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Matrix metalloproteinases (MMPs) are a large family of ubiquitously expressed zinc-dependent enzymes with proteolitic activities.
They are expressed in physiological situations and pathological conditions involving inflammatory processes including epithelial to
mesenchymal transition (EMT), neuronal injury, and cancer. There is also evidence that MMPs regulate inflammation in tumor
microenvironment, which plays an important role in healing tissue processes. Looking at both inflammatory and neuronal
damages, MMP9 is involved in both processes and their modulation seems to be regulated by two proteins: tumor necrosis
factor-alpha (TNF-alpha) and interleukin 6 (IL-6). However other important genes are involved in molecular regulation of
transcription factors, protein-kinase B (AKT), and p65. In addition, Triticum vulgare extract (TVE) modulated the biological
markers associated with inflammatory processes, including p65 protein. While there are no evidence that TVE might be
involved in the biological modulation of other inflammatory marker as AKT, we would like to assess whether TVE is able to (1)
modulate phosphorylation of AKT (pAKT) as an early marker of inflammatory process in vitro and (2) affect MMP9 protein
expression in an in vitro model. The BV-2 cells (microglial of mouse) have been used as an in vitro model to simulate both
inflammatory and neuronal injury pathologies. Here, MMP9 seems to be involved in cellular migration through inflammatory
marker activation. We simulate an inflammatory preclinical model treating BV-2 cells with lipopolysaccharide (LPS) to induce
proinflammatory activation affecting pAKT and p65 proteins. TVE is revealed to restore the native expression of AKT and p65.
Additionally, TVE extract modulates also the protein concentration of MMP9. Nevertheless, immunofluorescence confocal
analyses revealed that both AKT and MMP9 are regulated together, synchronously. This work seems to demonstrate that two
important genes can be used to monitor the beginning of an inflammatory process, AKT and MMP9, in which TVE seems able
to modulate their expression of inflammation-associated molecules.

1. Introduction

Different processes in human tissue repairing have been asso-
ciated, in many cases, with cellular damages. The list of phe-
nomena associated with cellular injury includes, but is not
limited to, inflammatory responses, necrosis, and mitochon-
drial dysfunction [1–4].

Looking at the list mentioned above, the big actor is
represented by the inflammatory response, in which, the
beginning of cellular injury open the way to proinflammatory
marker expression inside the damaged cells. However, it is
often difficult to understand the primummovens of inflamma-
tory molecular process; indeed, many scientists can list the
following biomolecular markers, including tumor necrosis
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factor-alpha (TNF-α), interleukin 1beta, (IL-1β), interleukin
6 (IL-6), and nitric oxide (NO) as the “fingerprint” of inflam-
matory process [5, 6]. Nevertheless, nuclear factor kappa beta
(NF-κB) is an important transcription factor involved in
inflammatory responses, resulting to a major effector of this
process [7]. TheNF-κBpathway is activated in various clinical
injury conditions including both injuries and ischemia in the
brain [8]. For these reasons, NF-κB expression and its expres-
sion in BV-2 cells are often used as the preclinical model of
microglia inflammation [9], in which NF-κB nuclear expres-
sion regulates several genes involved in inflammatory; the list
includes enzymes, cytokines, receptors, and cell adhesion
molecules [10]. So far, to investigate in vitro this process,
many scientists have used the BV-2 cell cultures, derived from
mouse microglia. In fact, stimulation by lipopolysaccharide
(LPS) in BV-2 cells affects protein modulation of other
messengers of mitogen activation such as glycogen synthase
kinase (GSK-3β) protein and phosphoprotein-kinase B
(PKB or pAKT) [11]. Additionally, the molecular scenario
of inflammation includes important proteins/enzymes. There
are other important evidences indicating the matrix metallo-
proteinases (MMPs) as major actors in ischemia/reperfu-
sion-induced brain injury [12, 13], in a dependent manner
via NF-κB action also. In particular, MMP9 was upregulated
following cerebral ischemia in experimental animal models
[14]. Further, TNF-α and IL-1β have been reported to induce
the production of MMPs [15–17]. Looking at this complex
network ofmolecules involved in inflammationmodels seems
to be useful to investigate the relationship between the early
marker of inflammation and the end effector as MMPs. The
possibility to study new therapeutic approaches affecting
proinflammatory response targeting the beginning driving
genes (i.e., AKT) and the final effectors (MMPs) seems to be
a promising clinical treatment for all pathologies in which
the inflammatory process drives the pathological behaviors
[18]. Triticum vulgare extract (TVE) demonstrated to modu-
late several proinflammatorymessengers in BV-2models, but
its efficacy is not well demonstrated looking at the expression
of AKT andMMP9 in the model mentioned above. However,
other important studies demonstrated that TVE is commonly
used for the treatment of different pathological conditions of
the skin, including ulcers, burns, and dystrophic diseases [5],
in which reepithelization or tissue regeneration processes
are associated with the inflammatory process. In fact, it has
been reported that the active component of Fitostimoline
products (TVE) stimulate the acceleration of tissue repairing,
chemotaxis and the maturation of fibrotic cells, and healing
process [19–22]. Indeed, looking at thewhole scenario around
the TVE activities, we are asking ourself whether TVE could
be assimilated inside the category of a pharmaceutical com-
pound labeled as “bioactive compound.”One of the definition
used in order to establish a definition of bioactive compound
said: “Bioactive compounds in plants are compounds produced
by plants having pharmacological or toxicological effects in
man and animals” [23]. Nevertheless, biological molecules
induce pharmacological (good) or toxicological (bad) effects
when ingested at high dosages (e.g., vitamins and minerals).
Often, the bioactive compounds in plants are derived as
secondary compound. Indeed, we would like to coin a defini-

tion of bioactive compounds as follows: “plant-derived
secondary metabolites exploiting pharmacological or toxico-
logical effects in man and animals.” The goal of the present
work was to establish whether TVE might be categorized as
a bioactive compound, modulating AKT and MMP9 protein
expression in an in vitro system, in relation to the major actor
of inflammation as NF-κB.

2. Materials and Methods

2.1. Triticum vulgare Extract (TVE). Triticum vulgare, the
binomial scientific name of a plant of Graminaceae family,
is the commonly known wheat plant. It is grown under con-
trolled conditions in the laboratory of Farmaceutici Damor,
Naples, Italy. The voucher specimen is DF/237/2014 and it
is deposited in the herbarium of the Medical Botany Chain
of University of Salerno, Italy. The commercially available
seeds are purchased from Consorzio Agrario Lombardo
Veneto from Northern Italy. The batch number for the seeds
used for the present paper was 12/001-B10148/201/04. Triti-
cum vulgare extract (TVE-DAMOR) is a specific aqueous
extract of Triticum vulgare, obtained by a complex and
specific process as already described [24]. It was a gift of
Farmaceutici Damor (Naples, Italy).

2.2. Cell Line. The immortalized murine BV-2 cell line (ICLC
ATL03001, Interlab Cell Line Collection, Banca Biologica e
Cell Factory, Italy) was cultured in Dulbecco’s Modified
Eagle’s Medium (DMEM, Invitrogen) supplemented with
10% fetal bovine serum (FBS), 1% penicillin-streptomycin
(Invitrogen), and 1% glutamine (Invitrogen). Cultures were
grown at 37°C in 5% CO2 until 80% confluence. In order to
perform the treatments and analyses, cells were split when
they reached confluence using trypsin/EDTA solution in
PBS. We used two different modalities of seeding according
to the different molecular determination investigated below.

2.2.1. For MMP9 Determination by ELISA Test. BV-2 mouse
microglial cells were seeded in 12-well plates, in order to
obtain three different experiments for each concentration of
TVE with and without LPS. The mediums were harvested
for analyses as described in the following section.

2.2.2. To Analyze AKT, MMP9, and p65 Protein Expressions
by Confocal Immunofluorescence. BV-2 mouse microglial
cells were seeded in 8-well chamber slides (CS) (Lab-Tek1
Chamber Slide™ system, Nalge Nunc International, Naper-
ville, IL, USA), putting in 5000 cells/well in 650μL final
volume. CS were prepared in order to obtain three different
experiments in triplicate. After treatments, cells were fixed
directly on the slides by a 70% solution of ethanol solution
for 10 minutes and the chamber slide wells were removed
by a mechanical key following manufacturer’s instructions.
The immunofluorescence (IF) for AKT, MMP9, and p65
subunits was performed as described in the immunofluo-
rescence section.

2.3. In Vitro Treatments. BV-2 cells and cells were seeded in
12-wells plate. Cells were treated with LPS and TVE. BV-2
cell lines were exposed to the following concentration: 5%,
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10%, and 20% of TVE. Twelve hours after TVE prestimula-
tion, cells were incubated with the lipopolysaccharide-
(LPS, Sigma) simulating inflammatory stimulus (100ng/mL,
24 hours). We performed a total of six chamber slides in
order to perform three different concentrations of TVE with
and without LPS.

In addition, we treated the BV-2 cells with two specific
inhibitors of pAKT, wortmannin (1μM; #9951, EuroClone,
Milan, Italy) and LY294002 (50μM; #9901, Euroclone,
Milan, Italy). We treated BV-2 cells using these two inhibi-
tors, separately, and each of them in combination with LPS,
in order to verify a functional action with respect to pAKT
status. Control groups were obtained to avoid any com-
pound. Finally, we evaluated seven different treatments, as
follows: (A) Controls, (B) LPS, (C) Wortmannin, (D)
LY294002, (E) Wortmannin+LPS, (F) LY294002+LPS, and
(G) TVE+LPS (Figure 1(a)).

2.4. Determination of MMP9 Protein Expression by ELISA.
MMP9 protein concentration was assessed as supernatants
of BV-2 cell cultures with a commercially available kit (cyto-
kine, R&D, Bio-Techne, Milan). Cellular mediums were
centrifuged at 4000 rpm for 5min. Levels of MMP9 were
measured by the enzyme-linked immunoassay (ELISA)
according to the manufacturer’s instructions. In agreement
with the manufacturer’s instructions, all experiments were
performed in triplicate and the calibration curve was
assessed. The acquisition of values and the calculation of
their concentration were performed by multireader instru-
ments and its software (SPECTROstar Nano, EuroClone,
Milan, Italy).

2.5. Determination of Nuclear Concentration of p65 Protein
by Immunofluorescence. The quantification of NF-κB p65
subunit in BV-2 cells was performed by confocal immunoflu-
orescence methodology. The plastic covers of chamber slides
were removed at the end of pharmacological treatment, by a
key dedicated. The slides were fixed by ethanol (70%, 10min)
and then rinsed in phosphate buffer saline (PBS 1x for
10min). In order to detect p65 subunit, we used a polyclonal
antibody, (1 : 100; 1 h at RT; NF-κB p65 (D14E12) XP1
Rabbit mAb #8242, Cell Signaling Technologies, Leiden,
Netherlands). After washing, the fluorescent secondary
antibody was applied (1 : 50; 30min at RT in darkness;
Anti-rabbit IgG Fab2 Alexa-Flour 488, #4412S, Molecular
Probes, Cell Signaling Technologies, Leiden, Netherlands).
Nuclei counterstaining was performed using a special
fluorescence antifade containing DAPI (ProLong1 Gold
Antifade Reagent with DAPI #8961, Molecular Probes Cell
Signaling Technologies, Leiden, Netherlands). Samples were
stored at 4°C until observation. The visualization, nuclear
migration, and quantification of NF-κB p65 subunit were
performed using a confocal microscope (AXIO vert 200,
Zeiss,Wetzlar, Germany) and its dedicated software for imag-
ing acquisition and digital imaging process (AXIOvision
version 4.2.3.1, Zeiss, Wetzlar, Germany). The images were
acquired at 40x magnification. Five different images (DAPI,
green, merge (M), bright field (BF), and BF+M)were acquired
for each field and are reported in the corresponding figure.

To quantify the signal of each color channel (blue and
green), we have to draw a vector on merged images in order
to obtain a graph reporting the intensity of IF, looking at IF
signals in both the cytoplasm and nuclei. The vector analyzed
40 different points/cell, across the nucleus and cytoplasm.
The length of the vector was equal to 6μm. The intensity of
aqua spectrum was calculated by the ratio (IF R) between
IF values obtained by the blue channel out of those obtained
by the green channel. Nuclear protein expression of p65 was
associated with the presence of the aqua color. The range of
aqua spectrum ranged as follows: 1:00 < IF R < 1:40. Indeed,
we overlap the BF images to verify the location of the aqua
color inside the nuclei [5].

2.6. Determination of Cytosol Concentration of AKT Proteins
by Immunofluorescence. We repeated the same procedure as
described in the previous section to detect both forms of
AKT, protein phosphorylated (pAKT) and unphosphory-
lated (total AKT). Total AKT was detected by monoclonal
antibody, (1 : 100; 1 h at RT; AKT pan (40D4) XP1 Mouse
mAb #2920, CST, Leiden, Netherlands), while phospho-
AKT was detected by polyclonal antibody (1 : 100; 1 h at
RT; pAKT (D9E) Rabbit mAb #4060, CST, Leiden, Nether-
lands). After washing, two fluorescent secondary antibody
was applied (1 : 50; 30min at RT in darkness; Anti-mouse
IgG Fab2 Alexa-Flour 535, #4412S (Red) and Anti-rabbit
IgG Fab2 Alexa-Flour 488, #4412S (Green), Molecular
Probes, CST, Leiden, Netherlands). Nuclei counterstaining
was performed using a special fluorescence antifade contain-
ing DAPI (ProLong1 Gold Antifade Reagent with DAPI
#8961, Molecular Probes CST, Leiden, Netherlands). In the
AKT experiments, the vector analyzed 40 different points/-
cell, inside the cytoplasm. The length of the vector was the
same with that used for the p65 protocol (6μm). Combining
red and green spectra associated with AKT and pAKT,
respectively, we obtained three different additional spectra
calculated by the ratio (IF R) between green and red
(green/red). The yellow spectra (Y) were observed when IF
R = 1. While, when IFR > 1, we observed a typical lime (L)
color; otherwise, for IF R < 1, we observed a typical orange
(O) color. We overlapped the BF images, to verify the
location of the yellow, lime, and orange colors inside the
cytoplasms of BV-2 cells (Figures 1 and 2).

2.7. TVE Uptake and pAKTModulation Curve. The uptake of
TVE was calculated by a multireader instrument and its soft-
ware (SPECTROstar Nano, EuroClone, Milan, Italy), using
the Lambert-Beer equation. We evaluated the concentration
of TVE using the optical density (OD) values obtained at
293 nm wavelength; this wavelength represents the maxi-
mum OD of TVE. The calibration curve was obtained by
analyzing 7 different concentrations of TVE in the same
medium used for the experiments. The uptake of TVE was
evaluated comparing the TVE concentration and the begin-
ning (T0) and the end (T1) of treatment. We assumed that
differences of concentration (T0-T1) was associated with
the TVE uptake by BV-2 cells. We evaluated the TVE uptake
in BV-2 cells after with 5%, 10%, and 20% treatments of TVE
in combination with LPS, respectively. The cells of the same
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Figure 1: Continued.

4 Mediators of Inflammation



experiments were assessed for both pAKT and AKT immu-
nofluorescence, as described above. The relation between
TVE uptake and pAKT/AKT ratio was evaluated to find a
dose-response curve.

2.8. Determination of Cytosol Concentration of MMP9
Protein by Immunofluorescence. The MMP9 IF detection
was performed in the same way following the procedure used
for p65 and AKT markers. MMP9 protein was detected by
polyclonal antibody (1 : 100; 1 h at RT; MMP9 (D603H) XP
rabbit mAb #13667, CST, Leiden, Netherlands). After wash-
ing, fluorescent secondary antibody was applied (1 : 50;
30min at RT in darkness; Anti-rabbit IgG Fab2 Alexa-
Flour 535, #4412S (Red) Molecular Probes, CST, Leiden,
The Netherlands). Nuclei counterstaining was performed as
reported above. To demonstrate both MMP9 and p65 in
the same experiments, we performed simultaneously IF for
these two markers, red for MMP9 and green for p65. The
goal of these experiments was to find cytoplasmic spectra Y,
associated with MMP9 and p65 expressions and aqua spectra
associated with p65 nuclear localization. The quantification
of fluorescence intensity was analyzed for each experiment
and reported by the graphs.

2.9. In Silico Analyses of Inflammation Markers. In order to
evaluate the interaction between the “fingerprint” markers
of inflammation, p65, and MMP9, we evaluated 13 articles
in which the researchers studied the protein expression of
the genes mentioned above, through ELISA, Western Blot,

and/or immunofluorescence. In each article, we evaluated
as proinflammatory agents (PIA) the molecules or com-
pounds capable of increasing the protein expression of
markers. While we considered anti-inflammatory agents
(AIA) the treatments that were able to restore the same pro-
tein expression promoted by PIA. Looking at the results for
each article, we evaluated the fold-charge of each protein
and each treatment compared to their controls.

To have a quick interpretation of the results, we have
elaborated a heat map to visualize PIA, AIA, the markers
studied, and their modifications, for each article. The final
visualization of the heat map was obtained based on the
intensity of the fold-charge evaluated (Figure 3). The articles
that we have been using for this part of our work covered the
following topics: brain injury [25, 26], inflammatory mecha-
nism [27–32], and cancer [33–37]. The specifications of
papers included in these analyses are reported in Table 1.

2.10. Statistical Analysis. Experiments were performed at
least three times and the data are expressed as the mean
SEM of the values obtained in three separate experiments.
Statistical comparisons between controls and treated groups
were performed by one-way analysis of variance (ANOVA).
The p < 0:05 values were considered significant.

3. Results and Discussion

Looking at the literature regarding the in vitro model simu-
lating the molecular inflammatory mechanism, BV-2 cells
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Figure 1: AKT functional analyses. The analyses of pAKT and total AKT (by arbitrary units A.U.) were revealed through confocal
immunofluorescence in BV-2 cells. (a) IF of treated cells. (A) Controls. (B) LPS. (C) Wortmannin. (D) LY294002. (E) Wortmannin+LPS.
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are used for this aim, in several fields [5, 9, 11, 18]. Previously,
we demonstrated that this cell culture system modulated
inflammatory mediators, such as tumor necrosis factor-
alpha (TNF-α), interleukin 1beta (IL-1β), nitric oxide

(NO), and nuclear factor kappa beta (NF-κB), after LPS
stimuli [5]. In this study, we demonstrated that our experi-
ments reflexed the cellular behaviors reported by other
studies including mechanisms of inflammation [27–32]. In
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Figure 2: AKT protein modulation. (a) Confocal immunofluorescence representation of AKT protein modulation (total and phosphorylated
forms) in Controls and the TVE- and TVE+LPS-treated BV-2 cells. (b) The overlapping spectra (blue: DAPI; green: pAKT; and red: total
AKT) highlighted three major color spectra: yellow (Y) when pAKT ≅ total AKT, lime (L) when pAKT > total AKT, and orange (O) when
pAKT < total AKT. (c) LPS treatment upregulated pAKT form (L), wherever TVE restored the AKT status increasing the
unphosphorylated form of protein (O). TVE treatment affected the pAKT/AKT ratio as well.
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particular, we highlighted the induction of proinflammatory
messengers mentioned above (TNF-α, IL-1β, NO, and NF-
κB) [5]. Nevertheless, addition of Triticum vulgare extract
(TVE), in combination with LPS showed an anti-
inflammatory action on specific markers of inflammation,
restoring cytoplasmic levels of p65 and reducing its nuclear
expression [5]; this type of mechanism has been reported
by other works, in which the p65 restoration (reduction of
nuclear staining of p65) is well considered an anti-
inflammatory signal [11, 27–32]. However, no other markers
have been associated with “early inflammatory molecule”
concept, except the four markers mentioned above. Further-
more, this study not only showed the restoration of p65 in
BV-2 cells (Figure 4) but also demonstrated the induction
of AKT marker, increasing its phosphorylated isoform after
LPS, as a simulation of inflammatory process. While the
LPS+TVE combination reduced the ratio between pAK-
T/AKT (Figure 2), indeed, the comparison with respect to
other two chemical pAKT inhibitors revealed a decrease of
its phosphorylated status (Figure 1(a)). Furthermore, TVE
seems to affect pAKT status through a dose-effect manner
(Figure 1(b)), where the uptake of TVE concentration
showed a significant effect at 5% and 10%, but not at 20%
(Figure 1(b)). Indeed, looking at the ratio of pAKT/AKT,
TVE treatments seem to play a role as an anti-inflammatory
modulator, affecting pAKT expression significantly
(Figure 2). This phenotypical description of AKT protein
has been reported by other researchers [11]. In particular, this

work described also other two genes, GSK-3β and Notch-1,
involved in the inflammatory model of microglia [11] and in
molecular mechanisms of brain cancer [38], where GSK-3β
seems to modulate the expression of NF-κB [39]. The activa-
tion of NF-κB is mediated by phosphorylation and subse-
quent degradation of inhibitor of κB (IκB) and nuclear
migration of p65 subunit [5]. This process subsequently leads
to translocation of free NF-κB protein (p65) to the nucleus
where it promotes the expression of proinflammatory genes
such as the proinflammatory cytokines (TNF-α, IL-6, and
IL-1β), cyclooxygenase-2 (COX-2), and inducible nitric oxide
synthase (iNOS) [39, 40]. So far, it is known that NF-κB plays
a pivot role inside the program of transcription activation in
different types of pathologies [5, 11, 16, 38]. Nevertheless,
other researchers reported that NF-κB is also involved in
molecular pathway of neuronal apoptosis [9] and malaria
infection [18]. In these two papers, the scientific evidences
reported that NF-κB was associated with MMP9 protein
modulation also [9, 18]. Our result demonstrated that not
only the modulation of p65 in BV-2 cells (Figure 4) but also
the modulation of p65 is concurrently associated with
MMP9 expression (Figure 3). In our in vitromodel, the upreg-
ulation of p65 nuclear expression after LPS treatment was
reverted in the presence of 10% TVE, strongly supporting
the anti-inflammatory action of TVE. It is necessary to under-
line that our quantitative methodology (confocal IF) demon-
strated the impact of p65 in our model [5], affecting both
phenotypical expression and secretion of MMP9 protein in a
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Figure 3: MMP9 protein analyses. (a) Heat-map of in silico analyses of protein expression of major proteins involved in inflammatory
molecular pathway. The values of fold-charge expression were reported in the right side of the figure. PIA: proinflammatory agent; IAI:
anti-inflammatory Agent. (b) Coexpression of p65 and MMP9 in BV-2 cells after treatments. Double immunofluorescence for p65 (green)
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statistically significant manner in BV-2 cells (Figure 3).
Indeed, the comparisonwith two other pAKT chemical inhib-
itors confirmed a reduction in its phosphorylated state
(Figure 1(a)). Furthermore, our results appear to be strongly
supported by our in silico analyses, in which 8 out of 13
articles studied p65 and MMP9 together as inflammatory
markers. Here, 87.5% (7/8) of these works demonstrated a
concomitant upregulation of PIA expression of p65 and
MMP9 proteins and their restoration with AIA treatments
[26, 30–33, 35, 36]. Furthermore, our in silico analyses also
revealed that pAKT, MMP9, and p65 were considered
together as inflammatory markers and were underregulated
by Galangin, a possible inflammatory modulator candidate
in brain diseases [26]. With regard to the possible mechanism
of this effect, we are in agreement with other studies, in which
the concomitant modulation of NF-κB and MMP9 has been
demonstrated [11, 18]. Looking at the previous and past work
around the molecules involved in the “early inflammatory”
process, we highlighted that mediators, such as IL-1, TNF-α,
IL-6, NO, and PGE2, facilitate the process of tissue repair
and remodeling as a result of the damage suffered. It is known
that the specific preparation of TVE acts on the fibroblast acti-
vating and promoting the process of tissue repair and healing
[19–21], exerting an anti-inflammatory action that allows the
way of healing to go from the inflammatory process to the
regenerative one. Finally, the last but not the least aspect, we

can assume that TVE extract works as a bioactive compound,
looking in its noncytotoxic effects and the definition of bioac-
tive compounds derived from the plants [23].

4. Conclusions

TVE noncytotoxic properties are able tomodulate the protein
expression of AKT, p65, and MMP9 involved also in
inflammation-associated pathology, includingwound lesions,
working as bioactive a compound inside healing processes.
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