annotations
are expressed in days.

2. https://www.unicooptirreno.it/
3. http://www.bigdatalab.ac.cn/benchmark/bm/dd?data=Ta-Feng
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6.3 Interpretability of TARS

The interpretability of TARS is one of the main characteris-
tics of our approach. Table 3 shows some examples of TARS
extracted from Coop-C. In the table, we report the median
of α, p and q across all the customers having the presented
TARS. We observe that TARS with a recurring base sequence
are the most supported among the customers.

For example {milk} → {milk} and {banana} →
{banana} are supported by more than 90% of the customers
in Coop-C. The two TARS have similar q (6.58 and 7.20
respectively) indicating that they have similar recurrence
degrees, i.e., they occur a similar number of times in the
respective periods. In contrast {banana} → {banana} has a
higher maximum intra-time (α2 = 35) and a lower average
number of recurrences (p = 14.63). This indicates that: (i)
the time for a banana re-purchase is higher than the time of
a milk re-purchase; (ii) the support to have a distinct period
is higher for {banana} than {milk}.

Moreover, we notice for more than 25% of the customers
the contemporary purchase {bread, tomato} can indicate
a future basket with {bovine} or with {banana, potato}
and that these TARS have very different annotations α, p, q.
Finally, we highlight that, even if the most common TARS
among the customers are those with base sequences, the
TARS in Γc with sequence length greater than two are on
average more than the 95% for each customer.

To better understand the TARS, in Table 4 we show
some TARS made of base recurring sequences with different
peculiarities. A base recurring sequence captures the typical
repurchasing of the same item within a certain period for a
certain number of times.

Apples and bananas are fruit items available throughout
they year. The associated base TARS {banana}→{banana}
and {apple}→{apple} have indeed a similar number of pe-
riods p and number of typical occurrences in each period q.

On the other hand, oranges are a seasonal fruit item,
generally available between November and February. The
associated base TARS {orange}→{orange} has a recurrence
p significantly lower than the recurrence of banana and
apple TARS, while the occurrence inside a period is similar.
We observe that ice creams are similar to oranges: the
associated TARS {ice cream}→{ice cream} has a lower
p and a higher maximum intra-time α2.

TABLE 3
Examples of TARS extracted from Coop-C.

- Supported by more than 90% customers

{milk} (1,17)−−−−−−→
18.87,6.58

{milk} {banana} (2,35)−−−−−−→
14.63,7.20

{banana}

- Supported by more than 80% customers

{tomato} (1,17)−−−−−−→
13.87,6.58

{milk} {tomato} (1,12)−−−−−−→
15.27,5.11

{bovine}

- Supported by more than 25% customers{bread,
potato

} [2,15]−−−−−−→
11.40,8.15

{bovine}
{bread,

potato
} [3,27]−−−−−→

7.25,4.30

{banana,
potato

}

TABLE 4
Periods of TARS with different recurring base sequences from Coop-C.

For each TARS is shown how the periods, represented as horizontal
single lines, occur along 7 years of observations.

X → X α1 α2 p q
{banana} → {banana} 2 35 14.63 7.20
{apple} → {apple} 2 35 15.90 6.14
{orange} → {orange} 2 33 8.13 6.56
{ice cream} → {ice cream} 2 40 5.90 6.38
{strawberry} → {strawberry} 2 32 3.55 4.69
{easter egg} → {easter egg} 4 20 2.42 3.29

Finally, Strawberries and Easter eggs are items available
for just a short period of the year. As result, in the as-
sociated TARS we have lower values of both p and q
than the other TARS. In particular, among the items con-
sidered strawberries’ TARS have the lowest α2 indicat-
ing short periods, while Easter eggs have the highest α1

indicating long intra-times.

6.4 Properties of TBP
In this section, we present the peculiar properties of TBP:
the temporal validity and reliability of the TARS extracted,
and the performance improvements yield by parameters
estimation. Since these experiments are closely tied to the
applicability of TBP in real services, we report the results
obtained on Coop dataset where the period of observation (7
years) is much more statistically significant than Ta-Feng.

6.4.1 TARS Temporal Validity
In real-world applications is unpractical, or even unnec-
essary, to rebuild a predictive model from scratch every
time a new basket appears in a customer’s purchase history.
This leads to the following question: for how long are TBP
predictions reliable? We address this question by extracting
TARS on the 70% of the purchase history of every customer
and performing the prediction on the subsequent baskets.

As shown in Figure 2, regardless the predicted basket
size k, F1-score and Hit-Ratio remain stable up to 20 predic-
tions, which suggests a large temporal validity of TBP since
the model construction.

Fig. 2. Evaluation of TARS temporal validity with respect of F1-score
(left) and Hit-Ratio (right) on Coop-C varying the number k of items.
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Fig. 3. Evaluation of TARS reliability on Coop-C observing F1-score (top
left), number of items (top right), number of TARS (bottom left) and
number of active TARS (bottom right) by augmenting the size of the
purchase history Bc for each customer analyzed.

6.4.2 TARS Extraction Reliability

How many baskets does TBP need to perform reliable
predictions? For each customer, we start from her second
week of purchases and we extract the TARS incrementally
by extending the training set one week at a time. We then
predict the next basket of the customer and we evaluate the
performance of TBP in this scenario.

Figure 3 shows the median value and the “variance”
(by means of the 10th, 25th, 75th and 90th percentiles) of
the F1-score, (top-left), the total number of different items
purchased by the customer (top-right), the number of TARS
extracted (bottom-left), the number of active TARS during
the prediction (bottom-right) as the number of weeks used
in the learning phase increases. On one hand, the average
F1-score does not change significantly as the number of
weeks increases, while its “variance” reduces as more weeks
are used in the learning phase. On the other hand, the other
measures stabilize after an initial setup phase. Therefore,
this experiment shows that for a real application that effec-
tively runs TBP reliable performance on sound TARS are
expected when from 9 to 12 months of data are required.

6.4.3 Parameter-Free vs. Parameter-Fixed Approach

TARS can be extracted by fixing the same parameters for all
the customers and items, as usually done by state-of-the-art
methods [19], [21], [22], [25], or by automatically estimating
the parameters with a data driven procedure.

In this section we discuss and analyze the impact of fix-
ing the parameters on the predictive performance by com-
paring the results of parameter-free TBP and a parameter-
fixed version of TBP where we set δmax=14 (e.g., two
weeks), qmin=3 and pmin=2.

Figure 4 shows the distributions of the number of TARS
per customer for the parameter-free (left) and parameter-
fixed (right) scenarios. We observe two different distribu-
tions: a skewed peaked distribution for the parameter-free
scenario and a heavy tail distribution for the parameter-
fixed scenario. This suggests that fixing the parameters has a
strong impact on the extraction of TARS, leading to a lower
average number of TARS per customer than the parameter-
free scenario (Figure 4).

Fig. 4. Number of TARS per customer distribution on Coop-C:
parameter-free (left) versus parameter-fixed (right) TARS extraction. The
bottom line reports a focus of the distributions of the base TARS, i.e.,
TARS with length equals to 2.

Fig. 5. Next basket prediction performance on Coop-C observing F1-
score (left) and Hit-Ratio (right) comparing the parameter-free proposed
approach versus the same approach with the parameters fixed.

Figure 5 compares the predictive performances of the
parameter-free and the parameter-fixed scenarios. For both
F1-score and Hit-Ratio, TBP produces better predictions in
the parameter-free scenario. In particular, when using the
average basket size of a customer k∗c as the size of the pre-
dicted basket, the parameter-free approach has F1-score =
0.25 while the parameter-fixed approach has F1-score=0.21.
Our results suggest that the adoption of a parameter-free
strategy during the extraction of TARS enforces customer
behavior heterogeneity and increases prediction accuracy.

6.5 Comparing with Baseline Methods

We compare TBP with several baseline methods on Coop-A,
Coop-B and Ta-Feng datasets4.

6.5.1 Baseline Methods
We implement the following user-centric state-of-the-art
methods. We recall that user-centric approaches build the
predictive model of a customer just relying on her purchase
data.

LST [25]: the next basket predicted is the last basket
purchased by the customer, i.e., btn+1 = btn ;

TOP [25]: predicts the top-k most frequent items with
respect to their appearance, i.e., number of times that are
purchased, in the customer’s purchase history Bc;

MC [25]: makes the prediction based on the last purchase
btn and on a Markov chain calculated on Bc;

4. We provide the Python code of TBP and the baseline meth-
ods along with an anonymized sample of the Coop dataset at https:
//github.com/GiulioRossetti/tbp-next-basket. The code of DRM was
kindly provided by the authors of [22].

https://github.com/GiulioRossetti/tbp-next-basket
https://github.com/GiulioRossetti/tbp-next-basket
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CLF [25]: for each item i purchased by the customer,
this method builds a classifier on temporal features ex-
tracted from the customer’s purchase history considering
two classes: “item i purchased yes/no”. The classifier then
predicts the next basket using the temporal features ex-
tracted from the customer’s purchase history. Examples of
the features extracted from a basket btj are: the number of
days at tj since item i was bought by c, the frequency of
purchasing i at time tj , etc.

We also implement four state-of-the-art methods that are
not user-centric, i.e, they require and use purchase data of
all customers B to build a collective predictive model:

NMF (Non-negative Matrix Factorization) [41]: is a collabo-
rative filtering method which applies a non-negative matrix
factorization over the customers-items matrix. The matrix is
constructed from the purchase history of all customers B;

FMC (Factorizing personalized Markov Chain) [19]: using
the purchase history of all the customers B, it combines
personalized Markov chains with matrix factorization in
order to predict the next basket;

HRM (Hierarchical Representation Model) [21]: employs a
two-layer structure to construct a hybrid representation over
customers and items purchase history B from last transac-
tions: the first layer represents the transactions by aggregat-
ing item vectors from the last transactions, while the second
layer realizes the hybrid representation by aggregating the
user’s vectors and the transactions representations.

DRM (Dynamic Recurrent basket Model) [22]: it is based on
recurrent neural network and can capture both sequential
features from all the baskets of a customer, and global se-
quential features from all the baskets of all the customers B.

Theoretically, user-centric methods should perform bet-
ter than not user-centric methods in solving the market bas-
ket prediction problem. Indeed a user-centric method which
is fit on the particular behavior of a customer should be
advantaged and should not suffer from the noise generated
by the collective shopping behavior. However, not user-
centric methods, by exploiting the similarity among various
customers, can predict items that a customers has never
bought before, and can be employed also for new customers
just after one purchase. On the other hand, a user-centric
method require a minimum number of purchases in order
to provide a reliable prediction.

We do not compare against the methods described
in [15], [16], [23] because, even though they employ
patterns for producing recommendations, they are de-
signed for web-based services, and because they specifi-
cally exploit and use the items’ ratings and not only the
occurrences of the items in a basket.

With respect to the not user-centric baseline methods –
NMF, FMC, HRM, DRM – we performed preliminary exper-
iments for each dataset in order to tune the dimensionality
d used to represent the data. In line with [21], [22] for Ta-
feng we set d=200 where all the baselines show the best
performance. On the other hand, for Coop-A and Coop-C as
consequence of empirical experiments, we set d=100 where
there is a good balance between the quality of the perfor-
mance and the learning time. Indeed, we underline that,

probably as consequence of both the 7 years of transactions
in Coop against the four months of Ta-feng, and of the higher
density of Coop dataset, for HRM and DRM we report the
results of the test performed on a sample of Coop with 100
customers due to large computational time (see Table 6).

6.5.2 Market Basket Prediction Evaluation

Table 5 reports the average F1-score and Hit-Ratio of TBP
against the baseline methods when setting the length of the
predicted basket equals to the average basket length for each
prediction of each individual customer, i.e., k=k∗c . This kind
of evaluation is markedly user-centric and would be a suit-
able approach in implementing a real personalized basket
recommender tailored on the customer behavior. TBP signif-
icantly outperforms the baselines both in terms of F1-score
and Hit-Ratio and, together with the others user-centric
approaches, it outlines how for this particular task a user-
centric model is more accurate than a not user-centric one.

In Table 6 we report the duration of the learning time, i.e.,
the execution time needed to build every method. Note that
(i) the time is expressed in seconds (s) or in hours (h); (ii) for
user-centric methods (TBP, MC, CLF) we report the average
time per customer while for not user-centric methods (NMF,
FPM, FRM, DRM) the total time; (iii) HRM and DRM are
tested on a sample∗ of Coop; (iv) learning time for TOP and
LST is always lower than 0.01 seconds. We do not report the
prediction time because it is negligible for all the approaches
(i.e., less than 0.01 seconds).

We observe that TBP needs more time than existing user-
centric methods (5 minutes per customer on average) but, if
a prediction is required only for a customer, it is much faster
than the not user-centric approaches that require learning
the model for all the customers. We believe that such a
learning time is acceptable for two reasons: (i) in a real
scenario the TARS can be re-computed once every month
and still produce reliable predictions; (ii) the computation
can be parallelized and personalized with respect to the
customer’s behavior, thus the TARS of all the customers can
be extracted at the same time by different devices.

TABLE 5
F1-score (F1) and Hit-Ratio (HR) using personalized length k = k∗c . In
bold, and bold-italic are highlighted the 1st and 2nd best performer.

k = k∗c TBP TOP MC CLF LST NMF FPM HRM DRM

F
1

Coop-A .17 .14 .14 .13 .09 .14 .08 .06 .05
Coop-C .24 .22 .23 .19 .14 .22 .16 .08 .12
Ta-Feng .09 .09 .06 .09 .06 .08 .08 .08 .07

H
R

Coop-A .62 .58 .58 .56 .40 .59 .44 .35 .33
Coop-C .72 .71 .70 .65 .50 .71 .61 .38 .55
Ta-Feng .32 .34 .24 .31 .15 .31 .31 .31 .29

TABLE 6
Learning time comparison. The learning time for TOP and LST is not
reported in the Table because it is always lower than 0.01 seconds.

∗Test carried on a sample of 100 customers.

Dataset TBP MC CLF NMF FPM HRM DRM
Coop-A 351.86s 0.04s 2.38s 244.28s 0.21h 0.84h∗ 47.53h∗
Coop-C 6.62s 0.01s 1.08s 69.98s 0.11h 0.72h∗ 34.06h∗
Ta-Feng 0.01s 0.00s 0.00s 803.89s 0.41h 0.34h 4.24h
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Fig. 6. Performance comparison of TBP against the baselines varying length k: F1-score in the top row, Hit-ratio in the bottom row.

To better understand how the performance are affected
by the variation of the predicted basket length k, in Figure 6
we compare the average F1-score (top row) and the average
Hit-Ratio (bottom right) produced by TBP and by all the
baseline methods while varying k ∈ [2, 20].

We observe that TBP considerably overtakes the baseline
methods on Coop-A and Coop-B having the highest F1-score
and a comparable and competitive Hit-Ratio.

On Ta-Feng TBP has the highest F1-score at the second
highest Hit-Ratio. The decrease of the Hit-Ratio of TBP in
Ta-Feng is probably due to the very high data sparsity of the
dataset. Indeed, as we observe in Table 2, Ta-Feng has a much
lower average number of baskets per customer, a much
lower average basket length, and a shorter observation
period than Coop-A and Coop-C. For this reason, the TARS
extracted from Ta-Feng have lower quality than the TARS
extracted on the other datasets.

Finally, we underline that a high F1-score, which consid-
ers simultaneously precision and recall, is a better indicator
than a high Hit-Ratio that only signals that at least an item
predicted is correct. Thus, the improvement of the perfor-
mance for market basket prediction of TBP with respect to
the state of the art are not negligible either using a personal
k = k∗c or if a fixed k is specified for every customer.

Fig. 7. Normalized F1-score varying predicted basket length k.

Fig. 8. Performance comparison varying k and using a model built on a
subset of Bc with random size between 70% and 90% of |Bc|: F1-score
in the top row, Hit-ratio in the bottom row.

Moreover, we notice that the F1-scores can be biased by
two extreme scenarios: (i) the F1-score can be low because
of a low Hit-Ratio, i.e., for most of the customers no item is
predicted even though for some customers we predict most
of the items; (ii) the F1-score can be high because for most
of the customers just one item is predicted.

Thus, in Figure 7 we show the performance using the
normalized F1-score instead of the F1-score. We observe that
the positive gap between TBP and the competitors increases:
for the customers for which TBP correctly predicts at least
one future basket, the baskets predicted by TBP are more
accurate and cover a larger number of items than the baskets
predicted by the other methods.

We also investigate to what extent the performances can
be affected by the leave-one-out evaluation strategy: the last
basket of a customer could depart from her typical behavior
affecting the extraction of the TARS.

To cope with this issue we perform the learning pro-
cess (i.e., extract TARS) by selecting a random subset
B′c = {bt1 , . . . , btn′} of the customers’ purchase history
Bc = {bt1 , . . . , btn}, with tn′ < tn. We randomly vary the
size of the subset |B′c| among 70% and 90% of |Bc|, and we
apply TBP on the subsequent basket btn′+1

.
Figure 8 presents the results of this experiment for Coop-

A and Coop-C and confirms the trends observed in the previ-
ous experiments: the leave-one-out evaluation strategy does
not affect significantly the performance of the methods.
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7 CONCLUSIONS

In this work, we have proposed a data-driven and user-
centric approach for market basket prediction. Our con-
tribution is twofold. First, we have defined Temporal An-
notated Recurring Sequences (TARS). Then we have used
TARS to build a TARS Based Predictor (TBP) for forecasting
customers’ next baskets. Being parameter-free, TBP lever-
ages the specificity of individual customer’s behavior to
adjust the way TARS are extracted, thus producing more
personalized patterns. We have performed experiments on
real-world datasets showing that TBP outperforms state-
of-the-art methods and, in contrast with them, it provides
interpretable patterns that can be used to gather insights
on customers’ shopping behaviors. Our results demonstrate
that at least 36 weeks of a customer’s purchase behavior
are needed to effectively predict her next baskets. In this
scenario, TBP can effectively predict the subsequent twenty
future baskets with remarkable accuracy.

The proposed method could be adopted by retail market
chains to implement a real and efficient personal cart assistant
which is able to effectively recommend and remind to
the customer the products that she actually needs. Being
parameter-free and completely independent from the data
of other customers, the application could potentially run on
private devices or data stores [7] guaranteeing in this way
the privacy by design property [42]. Besides transactional data
related to shopping session, the TARS could be valuables
personal patterns also for companies working in the fields
of mobility, online music and recommendation in general.

A future research line consists in providing to the cus-
tomers of a living laboratory [7] an app running TBP and
observe how and if their purchase behaviors are influenced
by the recommendations. Then, since our method is fully
user-centric, it cannot make reliable predictions for new
customers or for customers having a short purchase history.
Thus, we plan to build a version of TBP which incorporates
a collaborative filtering approach, such that it will be able
to forecast baskets for newcomers and for a customer with
a short purchase history. Furthermore, we would like to
exploit TARS also to segment the customers according to
their TARS. Finally, we would like to investigate how TARS
and TBP can be applied to different analytical domains such
as mobility data, musical listening sessions and health data.
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