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ABSTRACT
This study critically assesses the performances of the Gravity Model
(GM) and of the RAS algorithm for the bilateral flow intensity esti-
mations and link prediction. The main novelty is the application of
these methodologies to reconstruct the network topology with a
minimum amount of information. Moreover, we implement a multi-
layer analysis to provide a comprehensive and robust framework,
by testing several food commodities, over the period 1986–2013.
Themain outcomes suggest that the RAS algorithm outperforms the
Gravity Model in the estimations of the bilateral trade flows, impor-
tantly guaranteeing the balance constraints (i.e. global import equals
global export), whileGMgenerates lower relative errors, but it under-
estimates total global flows. Both RAS and GM can be applied to
accurately recover the network architecture. The implications of our
study encompass a wide range of applications: systemic-risk assess-
ment, creation of new databases, and scenario analyses to support
policy decisions.
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1. Introduction

Global trade has grown at twice the rate of the global economy since the 1990s, bearing
benefits and risks (Niepmann and Schmidt-Eisenlohr, 2017; Moon, 2018). In particular,
around 23% of the total food for human consumption is traded internationally and the
amount of food calories traded in the international food trade network (IFTN) has more
than doubled since 1986 (D’Odorico et al., 2014). During the past decades, the agro-trade
structure changed significantly, in terms of major players involved, flow size, and num-
ber of links (Fagiolo et al., 2010). The expansion and change of the IFTN, the increasing
dependence from markets for many countries, and the fast growth of population have
attracted the attention of researchers and politicians. Indeed, understanding the structure
and the evolution of the IFTN (Distefano et al., 2018b) has remarkable implications in sev-
eral dimensions, such as: trade policy (Giordani et al., 2016), water resource management
(Tamea et al., 2014; Tuninetti et al., 2017), shock propagation (Distefano et al., 2018a),
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land use (e.g. Dell’Angelo et al., 2017), energy (White et al., 2018), and climate change
(Babiker, 2005).

Two tied issues are of foremost importance in this context, to say: (a) a reliable and
robust estimation of bilateral trade flow intensities, and (b) the reconstruction of the IFTN
topology with a minimum amount of information. Point (a) is crucial because an accurate
estimation of trade volumes – in physical (e.g. tonnes) and monetary terms (e.g. US dol-
lars) – allows one to properly compute other relevant indicators (e.g. water/energy/land
footprint, market competitiveness, and so on). Point (b) is essential to understand net-
work dynamics and to build credible scenarios. Indeed, in many cases, bilateral trade
data are not available nor reliable, while information on national aggregates (i.e. total
imports and exports) are based on official accounts and are easier to obtain. Therefore,
the application of a reliable methodology that accurately recovers the trade architecture
(i.e. the network topology) from national aggregates is crucial for several reasons, such
as: identification of the key players and market structure, forecast scenarios and analy-
ses, and systemic-risk assessment. We aim at contributing to both issues by applying two
well-known methodologies – viz. the gravity model and the RAS algorithm.

Since its introduction in the 1960s (e.g. Ball, 1967) the gravity model (henceforth GM)
has been extensively used in international trade research to estimate the amount of mon-
etary bilateral exchanges for its empirical robustness and explanatory power (e.g. Kepapt-
soglou et al., 2010; Fally, 2015), although its theoretical foundation is still debated (Krug-
man, 1980; Chaney, 2018). Several studies used GM to analyse country-pair trade flows
for specific agricultural products (e.g. Sarker and Jayasinghe, 2007) and at different scales
(e.g. Anderson et al., 2016). Analogously, the bi-partitive RAS algorithm (McDougall, 1999;
Robinson et al., 2001;Ahmed andPreckel, 2007) has been extensively adopted to update the
input–output tables (Lahr andDeMesnard, 2004;Wiebe and Lenzen, 2016), to forecast the
evolution of intermediate trading structure (Dietzenbacher and Hoekstra, 2002; Tarancón
and Rio, 2005), and for structural dynamic analyses (Dietzenbacher and Hoekstra, 2002;
D’Alessandro et al., 2018).

It is worth noting that sometimes GMs and RAS algorithms are applied in series (Gal-
lego and Lenzen, 2009), using the results ofGM as initial condition before running the RAS
algorithm (e.g. Sargento et al., 2012; Pinilla et al., 2018), but almost no studies have been
carried out so far to critically evaluate their performances in terms of estimation accuracy
and predictive power. We aim at filling this gap. Note that our aim is motivated by the
fact that usually the GM is applied in isolation to calibrate the general equilibriummodels
(Ivus and Strong, 2007; Balistreri and Hillberry, 2008). On the other hand, the RAS pro-
cedure is mostly applied only in the input–output (IO) framework, while we show that it
can be fruitfully extended also in the network contests. Indeed, although we do not use the
common IO structure (since in our database there are no sectors), we represent the inter-
national trade network, at the country-scale, in a matrix form in order to apply the RAS
procedure, as explained in the next Section. We also provide evidence that both GM and
RAS are suitable to infer the network topology and to estimate the corresponding flows.

These reasons lead us to investigate the following research questions: (i) what is the
best technique to estimate the intensity of bilateral trade flows, knowing the topology of
the network? (ii) how to obtain a reliable reconstruction of the IFTN connectivity struc-
ture, with a limited amount of information, when the topology is unknown? (iii) does the
procedure of item aggregation entail remarkable biases in the estimation accuracy? With
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respect to the point (i) this is the first cross-methodological comparison for the estimation
of international trade flows. In the literature, few attempts applied both methodologies –
GM and RAS – to improve the estimations of the links’ weights (e.g. Bon, 1984; Ahmed
and Preckel, 2007), but none provided a comprehensive, fair (i.e. using exactly the same
input data), and detailed comparison framework, where the strengths and weaknesses of
the two methods are critically examined.

To the best of our knowledge, the procedure applied to face point (ii) is a novelty –
although previous studies attempted to estimate the inner part of a tradematrix under lim-
ited information (Lenzen et al., 2013) – because we try to reconstruct the topology of the
trade network assuming no prior knowledge. The possibility to properly recover the net-
work architecture has manifold implications and it is particularly relevant because trade
structure is unknown for many commodities, other than food. We apply the aforemen-
tioned methods to infer the network architecture by using only aggregate values, such as
country’s imports and exports. To respond to point (iii), we implement robustness checks
by extending the study to aggregated networks other than single-commodity layers. To do
so, we repeat our procedure with different units of measure, such as monetary values (in
US dollars) and virtual water (in m3).1 Indeed, the choice of food commodities as case
study is motivated by the possibility to apply alternative unit of measures, then improving
the understanding of the potential bias due to item aggregation. However, although our
analysis focused on an estimation problem within the IFTN, it is generalisable and can be
applied to any other task where any type of commodity flows (in various units and scales)
are to be estimated.

The current study is structured as follows: Section 2 presents the dataset and Section 3
describes the twomethodologies and explains the procedure of topological reconstruction.
Section 4 reports the main results, while Section 5 discusses the main implications and the
importance of a multi-layer approach. Finally, Section 6 draws the main conclusions.

2. Data

Trade data are taken from the publicly-available Food and Agricultural Organization of
the United Nations’ online database (FAOSTAT),2 which reports the trade flow among
254 countries for several commodities, from 1986 to 2013.3 We select five basic raw food
products (wheat, maize, rice milled, barley, and soy-beans) because they cover more than
55% of the global calories intake (D’Odorico et al., 2014). The bilateral exchanges larger
than 1000 tonnes are selected; this operation does not alter the structure of the network
since small fluxes cover, overall, less than 0.3% of the global trade flow.

FAOSTAT provides physical (tonnes) values of the bilateral trade exchanges fromwhich
we build the matrix F whose entries are the amount of exchange between any single
exporter j and importer k in tonnes (Fjk). We represent the IFTN as a matrix where entries
are the bilateral trade flows, and row and column sums are the total export (Ej = ∑

k Fjk)

1 Virtual water refers to the total amount of water that is used in the overall supply chain, from producer to consumer. For a
description of the concept see Allan (1993).

2 FAO, Statistics Division. FAOSTAT online database. Available at http://www.fao.org/faostat/en. Last Update on December
11, 2015.

3 The number of active countries changed over time due to political reasons. For example, the USSR is active only until 1991.

http://www.fao.org/faostat/en
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and import (Mk = ∑
j Fjk) of each country, respectively.Note thatwe build a different bilat-

eral trade matrix F for each food commodity (also indicated as a layer) to assess them
separately. In a second phase, we analyse the aggregate trade matrix determined by the
(cell-by-cell) sum of all the layers included in this study. The global agro-trade system
can be seen as a multi-layer network, also known as a world trade web (e.g. Ledwoch
et al., 2018), where countries are represented through nodes and commercial relations
through weighted and directed links (i.e. represented by a cell entry). Each layer pertains
to a different commodity and describes the strength of countries relations.

In order to perform the assessment for differently weighted trade networks, we built
the monetary value network and the virtual water trade network. The vectors of the coef-
ficient of conversions, of each physical flow (in ton) departing from node j to node k,
are represented by the average country exporting price (US dollars per ton) and by the
virtual water content (m3/ton of each exporting country). Unit prices are available from
the FAOSTAT database, while the virtual water content has been derived from the Water-
STAT database (https://waterfootprint.org/en/resources/waterstat/). Note that we operate
a supply-side (or row-type) conversion from tonnes to the other unit ofmeasures, meaning
that the coefficients of conversion are characteristic of the exporters and then we extend
the operation to the relative importing partners. For example, we compute the matrix of
bilateral trade matrix in dollar as V = diag(π) · F, from the vector of average exporting
price π ,4 where ‘diag’ means diagonal matrix. This operation allows one to aggregate more
layers (represented by each food commodity) through a common unit of measure and to
compare the reliability of GM and RAS at different scales.5

For the sake of synthesis, we only show the results for the monetary networks (V),
while the results for virtual water for each commodity layer (tonnes) are reported in the
Supplementary Materials (SM.1), which is available online.

3. Methods

The study is composed by two different parts: first, we compare the performances of GM
and RAS in terms of estimating accuracy given a known topology (i.e. the structure of
bilateral trade); second, we evaluate the predictive power assuming that the topology is
unknown, to say the possibility to reconstruct the (weighted) links that actually composes
the real IFTN architecture (see Section 3.3). Note that, in the first part, to ensure a fair com-
parison of the estimation power of each tool, we use the same set of regressors (geographical
distance and country’s export and import) in both cases.

To evaluate the estimating accuracy we use the following steps: first, defining the topol-
ogy of the IFTN on the base of real data, hence excluding the links that actually do not
exist (zeros); second, estimating the bilateral trade flows via RAS and GM, separately; and,
finally, computing the coefficient of determination (R2) both in linear and logarithmic
terms to have a measure of the estimative accuracy. Note that the computation of a linear
and logarithmicR2 aims at discriminating whichmethod is better for catching the absolute
values of the flow (R2lin) and which one, instead, provides the estimations that are closer,

4 Note that we clear the series of prices from inflationary effects by tacking real values with base year 2005. Deflators were
also provided by FAOSTAT (see http://www.fao.org/faostat/en/#data/PD for further details).

5 We repeat the same procedure in the virtual water obtainingW = diag(ω) · F, where ω is the vector of water intensity
coefficient for each country-commodity pair.

https://waterfootprint.org/en/resources/waterstat/
http://www.fao.org/faostat/en/{#}data/PD
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in relative terms (percentage), to the real ones (R2
log). This is of particular interest when

the system shows a substantial dispersion of flows distribution, to say when there are both
very large and very small flows of trade exchange. This holds true in case of the IFTN and
in most of the international markets, in general. The adjusted coefficient of determination
(R2) is defined as

R2 = 1 −
∑

j
∑

k(yjk − ŷjk)2
∑

j
∑

k(yjk − y)2
· N − 1
N − nx

(1)

where R2 that takes into account the number of regressors (nx) with respect to the num-
ber of observations (N, viz. the overall number of links), ŷjk is the estimated flow, and y is
the average observed flow. In the linear case we have that yjk = Fjk, while in case of loga-
rithm it becomes yjk = ln(Fjk). Note that adjusting the R2 by the number of observations
and regressors is necessary to allow a fair comparison and then to correct the estimating
accuracy in case one tool uses more information (i.e. more observations).

Another relevant point is related to the procedure of layer (i.e. item) aggregation. After
the selection of a common unit of measure – to obtain the aggregate network with the 5
crops of this study together – we operate two different types of aggregation:

(a) ‘ex-post sum-up’: single crop-level estimation in tonnes, then application of the coef-
ficient of conversion (i.e. unit of measure) to the estimated values (with RAS and GM
separately), and finally aggregation by summation of the five estimated layers (i.e.
layers summation after estimation of the single-commodity network);

(b) ‘ex-ante sum-up’: conversion of the true values for any single crop (for instance from
tonnes to dollars), then aggregation by summation of the five true layers, and finally
estimation of the total bilateral flows to be compared with those of the aggregated
network (i.e. layers summation before estimation).

Although these procedures might appear similar, we demonstrate that case (a) provides
significantly better estimation results than case (b). This should not be surprising because
in the first case the estimations are run at a lower scale (single layer) and on physical values
(i.e. tonnes), thus they are more precise.6 This result demonstrates that the aggregation
proceduremight entail significant estimation biases, with remarkable consequencesmostly
related to: the construction of reliable scenarios (with bilateral flow intensities consistent
with aggregate values, to say total import and exports), the macro-economic assessment of
micro-scale shocks, and the policy intervention.

3.1. The gravitymodel

The gravity model (GM) has been largely used to study the international trade flows par-
ticularly to explore the controlling factors behind a trade flow departing from a certain
country j and reaching a country k. The original formulation of the GM, inspired by New-
ton’s gravity equation, states that the trade flow between any two countries is directly

6 The use of physical amounts avoids the possible distortion frommonetary transformation (e.g. inflation, different curren-
cies and so on).
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proportional to the product of country masses and inversely proportional to their geo-
graphic distance (Anderson, 1979; Bergstrand, 1985). From an empirical perspective, the
basic GM has been expanded to include various dummy variables pertaining to the coun-
tries’ language, religion, and the existence of trade agreements (Overman et al., 2001;
Fagiolo, 2010).

In this study, we base our regressions on the annual country imports of a specific crop
and the geographical distance between two countries (expressed in km) as the possible
controlling factors of the flow.7 We use the geodesic distances evaluated with the latitudes
and longitudes of the most important cities/agglomerations in terms of population of each
nation (http://www.cepii.fr.). Given the complexity of the trade flow network, for each
exporter j, we implement a specific GM regression that includes all the annual imports
Mk(t) of its trading partners k, and their geographical distance dj,k. The export-side GM
equation reads

Fj,k(t) = β0,j · Mk(t)β1,j · dβ2,j
j,k , (2)

where Fj,k(t) is the annual flow departing from j and reaching k and β j = {β0,j,β1,j,β2,j}
is the vector of parameters to be estimated, for each exporter j. Note that using an export-
side formulation allows us to avoid the inclusion of additional ‘mass’ variables regarding
the exporters because their value is constant for any importers j and, thus, their effect
is captured by the β0,j coefficient. Moreover, given the purpose of the study, we decide
to not include any variable that can not be used in the RAS algorithm to ensure a fair
comparison. Equation 2 can be modelled as a linear multivariate regression by applying a
logarithmic transformation. Therefore, the model parameters can be interpreted as regres-
sion coefficients and they are estimated by the ordinary least square method (Blum and
Goldfarb, 2006).8

We test the significance of the considered variables with the Student t-test consider-
ing a 5% significance level: accordingly, we only keep in the regression those variables
with a β coefficient significantly different than zero. The β parameters are estimated by
pooling together all the observations (i.e. the bilateral flows) available along the period
1986–2013. This procedure allows a robust and time-independent estimation which can
be extended to forecast future bilateral flows or to reconstruct bilateral flows when data
are not available.9 An important issue, which is usually overlooked in the GM literature,
is the verification that the overall sum of the estimated bilateral flows respects the bal-
ance constraint. Indeed, it is known that the GM violates these constraints, by a systematic
under-estimation of the global volume of trade (Ftot) and of the total import and export
volumes at the country level (Sargento et al., 2012). Another novelty of our approach is
the estimation of Equation 2 at different scales – single crop-level and ‘ex-ante’ or ‘ex-post’
aggregation – and the reconstruction of the topology (viz. the architecture) of the IFTN
over time.

7 For the sake of completeness, we ran more extensive model including socio-economic factors (e.g. GDP and population
size) with no significant improvements of the estimative power.

8 Note that, in the first step, our procedure for the flow intensity estimation excluded the zeros a priori. In this case the log-
linear OLS can be considered a benchmark.Moreover, the proposed country-specificOLS regressions generate estimations
consistent with real data and with a high goodness of fit.

9 Note that an import-side regression might be calibrated to describe the trade flows entering a given country (Tuninetti
et al., 2017); however, it has been proved that the export-side regression outperforms the import law by showing higher
coefficients of determination (Tamea et al., 2014; Abdelkader et al., 2018).

http://www.cepii.fr.
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Among the main strengths of GM we recall: straightforward economic explanation of
the coefficients, introduction of both economic and extra-economic regressors, and appli-
cation of standard econometric techniques. On the other hand, some drawbacks are found
in many explanatory variables to obtain a good fitting, non-observance of balance con-
straint because margins (row and column sums) are not imposed, and debated theoretical
foundation.

3.2. TheRAS algorithm

The RAS algorithm is a simple and parsimonious methodology that, given a low amount
of information – i.e. the topology of the network, an initial guess about the entries, and the
total row and column sums – assures no negative values and a reliable degree of closeness
between the estimated and the real matrix. RAS is an iterative procedure of bi-proportional
adjustment that rescales the rows and the columns, by the minimum amount necessary, to
respect the sum constraints until it converges toward a balanced matrix (Schneider and
Zenios, 1990). Note that the starting matrix is a determinant of the final (unique) solu-
tion.10 In the first part of the study, when the topology is known, the initial matrix (F0)
comprises only the real existing link with an initial value of F0jk = d−1

jk that corresponds to
the inverse of the distance because it resulted the best performing solution among several
options.11 In the second part, when the topology is assumed unknown, F0 is a full matrix
where each country is (potentially) connected to each other. In this case, as explained in
Section 3.3, we set to zero only the lowest estimated links (below a given threshold).

In mathematical terms, the RAS algorithm is defined as follows. Consider a NE by NM
non-negativematrixA, whereNE andNM are the total number of exporters and importers,
respectively. The column vectorE and the row vectorM include the total export and import
volume of each country, respectively. The step-by-step procedure is:

• Step 0: initialization. Set the initial time step t = 0 and define the initial matrix F0.
• Step 1: row scaling. Compute the vector of row scaling factors as: rt+t/2 = E � (Ftι),

where � is the Hadamard division (or entry-wise division) and ι is a vector of ones.
Update the matrix with the row scaling factors as: Ft+t/2 = diag(rt+t/2) · Ft .

• Step 2: column scaling. Compute the vector of column scaling factors as: st+1 = M �
(ιFt+t/2), where� is the Hadamard division (or entry-wise division) and ι is a vector of
ones. Update the matrix with the column scaling factors as: Ft+1 = Ft+t/2 · diag(st+1).

• Step 3: iterate until min(rt+t/2) < ε and min(st+1) < ε, with ε defined a priori (in our
case ε = 10−5), finding the final balanced matrix F∗.

• Step 4: once the full iteration is completed (at timeT), it is possible to recover the estima-
tion coefficients as: r∗ = ∏T

t rt and s∗ = ∏T
t st , which allows one to find the estimated

matrix as F∗ = r∗F0s∗.

10 However, although the absolute levels of the elements of R and S change, their relative values within each vector do not,
independently from any initial value (Lahr and De Mesnard, 2004).

11 This expression can be considered as a restricted version of Equation 2 where each coefficient is 0 with the exception of
β2 = −1. Note that, for the sake of completeness, we also applied the GM and RAS in sequence, to say using the Gravity
Equation 2 to estimate the initial conditions. Since the results where not significantly different we opted to keep them
separated.
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• Step 5: goodness of fit. Compute R2
lin and R2log , where in this case NE + NM = nx and

ŷjk = F∗
jk.

Among the advantages of RAS we recall that: it is a relatively simple algorithm that
assures a unique non-negative solution matrix (F∗), it ensures the respect of local and
global constraints (to say the national aggregate exports and imports, and the global trade
flow, respectively), it requires a low amount of data (initial topology, row and column
sums), and it is entropy minimizing in case of complete and non-conflicting information
(Bregman, 1967; McDougall, 1999). Instead, some weaknesses are: difficulty of economic
interpretation of the scaling coefficients (Toh, 1998; Lahr and De Mesnard, 2004), high
dependence on initial conditions, and convergence not ensured in case of incomplete or
conflicting input data.12

3.3. Link prediction and the network architecture

As stated above, the second part of the study is dedicated in defining a procedure to
obtain a reliable reconstruction of the IFTN architecture when the topology is unknown.
The last decades have witnessed the emergence of a large body of literature address-
ing international-trade issues from a complex-network perspective (e.g. Serrano and
Boguñá, 2003; Ledwoch et al., 2018) to predict the evolution of the key topological proper-
ties (Fracasso, 2014; Tuninetti et al., 2017) based on different methods, such as: observed
links and attributes of nodes (e.g. Getoor and Diehl, 2005), time-series link prediction
(Huang and Lin, 2009), and country’s fitness (Vidmer et al., 2015). In order to overcome
the issue of missing links (zeros) and to avoid the imposition of any arbitrary assumption
on the distribution of existing link, when the topology is unknown, we ground our pro-
cedure on the hypothesis of a full initial matrix (F0), that is assuming that each country is
(potentially) connected with any other else (excluding self-loops).

The procedure consists of three main steps. First, each bilateral flow (F̂jk) is estimated
using as input data only the geographical distance, the national export (Ej) and import
(Mk) as described in Sections 3.1 and 3.2. Note that, by definition, the international trade
must respect a global constraint – namely the total volume of exports (and imports) must
equal the global flow, then Ftot ≡ ∑

j Ej ≡ ∑
k Mk – and two local constraints regarding

the total import (Mj) and export (Ej) volumes of each country j. One of the main novelties
introduced in this study is the addition of the balance constraint in the GM estimations.
Indeed, the estimates obtained with the GM are further adjusted by means of a multi-
plicative factor (αj = Êj/Ej) that is applied to each export-side regression (see Equation 2).
This coefficient of correction ensures the respect of national aggregates (i.e. total export:∑

k αj · F̂j,k = ∑
k Fj,k) and then of the global constraint:

∑
k
∑

j αj · F̂j,k = Ftot . Second,
the estimated flows are ordered from the biggest to the lowest value in order to give more
importance to the largest trading relationships. Third, we select those links (from the
biggest onward) whose cumulative share covers a given threshold, which we allow to vary
from the 90% (F90%) up to 99% (F99%) of Ftot . The logic behind this criterion is that

12 In our case we do not consider alternative algorithms because, having complete information, RAS is demonstrated to be
an easy and efficient bi-proportional algorithm. See Lenzen et al. (2009) for a review of alternative methods in case of
conflicting information.
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higher flow intensities are more probable to be accurately estimated and they represent the
most important trading exchanges. Obviously, as any estimating technique, we might lose
some real connections or creating spurious links. Accordingly, we compute some key indi-
cators to verify the consistency of our approach with respect to the topological properties
of the system, namely:

• total number of links estimated to be comparedwith the real ones to asses the distribution
of bilateral flows;

• share of actual flow: corresponds to the percentage of global real flow captured by the
predicted topology;

• share ofmissing links (false negative): corresponds to the real links not captured by the
estimative procedure. The percentage is based on the total number of real links;

• share of spurious links (false positive): corresponds to the non-existing links created by
the estimative procedure that are not present in the real system. The percentage is based
on the total number of real zeros;

• backbone: it corresponds to the set of the biggest links (dominant trading connections)
that jointly cover the 80% of the global flow see Konar et al. (2011). It is an important
measure that provide information about the vulnerability of the system to exogenous
shocks (e.g. Distefano et al., 2018b). As a robustness check, we introduce the backbone
indexwhich represents the share of real flow that lies on the set of links that constitute the
estimated backbone. To say, we associate to each of the links belonging to the estimated
backbone the real flow. Then, we cumulate the share of real flow lying on the estimated
backbone to check the consistency with the real backbone. The difference between the
80% (i.e. perfect correspondence with real backbone) and the actual share of flow lying
on the estimated backbone returns ameasure of the error in reconstructing the network
architecture.

4. Results

In this Section, we show the results about the estimative accuracy and the predictive power
ofGM and RAS. For the sake of simplicity, we present the results pertaining with themon-
etary trade network (deflated dollar values), while the analyses applied to the virtual water
trade network are reported in the Supplementary Material (SM.1), which also reports the
outcomes of single crop-layer networks (SM.2).

4.1. Flow estimates

In terms of absolute estimates (level of bilateral flows), RAS outperforms GM with R2
lin

values always larger than 50% in the ‘ex-ante’ application and values larger than 75% in
the ‘ex-post’ aggregation criterion (Figure 1(A)). Conversely, the GM shows lower R2

lin (in
the range between 25% and 50%), with a slight increase in the final period (i.e. from 2008),
when the GM based on the ‘ex-post’ procedure attains more than the 60% in the goodness
of fit. In both cases, the ‘ex-post’ criterion entails more accurate estimations, improving
over time due to the increasing number of links, in the IFTN, that guarantees a higher
number of observations. Note that the GM provides a systematic underestimation of the
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Figure 1. Time series of the adjusted coefficient of determination (R2). Linear (A) and logarithmic (B)
scale for RAS (red lines) and Gravity model (blue lines) estimations considering the monetary network.
Solid and dotted lines refer to the ‘ex-ante’ and ‘ex-post’ aggregation, respectively. Density scatter of
real and estimated monetary trade flow with all the data pooled together (from 1986 to 2913), from
RAS (C) and Gravity (D). The right panels also show the R2 (linear and logarithmic) computed for all
the years pooled together only in case of ‘ex-post sum-up’. Blue points correspond to a low number
of observations, while yellow and orange ones to a highly concentration of points (e.g. a single yellow
spot corresponds to more than 200 observations).

total flow, to say the sum of the estimated flow intensity is less than half of the real one (e.g.
in 2013 the GM captured only the 46% of the global monetary volume of trade).

In relative terms (Figure 1(B)), GM generates lower percentage errors than RAS, with
values of R2log around 60% in the ‘ex-post’ aggregation and around 40% in the ‘ex-ante’
aggregation. Overall, the performances in the logarithmic scale result stable over time,
although worse than those computed in linear terms. To explain these results, we show the
density plot (Figure 1(C)) of the estimations for all the years pooled together, from RAS
(panel C) and GM (panel D). In case of little flows, a small relative error implies a small
absolute error; while in case of large volumes, a small relative error implies remarkable
absolute errors. As a consequence, the failure of GM in ensuring the balance constraints is
due to the absolute difference between the estimated and the real large flows (> 106 USD),
which are systematically below the black line. On the contrary, the RAS algorithm pro-
vides accurate estimates of the largest flows (Figure 1(C)) as it guarantees a full closure of
the national and global constraints. However, it generates a more spread distribution of
estimations of little flows (< 105 USD) which explains its lower accuracy in terms of R2

log .
Similar results are found when we apply the virtual water weight where slightly lower

average values of R2lin are found as well as slightly higher average values of R2
log , with both
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Figure 2. Time series of the estimated network topology performances. Comparison of different simu-
lations (F95% and F99% for RAS, F90% and F95% forGM) from the RAS (red lines) and theGM (blue lines)
on the ‘ex-post’ aggregate monetary network. Panels report the real percentage of global flow that lies
on the estimated network (A), the percentage ofmissed links (B), the estimated and real (solid black line)
number of links (C), and the percentage of spurious links (D).

methodologies (see Figure SM1.1 in SM.1). In this case the GM captured only about the
40% of the real global flow.13 This confirms that our procedure can be extended to any
other type commodity traded internationally and to other types of networks. These out-
comes suggest two take-home messages: first, the aggregative criteria substantially affect
the estimative accuracy, with far better performances in case of the ‘ex-post’ procedure.
Second, differentiating between absolute and relative errors is crucial to highlight the fail-
ure of local balance constraints by the GM, that implies a misleading representation of
the real network structure and size. This latter concern has been, more often than not,
neglected in the existing studies based on the Gravity Model.

4.2. Topological reconstruction

Figure 2 compares the performances of the GM and RAS in the topology reconstruc-
tion (Section 3.3) only based on the ‘ex-post’ aggregation that ensures higher estimative
accuracy (see Section 4.1). Panel A shows the share of actual global flow captured by the
predicted topology: RAS recovers more than the 95% of the actual bilateral flows under the
two different thresholds (F95% and F99%), while the GM is less effective with percentages
around 70–80%. Note that the threshold imposes the criterion to define which links must
be selected from the estimated topology. However, the estimated bilateral flowmight differ
from the real ones even when the existence of a link is correctly predicted. This explains

13 These differences are be due to the distortion that one imposes when adopting different unit of measures. For instance, if
virtual water is more stable over time, themonetary conversion is affected by remarkable temporal and spatial variability
of food prices (e.g. Distefano et al., 2019).
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Figure 3. Topological reconstruction of the aggregate network topology in monetary terms. Compari-
son of (A) the real network representing the overall international trade of wheat, rice, maize, soy-bean,
and barley summed-up in year 2013, (B) the topological reconstruction based on RAS algorithm, and (C)
on the Gravity Model. Flows lower than 200000 USD (0.2 M$) are excluded.

the gap between the percentage of total flow imposed by the threshold and the share of
actual global flow captured by the two methodologies.

Panel B shows that both RAS (under F95%) and the GM (under F90%) define an archi-
tecture with a number of links strictly close to the real network (black line). This suggests
that there is a trade-off between the total volume that one wants preserve and the total
number of connections. However, an efficient combination of the two desiderata can be
found in both cases – RAS (under F95%) and GM (under F90%) – although RAS recovers
a higher share of real flow. Panels C and D offer additional information about the distribu-
tion of the estimated links, based on the share of missed (false negative) and spurious (false
positive) links. Again, RAS appears to provide better results than the GM. In both cases,
independently of the thresholds, the shares of missed links (in the range 20–50%) is higher
than the share of connections spuriously added to the real network (in the range 2–8%).
Given the high share of global flow captured, this confirms that the IFTN is characterised
by a fat-tail distribution where almost all of the trade is concentrated in few big connec-
tions. Note that, for both methodologies, a larger number of missed links implies a smaller
number of spurious links: a higher threshold reduces the share of missed links, namely the
model captures a larger portion of real links, at the cost of greater number of spurious ones.
These outcomes confirm that a balanced solution – in terms of false positives and negatives
– can be found, again, for RAS under F95% and for the GM under F90%.

Figure 3 provides a graphical representation of the effectiveness of the two methodolo-
gies (balanced solutions) to recover the real aggregated network (of the five cropsmeasured
in monetary terms) architecture in 2013, although the same messages can be drawn from
any other year. For the sake of clarity, links carrying a flow lower than $200,000 U.S. are
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excluded in order to show only the main bilateral relationships (658 links), which repre-
sent around the 31% of the total (2125 links). The color and the thickness of each link are
proportional to the traded monetary flow; the node size is proportional to the total node
degree (total number of connections) of each country.

The largest flows are carried along the US–China connection (135 M$), the
Brazil–China link (85 M$), and the US–Mexico link (41 M$). Both RAS and GM accu-
rately capture the most important links, and this is also confirmed by the node size of the
most central countries (e.g. the US, Mexico, Argentina, Brazil, India, China) that remains
the same in both reconstructions. This entails that the predictive power of both method-
ologies is sufficiently high to capture the real connections of the leading countries, which
constitutes the core of the network. Indeed, the average (over the whole time window)
backbone index (see Section 3.3), from RAS is 78.6% which is extremely close to the 80%
which constitute the real backbone. In case of GM the value is lower, of about 73%. As
stated above, both methodologies produce missed and spurious links. In particular, the
RAS is able to reconstruct 1087 real links (51%) and the GM is able to reconstruct 922
(43%). From panel C it is clear that the GM tends to miss most of the links in the Mediter-
ranean area, both within Europe and between Europe and Northern Africa. Also the RAS
seems to show the largest weaknesses in the topology reconstruction in the European and
MENA regions, probably because this area is characterized by many medium-little flows.

5. Discussion

Before moving to the main conclusions it is worth to compare some peculiarities and
caveats of the two methods applied in this study which can be resumed in what follows:

(i) data requirements: RAS has an advantage in terms of computational cost and data
requirements because this algorithm can be successfully applied to recover the bilat-
eral flow intensity simply knowing the aggregate volumes of a given year. On the other
hand, the GM needs a series of years to provide a consistent estimation of the coef-
ficients. However, the main difference between these tools is that GM can provide
estimates even in absence of trade data (by using country-specific variables, such as
GPD, population and so on), while RAS needs at least the total exports and imports;

(ii) balance constraints: any study related to the problem of flow intensity estimation
should explicitly assess the coherence of the regressive model with real data. Indeed,
if RAS respects the global and national balance constraints by definition, while the
GM systematically underestimates the global flow and national aggregates (i.e. total
country’s import and export). The latter bias can be overcome with the application of
a coefficient of correction, but this caveat can not be overlooked when the GM has to
be applied;

(iii) lack of data: although international trade is a topic that is attractingmore attention and
it is on the top of the global political agenda, the data availability and reliability of the
existing dataset is not guaranteed. Hence, the possibility to recover the structure of the
system with a minimum amount of information is of foremost importance to extend
the current database to include more remote years. This study proposes a procedure
to recover the topology, and then to build new databases, when only aggregate values
are available. Both RAS and GM proved to be effective;
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(iv) aggregation bias: the issue of data building is often neglected in the empirical studies.
Here, we proved how the criteria used to aggregate more layers (i.e. more com-
modities) might determine remarkable bias. In general, the application of estimative
methods before the aggregative process (i.e. ‘ex-post sum-up’) is proved to be more
accurate;

(v) scale of analysis: the topological reconstruction obtained from the (‘ex-post’) aggre-
gated networks is more reliable than at single crop-layer scale. This might suggest that
some single-level biases tend to cancel-out during the aggregative procedure, partly
because the aggregate network is more dense (i.e. more links).

6. Conclusion

In this study we critically assess the estimative accuracy and the predictive power of the
RAS algorithm and the gravity model (GM). We also propose a simple, efficient, and gen-
eralisable procedure to recover the topology of any network, especially when a low amount
of information is available (e.g. total countries’ exports and imports). The main outcomes
and novelties of the current study can be summarised as:

(a) the RAS algorithm generates better performances than the GM when the same
regressors are considered;

(b) RAS accurately estimates bigger flows (R2
lin high), while GM generates lower errors in

relative (percentage) terms (R2log high);
(c) the GM, differently from RAS, does not respect the global balance constraint with

systematic under-estimation of the global flow (Ftot) and then its formulation needs
to be corrected with a (row-type) multiplicative factor;

(d) bothRAS andGM can be applied to recover the network architecture, with aminimum
amount of information. However, they have to be calibrated to find an optimal balance
between the number of links and the total flow;

(e) the application of alternative unit of measures and the extension of different scales,
provides a robustness check that allows to the proposed procedure to be generalised
to any other type of international trade market.

This study addressed two key issues that are at the core of the current research on inter-
national trade: trade flow intensity estimations and link prediction. The former is necessary
to understand the strength and the evolution of bilateral trade relationships. Indeed, the
underestimation of the overall global flow, as generated by the GM, might lead to mis-
leading results and biased scenarios, mostly when the international trade is tied with the
exploitation of natural resources (such as water). This issue is of foremost importance in
case of forecasting the evolution of a network, for a proper systemic-risk assessment, and
scenario analysis to support policy decisions. Robustness to different scales and unit of
measures, should represent a solid base where to found reasonable scenarios to support
policy decisions.

To conclude, although this study is empirical in themethods, it offers a solid base for fur-
ther theoretical research questions (e.g. what is the economic reason behind the systematic
under-estimation of the global flow in case of GM? how to interpret the RAS coefficients
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in an international trade context?) and most of all to understand the reliability of existing
estimations and dataset to support policy decision.
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