
Solving Mixed Pareto-Lexicographic Multi-Objective
Optimization Problems: The Case of Priority Chains

Leonardo Lai, Lorenzo Fiaschi, Marco Cococcioni∗

Department of Information Engineering, Largo Lucio Lazzarino, 1 – 56123 Pisa, ITALY

Abstract

This paper introduces a new class of optimization problems, called Mixed Pareto-
Lexicographic Multi-objective Optimization Problems (MPL-MOPs), to provide
a suitable model for scenarios where some objectives have priority over some
others. Specifically, this work focuses on a relevant subclass of MPL-MOPs,
namely problems involving Pareto optimization of two or more priority chains.
A priority chain (PC) is a sequence of objectives lexicographically ordered by
importance. After examining the main features of those problems, named PC-
MPL-MOPs, we propose an innovative approach to deal with them, built upon
the Grossone Methodology, a recent theory which enables handling the priority
in an elegant and powerful way. The most interesting aspect of this technique
is the possibility to seamlessly embed it in any existing evolutionary algorithm,
without altering its logical structure. In order to provide concrete examples, we
implemented it on top of the well-known NSGA-II and MOEA/D algorithms,
calling these new generalized versions PC-NSGA-II and PC-MOEA/D, respec-
tively. In the second part of this article, we test the strength of our strategy in
solving multi- and even many-objective problems with priority chains, compar-
ing it against the results achieved by standard priority-based and non-priority-
based approaches. Experiments show that our algorithms are generally able to
produce more solutions and of higher quality.

Keywords: Pareto Optimization, Lexicographic Optimization, Evolutionary
Computation, Genetic Algorithms, Numerical Infinitesimals, Grossone Infinity
Computing

1. Introduction

The optimization of two or more conflicting objectives is useful in many
real-world scenarios; such problems, commonly referred to as multi-objective

∗Corresponding author
Email addresses: leonardo.lai@live.com (Leonardo Lai),

lorenzo.fiaschi@phd.unipi.it (Lorenzo Fiaschi), marco.cococcioni@unipi.it (Marco
Cococcioni)

Preprint submitted to Swarm and Evolutionary Computation March 31, 2020

optimization problems (MOPs), are typically stated as follows:

min

f1(x)
f2(x)

...
fm(x)

 s.t. x ∈ Ω

where Ω represents an arbitrary input space. The search for Pareto optimal
solutions in MOPs is not a trivial task, and has been addressed over time using
different strategies, from mathematical-programming methods to evolutionary
multi-objective optimization (EMO) algorithms. Being population-based, the
latter are able to produce a large number of solutions at the same time, whereas
other approaches require the same procedure to be repeated over and over. In
addition, evolutionary algorithms proved to be effective in solving hard prob-
lems too, for instance those with a large number of decision variables or several
local optima. Thanks to these properties, EMO has become the standard in
its field: noteworthy examples are NSGA-II, SPEA2 and MOEA/D [1, 2, 3].
Recently, the research focus has shifted towards problems with a large num-
ber of objectives, known as many-objective optimization problems (MaOPs) [4].
This definition usually applies to any problem with more than three objectives,
but it is common to have ten or more. It has been observed that traditional
EMO algorithms designed for MOPs are often inadequate when facing MaOPs,
for a variety of reasons. First, when the number of objectives grows, a larger
fraction of the population becomes nondominated, slowing down the optimiza-
tion process significantly. This is a very serious issue, which has to do with
the ineffectiveness of the Pareto dominance definition; alternatives have been
proposed, for instance in [5]. Second, the conflict between convergence and di-
versity assessment exacerbates in a large-dimensional space, making it harder
to find a balance between these two pressures. Furthermore, the recombination
operation may be inefficient, calculations and simulations become computation-
ally expensive, results are harder to understand and visualize.
In recent years all these difficulties have led to the development of sophisticated
methodologies specific for MaOPs, including some evolutionary algorithms that
are often an overhaul of their corresponding one for MOPs. A remarkable ex-
ample is NSGA-III [6], which enhances the fundamental ideas of NSGA-II to
better deal with many-objective problems. Although the aforementioned issues
can be mitigated by exploiting new techniques specifically designed for MaOPs,
they cannot, by their very nature, be eliminated altogether. The goal of current
research is, on the one hand, to improve and refine the existing algorithms, on
the other to identify innovative ways to address these cases. Anyway, it is cru-
cial not to forget that most of the optimization problems come from concrete
real-world situations, therefore a feasible reverse strategy could be returning to
the root of the problem, attempting to extract additional information from the
context and, eventually, embedding this new knowledge into the mathematical
model of the problem. For instance, in realistic MOPs and MaOPs, it is likely
that some objectives are more important than others or, at least, have a stronger
impact in the subsequent decision process; therefore, their optimization should

2

be prioritized. One way to accomplish this is by weighted sum scalarization,
which reformulates the problem as a single-objective one:

min

m∑
i=1

wifi(x) wi ∈ R

Weights are proportional to the importance. Yet there is a drawback: it requires
a priori knowledge or determination of such weights, which is not a trivial task.
Moreover, small changes to the parameters lead to distinct problems, with pos-
sibly different solutions [7]. Finally, the use of very large (or very small) weights
worsens the numerical stability of the algorithm.
In some scenarios, on the other hand, it is possible to rank the objectives lexi-
cographically : the objective that is ranked first holds absolute priority over the
second one, which in turn has precedence over the third, and so on. Lexico-
graphic problems are not uncommon in real situations, concrete examples can
be found in [8, 9]. They are typically addressed by solving an ordered sequence
of single-objective problems: first the optimal values for the most important
objective are found, then a constraint is added to force the solutions of the next
subproblems to stay in the optimal set of the primary objective. The same
procedure is then repeated for each objective, in order of importance, every
time adding a further constraint. The weaknesses of this strategy, called pre-
emptive method, are the growing size of the set of constraints, which makes it
increasingly harder to locate feasible solutions, and the arbitrary structure of
the constraints themselves, non-trivial to handle.

This article aims to describe a novel approach, which goes beyond the lex-
icographic method, to deal with multi- and many-objective optimization prob-
lems where lexicographic priorities exist between some objectives. It combines
the effectiveness of evolutionary algorithms (specifically we chose NSGA-II and
MOEA/D because of their popularity) with the flexibility of an emerging, yet
powerful mathematical theory which makes it possible to work with infinite and
infinitesimal quantities: the Grossone Methodology by Y. D. Sergeyev [10]. Our
approach does not decompose the problem into smaller and prioritized subprob-
lems, but deals with it in one fell swoop, hence bypassing the aforementioned
difficulty of adding constraints. The same strategy has been already adopted
by Cococcioni et al. to extend the well-known simplex algorithm [11, 12].

In Section 2 we first provide a mathematical description of the types of prob-
lems that we aim to solve, then point out the weaknesses of a standard approach
in Section 3. A brief insight into the Grossone Methodology is given in Section
4 in order to introduce the key idea of our study, then we embed it in NSGA-II
and MOEA/D in Section 5. Section 7 contains concrete examples of PC-MPL
problems, used as benchmarks for a comparative quantitative evaluation of our
approach and standard ones, adopting the metrics described in Section 6. These
two sections show that our idea is not only a theoretical mathematical artifice,
but also a practical and implementable tool. In Section 8 we discuss how the
proposed approach differs from others existing in literature. Discussions and
conclusions are provided in Sections 9 and 10, respectively.

3

2. Mixed Pareto Lexicographic Problems

Multi-objective and many-objective problems have been extensively studied
in the past years, just as there is a vast literature about lexicographic opti-
mization. Surprisingly, there does not seem to be any study concerning hybrid
problems where only some of the objectives, or groups of them, can be lex-
icographically ranked, whereas the others are incommensurable and must be
therefore treated in the Paretian way. A modest number of authors looked at
specific instances in which priorities or precedences are somehow involved (see
Section 8), but a general formulation is definitely lacking. This gap has gone
unnoticed for years, however there are plenty of real world optimization prob-
lems that could benefit from research in this specific area. This is especially
true for problems with a very large number of objectives: in most cases it is
likely that not all of them hold the same exact importance, but one or more
may have precedence over some others. Being able to exploit such information
in the early stages of the optimization process is clearly better than postponing
it to the final phase, that is decision making. Any approach of this kind, to
be successful, should take advantage of the priority during the search itself, not
only after. In other words, it would be ideal to use all the information available
as soon (and as much) as possible in the process, and not merely at the end to
filter the previously obtained solutions.
This specific paper aims to start filling this vacancy, describing the character-
istics of those problems where some objectives do have priority over others,
whereas some others do not; in addition, we suggest a strategy to address at
least two subcategories of them, one in the present work and the other in a
future work. First of all, since a general name for such problems does not exist
in the literature yet, we choose to call them Mixed Pareto-Lexicographic Multi-
objective Optimization Problems (MPL-MOPs). This label refers to a broad
class of problems, all sharing these features:

• At least two, but generally more objectives are involved (multi-objective)

• Some of the objectives have precedence over some others (lexicographic)

• Some of the objectives can not be compared to each other on the basis of
importance (Pareto)

The word mixed reflects their non-homogeneous nature and suggests the use of
a hybrid approach to deal with them. Furthermore, the relationship between
Pareto optimality and priorities strongly depends on the structure of the specific
problem: in particular, the manner in which the priorities are defined affects
the mathematical description of the problem itself. In the next sections we
identify and discuss two important subclasses of MPL-MOPs that appear to be
significant for real applications. These two categories, respectively named PC-
MPL-MOPs and PL-MPL-MOPs, share common characteristics, but are also
very different in some respects.

4

2.1. MPL problems containing Priority Chains: PC-MPL

The first category is named PC-MPL, which is short for Mixed Pareto-
Lexicographic containing Priority Chains. This class includes all the problems
whose every low-priority objective is directly subordinated to exactly one other
objective. The word “direct” is fundamental here: since some of the objectives
can be arranged in a sort of “chain” built on the basis of precedence, “direct”
means that, considering a pair of objectives, there is not another one between
them, i.e. they are adjacent in that chain. Thinking of the objectives as nodes
of a graph where the priorities are directed arcs, then each node has one or no
direct predecessor, and one or no direct successor. Chains are not necessarily of
the same length. Figure 1a can help to visualize the nature of these problems:
it illustrates a possible precedence diagram of a PC-MPL-MOP. Formally, a
problem of this kind is defined by these features:

• Any objective may have a direct precedence over another objective or none

• Any objective may be directly preceded by one other or none

The mathematical way to express their structure is the following:

min

lexmin

[
f
(1)
1 (x), f

(2)
1 (x), . . . , f

(p1)
1 (x)

]
lexmin

[
f
(1)
2 (x), f

(2)
2 (x), . . . , f

(p2)
2 (x)

]
...

lexmin
[
f
(1)
m (x), f

(2)
m (x), . . . , f

(pm)
m (x)

]

 .

Here the notation lexmin
[
f
(1)
i , f

(2)
i , ..., f

(pi)
i

]
indicates the minimization of the

objectives
{
f
(1)
i , f

(2)
i , ..., f

(pi)
i

}
according to the lexicographic method: f

(1)
i is more

important than f
(2)
i , which in turn has priority over f

(3)
i and so on. Each lexmin

block can be seen as a “container” of objectives ranked by importance: from
now on we call this a lexico-macro-objective (or macro-objective, for brevity) and
refer to it as fi. On the other hand, the outer min indicates the minimization
(in the Pareto sense) of these macro-objectives. Hence we have:

min

f1(x)

f2(x)

...
fm(x)

where

{
f1, f2, ..., fm

}
are lexico-macro-objectives. Actually, from the optimiza-

tion point of view, the transition from standard objectives to macro-objectives is
not so disruptive. When comparing the macro-objective values of two different
solutions, the solution with the lowest value of the primary objective (within
that macro-objective) is preferred. But, if these two values happen to be equal,
then they are assessed on the basis of the secondary objective, or the tertiary
if they are identical again, and so forth. In other words, secondary objectives

5

are useful to compare solutions that have equal values of the more important
objectives, within their relative macro-objective. It is important to stress that
there is no mutual relationship between objectives belonging to different macro-
objectives: they are incommensurable with each other, it is not possible to say
which has priority over which. This property is non-trivial since it implies a
certain degree of order and rigidity in the structure of PC-MPL-MOPs: for in-
stance, two secondary objectives cannot be swapped in position in the model
without also switching their primaries, otherwise it would become a completely
different problem.

(a) PC-MPL-MOP (b) PL-MPL-MOP

Figure 1: Examples of two different classes of MPL-MOPs: a dot stands for an objective; an
arrow indicates a precedence relationship; ovals represent groups of objectives.

Here is a minimal example of how comparisons between macro-objectives
work. Consider the following three solutions of a minimization problem with
two macro-objectives, each being a chain of two (shown horizontally):

A =

[
[1 2]
[5 3]

]
B =

[
[1 3]
[4 2]

]
C =

[
[7 1]
[4 9]

]
Solution A performs better than B in the first macro-objective (because 1 = 1
and 2 < 3), however B is better in the second macro-objective (4 < 5, the
secondary objectives do not matter this time), therefore A and B are Pareto
nondominated. A and C are nondominated too, since 1 < 7 and 5 > 4. On
the other hand, B is better than C because it dominates on both the macro-
objectives: in fact, 1 < 7 (first macro-objective), 4 = 4 and 2 < 9 (second
macro-objective).

The layout of PC-MPL-MOPs should be clear at this point. Our idea to
solve them is described in detail from Section 5 onwards, but before that it is
worth to outline another subclass of MPL-MOPs, which will be addressed in a
future work.

6

2.2. MPL problems partitioned by Priority Levels: PL-MPL

The second category of problems we have identified is called PL-MPL, to
indicate that the objectives have been partitioned according to a priority level
assigned to each of them. Unlike PC-MPL problems, here the objectives are
not arranged as chains, but instead they are classified into groups on the basis
of their priority. Objectives belonging to the first priority level have precedence
over all those in the second level, which in turn precede those in the third
level, and so on. However, two objectives of the same level are considered equal
in importance, so they must be optimized in the Pareto way. A secondary
objective is not individually subordinated to a specific primary (in contrast to
what happens in PC-MPL-MOPs), but is simply considered less important than
all the primary objectives.
By definition, a PL-MPL problem has these characteristics:

• The objectives can be clustered by importance, creating a certain number
of groups of objectives

• A group contains only objectives having the same priority

• Each objective belongs to exactly one priority level

Their mathematical description is:

lexmin

min

f
(1)
1 (x)

f
(1)
2 (x)

...

f
(1)
m1(x)

 ,min

f
(2)
1 (x)

f
(2)
2 (x)

.

..

f
(2)
m2(x)

 , . . . ,min

f
(p)
1 (x)

f
(p)
2 (x)

...

f
(p)
mp(x)

The best solutions for a PL-MPL-MOP are, first of all, Pareto optimal for the
primary objectives. This Pareto optimal set becomes the domain of the search
for solutions that also optimize (in the Pareto sense) the secondary objectives.
The same is repeated for the third, fourth, ..., p-th level of priority. PL-MPL-
MOPs are indeed very similar to pure lexicographic problems, with the only
difference that they consist of a sequence of multi-objective problems instead of
single-objective ones. An example of PL-MPL-MOP is depicted in Figure 1b.
A deep analysis of PL-MPL-MOPs is left for future work.

3. Need of a new approach for PC-MPL-MOPs

In order to justify the necessity of a new algorithm, it is crucial to under-
stand why the purely Paretian approach struggles with PC-MPL-MOPs. A
standard optimizer like NSGA-II, or NSGA-III for many-objective problems,
has fundamentally two options to face PC-MPL-MOPs: ignore priorities or ig-
nore secondary objectives at all. Without any additional mechanism to handle
priority, no other strategy is viable. As we are about to see, each of the above
options has critical issues, which ultimately demands better ideas.

7

3.1. Ignoring secondary objectives

Ignoring all the objectives except the most important ones is certainly a way
to simplify the problem, at the cost of sacrificing important information and,
consequently, worsening the overall quality of the found solutions. As discussed
previously, the purpose of secondary objectives is essentially to help discrim-
inating between two or more solutions when the primaries are not enough to
establish a clear winner. Without secondaries, the algorithm is bound to either
preserve all the nondominated solutions, that is computationally expensive, or
discard one or more of them, randomly or according to some policy, still with
the risk of trashing potentially good ones thus slowing the optimization. When
the number of nondominated solutions is sufficiently large, a common situation
in many-objectives tasks, any of these strategy becomes inadequate and results
in a significant performance degradation.

3.2. Ignoring the priorities, possibly filtering a posteriori

Another possibility is to treat all the objectives as if they had the same
importance, no matter what their real priorities are, and run a conventional
optimization algorithm on all these objectives. Then, after the end of the pro-
cedure, one may post-process the final population filtering out the solutions that
would be dominated by other individuals in the same set if the priorities were
eventually taken into account. Although slightly less näıve than the previous
option, this one shows critical flaws too. First, a problem with m chains of p
objectives each would become a purely Paretian problem with m×p objectives,
likely a many-objective one, with all the negative consequences that this en-
tails. Also, a secondary objective that is instead given the same importance of
a primary one forces the algorithm to concurrently optimize both, or at least
to try to; if those are somehow conflicting, spurious nondominated solutions or
even clusters of them may emerge, in a way that is absolutely detrimental to the
original optimization task. Moreover, the filtering procedure, despite being use-
ful to pull out the very best solutions from the final set, may actually cause an
overly severe skimming, sometimes preserving very few individuals out of many.
Computationally speaking, ending up with two or three solutions after running
the algorithm on a population of thousands is dramatically inefficient. The last
two difficulties might also stack together (i.e., filtering an already mediocre set),
exasperating the issue even further.

Now that it is clear why an innovative approach is needed, we are almost
ready to present our strategy to address PC-MPL-MOPs. Before proceeding,
a prerequisite to understand it is a little knowledge of the Grossone theory.
Here follows a very short introduction to it, where we outline the key concepts.
In-depth insights can be found in Sergeyev’s papers, cited below.

4. The Grossone Methodology

A computational methodology able to deal with infinite, finite and infinites-
imal numbers in the same single framework has been realized by Y. D. Sergeyev

8

[10, 13, 14, 15]. This has been possible thanks to the introduction of a new
numeral system with infinite base. Such base is called Grossone, indicated by
the numeral ¬ and defined as the number of elements in the set of the natural
numbers N. Historically, new numeral systems were often born as extensions
of earlier and simpler ones, to overcome their limits and paradoxes (e.g. the
invention of zero and negative numbers to switch from naturals to integers);
Grossone pursues the same path, going beyond traditional finite-based numeral
systems to get over the well-known difficulties in handling infinite and infinites-
imal quantities. Three methodological postulates and The Infinite Unit Axiom
have to be added to the axioms of real numbers to rigorously justify the advent
of Grossone [10, 16]. In particular, this new axiom states that, for any given

finite integer n, the infinite number ¬
n is integer and larger than any finite num-

ber. The four basic operations, exponentiation and comparison operators are
well-defined for ¬ and Grossone-based numerals; also, since the Infinite Unit
Axiom is added to those of real numbers, all the standard properties (commu-
tative, associative, existence of inverse, etc.) apply too. Instead of the usual
symbol ∞, different infinite and/or infinitesimal numerals can be used thanks
to ¬. To set an example, the following relations hold for ¬, ¬2, ¬−1, as for any
other (finite, infinite, or infinitesimal) number expressible in the new numeral
system:

0 ·¬ = ¬ · 0 = 0, ¬−1 > ¬−2 > 0

2¬−¬ = ¬, ¬ ·¬−2 = ¬−1

−10.0¬3 + 16.0 + 42.0¬−3

5.0¬3 + 7.0
= −2.0 + 6.0¬−3

The Grossone methodology has been already successfully applied to differ-
ent areas of mathematics, such as optimization [17, 12, 18], ordinary differential
equations [19, 20, 21] and game theory [22, 23, 24]. A complete list of papers us-
ing Grossone can be found at http://www.theinfinitycomputer.com/~yaro/
arithmetic/frv/

A general way to express values formed by finite, infinite and infinitesimal
quantities at the same time is provided in [10, 15, 16] by using a notation in the
middle between the polynomial and the common positional numeral systems
ones. A number c in this new numeral system (c is called gross-scalar) can be
represented as:

c = cpm¬pm + . . .+ cp1¬p1 + cp0¬p0 + cp−1¬p−1 + . . .+ cp−k¬p−k

where m, k ∈ N, exponents pi are called gross-powers (they can be gross-
scalars as well) with p0 = 0. The digits cp

i
6= 0, called gross-digits, are finite

(positive or negative) numbers. In this system of numeration, finite numbers
are represented by numerals with the highest gross-power equal to zero, e.g.,
−6.2 = −6.2¬0. Infinitesimals are represented by numerals having only neg-
ative (finite or infinite) gross-powers. The simplest infinitesimal is ¬−1 for
which ¬−1 ·¬ = 1. Moreover it is worth to note that all infinitesimals are not

9

http://www.theinfinitycomputer.com/~yaro/arithmetic/frv/
http://www.theinfinitycomputer.com/~yaro/arithmetic/frv/

equal to zero, e.g. ¬−1 > 0. On the other hand, a number is infinite if it has
at least one positive finite or infinite gross-power. For instance, the number
43.6¬4.56 + 16.7¬3.6 − 3.2¬−2.1 is infinite, it consists of two infinite parts and
one infinitesimal part.

4.1. Applications of Grossone for lexicographic problems

A very useful application of Grossone is a ploy to reformulate lexicographic
problems in a way that allows performing actual numerical computations by
means of lexicographic-macro-objectives, something that is not already possible
in the previously described model. The idea is quite simple: given the lexi-
cographic problem lexmin

[
f (1)(x), f (2)(x), . . . , f (p)(x)

]
, a gross-scalar is then

built using each objective f (j) as a gross-digit relative to the gross-power ¬1−j .
Thus that problem can be rewritten as:

min
[
f (1)(x) + ¬−1f (2)(x) + . . .+ ¬1−pf (p)(x)

]
or equivalently, as:

min
[
f(x)

]
.

The higher the priority, the higher the gross-power: the most important ob-
jective, f (1)(x), is indeed associated the highest exponent (0), whereas f (p)(x)
the lowest (1 − p). The advantage of this approach is clear: whereas before
we had objectives represented by real numbers, now we have macro-objectives
represented by gross-scalars. Since all the four basic operations are well-defined
for gross-numbers, replacing objectives with macro-objectives in an algorithm is
a completely transparent operation, which does not alter the inner logic of the
code. Consequently, many existing non-lexicographic optimization algorithms
can potentially be extended to solve certain types of lexicographic problems too.
This same technique has been recently adopted to generalize the simplex algo-
rithm [11, 12]. With regard to PC-MPL-MOPs, they can easily be formulated
in terms of Grossone as:

min

f
(1)
1 (x) + ¬−1f

(2)
1 (x) + . . .+ ¬1−p1f

(p1)
1 (x)

f
(1)
2 (x) + ¬−1f

(2)
2 (x) + . . .+ ¬1−p2f

(p2)
2 (x)

...

f
(1)
m (x) + ¬−1f

(2)
m (x) + . . .+ ¬1−pmf

(pm)
m (x)

or, more concisely, as:

min

f1(x)

f2(x)

...
fm(x)

 .

10

5. PC-NSGA-II and PC-MOEA/D

Our proposal to solve PC-MPL problems consists of augmenting the orig-
inal NSGA-II [1] and MOEA/D [3] algorithms, by extending them to handle
gross-scalars quantities. We call them PC-NSGA-II and PC-MOEA/D respec-
tively, to distinguish between these generalized versions (with gross-scalars) and
the regular ones (with ordinary numbers). Of course these new versions must
be equipped with the redefinition of the four elementary operations, in order
to operate with gross-scalar quantities. We could build upon different algo-
rithms as well, giving rise to PC-SPEA2 for instance, but we opted for the
aforementioned two because they are very popular, simple and parameter-less,
thus the ideal candidates to present our methodology. Clearly, they are consid-
ered parameter-less in the sense that they do not require other parameters in
addition to those typically required by any population-based, single-objective
genetic algorithm. Notice that such extended versions inherit the very same
limits and benefit of the underlying algorithms when facing MOPs or MaOPs.
As it will become clear in Section 7.3.1, inheriting limits and benefits means
that if an algorithm, for instance, works particularly well with binary geno-
types, then its PC version will manifest that property as well. On the contrary,
if an algorithm becomes less effective as the number of objectives increases, its
PC counterpart will suffer MaOPs with many chains. In order to further stress
the enhancement in the supported data types, we also renamed the procedures
to PC fast nondominated sort and PC crowding distance assignment. Again,
these are aliases for the old names, as the logic behind the functions is still
the same. The pseudocode is illustrated in Algorithm 1; at least three aspects
deserve particular attention:

• PC fast nondominated sort : the nondominance operator ≺ (underlined)
replaces the old ≺. This is very similar to the traditional definition of
dominance, but the comparisons are now between macro-objectives (gross-
scalars) instead of objectives (reals). The formal definition is:

Definition 1. Pareto-Lexicographic dominance (PC dominance).
Given two solutions A and B, A dominates B (written A ≺ B) if the
following relation holds:

A ≺ B ⇐⇒

{
fi(xA) ≤ fi(xB) ∀i = 1 . . .m

∃j : fj(xA) < fj(xB)
(1)

The underlining notation has general validity: every time we use it, from
now on, it indicates gross-scalar quantities or operations between them.
This remains consistent with the use made in Section 2. Please notice that
the lexicographic contribution is implicitly performed within the compar-
isons between two gross-scalars

• PC crowded comparison operator : it works just like the old ≺n operator
described in [1], but the last comparison is now performed between gross-

11

scalars because of the nature of PC crowding distance. We denote it by
≺n

• PC crowding distance: it is a gross-scalar, since it is computed by means
of operations (subtractions, divisions, etc.) between gross-scalars. gross-
operations, by design, preserve the relative importance between the objec-
tives, and such property is reflected in the crowding distance computation
too. The primary objectives, being the finite component of the macro-
objectives values, play a major role in the density estimation, while the
secondaries, mostly contributing to the infinitesimal part, are still very
useful in those situations where it is hard to choose, e.g. when sorting
two elements that have the same finite crowding distance but different in-
finitesimal values. The definition also makes sense from the perspective of
the decision-maker, as it is reasonable to prefer having a larger variety of
options in the domain of the most relevant aspects, rather than for less im-
portant objectives. Note that the crowding distance of the extreme points
can be initialized to ¬, similarly to NSGA-II where it is set to ∞. As
long as we agree to represent the priorities with non-positive gross-powers
only, which is a non-restrictive assumption, ¬ is always guaranteed to be
greater than any other crowding distance value. An example of crowding
distances computed among gross-scalars is provided in Table 2.

Algorithm 1 PC-NSGA-II algorithm

1: procedure PC NSGA II
2: Rt = Pt ∪Qt

3: /∗ fast nondominated sort with gross-scalar objectives ∗/

4: F = PC fast nondominated sort(Rt, 0)
5: Pt+1 = ∅
6: i = 1
7: while |Pt+1|+ |Fi| ≤ N do
8: /∗ Crowding distance with gross-scalars ∗/

9: PC crowding distance assignment(Fi)
10: Pt+1 = Pt+1 ∪ Fi

11: i = i+ 1

12: /∗ Sort by PC crowded comparison operator ∗/

13: sort(Fi,≺n)
14: Pt+1 = Pt+1 ∪ Fi[1 : (N − [Pt+1])]
15: Qt+1 = make new pop(Pt+1)
16: t = t+ 1

Similarly, the MOEA/D algorithm can be extended by means of gross-scalars
to obtain PC-MOEA/D (see Algorithm 2). For brevity reasons we do not go into
the algorithm details, but please note that the PC extension of MOEA/D is even
easier than the NSGA-II one. Indeed, the function to compute the dominance
relation is the only one which needs to be extended to the gross-scalar case.

12

1: procedure PC fast nondominated sort(P)
2: for all p ∈ P do
3: Sp = ∅
4: np = 0
5: for all q ∈ P do
6: if p ≺ q then . PC dominance being used here
7: Sp = Sp ∪ {q}
8: else if q ≺ p then . PC dominance used also here
9: np = np + 1

10: if np = 0 then
11: prank = 1
12: F1 = F1 ∪ {p}
13: i = 1
14: while Fi 6= ∅ do
15: Q = ∅
16: for all p ∈ Fi do
17: for all q ∈ Sp do
18: nq = nq − 1
19: if nq = 0 then
20: qrank = i+ 1
21: Q = Q ∪ {q}
22: i = i+ 1
23: Fi = Q

1: procedure PC crowding distance assignment(F)
2: n = |F | . number of solution in the current front F
3: for all i ∈ F do
4: F [i]dist = 0

5: for j = 1 . . .m do . m is the number of macro-objectives
6: F = sort(F, fj) . sort F according to j-th macro-objective

7: F [1]dist = F [n]dist = ¬
8: for i = 2 . . . (n− 1) do
9: /∗ the PC crowding distance is a gross-scalar ∗/

10: F [i]dist = F [i]dist +
fj(F [i+1])−fj(F [i−1])

fjmax−fjmin

13

The new function works similarly to its old version except for the dominance
operator, which becomes the ≺ described in Equation 1 instead of the standard
≺.

Algorithm 2 PC-MOEA/D algorithm

1: procedure PC MOEA/D
2: EP = ∅
3: for i = 1 . . . N do
4: λi1 , . . . , λiT = find closest weights(λi, T)
5: Bi = {i1, . . . , iT }
6: x1, . . . , xN = initialize population(N)
7: for i = 1 . . . N do
8: FV i = F (xi)

9: z1, . . . , zm = initialize ref point(m)
10: while stop criteria() = False do
11: for i = 1 . . . N do
12: k, l = rand(Bi, 2)
13: y = make new sol(xk, xl)
14: y′ = mutate(y)
15: for j = 1 . . .m do
16: if zj < f

j
(y′) then

17: zj = f
j
(y′)

18: for all j ∈ Bi do
19: if gte(y′|λj , z) ≤ gte(xj |λj , z) then

20: xj = y′

21: FV j = F (y′)

22: DD = PC find dominated sol(EP,F (y′))
23: DG = PC find dominating sol(EP,F (y′))
24: EP = EP \DD
25: if DG = ∅ then
26: EP = EP ∪ F (y′)

14

6. Metrics

In the literature, several performance indicators have been proposed to eval-
uate the quality of a non-dominated solution set [25, 26, 27]. One of the most
frequently used is the hypervolume indicator [28], mainly because it is the only
Pareto compliant one. It has been shown that a Pareto non-compliant indi-
cator may end up with misleading performance results [26, 27, 29]. However,
the hypervolume indicator is often computationally intractable as soon as the
objective space dimension grows up or more complex numerical structures are
adopted, e.g. the gross-numbers, as in our work. Indeed, the less important ob-
jectives must be considered as if they were additional dimensions when assessing
the computational effort needed for the hypervolume metrics. For example, the
time required to compute the hypervolume in the benchmark MPL1 (see Sec-
tion 7.2) is comparable to that of a problem with a six dimensional objective
space (R6). Two other possible and well known metrics are the generational
distance (GD) and the inverted generational distance (IGD), described in [30]
and [31, 32] respectively. Both metrics evaluate the quality of a non-dominated
objective vector set A = {a1, ..., an} with respect to a reference Pareto set
Z = {z1, ..., zm}. The analytical definition of the former is:

GD(A) =
1

n

(
n∑

i=1

dpi

) 1
p

where di is the Euclidean distance from ai to its nearest reference point in Z,
and p ∈ N. The IGD metrics is an inverted form of the previous one, and is
defined as:

IGD(A) =
1

m

(
m∑
i=1

dpi

) 1
p

where di now represents the Euclidean distance from zi to its nearest objective
vector in A.

In this work we leveraged on the indicator ∆(A) = max{GD(A), IGD(A)},
firstly proposed in [29]. For our purposes, we set p = 1 throughout the whole
paper. Such choice, in analogy with [33], is bivariate: i) it makes the meaning
of GD and IGD clearly interpretable (the average of Euclidean distances); ii) it
has often been used in the literature.

In this work we compared our approach against several well known algo-
rithms found in the literature, as mentioned and described in Sections 7 and 8
respectively. In order to make the performances analysis quantifiable, we per-
formed (benchmark-wise) a non-parametric statistical test. It consists of three
steps: i) the Friedman test in order to compute a ranking among the algorithms
performance distributions over the benchmark; ii) the Iman-Davenport test to
evaluate whether there exists a statistical difference among the distributions; iii)
if such statistical difference exists, i.e. if the Iman-Davenport p-value is lower
than the significance level α = 0.05, we can reject the null hypothesis and apply
a post-hoc procedure, namely the Holm test. The latter checks the statistical

15

difference between the control approach (the one with the lowest Friedman rank)
and the other ones. For more details on the tests see [34], while the description
of the software tool (KEEL) used for the statistic can be found in [35].

7. Test cases for PC-MPL MOPs

There is now a substantial amount of scientific literature providing test
problems to assess the performance of multi-objective optimization algorithms
[36, 37, 38]. However, very few articles address problems where priorities exist
among the objectives, and there does not seem to be any for the class of prob-
lems that we called Mixed Pareto-Lexicographic. Therefore, in order to verify
our claims, we developed a couple of benchmark problems, specifically designed
to have the following properties:

• Sufficiently complex to be significant, yet simple enough to be understand-
able

• Reasonably easy to explain

• Immediate to visualize

The purpose of the examples is to show that our approach to MLP-MOPs is not
only viable but also more effective than using priorityless algorithms designed
for standard MOPs and MaOPs. It is worth pointing out that our focus is on
the proposed methodology rather than the algorithm itself. Comparisons are
meaningful when done between our approach and its non-priority-based coun-
terpart or a priority-based algorithm. Conversely, it is out of the scope of this
article to analyze the raw performance of the PC algorithm, which ultimately
depends on the chosen underlying MOP algorithm (NSGA-II or MOEA/D in
this case), inheriting its pros and cons. We did our best to build examples
that are both nontrivial and comprehensible, despite the lack of literature on
this specific subject. A more detailed analysis concerning the identification and
construction of meaningful or challenging benchmarks is left for future research.

In all our experiments, for real-encoded genotypes we adopt SBX operator
and polynomial mutation. For binary-encoded ones we use two-point crossover
and flip-bit mutation with probability 1

l (l is the length of the bitstring). For
each benchmark we have repeated the experiments 50 times, computing 500
epochs per algorithm’s run before stopping the experiment. The initial popula-
tion is always generated randomly and includes 100 individuals.

In order to evaluate the quality of the Grossone-based approach, we com-
pared its performances with six more algorithms: NSGA-II and MOEA/D ig-
noring the secondary objectives (Section 3.1), NSGA-II and MOEA/D ignoring
the priorities and a posteriori filtering (Section 3.2), Tan et al. [39], Chang et
al. [40] (Section 8).

16

7.1. Preliminary example (MPL0)

We chose to begin the experimental part of this article with knapsack prob-
lems (KP), because their popularity and plain structure make them ideal to
be understood. But knapsack problems are as easy to understand as tough to
solve: they are NP-hard, meaning that no algorithm exists which is able to
identify the optimal solutions in polynomial time. There are countless problems
in computer science, economics and math which involve resource allocation and
can be modeled as KP or similar. The most common variant is probably the 0-1
knapsack problem, where each variable is binary and can only take the values
0 or 1. Another variation are multi-objective knapsack problems, where the
objectives to maximize are two or more. In the scientific literature, the term
“multi-objective” often hides the assumption that the objectives are handled in
the Pareto sense. However, this is not always the case, because sometimes they
should be treated lexicographically, or even mixed Pareto-lexicographically, like
in this context. Here we focus on an instance of a PC-MPL 0-1 knapsack prob-
lem (abbreviated as PC-MPL-01-KP). As the name suggests, a PC-MPL-01-
KP is nothing but a constrained PC-MPL problem with knapsack-like objective
functions. A simple minimal example can explain the nature of such problems
better than any words. Thus, after gaining confidence with a dummy problem,
we move to another one which is similar in structure, but closer to real problems
in size and complexity. The latter serves as the first benchmark for our study,
and two more examples follow then. The preliminary problem, which we refer
to as MPL0, is defined as:

max

[
f
1
(x)

f
2
(x)

]
s.t. Wx ≤ C

f
1
(x) = V 1x

f
2
(x) = V 2x

V 1 = V
(1)
1 + ¬−1V

(2)
1

V 2 = V
(1)
2 + ¬−1V

(2)
2

V
(1)
1 = [4, 5, 6, 7, 11]T (2)

V
(2)
1 = [1, 2, 3, 4, 6]T

V
(1)
2 = [7, 8, 2, 1, 3]T

V
(2)
2 = [4, 3, 2, 1, 5]T

W = [1, 2, 3, 4, 5]T

C = 10

xi ∈ {0, 1} i = 1, . . . , 5

It features 5 binary variables, 2 macro-objectives where each is a chain of length
2 (4 vectors of item values in total), and a weight constraint. Since the number
of variables is relatively low and the weights follow an intelligible pattern, it
is straightforward to visualize which solutions fit in the knapsack. The item

17

values were empirically determined in order to make the example as descriptive
as possible; of course, other combinations may work as well. Out of the 25 = 32
existing solutions, we identified four (listed in Table 1) that are worth of special
consideration:

x f
1
(x) f

2
(x) Pareto optimal

a 10011 22 + 11¬−1 11 + 10¬−1 no

b 01101 22 + 11¬−1 13 + 10¬−1 yes

c 11110 22 + 10¬−1 18 + 10¬−1 yes

d 11001 20 + 9¬−1 18 + 12¬−1 yes

Table 1: Four interesting solutions (not all optimal) of MPL0. Variables are expressed as
bit-strings, along with their objective values.

• Solutions (a) and (b) are equivalent for the first macro-objective f
1
, but

(b) is clearly more valuable for f
2
, therefore (b) dominates (a)

• (b) is slightly better than (c) for f
1

because its secondary objective is
higher (the secondary is taken into account since they are equivalent for
the primary). On the other hand, (c) is better than (b) on the second
macro-objective. Thus (b) and (c) do not dominate each other

• Similarly, (c) and (d) happen to be nondominated. This time, the second
secondary plays an active role

• (b) and (d) are not PC dominated too, and secondaries do not even have
to be considered (because primaries differ)

Except for (a), which is dominated, the other three solutions are nondominated.
It can be verified that no other solution exists being better than these in any
of the macro-objectives. Figure 2a shows the primary objectives of the four
solutions. Note how (c) and (d) seem to be arranged horizontally, also (b) and
(c) vertically; such a pattern would be impossible in a traditional maximiza-
tion problem, since the “rightmost” solution would dominate the others on the
same horizontal line, and analogously the “uppermost” would dominate those
beneath in its same vertical line, since here we are considering a maximiza-
tion problem. In a PC-MPL, on the other hand, this configuration is totally
legitimate and common. Indeed, asserting that those solutions are aligned hor-
izontally/vertically would be an inaccurate sentence: although they are in their
finite components, this is no longer true if the infinitesimal parts are taken into
account as well. Even though it is impossible to represent both finite and in-
finitesimal numbers on the same scale, one can imagine to “infinitely zoom”
into one (finite) coordinate and visualize its infinitesimal neighborhood. Figure

2b does exactly this: it takes the previous figure and zooms into f
(1)
1 = 22 and

f
(1)
2 = 18, revealing the infinitesimals corresponding to secondary objectives,

thus disproving the apparent flaw in the model.
As an example, Table 2 contains the crowding distance computed for the

four points; if an algorithm, for instance, had to select two out of the three

18

non-dominated solutions, this distance would be the determinant factor.

x f
1

f
2

PC crowding distance

a 10011 22 + 11¬−1 11 + 10¬−1 ¬

b 01101 22 + 11¬−1 13 + 10¬−1 1− 0.286¬−1

c 11110 22 + 10¬−1 18 + 10¬−1 1.714 + 0.082¬−1

d 11001 20 + 9¬−1 18 + 12¬−1 ¬

Table 2: Crowding distance computed for the four solutions previously listed in Table 1.

(a) (b)

Figure 2: The four interesting solutions of MPL0. Pareto optimal ones are highlighted in red.
Fig. 2a shows the primary objectives only; Fig. 2b, instead, plots both primaries and secon-
daries in a fictitious way: the infinitesimal components are “expanded” in (22, 18), to better
show that some solutions (but not all) are only apparently aligned horizontally/vertically, i.e.
secondary objectives are to be considered in this case. All the points inside the yellow stripe

share f
(1)
1 = 22, similarly green ones have f

(1)
2 = 18. Note that the solution ‘a’, according to

Table 1, has the very same f
1

value of ‘b’, hence these two are truly aligned; ‘a’ is nevertheless
dominated by ‘b’, since it does better on f

2
.

7.2. Test Problem 1: MPL1

The second example of a PC-MPL-01-KP, named MPL1, is larger and less
obvious than the previous, but the structure remains fundamentally the same.
MPL1 features 6 objectives, aggregated in 2 chains of 3 objectives each:

19

max

[
f
1
(x)

f
2
(x)

]
s.t. Wx ≤ C

f
1
(x) = V 1x

f
2
(x) = V 2x

V 1 = V
(1)
1 + ¬−1V

(2)
1 + ¬−2V

(3)
1

V 2 = V
(1)
2 + ¬−1V

(2)
2 + ¬−2V

(3)
2

V
(1)
1 = [7, 1, 5, 2, 9, 4, 4, 2, 8, 2, 1, 6, 9, 5, 4, 4, 9, 5, 3, 3]T

V
(2)
1 = [3, 1, 6, 6, 7, 2, 5, 2, 1, 9, 1, 8, 9, 6, 7, 4, 4, 5, 9, 4]T (3)

V
(3)
1 = [2, 1, 3, 5, 8, 9, 5, 7, 1, 6, 4, 7, 9, 5, 1, 5, 5, 4, 4, 2]T

V
(1)
2 = [1, 7, 3, 6, 2, 3, 7, 7, 9, 9, 5, 3, 5, 3, 1, 8, 6, 1, 9, 3]T

V
(2)
2 = [2, 6, 4, 7, 7, 4, 2, 4, 9, 4, 3, 3, 6, 8, 2, 8, 1, 6, 8, 8]T

V
(3)
2 = [8, 9, 5, 9, 8, 9, 4, 9, 7, 5, 4, 5, 3, 4, 4, 7, 3, 8, 2, 4]T

W = [4, 8, 6, 5, 5, 5, 7, 4, 8, 4, 4, 1, 8, 7, 4, 3, 5, 1, 9, 5]T

C = 50

xi ∈ {0, 1} i = 1, . . . , 20

Let us make a few qualitative considerations on the results achieved before
moving to the statistical analysis of the outcomes. For the sake of simplicity,
the focus will be on PC-NSGA-II and its standard counterpart. Running PC-
NSGA-II, the experiment produces the result shown in Fig. 3a, which highlights
the 19 distinct solutions found. We compared this result with the true Pareto
front, computed by means of brute-force complete enumeration, which is made
of the 22 distinct solutions displayed in Fig. 4. The listings show that, with
respect to the 19 found solutions, 16 are true optima, 2 differ from their closest
true optimum for a secondary, 1 for a primary. Regarding the 6 out of 22 truly
optimal solutions that PC-NSGA-II did not manage to identify precisely, for 2
of them there exists at least one found solution with the same primary values;
for the other 4, the error on primary objectives is never greater than 3. To give
an idea of how important the secondaries are in the optimization process, con-
sider also the standard NSGA-II working only on the primary objectives. The
secondary objectives are computed only at the end of the optimization process,
and do not affect the evolution at all. Not only the solutions happen to be
fewer, but also of lower quality compared to PC-NSGA-II ones. Out of 11, 8
are real optima, 2 are sub-optimal with respect to primaries, 1 to secondaries.
This shortage of solutions from NSGA-II is also the consequence of its inability
to preserve those solutions that we previously denoted as “apparently horizon-
tal/vertical”, due to dominance reasons, as explained before. Such solutions,
marked with a cross in Fig. 3a, are indeed absent in Fig. 3b.

20

(a) PC-NSGA-II, considering all the ob-
jectives during the optimization.

(b) NSGA-II, considering only the two
primary objectives.

Figure 3: Primary objectives of MPL1 Pareto front, after 300 generations with 400 individuals.
The solutions found by PC-NSGA-II that would be instead discarded by NSGA-II (i.e. missing
on the right plot) are also marked with a cross.

Figure 4: MPL1 true Pareto front, by complete enumeration.

7.3. Performance evaluation on MPL1

In this section we evaluate and compare the results of the algorithms on
the MPL1 benchmark. The analysis follows three steps. Firstly, the algorithms
performances have been measured by means of the metric ∆(·) introduced in
Section 6. In Table 3 the performances are reported as mean value and standard
deviation of the measures collected over 50 runs. Then, the Friedman ranking

21

and the Iman-Davenport test have been applied to investigate the presence of a
statistical separation. Finally, the Holm procedure between the best performing
approach and all the others is computed, reporting the p-values in Table 5.

7.3.1. Mean and Standard deviation

Table 3 shows the mean and the standard deviation of the algorithms per-
formances over the MPL1 benchmark. From that Table, we evince that the
PC algorithms perform better than their standard counterparts and the other
priority-based approaches. Moreover, PC-MOEA/D turns out to be the best
performing algorithm, immediately followed by MOEA/D w/o the secondaries.
This fact confirms what we asserted in Section 5, that is the PC algorithms get
the same benefits and suffer the same limits of the underlying optimizer. Let
us spend a few more words to clarify this concept. Given the results we have
collected, it is reasonable to say that MOEA/D works consistently better than
NSGA-II on this specific benchmark (MPL1). Indeed, not only PC-MOEA/D
gets a lower score (i.e., mean) than PC-NSGA-II, but also MOEA/D w/o sec-
ondaries beats NSGA-II w/o secondaries, and the same holds even for the third
version of MOEA/D versus NSGA-II.
Of course, the property of MOEA/D being better than NSGA-II is not a general
one: as we will see, there exist other problems where the opposite is true, that
is NSGA-II beats MOEA/D. Moreover, the algorithms w/o secondaries usually
perform more or less like their PC counterpart, at least on the primary objec-
tives, since both try to optimize them in a Pareto fashion: the first one giving
them the highest priority and trying to optimize them before the others, the
second working only on them. All in all, these considerations justify why PC-
MOEA/D is at the top of the ranking (MOEA/D beats the others on MPL1,
and the PC versions by design are better suited for this class of problems), and
why MOEA/D w/o secondaries is second (the version w/o secondaries performs
closely to its PC extension on the primaries). The previous observations will
be valid also for the next two benchmarks, so we will avoid repeating them for
brevity.

Algorithm Mean Std
PC-MOEA/D 0.36 + 0.25¬−1 + 0.99¬−2 0.31− 0.07¬−1 + 1.11¬−2

MOEA/D pre 0.54 + 0.43¬−1 + 3.22¬−2 0.19− 0.22¬−1 + 1.37¬−2

MOEA/D post 1.44− 0.22¬−1 + 0.88¬−2 0.54 + 0.15¬−1 + 0.59¬−2

PC-NSGA-II 1.6 + 0.17¬−1 + 1.2¬−2 0.74 + 0.19¬−1 + 0.44¬−2

NSGA-II pre 1.95 + 0.57¬−1 + 2.37¬−2 0.91 + 0.21¬−1 + 0.53¬−2

NSGA-II post 1.79 + 0.08¬−1 − 0.77¬−2 0.33− 0.02¬−1 + 0.88¬−2

Tan et al. 12.83 + 2.71¬−1 + 4.03¬−2 0.73 + 0.04¬−1 + 1.2¬−2

Chang et al. 18.01 + 4.45¬−1 − 4.42¬−2 2.53 + 2.31¬−1 + 3.48¬−2

Table 3: Mean and standard deviation of metric ∆(·) on MPL1 after 50 repetitions.

7.3.2. Friedman and Iman-Davenport tests

In Table 4 the algorithms are ranked by means of the Friedman test, which
also output a statistic (distributed according to a chi-square with 7 degrees of

22

freedom) of 300.761667 and a P -value of 0. This implies the presence of a sta-
tistical separation among some algorithms in the pool. In order to confirm such
result, the Iman-Davenport test has been computed. Its statistic (distributed
according to a F-distribution with 7 and 343 degrees of freedom) is 299.305859,
while the P -value is again 0. Thus, the rejection of the null hypothesis is con-
firmed so we have to check how many algorithms are statistically separated from
the best one.

Algorithm Ranking
PCMOEA/D 1.28
MOEA/D pre 1.91
MOEA/D post 4.04
PC-NSGA-II 4.14
NSGA-II pre 4.73
NSGA-II post 4.9

Tan et al. 7.02
Chang et al. 7.98

Table 4: Algorithms ranked by the Friedman test (MPL1)

7.3.3. Post hoc comparison

By means of the Holm procedure we have investigated which performances
are statistically separated from that of best algorithm, i.e., PC-MOEA/D. The
test’s output is reported in Table 5, where i indicates the Friedman rank, z is
the normal distribution statistic for the p-value computation, p is precisely the
p-value. In the Holm’s procedure, the hypotheses with a p-value lesser or equal
to α = 0.05 are rejected, i.e., the corresponding algorithm can be considered
statistically different when compared against PC-MOEA/D. As expected, the
only non-separable algorithm is MOEA/D without secondaries. The reason is
that, at the moment, a statistical test for comparing infinitesimal separations
does not exist. Thus, since MOEA/D without secondaries has performance close
to PC-MOEA/D when we look only at the primaries (i.e., finite values), and
because the statistical test can work only on the finite components of the metrics,
then it turns out that the two approaches cannot be statistically separated.
However, another ingredient playing a role in the non-separability between PC-
MOEA/D and MOEA/D without secondaries is the problem simplicity. Indeed,
in MPL2 and MPL3, which are more complex, this fact does not happen.

7.4. Test Problem 2: MPL2

The previous examples shed some light on the properties of PC-MPL prob-
lems, showing how PC-NSGA-II and PC-MOEA/D are capable of exploiting
the priority information better than both their standard counterparts and other
priority-handling algorithms available in the literature. The following bench-
marks are meant to be more general than the previous two in terms of shape of
the objective functions.

23

i Algorithm z = (R0 −Ri)/SE p
7 Chang et al. 13.676318 0
6 Tan et al. 11.716726 0
5 NSGA-II post 7.389294 0
4 NSGA-II pre 7.042283 0
3 PC-NSGA-II 5.837951 0
2 MOEA/D post 5.633826 0
1 MOEA/D pre 1.285982 0.198449

Table 5: Post hoc comparison with α = 0.05 and SE = 0.489 (MPL1)

The next problem, MPL2, has two primary objectives and two secondaries:

min

[
f
(1)
1 (x) + ¬−1f

(2)
1 (x)

f
(1)
2 (x) + ¬−1f

(2)
2 (x)

]
f
(1)
1 (x) = b(x21 + x22 − 1)2c

f
(1)
2 (x) = b(x21 + x22 − 4)2c (4)

f
(2)
1 (x) = (x2 + 2)2

f
(2)
2 (x) = (x1 + 2)2

x1, x2 ∈ [−3, 3]

The first two objectives are kind of discrete distances between two circumfer-
ences, with radius 1 and 2 respectively. Without considering the floor function
and also ignoring the secondary objectives, the Pareto optimal solutions would
be formed by the annulus of all the points enclosed by these two circles. Adding
the floor function makes the problem discrete, with multiple neighboring solu-
tions “collapsing” into the same objective value: the result is a limited number
of Pareto optimal solutions in the objective space, each of which can be gener-
ated by any point within a specific annulus in the decision space. Now examine
the two secondary objectives: they are the euclidean distances from the lines
x2 = −2 and x1 = −2 respectively; a greater distance from one of these lines
results in a greater (i.e. worse) value of the corresponding objective for the
given solution. To understand their effect within the overall problem, consider

f
(2)
1 (x), which is the secondary of the first macro-objective. It plays a role only

when comparing two solutions that share the same value of f
(1)
1 (x): between

the two, the one with the lower value of f
(2)
1 (x) is then preferred. Practically, it

means that if two solutions are equidistant from the inner circumference, then
what matters to minimize the first macro-objective is the x2 coordinate (closer
to −2 is better). An analogous situation holds for the second macro-objective:

first the value of f
(1)
2 (x) is taken into consideration in the comparison of two

solutions and, if such values turn out to be equal (i.e. they are equidistant from

the outer circle), then f
(2)
2 (x) is used to discriminate between the two.

As before, let us give qualitative comments before moving to statistical anal-
yses. For the sake of continuity, the focus is again on PC-NSGA-II and its
standard counterpart NSGA-II. The results we obtained for the former are de-

24

(a) Pareto front, primaries. (b) Pareto set.

(c) Zoom of the “top” area of
Figure 5b

(d) Pareto set after swapping
the position of secondaries.

(e) Subset of the Pareto
front made by solutions
with f

(1)
2 = 0. f

(1)
1 f

(2)
2

are plotted here.

(f) Zooming the “bot-
tom” area of Fig. 5e that
one appearing as a series
of horizontal points.

(g) Secondaries of the so-

lutions having f
(1)
1 = 4

and f
(1)
2 = 0.

Figure 5: Obtained solutions by PC-NSGA-II for MPL2.

picted in Figure 5, with Fig. 5a showing explicitly the values of the primary
objectives. Here, the Pareto front is made up of discrete points rather than

25

(a) Pareto front, first two objectives. (b) Secondary objectives of the points

with f
(1)
1 = 4, f

(1)
2 = 0.

Figure 6: Obtained solutions by NSGA-II for MPL2. Please notice that in Fig. 6a some
solutions appear to be dominated, but they are not when considering all the four objective
functions (only two objectives are shown here)

being a continuous curve. Actually, if we could zoom-in on any of these point,
we would see not a single solution, but a cluster of infinitesimally close ones,
whose distances are proportional to the values of the secondary objectives. Ob-
serve how a bunch of the solutions seem to be arranged horizontally, especially

those having f
(1)
1 = 0: it is the very same effect we have seen in the previous

example, and can be examined in detail in Fig. 5e, that is an infinitesimal

zoom on those solutions having f
(1)
2 = 0, i.e. the “horizontal” ones: the x-axis

represents f
(1)
1 as before, the y-axis instead shows the infinitesimal part of the

second macro-objective, namely the second secondary objective f
(2)
2 . Although

some points still seem to be horizontal, now it is just a matter of scale and
small numerical values; re-scaling the figure vertically is enough to prove that
they are not (Figure 5f). Now that the horizontal “collapse” has been finally
unraveled, we can observe it reappearing vertically; repeating the same proce-
dure on the vertical axis, that is zooming the second macro-objective to expose
its infinitesimal part, ends up in Figure 5g, which is indeed a zoom on those

solutions with f
(1)
1 = 4 and f

(1)
2 = 0. Note the peculiarity of this: what at finite

scale appears merely as a single solution, actually is an entire Pareto subfront
at infinitesimal scale; in other words, we are observing a front inside a solution
of a “parent” front. If the previous benchmark MPL1 proved that secondary
objectives cannot be ignored without repercussions on the quality of solutions,
MPL2 aims to show that bad consequences occur as well when the priorities are
not taken into account. Here follows a concise analysis of the results achieved
by NSGA-II running on the equivalent four-objective priority-less problem. The
experiment result is shown in Fig. 6a, which displays the first two objectives

26

(primaries of the original problem, although priority is ignored here). One may
argue that it does not look like a Pareto front, being a non-monotonic pseudo-
curve: the reason is that only 2 out of the 4 objectives are plotted there; the
Pareto jfront is actually in a 4-dimensional space, visualizing it is rather hard
and not even relevant for the following considerations. What is evident, on the
other hand, is that a large number of solutions are spurious and sub-optimal for
the actual MPL2 problem (the one with priority, to be clear): the cause is the
interference of low-priority obectives, which behave here as if they had the same
importance of primaries; this effect was already mentioned in section 3. Further-
more, NSGA-II struggles not only with regard to quality, but also quantity of
solutions: this can be observed comparing Figures 5g and 6b, both representing
the third and fourth objectives for a certain subset of primary-optimal solu-
tions; the latter clearly shows a minor density of points. An important thing to
remark is that any traditional preemptive lexicographic approach would never
preserve those solutions (potentially Pareto-optimal for PC-MPL-MOPs), that
we grossly called “apparently horizontal/vertical”, as they would be marked as
dominated and discarded, fundamentally due to the inability of the algorithm to
examine secondary functions. Finally, MPL2 makes it possible to verify an ad-
ditional interesting property of PC-MPL-MOPs, that is the non-permutability
of the secondary objectives within the problem formulation. In simple terms,
exchanging the positions of any two objectives in the mathematical model may
result in a radical alteration of the problem and its optima. With reference

to MPL2, swapping the secondaries so that f
(2)
1 becomes the secondary of f

(1)
2

and f
(2)
2 the secondary of f

(1)
1 = 0, causes the Pareto front to remain unchanged

(coincidentally), however the Pareto set turns into Fig. 5d.
It should be noted that, in this example and the others, increasing the popu-

lation size or the number of iterations would not result in a significant mitigation
of the discussed problems, which is reasonable considering the intrinsic nature
of such issues. We had confirmation of this by running the experiments several
times with different parameters, which we do not report here merely due to
space reasons.

7.5. Performance calculation on MPL2

In the following three subsections the results evaluation and comparison are
illustrated. Maintaining the same order as before, firstly the means and the
standard deviations of the metric ∆(·) are discussed, then the investigation of
the statistical separation is presented, finally the Holm test output is shown.

7.5.1. Mean and Standard deviation

In the next two tables, the mean and the standard deviation of the algo-
rithms over the MPL2 benchmark are reported. From Table 6 we see that the
PC algorithms perform better than their standard counterparts and than the
priority-based approaches. Even if PC-NSGA-II turns out to be the best per-
forming algorithm, PC-MOEA/D is the second one. This fact suggests that

27

NSGA-II and MOEA/D works more or less equivalently on the MPL2 bench-
mark. Such speculation is corroborated by the values of means of the standard
versions of MOEA/D and NSGA-II, which are very close from each other (see
Table 6).

Algorithm Mean Std
PC-NSGA-II 0.07¬−1 0.01

PC-MOEA/D 0.12 + 0.74¬−1 0.06− 0.06¬−1

NSGA-II post 0.26 + 0.85¬−1 0.05 + 0.02¬−1

MOEA/D post 0.26 + 0.92¬−1 0.05 + 0.08¬−1

NSGA-II pre 0.26 + 5.69¬−1 0.05− 0.03¬−1

MOEA/D pre 0.26 + 6.35¬−1 0.05− 0.41¬−1

Tan et al. 0.29 + 0.69¬−1 0.24− 0.34¬−1

Chang et al. 2.14− 0.12¬−1 1.18 + 0.68¬−1

Table 6: Mean and standard deviation of metric ∆(·) on MPL2 after 50 repetitions.

7.5.2. Friedman and Iman-Davenport tests

The Friedman ranking of the algorithms is shown in Table 7. The test also
outputs a statistic (distributed according to a chi-square with 7 degrees of free-
dom) of 253.073333 and a p-value of 0. This implies the presence of a statistical
separation among some algorithms in the pool. In order to confirm such result,
the Iman-Davenport test has been computed. Its statistic (distributed accord-
ing to a F-distribution with 7 and 343 degrees of freedom) is 127.937891 and the
p-value again 0. The rejection of the null hypothesis is confirmed, so we have
to check how many algorithms are statistically separated from the best one.

Algorithm Ranking
PC-NSGA-II 1
PC-MOEA/D 2.42
NSGA-II post 5.1
MOEA/D post 5.1
NSGA-II pre 5.1
MOEA/D pre 5.1

Tan et al. 5.18
Chang et al. 8

Table 7: Algorithms ranked by the Friedman test (MPL2)

7.5.3. Post hoc comparison

Table 8 reports the p-values obtained by applying the post hoc method,
namely the Holm test. Analyzing them, we deduce that PC-NSGA-II is not only
the best algorithm, but also statistically separable from all the other approaches.
Indeed, all the p-values are smaller than the critical threshold α = 0.05.

28

i algorithm z = (R0 −Ri)/SE p
7 Chang et al. 14.28869 0
6 Tan et al. 8.491148 0
5 MOEA/D post 8.36909 0
4 MOEA/D pre 8.36909 0
3 NSGA-II post 8.36909 0
2 NSGA-II pre 8.36909 0
1 PC-MOEA/D 2.898563 0.003749

Table 8: Post hoc comparison with α = 0.05 and SE = 0.489 (MPL2)

7.6. Test Problem 3: MPL3

The test case we are about to describe is a modified version of POL, a well-
known benchmark based on the Poloni’s study [41] which is also included in
Van Veldhuizen’s suite [36]. The problem, labeled MPL3, is defined as:

min

[
f
(1)
1 (x) + ¬−1f

(2)
1 (x)

f
(1)
2 (x)

]
f
(1)
1 (x) = bα

(
1 + (A1 −B1)2 + (A2 −B2)2

)
c/α

f
(1)
2 (x) = bα((x1 + 3)2 + (x2 + 1)2)c/α

f
(2)
1 (x) = x21 (5)

A1 = 0.5 sin(1)− 2 cos(1) + sin(2)− 1.5 cos(2)

A2 = 1.5 sin(1)− cos(1) + 2 sin(2)− 0.5 cos(2)

B1 = 0.5 sin(x1)− 2 cos(x1) + sin(x2)− 1.5 cos(x2)

B2 = 1.5 sin(x1)− cos(x1) + 2 sin(x2)− 0.5 cos(x2)

x1, x2 ∈ [−π, π] α = 3

The original structure of POL remains unchanged, except for the insertion of the
floor function (to discretize the problem) and the addition of a third objective,

f
(2)
1 , which is to be considered less important than f

(1)
1 .

The parameter α can be tuned to adjust the granularity of the discretization.

In the nondominance ranking procedure, the secondary objective f
(2)
1 intervenes

only when two solutions have the same value of f
(1)
1 , favoring the one whose

coordinate x1 is closer to 0. Therefore, it is reasonable to expect the new optimal
solutions to be very similar to those of original POL, at most a little shifted
towards the line x1 = 0; of course, the magnitude of this effect depends on α.
Once again, it may happen to find, in the Pareto frontier of primary objectives,

multiple solutions with equal values of f
(1)
1 but different values of f

(1)
2 , which

graphically seem vertically-aligned points: this is no different from what we
observed in MPL1 and MPL2.

Figure 7 shows the results of PC-NSGA-II for MPL3. As expected, the shape
of the Pareto front looks very similar to that of POL: the biggest difference is
that it appears as a set of disconnected points, due to the discretization (floor
function). A certain number of solutions seem “vertical”: although they share

29

the same value of f
(1)
1 , they stand nondominated when compared using f

(2)
1 and

f
(1)
2 . As in MPL2, such points are vertical in their finite part, but not in their

infinitesimal one.
The fact that the picture apparently shows only a few dozens of solutions

may be misleading: actually there are 700 fighting for optimality, but many
of them happen to be very close to each other and therefore overlap in the
figure. Using the standard approach to this problem, that is removing priorities,
running NSGA-II on three objectives (with the same parameters as above) and
eventually filtering by nondominance for the two primary objectives, leads to the
result shown in Figure 8. What at first glance seems a richer front is actually
noise. Treating the third objective as important as the other two causes a
dramatic loss of accuracy in the search for optimal solutions, because part of
the optimization focus is shifted towards the minimization of this objective
and dragged away from the minimization of the other (most important) two.
Indeed, after filtering the result set obtained by NSGA-II (Figure 8), only 7 out
of 700 solutions are left, a very small fraction of the total population. Also, the
solutions found by NSGA-II turn out to be further away from the real Pareto
frontier (thus worse) than those found by PC-NSGA-II. Basically, this happens
because NSGA-II completely ignores the priorities of the objectives, not taking
advantage of that precious information. On the other hand, PC-NSGA-II is
able to exploit this information, succeeding in finding more accurate solutions.

In conclusion, this and the other benchmarks show that NSGA-II, and in
general any non-priority-based optimization algorithm, may not be the best
available tool to address problems where priorities matter.

(a) Pareto front (b) Pareto set

Figure 7: Solutions obtained by PC-NSGA-II for MPL3

30

(a) Pareto front before filtering (b) Pareto set before filtering

(c) Pareto front after filtering (d) Pareto set after filtering

Figure 8: Obtained solutions by NSGA-II for MPL3

7.7. Performance evaluation on MPL3

In this section we focus on the performance evaluation inherently to the
MPL3 benchmark. Results and considerations are presented following the very
same guidelines adopted in the previous two sections.

7.7.1. Mean and Standard deviation

Table 9 reports the mean and the standard deviation of the algorithms per-
formances on the MPL3 benchmark. We observe once again that the PC algo-
rithms perform better than their standard counterparts and the other priority-
based approaches. Moreover, PC-NSGA-II turns out to be the overall best per-
forming algorithm this time; NSGA-II appears to work better than MOEA/D
on the current benchmark. Indeed, the second best performing algorithm is

31

NSGA-II without secondaries. However, PC-MOEA/D still gets a good score,
being in third position and very close to the second.

Algorithm Mean Std
PC-NSGA-II 0.01 0.02 + 0.01¬−1

NSGA-II pre 0.34 + 0.09¬−1 0.09 + 0.02¬−1

PC-MOEA/D 0.59− 0.02¬−1 0.58− 0.02¬−1

NSGA-II post 0.65− 0.08¬−1 0.16− 0.07¬−1

MOEA/D pre 0.89 + 0.05¬−1 1.4− 0.01¬−1

MOEA/D post 1.23− 0.03¬−1 1.48

Tan et al. 1.34− 0.82¬−1 0.28− 0.16¬−1

Chang et al. 38.06− 7.83¬−1 3.0− 0.09¬−1

Table 9: Mean and standard deviation of metric ∆(·) on MPL3 after 50 repetitions.

7.7.2. Friedman and Iman-Davenport tests

Table 10 reports the algorithms ranks obtained by the Friedman test on
MPL3. Moreover, the Friedman test gives a statistic (distributed according
to a chi-square with 7 degrees of freedom) of 277.493333 and a P -value of 0.
This implies the presence of a statistical separation among some algorithms in
the pool. In order to confirm such result, the Iman-Davenport test has been
computed. Its statistic (distributed according to a F-distribution with 7 and
343 degrees of freedom) is 187.529974 and the P -value again 0. The rejection
of the null hypothesis is confirmed, so we have to determine which algorithms
are statistically separated from the best one.

Algorithm Ranking
PC-NSGA-II 1
NSGA-II pre 2.7
PC-MOEA/D 3.62
MOEA/D pre 4.26
NSGA-II post 4.48
MOEA/D post 5.52

Tan et al. 6.42
Chang et al. 8

Table 10: Algorithms ranked by the Friedman test (MPL3)

7.7.3. Post hoc comparison

The p-values obtained by applying the Holm test are reported in Table 11.
Again, it turns out that PC-NSGA-II is statistically separable from all the other
approaches.

8. Related Works

In the scientific literature, optimization based on priorities is not a new con-
cept. For example, the work of Fonseca and Fleming is one of the first to raise

32

i algorithm z = (R0 −Ri)/SE p
7 Chang et al. 14.28869 0
6 Tan et al. 11.063529 0
5 MOEA/D post 9.226411 0
4 NSGA-II post 7.10352 0
3 MOEA/D pre 6.654447 0
2 PC-MOEA/D 5.348053 0
1 NSGA-II pre 3.47011 0.00052

Table 11: Post hoc comparison with α = 0.05 and SE = 0.489 (MPL3)

awareness about the importance of priority [42] in multiobjective optimization
problems. In that paper, they outline different kinds of preference articula-
tion, and even suggest a special comparison operator which takes into account
the priority information. Although the given formulation is a very important
theoretical result, the article does not describe a full-fledged algorithm tailored
for this particular class of problems nor provides any test problem. On the
wake of this work, other authors developed priority-based algorithms suitable
for different contexts. For instance, Basgalupp et al. [43] tackled the priority
problem by means of a preemptive approach, i.e., representing each priority
chain as a vector where each entry is associated to a specific objective function.
In such work only one single priority chain is taken into account, and differ-
ent individuals are compared considering, in principle, only the highest priority
function. In case of a tie, the evaluation moves to the second most important
function, and so on. Tan et al. proposed a new goal programming algorithm,
featuring a two-stage domination scheme which ranks individuals on the basis
of soft/hard goal and priority specifications [39]. Schmiedle et al. proposed a
heuristic which builds a graph out of the found solutions on the basis of priority
relations, then assigns fitness values accordingly [44]. Not always the priority is
clearly specified by the decision maker: in the case examined by Allmendinger
et al., for instance, precedences are due to the objectives having different laten-
cies; decisions on which objective to optimize first depend on their evaluation
time, making it similar to a scheduling problem [45]. Other authors, like Chen
et al., studied problems where the number of objectives dynamically changes
over time [46], but did not specifically deal with precedence relations. A soft
prioritization is realized by Chang et al. [40] by means of an objectives dynamic
weighting. Here the priority chains are represented by a weighted average of the
involved objective functions. In particular, the weights change their values in
time, initially favoring the most important objective and gradually shifting the
relevance to the lesser ones. Dynamism is also present in [47], where the priority
relations change among the objectives, that is the arrows directions within the
same priority chain. Such changes are random, even if biased by the true pri-
ority relation existing among the objective functions. Another multi-objective
problem which seems at first glance similar to the one presented here is bilevel-
optimization [48]. In bilevel-optimization, the outer level approximated solution
found so far is considered as a fixed parameter for the inner optimization prob-
lem. Once the latter is solved, another iteration of the outer level is performed.

33

Outer and inner problems have their own decision spaces, objective functions,
and constraints. For such reasons, bilevel optimization is quite different from
PL-MPL-MOP problems in terms of formulation and purpose.

A few more comments on the applicability of some of the previous approaches
to our case of study, namely PC-MPL-MOPs. Despite the interesting novelties
of Schmiedle et al., this method cannot be used as a yardstick in the current
work because it is suited for a class of problems closer to a PL-MPL-MOP
rather than a PC-MPL-MOP. A comparison with such priority-handling method
is postponed to a future work about PL-MPL-MOPs. The Castro-Gutierrez
proposal [47] has not been tested here, even if it is a feasible approach, for three
main reasons: i) the core idea is very reminiscent of Chang et al., which is
tested instead; ii) the lack of a true and deterministic respect of the objectives
priorities; iii) it has been proposed just for one priority chain.

As a general consideration, please observe how the definition of a set of test
problems to assess the effectiveness of algorithms on these problems, notably,
was not addressed in any of the previous articles. Also, unlike some of those
works, here we do not explicitly focus on goal programming. Furthermore, our
approach enables handling precedence relations which exist between specific
objectives only, and can not be expressed by just assigning them a generic
priority value. Finally, in our proposed algorithms, all the objectives are always
active and operate simultaneously during the optimization, just with a different
impact in the overall process.

9. Discussions

In this work we were able to transform lexicographic sub-problems into scalar
ones by using the Grossone Methodology. The powerfulness of this scalarization
technique is that it does not require any big M constant, to weigh less and
less the lower priority objectives, thus we do not need to choose such a critical
parameter (an excessively low value could not be sufficient to model the priorities
between objectives, while a too high one might lead to numerical instabilities).
In addition, we want to clarify once again that our Grossone-based approach
can work with other evolutionary optimizers too, like SPEA2, AMGA2, etc.
Specifically, we have decided to build upon NSGA-II and MOEA/D because they
have no additional parameters other than those of a standard genetic algorithm.

In order to assess the quality of the proposed approach, we compared their
performances numerically, evaluating them by means of the indicator ∆(·) =
max{GD(·), IGD(·)}; the comparison has been performed by non-parametric
statistical analysis.

Finally, note how the proposed approach can be easily parallelized on modern
many-cores processors, following the same approach provided in [49], or can be
tailored to deal with problems with non-convex Pareto fronts, as done in [50].

34

10. Conclusions and future works

We have shown in this article how, thanks to the Grossone Methodology, it
is possible to solve a class optimization problems where some objectives have
priority over some others, specifically PC-MPL-MOPs. In particular, we have
seen how the additional information about priority relations among objectives
can be exploited to significantly improve the search, guiding it towards higher
quality solutions than those provided by conventional non-priority-based multi-
objective algorithms. Such algorithms can be used to solve many-objective
problems as well, provided that some of the objectives have priority over others
and the number of macro-objectives (i.e., the number of chains) is relatively low.
In a future work, we will combine NSGA-III and Grossone Methodology to solve
massive-objective MPL problems using a many-objective algorithm, similarly to
what has been done in this paper, where we have solved a many-objective MPL
problem leveraging a multi-objective optimizer.

Acknowledgements

This work has been partially supported by the University of Pisa funded
project PRA 2018 81 “Wearable sensor systems: personalized analysis and data
security in healthcare”. We also want to thank the three anonymous review-
ers for their valuable feedbacks, and professor Pietro Ducange for his help in
performing the statistical tests.

References

[1] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic
algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2) (2002) 182–
197.

[2] E. Zitzler, M. Laumanns, L. Thiele, SPEA2: Improving the strength pareto evolutionary
algorithm, TIK-report 103, (2001),doi:10.3929/ethz-a-004284029.

[3] Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decom-
position, IEEE Transactions on Evolutionary Computation 11 (6) (2007) 712–731.

[4] H. Li, K. Deb, Q. Zhang, P. Suganthan, L. Chen, Comparison between MOEA/D
and NSGA-III on a set of novel many and multi-objective benchmark problems with
challenging difficulties, Swarm and Evolutionary Computation 46 (2019) 104 – 117.
doi:https://doi.org/10.1016/j.swevo.2019.02.003.

[5] M. Garza-Fabre, G. T. Pulido, C. A. C. Coello, Ranking methods for many-objective
optimization, in: Mexican International Conference on Artificial Intelligence, Springer,
2009, pp. 633–645.

[6] K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-
point-based nondominated sorting approach - Part I: Solving problems with box con-
straints, IEEE Transactions on Evolutionary Computation 18 (4) (2014) 577–601.

[7] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, 2nd Edition, John
Wiley & Sons Inc, 2001.

35

https://doi.org/10.3929/ethz-a-004284029
https://doi.org/https://doi.org/10.1016/j.swevo.2019.02.003

[8] J. Marques-Silva, J. Argelich, A. Graça, I. Lynce, Boolean lexicographic optimization:
algorithms & applications, Annals of Mathematics and Artificial Intelligence 62 (3) (2011)
317–343.

[9] S. Khosravani, M. Jalali, A. Khajepour, A. Kasaiezadeh, S. K. Chen, B. Litkouhi, Appli-
cation of lexicographic optimization method to integrated vehicle control systems, IEEE
Transactions on Industrial Electronics 65 (12) (2018) 9677–9686.

[10] Y. D. Sergeyev, Arithmetic of Infinity, Edizioni Orizzonti Meridionali (2nd ed. 2013),
Cosenza (Italy), 2003.

[11] M. Cococcioni, M. Pappalardo, Y. D. Sergeyev, Towards Lexicographic Multi-Objective
Linear Programming using Grossone Methodology, in: Y. D. Sergeyev, D. Kvasov,
F. Dell’Accio, M. Mukhametzhanov (Eds.), Proc. of the 2nd Intern. Conf. “Numerical
Computations: Theory and Algorithms”, Vol. 1776, AIP Publishing, New York, 2016, p.
090040.

[12] M. Cococcioni, M. Pappalardo, Y. D. Sergeyev, Lexicographic Multi-Objective Linear
Programming using Grossone Methodology: Theory and algorithm, Applied Mathemat-
ics and Computation 318 (2018) 298–311.

[13] Y. D. Sergeyev, A new applied approach for executing computations with infinite and
infinitesimal quantities, Informatica 19(4) (2008) 567–596.

[14] Y. D. Sergeyev, Computations with grossone-based infinities, in: C. Calude, M. Din-
neen (Eds.), Unconventional Computation and Natural Computation: Proc. of the 14th
International Conference UCNC 2015, Vol. LNCS 9252, Springer, New York, 2015, pp.
89–106.

[15] Y. D. Sergeyev, Numerical infinities and infinitesimals: Methodology, applications, and
repercussions on two Hilbert problems, EMS Surveys Math. Sci 4 (2) (2017) 219–320.

[16] Y. D. Sergeyev, Counting systems and the First Hilbert problem, Nonlinear Analysis
Series A: Theory, Methods & Applications 72(3-4) (2010) 1701–1708.

[17] Y. D. Sergeyev, D. E. Kvasov, M. S. Mukhametzhanov, On strong homogeneity of a
class of global optimization algorithms working with infinite and infinitesimal scales,
Communications in Nonlinear Science and Numerical Simulation 59 (2018) 319 – 330.
doi:https://doi.org/10.1016/j.cnsns.2017.11.013.

[18] M. Cococcioni, A. Cudazzo, M. Pappalardo, Y. D. Sergeyev, Solving the Lexicographic
Multi-Objective Mixed-Integer Linear Programming Problem using Branch-and-Bound
and Grossone Methodology, Communications in Nonlinear Science and Numerical Simu-
lation 84 (2020) 105177. doi:https://doi.org/10.1016/j.cnsns.2020.105177.

[19] Y. D. Sergeyev, Solving ordinary differential equations by working with infinitesimals
numerically on the Infinity Computer, Applied Mathematics and Computation 219(22)
(2013) 10668–10681.

[20] Y. D. Sergeyev, M. Mukhametzhanov, F. Mazzia, F. Iavernaro, P. Amodio, Numerical
methods for solving initial value problems on the Infinity Computer, International Journal
of Unconventional Computing 12(1) (2016) 3–23.

[21] P. Amodio, F. Iavernaro, F. Mazzia, M. Mukhametzhanov, Y. D. Sergeyev, A generalized
Taylor method of order three for the solution of initial value problems in standard and
infinity floating-point arithmetic, Mathematics and Computers in Simulation 141 (2017)
24–39.

[22] L. Fiaschi, M. Cococcioni, Numerical Asymptotic Results in Game Theory using
Sergeyev’s Arithmetic of Infinity, International Journal on Unconventional Computing
14 (2018) 1–25.

36

https://doi.org/https://doi.org/10.1016/j.cnsns.2017.11.013
https://doi.org/https://doi.org/10.1016/j.cnsns.2020.105177

[23] L. Fiaschi, M. Cococcioni, Generalizing Pure and Impure Iterated Prisoner’s Dilemmas to
the Case of Infinite and Infinitesimal quantities, in: Y. D. Sergeyev, D. E. Kvasov (Eds.),
Numerical Computations: Theory and Algorithms, Springer International Publishing,
Cham, 2020, pp. 370–377.

[24] L. Fiaschi, M. Cococcioni, Non-Archimedean Game Theory: A Numerical Approach,
Applied Mathematics and Computation, (2020), to appear.

[25] M. P. Hansen, A. Jaszkiewicz, Evaluating the quality of approximations to the non-
dominated set, IMM, Department of Mathematical Modelling, Technical Universityof
Denmark, 1994.

[26] J. Knowles, D. Corne, On metrics for comparing nondominated sets, in: Proceedings of
the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), Vol. 1,
IEEE, 2002, pp. 711–716.

[27] E. Zitzler, L. Thiele, M. Laumanns, C. M. Fonseca, V. G. Da Fonseca, Performance
assessment of multiobjective optimizers: An analysis and review, IEEE Transactions on
evolutionary computation 7 (2) (2003) 117–132.

[28] E. Zitzler, L. Thiele, Multiobjective optimization using evolutionary algorithmsa com-
parative case study, in: International conference on parallel problem solving from nature,
Springer, 1998, pp. 292–301.

[29] O. Schutze, X. Esquivel, A. Lara, C. A. C. Coello, Using the averaged hausdorff distance
as a performance measure in evolutionary multiobjective optimization, IEEE Transac-
tions on Evolutionary Computation 16 (4) (2012) 504–522.

[30] D. A. Van Veldhuizen, Multiobjective evolutionary algorithms: classifications, analyses,
and new innovations, Tech. rep., Air Force Institute of Technology Wright Patterson
AFB, OH, USA (1999).

[31] C. A. C. Coello, M. R. Sierra, A study of the parallelization of a coevolutionary multi-
objective evolutionary algorithm, in: Mexican International Conference on Artificial In-
telligence, Springer, 2004, pp. 688–697.

[32] M. R. Sierra, C. A. C. Coello, A new multi-objective particle swarm optimizer with
improved selection and diversity mechanisms, Technical Report of CINVESTAV-IPN.

[33] H. Ishibuchi, H. Masuda, Y. Tanigaki, Y. Nojima, Modified distance calculation in gen-
erational distance and inverted generational distance, in: International Conference on
Evolutionary Multi-Criterion Optimization, Springer, 2015, pp. 110–125.

[34] S. Garćıa, D. Molina, M. Lozano, F. Herrera, A study on the use of non-parametric tests
for analyzing the evolutionary algorithms behaviour: a case study on the cec2005 special
session on real parameter optimization, Journal of Heuristics 15 (6) (2009) 617.

[35] I. Triguero, S. González, J. M. Moyano, S. Garćıa López, J. Alcalá Fernández, J. Lu-
engo Mart́ın, A. Fernández Hilario, J. Dı́az, L. Sánchez, F. Herrera, et al., Keel 3.0: an
open source software for multi-stage analysis in data mining.

[36] D. A. Van Veldhuizen, Multiobjective evolutionary algorithms: Classifications, an-
alyzes, and new innovations, Air Force Inst. Technol., Dayton, OH, Tech. Rep.
AFIT/DS/ENG/99-01.

[37] K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary
multiobjective optimization, in: Evolutionary Multiobjective Optimization, Springer,
2005, pp. 105–145.

37

[38] Q. Zhang, A. Zhou, S. Zhao, P. N. Suganthan, W. Liu, S. Tiwari, Multiobjective opti-
mization test instances for the cec 2009 special session and competition, University of
Essex, Colchester, UK and Nanyang technological University, Singapore, special session
on performance assessment of multi-objective optimization algorithms, technical report
264.

[39] K. C. Tan, E. F. Khor, T. H. Lee, R. Sathikannan, An evolutionary algorithm with
advanced goal and priority specification for multi-objective optimization, Journal of Ar-
tificial Intelligence Research 18 (2003) 183–215.

[40] P.-C. Chang, J.-C. Hsieh, S.-G. Lin, The development of gradual-priority weighting ap-
proach for the multi-objective flowshop scheduling problem, International Journal of
Production Economics 79 (3) (2002) 171–183.

[41] C. Poloni, Hybrid GA for multi objective aerodynamic shape optimisation, in: G. Winter,
J. Periaux, M. Galan, P. Cuesta (Eds.), Genetic Algorithms in Engineering and Computer
Science, John Wiley & Sons Ltd, 1995, pp. 397–415.

[42] C. M. Fonseca, P. J. Fleming, Multiobjective optimization and multiple constraint han-
dling with evolutionary algorithms Part I: A unified formulation, IEEE Transactions on
Systems, Man, and Cybernetics 28 (1) (1998) 26–37.

[43] M. Basgalupp, A. de Carvalho, R. Barros, D. Ruiz, A. Freitas, Lexicographic Multi-
Objective Evolutionary Induction of DecisionTrees, International Journal of Bio-Inspired
Computation 1 (1-2) (2009) 105–117.

[44] F. Schmiedle, N. Drechsler, D. Große, R. Drechsler, Priorities in multi-objective opti-
mization for genetic programming, in: Proceedings of the 3rd Annual Conference on
Genetic and Evolutionary Computation, Morgan Kaufmann Publishers Inc., 2001, pp.
129–136.

[45] R. Allmendinger, J. Handl, J. Knowles, Multiobjective optimization: When objectives
exhibit non-uniform latencies, European Journal of Operational Research 243 (2) (2015)
497–513.

[46] R. Chen, K. Li, X. Yao, Dynamic multiobjectives optimization with a changing number
of objectives, IEEE Transactions on Evolutionary Computation 22 (1) (2018) 157–171.

[47] J. Castro-Gutiérrez, D. Landa-Silva, J. Moreno-Pérez, Dynamic lexicographic approach
for heuristic multi-objective optimization, in: Proceedings of the Workshop on Intelligent
Metaheuristics for Logistic Planning (CAEPIA-TTIA 2009)(Seville (Spain)), 2009, pp.
153–163.

[48] X. He, Y. Zhou, Z. Chen, Evolutionary bilevel optimization based on covariance matrix
adaptation, IEEE Transactions on Evolutionary Computation 23 (2) (2019) 258–272.

[49] M. Cococcioni, mspMEA: the microcones separation parallel multiobjective evolutionary
algorithm and its application to fuzzy rule-based ship classification, in: R. Abielmona,
R. Falcon, N. Zincir-Heywood, H. Abbass (Eds.), Recent Advances in Computational In-
telligence in Defense and Security, Vol. 621, Springer Series on Studies in Computational
Intelligence, 2015, pp. 445–465.

[50] M. Cococcioni, P. Ducange, B. Lazzerini, F. Marcelloni, A new multi-objective evolution-
ary algorithm based on convex hull for binary classifier optimization, in: in Proc. 2007
IEEE Congress on Evolutionary Computation (IEEE-CEC’07), 2007, pp. 3150–3156.

38

	Introduction
	Mixed Pareto Lexicographic Problems
	MPL problems containing Priority Chains: PC-MPL
	MPL problems partitioned by Priority Levels: PL-MPL

	Need of a new approach for PC-MPL-MOPs
	Ignoring secondary objectives
	Ignoring the priorities, possibly filtering a posteriori

	The Grossone Methodology
	Applications of Grossone for lexicographic problems

	PC-NSGA-II and PC-MOEA/D
	Metrics
	Test cases for PC-MPL MOPs
	Preliminary example (MPL0)
	Test Problem 1: MPL1
	Performance evaluation on MPL1
	Mean and Standard deviation
	Friedman and Iman-Davenport tests
	Post hoc comparison

	Test Problem 2: MPL2
	Performance calculation on MPL2
	Mean and Standard deviation
	Friedman and Iman-Davenport tests
	Post hoc comparison

	Test Problem 3: MPL3
	Performance evaluation on MPL3
	Mean and Standard deviation
	Friedman and Iman-Davenport tests
	Post hoc comparison

	Related Works
	Discussions
	Conclusions and future works

