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The Automated External Defibrillator (AED) is a medical device that analyzes a patient’s
electrocardiogram in order to establish whether he/she is suffering from the fatal condition
of Sudden Cardiac Arrest (SCA), and subsequently allows the release of a therapeutic dose
of electrical energy (i.e. defibrillation). SCA is responsible for over 300,000 deaths per year
both in Europe and in USA, and immediate clinical assistance through defibrillation is fun-
damental for recovery. In this context, an open-source approach can easily lead in improve-
ments to the distribution and efficiency of AEDs. The proposed Open-Source AED (OAED) is
composed of two separate electric boards: a high voltage board (HV-B), which contains the
circuitry required to perform defibrillation and a control board (C-B), which detects SCA in
the patient and controls the HV-B. Computer simulations and preliminary tests show that
the OAED can release a 200 J biphasic defibrillation in about 12 s and detects SCA with sen-
sitivity higher than 90% and specificity of about 99%. The OAED was also conceived as a
template and teaching tool in the framework of UBORA, a platform for design and sharing
medical devices compliant to international standards.
� 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
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Hardware name
 OAED

Subject area
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Hardware type
 � Performing defibrillation
� Measuring patient’s electrocardiogram and impedance
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Open Source License
 GPL

Cost of Hardware
 400 € (single prototype)
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1. Hardware in context
An Automated External Defibrillator (AED) is a portable electronic medical device capable of automatically diagnosing
whether a patient is suffering from Sudden Cardiac Arrest (SCA), and allows treating him/her through defibrillation when
necessary.

In SCA, the heart suddenly and unexpectedly stops beating rhythmically and changes to a chaotic beat. When this hap-
pens, blood stops flowing to the brain and other vital organs. In these conditions, the patient can be considered dead, and he
will remain in this state unless someone helps him immediately by ‘‘resetting” the heart. SCA is a very dangerous condition,
responsible every year for over 300,000 deaths both in Europe and in the United States [1,2]. The most effective way to treat a
SCA is with defibrillation, namely a therapeutic dose of electrical energy. The necessity of performing defibrillation within a
few minutes of SCA has led to the development of AEDs: their timely use can improve outcome after SCA [3,4]. For this rea-
son, AEDs have been designed to be used with little or no medical knowledge allowing the widespread distribution of these
devices for reducing SCA victims. AEDs should be present in public places with the highest probability to have SCA events,
such as public transportation areas (train stations or airports), rather than City Halls [5]. Furthermore many AEDs are
deployed in schools and working areas, which are normally closed during off-hours, limiting their use [3].

The open source approach would help this distribution, with the additional advantage of improving the existing designs.
AEDs have existed for over twenty years but no open-source blueprints are currently available, in contrast, to several

open-source tools developed, for example, for acquisition [6,7], analysis and visualization [8–12] of electrocardiogram (ECG).
The external defibrillator as we know it today was invented in 1930, but the first proof-of-concept prototype was demon-

strated in the late 19th century [13]. The first prototype of 1930 used the alternate current (AC) from the mains after high
voltage transformation from 240 V to 1 kV; and it was connected to the exposed heart with paddle-like electrodes. It was
until the early 1950s that defibrillation still needed an open-chest approach. The closed-chest defibrillator was invented
by the Russian doctor V. Eskin, and used an AC with a voltage higher than 1 kV [14]. The next major breakthrough was
the introduction of portable defibrillators, which could be used outside hospitals. These were mostly carried in ambulances,
allowing treatment of the patient before arrival at the hospital. The continuous improvement of electronics in the last dec-
ades has gradually reduced the weight and dimensions of defibrillators as well as increased the chances of resuscitation.
Finally, the introduction of microprocessors and microcontrollers has led to the development of defibrillators that can auto-
matically diagnose SCA in the patient (AEDs).

The Open-Source AED (OAED) presented in this work has been developed in the framework of UBORA, a project funded by
the European Commission, which aims at developing a Europe-Africa e-infrastructure for open-source co-design of new solu-
tions to face the current and future healthcare challenges of Europe and Africa (http://ubora-biomedical.org). The UBORA
e-infrastructure enables peer-to-peer evaluation of biomedical designs before submitting the documentation for the formal
certification route. This double check of the design, coupled with compliance to international design standards, can lead to
safer medical products because a large community as well as regulatory authorities are performing the evaluation.

2. Hardware description

As shown in Fig. 1, the OAED is divided into two main electric boards powered by a battery: a High-voltage board (HV-B)
and a control board (C-B).

The HV-B contains the circuitry necessary to perform defibrillation:

� capacitor, used to store the energy to be released to the patient;
� charging circuit, which rapidly charges the capacitor;
� H-Bridge circuit, required to perform biphasic defibrillation;
� internal discharge circuit, used to dump the unused residual energy; and
� two selectors, used to isolate the patient from the capacitor, and to route the ECG signal to the C-B.

The C-B represents the device’s brain. It contains a Programmable System on Chip (Cypress PSoC), which -amongst other
functions- integrates the analogical front-end used to acquire the ECG and impedance measurements from the patient. The
PSoC also contains an ARM Cortex-M3 CPU, used to analyze the signals and asses the defibrillation needs.

According to MDD 93/42, AEDs are classified as Class IIb devices because they are ‘‘therapeutic devices intended to admin-
ister energy in a potentially hazardous way” [15].

The design has been done ensuring compliance with the standards of the IEC 60601 family [16]. Comparing the standards
above with the commercially available AEDs, we can outline the following technical specifications:

� Nominal voltage: 1700 V;
� Defibrillation energy: 200 J;
� Charging time: 12 s, defined as the maximum time from activation of the rhythm detector to the defibrillator being ready
for discharge at maximum energy;

� Patient leakage currents (not during defibrillation): 50 lA;
� SCA recognition algorithms: Sensitivity >95%, specificity >95%.
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Fig. 1. OAED block diagram. The blue blocks on the left side constitute the power supply module. The module comprises the battery and the voltage
regulators included in the control board (C-B), and the high-voltage board (HV-B). The yellow blocks represent the C-B, which is composed of a PSoC and
some input-output components such as switches and LED diodes. Lastly, the green blocks represent the HV-B. The HV-B includes a charging circuit, a
condenser, an H-Bridge circuit, two relays used as selectors, and an internal discharge circuit composed of a power resistor. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.1. High-voltage board

The High-voltage board contains two main circuits, the charging circuit and the H-Bridge.
2.1.1. Charging circuit
From an engineering point of view, defibrillation can be approximated as a capactive discharge on a pure resistive load.

Defibrillation can be schematized with an RC circuit, where the patient is represented as a resistor, while a capacitor repre-
sents the defibrillator. For this reason, the most critical aspect of an AED is the charging time of the capacitor, because more
than one charge-discharge cycle is usually needed to save a life [17]. An AED needs a charging circuit with the following
characteristics:

� ability of producing a high-voltage output from a low-voltage input;
� high efficiency;
� fast charging speed;
� compact dimensions and low weight;
� low cost;
� compatibility with pure capacitive loads; and
� safety and robustness.

The final charging circuit was designed as a self-oscillating flyback converter, also known as Ringing Choke Converter
(RCC) [18].

The RCC is derived from the flyback converter (Fig. 2). The flyback converter works using a PWM signal to operate its
switch. When this signal is high, the switch is closed and a current flows through the primary coil of the transformer.
The flyback diode on the secondary side of the circuit prevents the current from flowing, therefore the transformer accumu-
lates energy. When the PWM signal is low, the switch is open and the transformer releases the energy it had accumulated
during the ‘‘on” time in the secondary coil. In a traditional flyback configuration, the PWM signal has a fixed frequency while
its duty cycle may vary according to the load. The disadvantage of this configuration is that when the duty cycle is low
(meaning a short ‘‘on” time), there will be an excess of dead time, during which the circuit has no current flowing in it.
On the other hand, if the duty cycle is high (meaning a long ‘‘on” time), the transformer might not have enough time to
release all its energy onto the capacitor. These two operating modes are commonly known as discontinuous conduction mode
and continuous conduction mode respectively.

The purpose of the RCC is to avoid working in both of these two conductionmodes. In fact, the RCC is obtained by adding a
third coil to the flyback transformer, which will be used to automatically generate a PWM signal. The peculiarity of this
approach is that only a few components are sufficient to bring the flyback circuit to work at the exact point of transition
between discontinuous and continuous conduction modes. In this condition, as soon as the transformer releases all the energy,
the switch is closed again avoiding dead times and energy residuals in the transformer.



Fig. 3. OAED Ringing Choke Converter. On the left side: the switch S1 controls the current flow in the transformer; and the components required to
automatically generate the PWM signal that operates on S1. On the right: voltage feedback control made of a voltage divider (resistors Rd1 and Rd2), which
generates a 2.5 V reference when the capacitor is charged at a nominal voltage V0 = 1700 V. This reference is used as a feedback signal to the PSoC, through
the buffer on the right, and as a direct negative feedback that turns the charging circuit off through the phototransistor in the center of the circuit.

Fig. 2. Flyback converter.
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The schematic of the RCC is presented in Fig. 3. The MOSFET S1, in the left side of the circuit, represents the Flyback switch.
S1 activation is controlled by the third coil of the Flyback transformer, and by the BJT transistor Q1. The injection of a current
in the base of Q1 causes the opening of the MOSFET S1. Exploiting this property allows a voltage control on the output capac-
itor. For this purpose, on the right side of the circuit there is a voltage divider composed of Rd1 and Rd2. The divider is
designed in order to ensure that the voltage across Rd2 is 2.5 V when the capacitor voltage is 1700 V. When this happens,
the shunt regulator D2 permits conduction, causing the injection of a current in the Q1 base, which stops S1 oscillations;
and thus prevents the capacitor charging.

Finally, the last element on the right side is an op-amp buffer that provides a charge feedback of the capacitor to the PSoC
on the C-B.
2.1.2. H-Bridge
The basic principle of defibrillation is that by applying a current to the patient’s heart it is possible to stop it at once so the

pacemaker cells can restore cardio-myocyte synchronization.
Amongst the various defibrillation parameters that can be modulated to improve the chances of resuscitation, the most

important are the energy released and the waveform. While increasing the first can raise the chances of resuscitation, there
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is a trend to reduce the energy as much as possible, because higher energies may cause burning of the patient’s skin and
require larger batteries.

On the other hand, the defibrillation waveform can increase the chances of resuscitation and thus reduce the required
energy.

Currently, the most promising waveform is biphasic defibrillation. The biphasic waveform is obtained by stopping defib-
rillation, and re-applying it after inverting the polarities [17,19,20].

In the OAED, biphasic defibrillation is achieved using the H-Bridge circuit, in which each switch is implemented with two
IGBTs, as shown in Fig. 4. Each IGBT requires a voltage between the gate and the emitter of about 15 V. Thus, they require a
dedicated insulated power source and an insulated driver. The first is obtained using galvanic-insulated DC/DC converters,
Fig. 4. OAED H-Bridge. Each switch of the classic H-Bridge configuration is implemented with two IGBTs, and their respective driving circuits. The H-Bridge
circuit controls the polarity of defibrillation discharges, allowing to release poly-phasic defibrillations, which ensures higher resuscitation chances even at
lower energies.
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whilst the latter requires a photo-coupled driver. Since IGBTs require considerable currents when switching and usually
these small, insulated DC/DC converters cannot provide the sought currents, an additional capacitor was added to each con-
verter in order to store the energy required for commutation.

Two IGBTs per switch are required for two main reasons: IGBTs with inverse tension higher than 1500 V are considerably
more expensive and bulky; and the use of two IGBTs gives higher de-rating values.

2.2. Control board

The Cypress PSoC 5LP is at heart of the C-B. The PSoC is a one-chip solution integrating analog front-end, digital logic and
user interface integrated circuits, with an ARM Cortex-M3 CPU. Its internal circuits can be re-arranged using the Cypress
software, in order to obtain various circuit configurations.

In the OAED, the PSoC blocks are configured to perform various operations. The general I/O blocks are reported in Fig. 5.
These are necessary to communicate with the operator and the High-voltage board and are hereinafter explained:

a) The first is a redundant control for the H-Bridge circuit. The block on the left is a software-set register, updated every
time the firmware wants to control the H-Bridge. The output is evaluated with logic blocks in order to provide a degree
of redundancy. The right block represents the connection to physical pins.

b) These are the physical pins used to control the inner, and outer selectors.
c) ”Charge_En” is the pin used to enable the charging circuit.
d) The first block on the right represents the physical pin to be connected at the push-button that the operator should

press to release the defibrillation. Due to its criticality, a de-bouncer is used, which directly calls an interrupt (here
represented as lightening).

e) This contains the pins connected to the LED diodes. These, as the resistors, are not inside the PSoC, but on the control
board.

f) This block is required to implement USB UART protocols.
g) This block is used to evaluate the capacitor voltage. The label ”Vsense” represents the pin attached to the charging cir-

cuit buffer output, presented in Fig. 3. This pin is connected to two comparators. When it reaches a value of 2.5 V, the
first comparator calls an interrupt to communicate to the processor that the capacitor is ready. On the other hand,
when its value falls below 256 mV, the second comparator calls another interrupt, used to communicate to the pro-
cessor that the capacitor’s voltage is below 10% of its nominal value V0.

h) Finally, the last block on the left is the DAC that controls the speaker. The speaker is used to warn bystanders that a
defibrillation is about to be released. As for (e), the speaker and the passive elements are outside the PSoC.

Fig. 6 illustrates the signal acquisition blocks. They continuously acquire the ECG and impedance signals from the patient.
The digital data are taken by three different DMAs (Direct Memory Access), passed through a Digital Filter Block (DFB), and
Fig. 5. OAED PSoC general I/O blocks. (a) H-Bridge control blocks; (b) Inner and outer selectors pins; (c) RCC enable pin; (d) Defibrillation button pin; (e)
LED diodes pins; (f) USB UART block; (g) Capacitor voltage feedback; (h) DAC that generates the speaker control signal.



Fig. 6. OAED signal acquisition blocks. Starting from the left and going clockwise there are: the physical pins connected to the electrodes; the IDAC that
generates the impedance excitation signal; the Delta-Sigma ADC and its three DMA channels; a comparator that monitors in real time whether the
electrodes are connected or not. Finally, in the center there is a buffered voltage reference that can be applied to the patient in order to produce a controlled
offset.
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finally put in the Static RAM (SRAM). The ECG signal is stored in the SRAM as blocks of 4-s-long acquisitions with a sampling
frequency of 500 sps.

Since the focus of OAED is the ease of use, only one couple of electrodes will be applied on the patient. Therefore, ECG and
impedance acquisitions share the same electrodes. Impedance measurement is a very critical aspect in AEDs, because it is
used to ascertain if a patient is connected to the device, and to calculate the discharge time required to release a precise
amount of energy into the patient. If defibrillation is schematized with an RC circuit, defibrillation time T depends on the
following relation (Eq. (1)):
T ¼ � ZC
2

� ln 1� 2U
V2

0 � C

" #
½s� ð1Þ
where:
� Z is the patient impedance (varying from 25 to 180X, according to 60601-2-4);
� C is the capacitor value (150 lF);
� U is the energy to release (200 J); and
� V0 is the nominal tension at which the capacitor is charged (1700 V).

For the impedance acquisition, a known current is injected in the patient, and the voltage it produces across the elec-
trodes is evaluated. Keeping in mind that impedance and ECG signals have to share the same connections, there are two
modalities for impedance measurement: one involves the use of a direct current (DC), and the other an alternate current
(AC) with a frequency of 250 Hz. Both of them are implemented in OAED (Fig. 6).

2.3. Firmware

OAED was programmed with custom firmware in C programming language. The firmware acts as a finite-state machine,
in which each state is used to enable or disable specific circuits depending on the state itself. The five different states are
presented in Fig. 7, and their operations are:

� Measurement mode is the starting state. In measurement mode, the device has not yet diagnosed SCA in the patient. There-
fore, the operations are limited to continuously acquiring ECG and impedance signals from the patient.

� Charging mode state is reached when OAED successfully diagnoses SCA for the first time. As a result, the charging circuit is
enabled, while the patient is still monitored for SCA.

� Discharge enabled mode is entered when the patient is both suffering from SCA and the capacitor is ready. In this mode the
defibrillator is armed and ready to deliver the shock when the operator will press the ‘‘defibrillate” button.



Fig. 7. OAED finite-state machine diagram.
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� Internal discharge mode represents an emergency stop for OAED. Whenever something is not working properly and the
capacitor is charged (even partially), OAED will dump the defibrillation energy to the internal discharge circuit, which is
a power resistor.

� Lead-Off mode is an idle state in which OAED just waits for a patient to be connected. Thereafter in this state, OAED will
only perform impedance acquisitions. When it recognizes a patient, lead-off mode is switched to Measurement mode.

The firmware also includes five different algorithms used in combination to analyze the ECG signals and assert whether
the patient is suffering from SCA. These algorithms are: Threshold Crossing Interval (TCI) [21], VF filter [22], Threshold Cross-
ing Sample Count (TCSC) [23], Phase Shift Reconstruction (PSR) [24], and Hilbert Transform Algorithm (HTA) [25]. Each ECG
segment obtained by the acquisition chain is evaluated with all the algorithms and the decision is majority based. If at least
two of the last three ECG segments are SCA positive, then OAED diagnoses the heartbeat as pathologic.

3. Design files

Design Files Summary
Design file
name
File type
 Open source
license
Location of the file
Hardware
 Kicad
 GPL
 https://github.com/CentroEPiaggio/Open-Automated-External-
Defibrillator
Firmware
 C source
files
GPL
 https://github.com/CentroEPiaggio/Open-Automated-External-
Defibrillator

https://github.com/CentroEPiaggio/Open-Automated-External-Defibrillator
https://github.com/CentroEPiaggio/Open-Automated-External-Defibrillator
https://github.com/CentroEPiaggio/Open-Automated-External-Defibrillator
https://github.com/CentroEPiaggio/Open-Automated-External-Defibrillator
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� Hardware is the repository containing OAED schematics in KiCad format [26].
� Firmware is the repository containing OAED firmware. In order to compile and program the PSoC, Cypress PSoC Creator
IDE is required (available with a free-of-charge license) [27].

4. Bill of materials
Designator
 Component
Fig. 8. ECG signal acq
Number
uired using OAE
Cost per unit [€]
D development board.
Total cost [€]
 Material type
Cout
 TDK B25620B1147K981
 1
 75
 75
 Other

S1
 IRFP250N
 1
 2
 2
 Semiconductor

Q1
 2N222
 1
 1
 1
 Semiconductor

U1
 TLP785
 1
 0.6
 0.6
 Semiconductor

D2
 TL431
 1
 0.5
 0.5
 Semiconductor

U16
 LM358
 1
 0.3
 0.3
 Semiconductor

T1
 Transformer
 1
 Other

Q2-Q9
 IRG7PH35UD
 8
 6
 48
 Semiconductor

U3,5,7,8,10,12,14,15
 TLP250
 8
 1
 8
 Semiconductor

U2,4,6,9,11,13
 R1SE/H2_0515
 6
 5
 60
 Semiconductor

K1,K2
 RTE24012
 2
 2.2
 4.4
 Semiconductor
PSoC5LP CY8C5888AXI-LP096
 1
 16
 16
 Semiconductor

/
 Various passive components
 /
 10
 10
 Other

/
 PCB
 2
 60
 120
 Other

/
 Battery (18 V 2Ah)
 1
 50
 50
 Other
All prices are based on a single OAED unit purchase. Increasing numbers significantly reduces prices.
5. Operation instructions

In order to perform a defibrillation on a patient the operator has to:

� connect OAED to the electrodes;
� clear the patient area
� correctly apply electrodes on the patient;
� switch on OAED;
� wait for the diagnosis;
� when OAED detects SCA an orange led is turned on;
� wait for the green led to be turned on;
� press the defibrillate button;
� apply more defibrillation until an emergency unit arrives, or OAED asserts the patient is not suffering any more from SCA.

6. Validation and characterization

Starting from the high-voltage board, the RCC circuit operations were extensively simulated using LTspice [28]. The cir-
cuit was able to charge the 150 lF capacitor (Cout) at the nominal voltage of 1700 V in around 6 s. The operating frequencies
varied from 75 kHz to 225 kHz, allowing therefore the use of a small transformer with high efficiency.

The tests on the H-Bridge involved the validation for the control signals, with particular regard to timing. None of the tests
showed the joint closure of the IGBT in the same branch.

For the control board, tests were performed on the firmware. Fig. 8 shows an ECG signal obtained using the development
version of OAED.
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As far as the firmware is concerned, preliminary tests of the SCA recognition algorithms showed a specificity close to
99.9%, and a sensitivity higher than 95%. These tests used signals from the PhysioNet database [29].

A final note on the battery: our calculations indicate that an 18 V, 2Ah battery can sustain around 240 charge cycles of the
charging circuit; while the PSoC operations consume the equivalent energy of one charge cycle every 10 min.
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