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Abstract: In this paper we propose some new non-uniformly-elliptic/damping regularizations of the Navier-
Stokes equations, with particular emphasis on the behavior of the vorticity. We consider regularized systems
which are inspired by the Baldwin-Lomax and by the selective Smagorinskymodel based on vorticity angles,
and which can be interpreted as Large Scale methods for turbulent �ows. We consider damping terms which
are active at the level of the vorticity. We prove themain a priori estimates and compactness results which are
needed to show existence of weak and/or strong solutions, both in velocity/pressure and velocity/vorticity
formulation for various systems. We start with variants of the known ones, going later on to analyze the new
proposed models.
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1 Introduction
In this paper we consider families of Large Eddy Simulation models which are variants of the classical
Smagorinsky model [1]. We follow an approach similar to the modeling done by Cottet, Jiroveanu, and
Michaux [2], proposing a selective model based on the local behavior of the angle of the vorticity direction,
at neighbouring points. We recall that “regularizations” of the Navier-Stokes equations

∂
t
v + (v ·∇) v − ν∆v +∇q = f ,

div v = 0,
(1.1)

with perturbation obtained by a monotone nonlinear operator A, produce widely studied models as the one
below

∂
t
u + (u ·∇) u − ν∆u +∇π + A(u) = f ,

div u = 0.
(1.2)

We observe that we denoted by v the unknown velocity �eld for a Newtonian �uid described by the Navier-
Stokes equations (1.1), while by uwedenote the �eldwhich is solution of (1.2).We recall that in the turbulence
modeling the latter system is generally associatedwith themodeling or description of the large scales (eddies)
of the solution. With the usual terminology if v is split into the mean �ow v and the (turbulent) �uctuations
v

′ = v − v, then u is an computable approximation/model for v.
From the point of view of the mathematical theory, early studies of (1.2) date back to O.A. Ladyzhen-

skaya [3] and J.L. Lions [4] in the spirit of looking for modi�cations of the Navier-Stokes equations which
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allow to prove theorems of global existence and uniqueness for regular enough distributional solutions. In
particular, a wide class of models is associated with the following nonlinear monotone operator

A(u) = − div(ν0 + ν1|Du|)p−2Du p > 2, ν0 = 0, and ν1 > 0,

where Du = 2−1(∇u +∇uT) is the deformation tensor, that is the symmetric part of the gradient matrix. (In
fact J.-L. Lions considered a model involving the full gradient instead of Du, and this turns out to have better
mathematical properties, but produces equations which are not invariant by change of reference system).

The use of this models with p = 3 was already implemented by Smagorinsky [1] in some geophysical
model; the use of stabilization obtained by adding this term dates back to von Neumann and Richtmyer [5]
in the analysis of shocks in compressible �ows.

It turns out that models as those obtained by (1.2) play a fundamental role in the modeling of turbulent
�ows for p > 2 and also in the study of families of non-Newtonian �uids, when p < 2. Especially when
p > 2 the model is associated to an eddy viscosity assumption, and ν

t
= ν1|Du|p−2 is the so-called turbulent

viscosity, see for instance the discussion in [6, 7]. On the other hand, completely di�erent motivations lead to
the study of the model associated with smaller values of p, see for instance [8]. The mathematical theory for
the above model, depending also on the values of the constants ν0, ν1, p is particularly complex and wide,
since the equations can be degenerate or singular and special features appear, depending on the regime of
the various parameters.

Here, we consider a variant of the Smagorinsky model, which can be derived in the wake of the classical
Baldwin-Lomaxmodel [9]. This is a one-equation-model, which �ts in the class of eddy viscosity models with
eddy viscosity ν

t
= ν

t
(u) and which can be used to derive a whole family of simpli�ed rotational models,

see Rong, Layton, and Zhao [10]. Several models have been proposed and the analysis of the so-called “re-
laxed rotational backscatter” and “relaxed rotational backscatter Baldwin Lomax” models will be done in a
forthcoming paper [11], together with the comparison in the derivation of the di�erent systems.

By using the Kolmogorov-Prandtl relation for the turbulent viscosity ν
t

ν
t
= c `
√
k
′,

(here c is a constant, ` the mixing length, and k′ the kinetic energy associated to �uctuations u′) one can
derive the following model, where ω := curl u

∂
t
u + β2 curl(`2(x)∂

t
ω) + (u ·∇) u − ν∆u +∇π + C

BL
curl(`2(x)|ω|ω) = f . (1.3)

This is called the “backscatter Baldwin-Lomax” model with β and C
BL

non-negative parameters, while `(x) is
a smooth functionwhich can is related to themixing length. Apart the classical sources, amodern discussion
with the derivation of the Baldwin-Lomax model can be found in [10–12].

An interesting link with near-wall-models arises when tuning the function `(x) to be the distance from
the boundary ∂Ω of the physical domain, hence reducing the dissipative e�ect, as the point x approaches the
boundary layer. A simple application to channel �ows is the one implemented with the van Driest damping,
which is an early approach to obtain reliable and accurate turbulence simulations near a solid �at wall, see
Pope [13] and also [7, Sec 3.3.1].

The analysis of the model (1.3) reveals that the �rst term β

2 curl(`2(x)∂
t
ω) is a sort of “dispersive” oper-

ator, hence the equations (1.3) are of pseudo-parabolic type. In fact, if `2(x) = `20 ∈ R+, for all x ∈ Ω then by
using the fundamental identity of vector calculus

curl(curl f ) = −∆f +∇(div f ), (1.4)

it holds β2 curl(`20∂tω) = −β2`20∂t∆u, producing the dispersive term which characterizes the Voigt model.
In this paper we focus on models dealing with the second term in (1.3), which is one of the most common
in literature. Many of its variants have been already implemented and studied, hence in the sequel we will
always assume that

β = 0 and C
BL

> 0,
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hence we consider the so called Baldwin-Lomax model. The second additional term in (1.3), namely
C
BL

curl(`2(x)|ω|ω) is very similar to the dissipative term appearing in the Smagorinsky model, and we be-
gin by considering the equations with extra dissipation given by C

BL
curl(`2(x)|ω|p−2ω), with 2 < p ≤ 3. We

start with the simplest case of `(x) = `0. In this case, the properties of the solutions are rather similar to those
known for the classical generalized Ladyžhenskaya-Lions-Smagorinskymodel. There is a critical dependency
of the dispersive and smoothing operators, when the function ` = `(x) is assigned as amultiple of the (regular-
ized) distance from the boundary d(x, ∂Ω) of the point x ∈ Ω. The study of models with smoothing operators
which are degenerate near to the boundary will be the object of a forthcoming work [12]. In Section 4 we will
consider a modi�ed (in terms of di�erential operators) method in which ` is a function itself of the solution,
as used in certain turbulence models.

Plan of the paper. In section 2 we summarize the notation and the functional setting. Next, in Section 3
we are �rst proving some �ne existence and regularity properties for the model with β = 0 and a constant
`0 > 0, since this allows for interesting generalizations. In Section 4 we start considering a newmodel which
introduces the smoothing in a less strong way, working directly on the vorticity equation, hence consider-
ing a model which is more related with damping than with smoothing. Finally, taking inspiration from the
work of Cottet et al. [2] we propose a new version of the selective Baldwin-Lomax-type model taking into ac-
count the possible variations of the direction of the vorticity and linking the choice of the function `(x) to
the relative alignment of the vorticity. The approach we follow makes a stricter connections with the cele-
brated geometric criterion of Constantin and Fe�erman [14] for the regularity of the solution and some of its
variants/improvements as developed in [15, 16].

2 Functional setting and comparison with previous results
In this section we �rst introduce the notation and the precise de�nitions of functions spaces we will need to
dealwith.Wewill use the customary Sobolev spaces (W s,p(Ω), ‖ . ‖

W
s,p ) andwedenote the Lp-norm simply by

‖ . ‖
p
and since the Hilbert case plays a special role we denote the L2(Ω)-norm simply by ‖ . ‖. In most cases

Ω ⊂ R3 will be an open bounded set with smooth boundary ∂Ω. Due to well-known technical problems
arising when dealing with the vorticity equation, in some cases we will restrict to the Cauchy problem in R3

or with the problem in the space periodic setting. By χ
A
we denote the indicator function of the measurable

set A.
As usual by p′ we denote the conjugate exponent. For (X, ‖ . ‖) a Banach space we will also denote the

usual Bochner spaces of functions de�ned on [0, T] and with values in X by (Lp(0, T; X), ‖ . ‖
L
p(X)).

For the variational formulation of the Navier-Stokes equations (1.1), and more generally of all systems
of partial di�erential equations with the constraint of incompressibility we shall consider, we introduce the
space V of smooth and divergence-free vectors �elds, with compact support in Ω. We then denote the com-
pletion of V in (L2(Ω))3 by L2

σ
(Ω) and the completion in (H1

0(Ω))3 by H1
0,σ(Ω), see also [17] for further details.

Since some results are set in the Hilbert space L2
σ
(Ω) is endowed with the natural L2-norm ‖ .‖2 and inner

product (·, ·), while H1
0,σ(Ω) with the norm ‖∇v‖2 and inner product ((u, v)) := (∇u,∇v). As usual, we do not

distinguish between scalar and vector valued function spaces. The dual pairing between V and V ′ is denoted
by 〈·, ·〉, and the dual norm by ‖ . ‖*.

Since we need also to consider the space-periodic setting, in this case we consider scalar and vector
de�ned on the torus T3 =

(
R/(2πZ)

)3, which are with zero mean value, that is

−
∫
T3

f (x) dx := 1
(2π)3

∫
T3

f (x) dx = 0.

In that case the linear space V is made of divergence-free vector �elds, 2π-periodic in each of the coordinate
directions and with zero mean value. Its closure in (L2(T3))3 and (H1(T3))3 is then denoted by L2

σ
(T3) and

H

1
σ
(T3), respectively and the norms are the same as those employed in the case of a bounded domain.
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In the case of a bounded domain Ω it holds the Poincaré inequality

‖v‖
p
≤ C(p, Ω)‖∇v‖

p
,

valid for all smooth enough vector �elds such that at least v · n = 0 on the boundary ∂Ω (or in the space
periodic case with zero mean value).

Since we have mainly estimates on the vorticity, we also need to estimate the full gradient, by means
of the vorticity, whenever it is possible. We have the following inequality (cf. Bourguignon and Brezis [18]):
There exists a constant C = C(s, p, Ω) such that, for all s ≥ 1

‖φ‖
s,p ≤ C

[
‖∇ · φ‖

s−1,p + ‖ curlφ‖s−1,p + ‖φ · n‖s−1/p,p,Γ + ‖φ‖s−1,p
]
, (2.1)

for all vector �elds φ ∈ (W s,p(Ω))3, where n denotes the outward unit normal vector on ∂Ω. This same result
has been later improved by vonWahl [19] obtaining, under geometric conditions on the domain, an estimate
without lower order terms: Let Ω be such that b1(Ω) = b2(Ω) = 0, where b

i
(Ω) denotes the i-th Betti number,

that is the the dimension of the i-th homology group H i(Ω,Z). Then, there exists C depending only on p and
Ω such that

‖∇φ‖
p
≤ C
(
‖∇ · φ‖

p
+ ‖ curlφ‖

p

)
, (2.2)

for all φ ∈ (W1,p(Ω))3 satisfying either (φ · n)|Γ = 0 or (φ × n)|Γ = 0.
In addition we will use the Sobolev inequality

‖v‖6 ≤ C‖∇v‖2 for all v ∈ H1
0(Ω).

The basic compactness results for space-time functions we use is the Aubin-Lions lemma. If X0, X1 are sep-
arable and re�exive Banach spaces; if X0 ↪→↪→ X (with compact embedding) and X ↪→ X1 (with continuous
embedding), then for 1 < α, β < ∞ it holds that{

v ∈ Lα(0, T; X0); ∂tv ∈ Lβ(0, T; X1)
}
↪→↪→ L

α(0, T; X). (2.3)

3 On large scale models based on the vorticity
We start describing the models we want to study. In the simplest form we have the following equations with
` = `0 ∈ R+

∂
t
u + (u ·∇) u − ν∆u +∇π + (C

BL
`20) curl(|ω|p−2ω) = f , (3.1)

and setting ν := C
BL

`20 > 0 we consider the following initial boundary value problem

∂
t
u + (u ·∇) u − ν∆u +∇π + ν curl(|ω|p−2ω) = f in (0, T) × Ω,

div u = 0 in (0, T) × Ω,
ω = curl u in (0, T) × Ω,
u = 0 on (0, T) × ∂Ω,

u(0) = u0 in Ω,

(3.2)

where Ω ⊂ R3 is a smooth and bounded open set. (In this case we can allow Dirichlet boundary conditions
and obviously very similar computations are also valid in the space periodic setting).

For the aboveBaldwin-Lomax type initial boundary value problem (3.2)we canprove the following result:

Theorem 1. Let be given 2 < p ≤ 3, u0 ∈ L2σ(Ω), and f ∈ L2((0, T) × Ω). Then, there exists at least a weak

solution to (3.2). Furthermore, if p > 5
2 , then the weak solution is unique.

The proof of Theorem 1 can be obtained by an adaption of the one valid for general shear dependent �uids.
Wewill give a sketch of the proof in order to precise the functional setting, but many results are close to those
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reported in [20]. The result is valid also for smaller values of the exponent p, but the proof requires some
technical adjustments. Here, since we consider turbulence type problems we restrict to the range 2 < p < 3,
but the reader can easily combine the results with those of the cited references to study the problems also
a) in the shear thickening case p < 2; b) for values of p larger than 2 (for technical reasons related with the
embeddingW2,2(Ω) ↪→ L

p(Ω)), at least for p ≤ 6.

Proof of Theorem 1. One main starting point is the a priori energy estimate which is obtained by using as test
function u itself and integrating over Ω. Observe that, due to the Gauss-Green formulas, we get∫

Ω

curl(|ω|p−2ω) · u dx =
∫
Ω

|ω|p−2ω · ω dx +
∫
∂Ω

|ω|p−2(ω × n) · u dS, (3.3)

and the boundary integral vanishes, since u = 0 at the boundary. This shows that, for smooth enough solu-
tions, then

1
2‖u(T)‖

2 + ν
T∫

0

‖∇u(s)‖2 ds + ν2

T∫
0

‖ω(s)‖p
p
ds ≤ 12‖u0‖

2 + C(p, ν)‖f‖2, (3.4)

hence that the following a-priori estimate holds true (and it is valid for Galerkin approximate functions)

u ∈ L∞(0, T; L2
σ
(Ω)) ∩ L2(0, T;H1

0,σ(Ω)) ∩ Lp(0, T; (W1,p(Ω))3).

We observe that the Lp-bound for the vorticity implies a bound on the whole gradient thanks to (2.2). The
estimates are justi�ed by using a Galerkin approximation and in the following we will need to make use of a
basis made by eigenfunctions of the Stokes operator (Spectral basis).

Once the a priori estimate is established, a fair standard application of the “monotonicity argument”
(cf. [4, 21] for the restricted range 5

2 ≤ p ≤ 3) or of Vitali’s lemma ensures the existence of a weak solution.
This can be done as in [20, Ch. 5], for 2 < p ≤ 3

As in the classical results by Lions and Ladyžhenskaya, the solution is unique if p > 5/2. This follows
by observing that in such range of exponents the solution u is smooth enough to be used as test function.
The following di�erential inequality holds true for the di�erence U = u1 − u2 of two solutions with the same
initial datum u0 ∈ L2σ(Ω) and external force f ∈ L2((0, T) × Ω)

d

dt

‖U‖ ≤ C‖∇u1‖
2p

2p−3
p
‖U‖2.

Since 2p
2p−3 ≤ p holds true if p ≥ 5

2 , then the coe�cient ‖∇u1‖
2p

2p−3
p

of the term ‖U‖2 from right-hand side
belongs to L1(0, T) and the Gronwall lemma implies that U ≡ 0 if U(0) = 0. Details can be found in [20,
Ch. 5.4].

Remark 3.1. The same computations as in (3.3) show that the boundary integral vanishes also when using the

curl-based Navier-type boundary conditions{
u · n = 0 on (0, T) × ∂Ω,
ω × n = 0 on (0, T) × ∂Ω.

(3.5)

These boundary conditions are particularly relevant in free-boundary problems and in turbulence modeling,

see [22, 23]. Hence, the same argument used in the proof of Theorem 1 applies also to the problem in the setting

of Navier-type conditions. The proof can be obtained by adapting the approach outlined in [24], as in Conca [25]

and Temam and Ziane [26] and does not present particular additional technical di�culties, hence we do not

reproduce it here.

The next step in the analysis of themodel regards the existence of strong solutions and the vorticity behavior,
especially when p < 5/2. The balance equation for the curl is obtained by taking the curl of (3.1) hence getting
the following equation

∂
t
ω − ν∆ω + ν curl(curl(|ω|p−2ω)) + (u ·∇)ω = (ω ·∇) u + curl f .
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As usual, dealing with the equation satis�ed by ω, requires to deal with the problem without boundaries
(Cauchy or periodic) or the curl-type Navier conditions (3.5). Here, in order to avoid inessential details, let us
assume that curl f = 0 and observe that the system satis�ed by the vorticity ω is the following initial value
problem (we used (1.4))

∂
t
ω − ν∆ω − ν∆(|ω|p−2ω)) + ν∇div( |ω|p−2ω))

+(u ·∇)ω = (ω ·∇) u in (0, T) × T3,
div u = divω = 0 in (0, T) × T3,

ω = curl u in (0, T) × T3,
ω(0) = ω0 in T3.

(3.6)

Let us analyze the space periodic case and then we will explain changes needed to handle the other cases.
In the space periodic case we can prove in a slightly simpler and alternate way the results stating that the
critical exponent to have global existence of strong solution is p = 11/5. Earlier results in this direction can
be found in [20, 27].

Theorem 2. Let p ≥ 11/5 and let be given u0 ∈ H

1
σ
(T3). Then, there exists a unique solution ω of (3.6)

such that ω ∈ L

∞(0, T; L2
σ
(T3)) ∩ L2(0, T;H1

σ
(T3)). Hence, by using (2.1) it follows u ∈ L

∞(0, T;H1
σ
(T3)) ∩

L

2(0, T;H2
σ
(T3)).

Proof. The proof is mainly based on estimate obtained multiplying (3.6) by ω and integrating by parts. This
can be transferred to Galerkin-Fourier approximate equations, with the basis of complex exponential, to
prove existence in a standard way.With this technique one obtains for the extra-nonlinear term the following
equality ∫

T3

curl(curl(|ω|p−2ω)) · ω dx

= −
∫
T3

∆(|ω|ω) · ω dx +
∫
T3

∇(div |ω|p−2ω) · ω dx

= −
∫
T3

|ω|p−2ω · ∆ω dx

= 4p − 2
p
2

∫
T3

|∇|ω|p/2|2 dx + 1
2

∫
T3

|ω|p−2|∇ω|2 dx,

where we used that
∫
T3 ∇q · ω dx = 0 and classical integration by parts as developed for –at least for the

velocity �eld– the NSE in [28], but applied to the vorticity. In this way, we can apply the Sobolev embedding
H

1(T3) ⊂ L6(T3) to obtain that

∃ C
Sob

> 0 : ‖ω‖p3p ≤ CSob‖∇|ω|
p/2‖2.

(All calculations are also valid in the whole space case R3, by assuming su�cient decay at in�nity of the
integrated �elds.) Next, we recall that by integration by parts

∫
T3 (u ·∇)ω · ω dx = 0, while, by using Hölder

inequality and explicit integral representation formulas we get∣∣∣ ∫
T3

(ω ·∇) u · ω dx
∣∣∣ ≤ ‖ω‖23‖∇u‖3 ≤ CCZ‖ω‖33,

since the gradient can be written as a proper Calderón-Zygmund singular integral in terms of the vorticity, by
using (1.4) and di�erentiating the Biot-Savart formula. The constant C

CZ
from the right-hand-side is the one

coming from the estimate for singular integrals ‖∇u‖3 ≤ CCZ‖ω‖3, and CCZ depends (being p = 3 �xed) only
on the fact that we are working in three space dimensions.

In this way we arrive to the di�erential inequality

1
2
d

dt

‖ω‖2 + ν‖∇ω‖2 + 4(p − 2)ν
p C

Sob

‖ω‖p3p ≤ CCZ‖ω‖
3
3,
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We now use the following two convex-interpolation inequalities

‖ω‖3 ≤ ‖ω‖
2(p+1)
3p−2
2 ‖ω‖

p

3p−2
6 and ‖ω‖3 ≤ ‖ω‖

p−1
2
p
‖ω‖

3−p
2

3p .

We split the term from the right-hand side of the di�erential inequality as ‖ω‖3(1−α)3 ‖ω‖3α3 , with α = p(3p−5)
6(p−1) .

With this splitting and the two above inequalities we get

‖ω‖33 ≤
(
‖ω‖22

) 3−p
2 ‖ω‖

p(3p−5)
4

p
‖ω‖

3p(3−p)
4

3p ,

and by Young inequality with δ = 4
9−3p and δ′ = 4

3p−5 (all calculations are justi�ed for p > 5/3) we �nally
show that for all ϵ > 0 exists C

ϵ
> 0 such that

‖ω‖33 ≤ Cϵ
(
‖ω‖22

) 2(p−3)
3p−5 ‖ω‖p

p
+ ϵ‖ω‖p3p .

Observe that for p > 5/3, then 2(p−3)
3p−5 < 1 if and only if p > 11/5, with equality in the limit case. Consequently,

for p ≥ 11/5, we have proved the di�erential inequality

1
2
d

dt

‖ω‖2 + ν‖∇ω‖2 + 2(p − 2)ν
p C

Sob

‖ω‖p3p ≤ c‖ω‖
p

p
(‖ω‖22

)
β with β ≤ 1.

Being
∫
T

0 ‖ω(s)‖
p

p
ds < ∞ from the a-priori estimate valid for weak solutions, the basic theory of di�erential

inequalities shows that in this case,

‖ω(T)‖2 +
T∫

0

(
ν‖∇ω(s)‖2 + 2(p − 2)ν

p C
Sob

‖ω(s)‖p3p
)
ds ≤ C,

where the constant C depends only on the data of the problem.
The above a priori estimates can be used in a spectral Galerkin method to prove existence of strong solu-

tions. The uniqueness of strong solutions, follows in the samemanner as before in the larger range p ≥ 11/5,
but now for solutions starting with the smoother initial datum in H1

σ
(T3).

Remark 3.2. In the proof of the a priori estimate needed to show existence of strong solutions, we used the fact

that also the basic energy estimate (3.4) valid for weak solutions is still true. This point should be recalled later

on in Section 4.1 in the analysis of the new models, since the techniques are rather di�erent in that case, where

the formulation in velocity/pressure is not so easy to be handled.

Remark 3.3. The case with Navier-type boundary conditions (3.5) can be handled in a similar way, by using the

following two identities (see [23, Lemmas 1-2]). The �rst one

−
∫
Ω

∆f · f |f |p−2 dx = 1
2

∫
Ω

|f |p−2|∇f |2 dx + 4p − 2
p
2

∫
Ω

|∇|f |
p

2 |2 dx

−
∫
Γ

|f |p−2(n ·∇) f · f dS,

is valid for all smooth enough vector �elds, while the following one is related with the vorticity �eld

− ∂ω
∂n

· ω = (ϵ1jk ϵ1βγ + ϵ2jk ϵ2βγ + ϵ3jk ϵ3βγ)ωj ωβ ∂knγ on Γ ,

with summation over repeated indices. Since ω × n = 0, it holds ω = (ω · n) n at the boundary and we obtain

that (ω ·∇)ω = (ω · n) ∂ω
∂n

. This shows the following two inequalities are valid

−
∫
Ω

∆ω · ω|ω|p−2 dx ≥ 4p − 2
p
2

∫
Ω

|∇|ω|
p

2 |2 dx − c
∫
Γ

|ω|p dS,

−
∫
Ω

∆ω · ω dx ≥
∫
Ω

|∇ω|2 dx − c
∫
Γ

|ω|2 dS.

Brought to you by | Universita di Pisa
Authenticated

Download Date | 2/20/20 4:09 PM



N. Chor� et al., On the analysis of a geometrically selective turbulence model | 1409

By using the trace theorem and the embedding H

1/2(Γ) ⊂ L4(Γ), applied to ω and to |ω|p/2, we can easily see

that the two surface integrals can be bounded with the terms from the left hand side, obtaining the following

di�erential inequality (cf. [24, Eq. (23)] and [23, Eq. (2.3)])

1
2
d

dt

‖ω‖2 + ν‖∇ω‖2 + 4(p − 2)ν
p C

Sob

‖ω‖p3p ≤ C(‖ω‖
3
3 + ‖ω‖pp + ‖ω‖22),

for a constant C depending only on p and Ω. At this point the same reasoning as before can be applied to prove

results of existence and uniqueness, by using a functional setting with the Hilbert space H

1
σ
(Ω) := (H1(Ω))3 ∩

L

2
σ
(Ω), which replaces the space H

1
0,σ(Ω), due to the fact that the usual Sobolev machinery works also in this

setting, as explained in the cited references.

4 A couple of new turbulence models
>From the results of the previous section it turns out that the relevant case p = 3 produces a unique strong
solution but it is also well-known that the dissipation/stabilization introduced by the Smagorinsky like term
is generally too strong and, in particular, there is an extremely arti�cial stabilizing e�ect on the boundary
layer. The Baldwin-Lomax model associated with a function of the distance from the boundary implies –by
results on weighted spaces– a control of a less strong dissipation norm. This observation comes from the use
of Poincaré type estimate ∥∥∥u(x) − −∫

Ω

u(y) dy
∥∥∥
q

≤ C‖dδ(x)∇u(x)‖
p
,

where q ≤ 3p
3−p(1−δ) and d(x) = dist(x, ∂Ω), see Hurri-Syrjänen [29]. This result, coupled with the machinery

developed as in Kufner [30] and with other several technical tools, can be used to produce similar results, at
least for a model with a nonlinear perturbation given by

A(u) = −C
S
div(dδ(x)|∇u|)∇u,

for an appropriate exponent δ > 0. Considering the operator depending only on the deformation tensor or
the curl version as in Baldwin-Lomax, requires also to use appropriate variants also of other tools as the Korn
inequality and theway to pass to the limit in the approximate system. This will be addressed in a forthcoming
work, which is out of the scopes of the present one. Here, we consider a di�erent approach, based not on the
knowledge and enough smoothness of the function `(x). We study a weakly-dissipative model, based on an
anisotropic and selective choice of the dissipation term, producing a non uniformly elliptic regularization,
but with an approach more oriented towards computations.

Since theSmagorinsky term is too strongand themodel associateddoesnotwell-reproduce smaller scales
a single universal constant C

S
for di�erent turbulent �elds in rotating or sheared �ows, near solid walls, or

in transitional regimes is not likely to be determined; the approach of Lilly (and its variants in [31]) seem
to work only in the homogeneous and isotropic case of fully developed turbulence; several methods has
been designed to overcome this fact. Apart Obukhov approach and the already cited Van Driest damping
in the channel �ow setting, an early method is the dynamic one introduced in Germano, Piomelli, Moin, and
Cabot [32]. Severalmodi�cations, leading also themultiscale variationalmethods have been proposed, see [7]
but here we focus on a method which seems to be the closest to the analysis coming from the Partial Di�er-
ential Equations framework. It has also strong connections with the use of a geometric approach in the study
of the regularity of the weak solutions to the Navier-Stokes equations [33].

One important modeling idea in many variations of the eddy viscosity models is that the

eddy viscosity terms need to be active only in regions where the solution is not regular, or where there is a

strong generation of small scales.
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In the “dynamic model” introduced in [32], the Smagorinsky model’s “parameter” C
S
is not anymore a con-

stant but it is chosen locally in space and time, so tomake the Smagorinskymodel to agree (in a least squares
sense) as closely as possible with the Bardina scale similarity model.

In the selectivemodel of Cottet, Jiroveanu, andMichaux [2] the parameter C
S
is not obtained by a solution

of a localminimization problem, but by detecting the regionswhere vorticity is active asmeasured by the non-
alignment of the direction of ω. This can be achieved in a computational way by considering a function �lter
Ψ(t, x) which is the indicator function of the points where the vorticity direction is badly behaved, that is in
regions where the angle of vorticity is not a Lipschitz or even Hölder function of the space position. Hence,
the model studied in the cited reference has the eddy viscosity term

ν
t
(t, x, u) = C2

S
`20 Ψ(t, x)|Du(t, x)|,

leading to the LES system (1.2), which is considered also in a bounded domain for numerical tests.
Both these methods need to be calibrated and their implementations are well documented, but in any

case they su�er from some limitations in the mathematical formulation. In particular, the selective term acts
at the level of the velocity �eld, but the localization regards the vorticity activity, and the two facts are not
treated with full mathematical rigour in the aforementioned papers, while the computational aspects and
the results of implementation are instead well-documented. Here, we mainly propose a model which is more
amenable to a precise treatment, which do not produce strong dissipation at the level of the velocity. Instead
our approach produces a model acting directly on the vorticity balance equation and which gives a precise
bound on the growth of the vorticity magnitude.

4.1 A new model, with an eddy viscosity damping the vorticity

Here, we consider the NSE in the velocity/vorticity formulation and we analyze the enstrophy behavior for
the following model

∂
t
ω − ν∆ω + C

S,ω|ω|p−2ω + (u ·∇)ω = (ω ·∇) u,
div u = divω = 0,

curl u = ω,
(4.1)

which ismuchweaker in terms of dissipation than the Baldwin-Lomax type previously studied. In the Cauchy
setting, or in the space periodic, or even with curl-Navier condition we consider the above system where
C
S,ω > 0 is a given constant and u is formally obtained from the vorticity ω after solving u = curl−1 ω. More

precisely u is obtained by ω through the Biot-Savart law.
We deal primary with the space-periodic case. The interpretation of this model is that we are adding

a zeroth order damping term directly at the vorticity level, which is needed to balance in a sharp form the
vortex-stretching term ∫

T3

(ω ·∇) u · ω dx,

which behaves, roughly speaking, as the integral of |ω|3. In fact, by multiplying by ω and integrating over
the physical domain, one gets

1
2
d

dt

‖ω‖2 + ν‖∇ω‖2 + C
S,ω‖ω‖

p

p
≤ C

CZ
‖ω‖33.

The constant C
CZ

from the right-hand-side is the one coming from the standard estimate with singular inte-
grals. Hence, if p = 3 and if C

S,ω ≥ CCZ, then we get the di�erential inequality

1
2
d

dt

‖ω‖2 + ν‖∇ω‖2 + (C
S,ω − CCZ)‖ω‖33 ≤ 0. (4.2)

The choice of the parameter p = 3 seems obliged in this setting, but the above estimate allows us to show
global existence of a solution, once the constant C

S,ω is chosen large enough, but in an universal (not de-
pending on the solution) way. The life-span of the solution turns out to be independent of the size of the

Brought to you by | Universita di Pisa
Authenticated

Download Date | 2/20/20 4:09 PM



N. Chor� et al., On the analysis of a geometrically selective turbulence model | 1411

initial datum. We recall that without the damping term (that is when C
S,ω = 0) one can prove results which

are local or that are global only for unrealistic extremely small initial data. In this case there are not other
a priori estimates immediately available even at the level of the velocity, this explains the fact that smaller
values of p seem not treatable. Hence, also results as those of Zhou [34] with smaller critical exponents p, but
with the damping |u|p−2u at the level of velocity, are not available in this case.

Remark 4.1. The above model (4.1) in the velocity/vorticity formulation can be considered also in the veloc-

ity/pressure formulation. To write this we need a proper right-inverse of the curl operator, to write “formally”

system (4.1) as the curl of the following one

∂
t
u + (u ·∇) u − ν∆u +∇π + ν curl−1(|ω|ω) = 0.

The linear operator “ curl−1” is de�ned in (4.3) by using the following argument: From the vector calculus iden-

tity (1.4), valid for smooth vector �elds f , we obtain that if F is such that −∆F = f , (or equivalently F = (−∆)−1f
in the whole space or in the torus with periodic boundary conditions) then

curl(curlF) = −∆
(
(−∆)−1f

)
+∇(divF) = f +∇q,

for some q; hence, the vector �eld V := curlF = curl
(
(−∆)−1f

)
satis�es curlV = f +∇q.

Consequently, in absence of boundaries, we use as right inverse of the curl operator the linear operator

de�ned in the following way

curl−1 := curl(−∆)−1, (4.3)

and it is a right inverse of the curl modulo a gradient term, which is nevertheless inessential in the dynamic

equation for the enstrophy. Observe that the di�erential operators we are using are invariant by rotations, hence

the equations we obtain are invariant by change of reference frame and are physically meaningful.

We need to apply curl−1 to f = |ω|ω and in the case of the torus, in order to invert the Laplace operator, the

zero mean value is needed. Observe that clearly

∫
T3 ω dx = 0, but in general

∫
T3 |ω|ω dx ̸= 0.

To conclude, the model with constant damping (4.1) should be written in the velocity/pressure formulation

as follows

∂
t
u + (u ·∇) u − ν∆u +∇π + ν curl(−∆)−1

(
|ω|ω − −

∫
T3

|ω|ω dy
)
= 0. (4.4)

In terms of vorticity we obtain, in fact, taking the curl

∂
t
ω − ν∆ω + ν(−∆)(−∆)−1

(
|ω|ω − −

∫
T3

|ω|ω dx
)

+ ν∇(−∆)−1
(
|ω|ω − −

∫
T3

|ω|ω dx
)
+ (u ·∇)ω = (ω ·∇) u,

or, with obvious simpli�cations,

∂
t
ω − ν∆ω + ν

(
|ω|ω − −

∫
T3

|ω|ω dx
)
+ ν∇q + (u ·∇)ω = (ω ·∇) u.

The introduction of the velocity/pressure formulation does not change the enstrophy balance. In fact, with

this system we have the following identity, obtained by integration by parts,∫
T3

curl curl(−∆)−1
(
|ω|ω − −

∫
T3

|ω|ω dx
)
· ω dx =

=
∫
T3

(
|ω|ω − −

∫
T3

|ω|ω dx
)
· ω dx =

=
∫
T3

|ω|ω · ω dx = ‖ω‖33,
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where we used again (1.4) and the fact that gradients and divergence-free vector �elds are orthogonal, together

with the fact that ω (as well as∇u and Du) have zero mean value.

Remark 4.2. Concerning the velocity/pressure formulation, we observe that results on the Fractional Laplacian

in Córdoba and Córdoba [35] show the following “positivity lemma”∫
|θ|p−2θ(−∆)αθ dx ≥ 0 ∀ α ∈ [0, 1], (4.5)

for all values of p ≥ 1.
In our case the energy inequality for weak solutions of the model (4.4)will hold if one would be able to prove

the following inequality ∫
|θ|p−2θ(−∆)−1θ dx ≥ 0 (4.6)

which correspond to the negative value α = −1 in (4.5). From the latter estimate in fact one could show∫
T3

curl(−∆)−1
(
|ω|ω − −

∫
T3

|ω|ω dx
)
· u dx

=
∫
T3

(−∆)−1
(
|ω|ω − −

∫
T3

|ω|ω dx
)
· ω dx

=
∫
T3

(
|ω|ω − −

∫
T3

|ω|ω dx
)
· (−∆)−1ω dx

=
∫
T3

|ω|ω · (−∆)−1ω dx ≥ 0,

which derives immediately from integration by parts.

At present, the validity of (4.6) represents an open problem, and we are forced to restrict to work only in the

setting of velocity/vorticity formulation. We are then considering a system for which the energy inequality does

not follow directly: Some of the basic machinery and estimates available for the 3D Navier-Stokes equations

cannot be applied directly, and a slightly di�erent treatment for system (4.1) is needed.

The main result of this section is the following

Theorem 3. Let be given ω0 ∈ L2σ(T3) and let C
S,ω large enough, but independent of the data of the problem.

Then, there exists a unique weak¹ solution to the following initial value problem

∂
t
ω − ν∆ω + C

S,ω

(
|ω|ω−−

∫
T3

|ω|ω dx
)

+(u ·∇)ω = (ω ·∇) u, in (0, T) × T3,
div u = divω = 0 in (0, T) × T3,

curl u = ω in (0, T) × T3,
ω(0) = ω0 in T3,

(4.7)

Proof. We start by observing that natural a-priori estimate for system (4.7) is (4.2), and if C
S,ω ≥ CCZ, then it

follows that
ω ∈ L∞(0, T; L2

σ
(T3)) ∩ L2(0, T;H1

σ
(T3)) ∩ L3(0, T; (L3(T3))3),

1 Here by weak solution we mean a distributional solution in L∞(0, T; L2) ∩ L2(0, T;H1). Clearly this is a strong solution if read
in terms of u which belongs to L∞(0, T;H1) ∩ L2(0, T;H2), and strong is in the usual sense for the Navier-Stokes equations [17].
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which is enough to ensure the existence through a Fourier-Galerkin approximation. In fact, the bound on ω
proves by comparison also that

∂
t
ω ∈ L2(0, T; (H1

σ
)′).

This is obtained by multiplying by a periodic and with zero mean value φ ∈ V it follows that∣∣〈∂
t
ω, φ〉

∣∣ = ν〈∇ω,∇φ〉 − C
S,ω〈|ω|ω, φ〉 + 〈u ⊗ ω,∇φ〉 − 〈u ⊗ ω, (∇φ)T〉

≤ ν‖∇ω‖2‖∇φ‖2 + CS,ω‖ω‖212/5‖φ‖6 + 2‖u‖6‖ω‖3‖∇φ‖2
≤ c(‖∇ω‖2‖∇φ‖2 + ‖ω‖2‖ω‖3‖∇φ‖2 + ‖∇u‖2‖ω‖3‖∇φ‖2)
≤ c(‖∇ω‖2 + ‖ω‖2‖ω‖3)‖∇φ‖2
≤ c(‖∇ω‖2 + ‖ω‖3/22 ‖∇ω‖

1/2
2 )‖∇φ‖2,

showing the requested property by using the already obtained bound.
This implies, by using the classical Aubin-Lions lemma, that from the approximating sequences we can

extract a sub-sequence converging strongly in L2(0, T; (L2(T3))3), cf. (2.3). Next by interpolation and by using
the a priori bounds this shows also strong convergence in L3(0, T; (L3(T3))3). This is enough to pass to the
limit in all terms and to show that the limit is a solution of the problem. We do not give details for this well-
known step, which can be found in [17], simply translating the results on the velocity to those for the vorticity.

We show now that the obtained regularity is enough to show uniqueness. In fact the duality between
∂
t
ω and ω is well-de�ned. We take two solutions ω1, ω2 corresponding to the same initial datum ω0(x) and,

multiplying by the di�erence Ω = ω1 − ω2, we obtain

1
2
d

dt

‖Ω‖2 + ν‖∇Ω‖2 + C
S,ω‖Ω‖33 +

∫
T3

(u1 ·∇)Ω · Ω

+
∫
T3

((u1 − u2) ·∇)ω2 · Ω =
∫
T3

(Ω ·∇) u1 · Ω +
∫
T3

(ω2 ·∇) (u1 − u2) · Ω,

and we observe that by integrating by parts and
∫
T3 (u1 ·∇)Ω · Ω dx = 0, while by usual Hölder and Sobolev

estimates ∫
T3

((u1 − u2) ·∇)ω2 · Ω ≤ ‖u1 − u2‖6‖∇ω2‖2‖Ω‖3 ≤ ‖Ω‖3/22 ‖∇ω2‖2‖∇Ω‖1/22 ,

∫
T3

(Ω ·∇) u1 · Ω ≤ ‖Ω‖23‖∇u1‖3 ≤ ‖ω1‖3‖Ω‖2‖∇Ω‖2,

∫
T3

(ω2 ·∇) (u1 − u2) · Ω ≤ ‖ω2‖3‖∇(u1 − u2)‖3‖Ω‖3 ≤ ‖ω2‖3‖Ω‖2‖∇Ω‖2.

Hence, with Young inequality we get

d

dt

‖Ω‖2 + ν‖∇Ω‖2 ≤ c(‖∇ω2‖4/3 + ‖ω1‖22 + ‖ω2‖22)‖Ω‖22,

and due to the available information on the two weak solutions it follows that (‖∇ω2‖4/3 + ‖ω1‖22 + ‖ω2‖22) ∈
L

1(0, T), hence we get Ω ≡ 0.
The exponent p = 3 represents the natural one in order to control the growth of the nonlinear term.

Remark 4.3. We observe that in the case of the Navier-Stokes equations having a the vorticity (or the gradient)

in L

3(0, T; L3(Ω)) implies the smooth continuation of the solution, by scaling invariant results, see Beirão da

Veiga [36]. Here the situation is di�erent: For the model (4.1) we do not have the basic energy estimate valid for

the Navier-Stokes equations (3.4), hence some of the results typical of the Navier-Stokes do not follow directly.

Remark 4.4. Next, we detect, if any, the critical exponent p to ensure existence of strong solutions for the system

∂
t
ω − ν∆ω + C

S,ω

(
|ω|p−2ω − −

∫
T3

|ω|p−2ω dx
)
+ (u ·∇)ω = (ω ·∇) u.
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We use the two convex interpolation inequalities

‖ω‖3 ≤ ‖ω‖
1
2
2 ‖ω‖

1
2
6 and ‖ω‖3 ≤ ‖ω‖

p

6−p
p
‖ω‖

6−2p
6−p
6

and we split the right-hand side as ‖ω‖33 = ‖ω‖3α3 ‖ω‖
3(1−α)
3 , with α chosen as α = 2 2p−3

3p , to get

‖ω‖33 ≤ ‖ω‖
2p−3
p

2 ‖ω‖
p
‖ω‖

3
p

6 ≤ CS‖ω‖
2p−3
p

2 ‖ω‖
p
‖∇ω‖

3
p

2 .

Hence, by using Young inequality with exponents x = 2p
3 and x

′ = 2p
2p−3 we show

‖ω‖33 ≤
ν

2‖∇ω‖
2
2 +

C

ν

2
2p−3
‖ω‖22‖ω‖

2p
2p−3
p

.

In particular we have

2p
2p−3 ≤ p if p ≥ 5

2 . Hence, in the limiting case p = 5/2 we have the di�erential inequality.

1
2
d

dt

‖ω‖2 + ν‖∇ω‖2 +
(
C
S,ω − Cν−

2
2p−3 ‖ω‖22

)
‖ω‖p

p
≤ 0,

and this shows that, in the case of p = 5
2 (which is smaller than the critical exponent p = 3) one can show global

existence (on the whole half-line R+
) provided that the coe�cient C

S,ω is larger then a constant depending on

the size of the initial datum and on the viscosity.

4.2 A new selective model, based on the vorticity direction

As we have seen before the control of the L3((0, T) × Ω) of ω can be used to infer existence and uniqueness
of the solutions. The results of the previous section are related with a control of global (integral) quantities,
being based on the classical Sobolev machinery. Even if the results of the previous section are original, they
are based on a fair application of well-known techniques. Observe that having ω ∈ L3

t,x would be enough as
additional assumption if applied to the NSE. In our setting due to the fact that we have a nonlinear additional
term and lack of the energy inequality, this is not enough to ensure a direct result of global existence, unless
not some restrictions on the size of the damping coe�cient C

S,ω is added, cf. Remark 4.3.
In this sectionwe use a rather di�erent approach, which is based on a selective damping, where selection

is basedon the criterionof addingdampingof the vorticity only in regionswhere there is a large vortex stretch-
ing. We now propose an alternate (with respect to the ones already present in literature, cf. especially [2, 37])
selectivemethodwith a non-constant turbulent coe�cient, in such away to ensure damping only at the level
of the vorticity, and for which the mathematical theory can be formulated in a rigorous way.

To detect the regions where the vorticity is highly active we formulate a criterion based not on the relative
size of the vorticity, but by considering a turbulent viscosity functions which is a multiple of the indicator of
the region with intense vortex activity; this is detected by considering the local behavior of the direction of
the vorticity

ξ (t, x) := ω(t, x)
|ω(t, x)| ,

itself in the neighborhood of the point (t, x) ∈ (0, T) × Ω.
We observe that a similar model has been already considered by Cottet, Jiroveanu, and Michaux [2], but

in their case they worked directly with the equation for the velocity, proposing the following LES model

∂
t
u + (u ·∇) u − ν∆u +∇π − div(C2

S
`20Ψ |Du|Du) = f in (0, T) × Ω,

div u = 0 in (0, T) × Ω,
(4.8)

with Dirichlet conditions, where

Ψ(t, x) =
{
1 if β0 < βλ ≤ π − β0,
0 otherwise.
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The constant β0 is a threshold angle, while

β
λ
(t, x) := arcsin ω(t, x) × ω

λ
(t, x)

|ω(t, x)| |ω
λ
(t, x)| , (4.9)

and ω
λ
is the average over a the surface of ball or radius λ > 0

ω
λ
(t, x) = 1

4πλ2

∫
|r|=λ

ω(x + r) dS,

where the length λ is related to themesh size and the integral can be numerically estimated by averaging over
the six closest neighboring points (in a cubic uniform mesh).

The interpretationof the rationale behind the criterion (see alsoGuermondandPrudhomme [38]) is based
on the fact that if the angle between the vorticity is well behaved, then weak solutions of the Navier-Stokes
equations are smooth, cf. [14, 15]. Hence, the lack of (anti) alignment of the vorticity is a measure of the
potential singular behavior of the solutions. The main result is the theorem stating that if

sin(θ(t, x, y)) ≤ C|x − y|1/2 a.e. x, y ∈ R3, a.e. t ∈ [0, T], (4.10)

where θ(t, x, y) := ∠(ξ (t, x), ξ (t, y)), then weak solutions of the Navier-Stokes equations are smooth, see [14–
16, 39].

Here, we consider and rigorously analyze a variation of the model (4.8), in such a way that the a priori

estimate can be put in a precise quantitative relationwith the growth of the enstrophy and the behavior of the
vorticity direction.We are in fact introducing a newmodel with the aim of being able to perform some quanti-
tative estimates, missing in the cited references [2, 37]) which were more focused on the implementation and
on the e�ective numerical results).

The new model we propose and for which we are able to prove quantitative a priori estimates is the fol-
lowing: in the velocity/vorticity formulation we consider

∂
t
ω − ν∆ω + C

S,ωΨ |ω|ω + (u ·∇)ω = (ω ·∇) u, in (0, T) ×R3,
div u = divω = 0 in (0, T) ×R3,

ω = curl u in (0, T) ×R3,
ω(0) = ω0 in R3,

(4.11)

with the scalar function Ψ de�ned as follows:

Ψ(t, x) =
{
1 where “jumps" of the vorticity direction are large,
0 elsewhere.

The precise quantitative notion of “large jumps” will be speci�ed later in the formulation of Theorem 4. We
remark that the expected smoothness ofΨ is very low (nothingmore than L∞ can be inferred) and not enough
to establish probably good regularity properties, nevertheless it can be at least used to prove a priori bounds.

The fact that the operator is with non-constant coe�cients makes the treatment more complex than
in [20] and in addition the damping is not uniform, producing additional L3

loc

estimateswhich are not uniform
in the whole spatial domain.

The main original point is to work directly with the vorticity balance equation, as in the model of the
previous Section 4.1 and to establish or identify a “good set” Ω

λ
⊂ (0, T) × R3 such that if Ψ(t, x) = χ

Ω
λ

(t, x),
then it follows that the degenerate damping term

C
S,ωΨ(t, x)|ω(t, x)|ω(t, x),

in the equations for the vorticity (4.11) is enough to control the growth of the enstrophy. The results in [14]
and further developments in [15, 24] are devoted to the analysis of the weaker possible alignment of ξ able
to ensure the regularity of weak solution. By studying a special setting with “type I singularities,” Giga and
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Miura [39] have been able to study also a case of mere continuity, without any other further requirement (Lip-
schitz or Hölder) as in the above references. Nevertheless, themodulus of continuity is not easily computable
in numerical tests, since the uniform control requires rather extensive computations.

The LES model, as introduced with the determination of the threshold angle (4.9), is based on this ra-
tionale from condition (4.10). On the other hand, we consider here a criterion built up on the results from
Ref. [16] which states regularity for the Navier-Stokes equations if the possible jumps of angles between the
vorticity at neighboring points is small enough. This is more �t in the framework of the determination of the
criterion, since averaging is not needed.

Theorem 4. Let us assume ² that |ω(t, x)| ≥ M for all (t, x) ∈ R3 × (0, T), for some M > 0. Let us �x the two

constant 0 < ϵ0 << 1 and λ > 0 and de�ne the following set

Ω
λ
(t) =

{
(t, x) ∈ (0, T) ×R3 : ∃ y ∈ B(0, λ) : |ξ (t, x + y) × ξ (t, x)| ≥ ϵ0

}
.

Then, if ω0 ∈ L

2
σ
(R3), if ϵ0 is small enough, and if λ is large enough, then there exists a family of uniformly

bounded and global in time approximate solutions to model (4.11).

Proof. As usual the main part of the proof is to properly estimate the vortex stretching term. We work in the
whole space where explicit formulas are neat, but a similar treatment can be easily done also in the space-
periodic setting. We split the term responsible of the vortex stretching into two parts as follows∫

R3

(ω ·∇) u · ω dx =
∫
R3

S[ω](x)ω(x) · ω(x) dx

=
∫
Ω
λ

S[ω](x)ω(x) · ω(x) dx +
∫

R3\Ω
λ

S[ω](x)ω(x) · ω(x) dx,

where S[ω](x) = Du is the deformationmatrix which can be represented as a singular operator integral, while

S[ω](x)ω(x) · ω(x)

= |ω(x)|2P.V . 3
4π

∫
R3

ŷ
i
ŷ
k
− 3δ

ik

|y|3
ϵ
ijk
ξ
l
(x + y) ξ

i
(x) ξ

j
(x) |ω(x + y)| dy,

where [a×b]
j
= ϵ

ijk
a
k
b
l
is the exterior product (with the totally anti-symmetric Ricci tensor ϵ

ijk
) and ŷ = y/|y|.

The integral in dy is split into two parts: the inner where |y| < λ and the outer one, by means of a smooth
cut-o� non-increasing function ρ : R+ → R+ which equals 1 for 0 < s < λ/2 and zero for s ≥ 3λ/2. In
particular, we set

F(x, y) := ŷi ŷk − 3δik
|y|3

ϵ
ijk
ξ
l
(x + y) ξ

i
(x) ξ

j
(x) |ω(x + y)|dy,

and we have that ∫
{Ω

λ

S[ω](x)ω(x)ω(x) dx

=
∫

{Ω
λ

|ω(x)|2 P.V . 3
4π

∫
R3

(
1 − ρ(|y|)

)
F(x, y) dxdy

+
∫

{Ω
λ

|ω(x)|2 P.V . 3
4π

∫
R3

ρ(|y|) F(x, y) dxdy.

2 This assumption is needed to be sure that the vorticity direction is well-de�ned for all points. Nevertheless the regions where
the vorticity is bounded are not regions of high turbulent activity, hence the restriction is not relevant. Anyway, by a cut-o� of the
vorticity into ω = ω1 + ω2, with ω1 = ω(t, x)χ{|ω|<M} and ω2 = ω − ω1, as in [15], one can easily deal also with the general case.
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In the �rst term we have that the inner part of the integral in dy vanishes, hence we can estimate the double
integral as follows ∫

{Ω
λ

|ω(x)|2 P.V . 3
4π

∫
R3

(
1 − ρ(|y|)

)
F(x, y) dy dx

≤ 3
4π

√
2
λ

∫
R3

|ω(x)|2
∫
R3

|ω(x + y)|
|y|5/2

dy dx.

We use now the Hardy-Littlewood-Sobolev inequality to infer∥∥∥∥∥∥
∫
R3

|ω(x + y)| dy
|y|5/2

∥∥∥∥∥∥
L
3

≤ c
HLS
‖ω‖

L
2 , with c

HLS
= 27/3π7/6.

By the above formula and theHölder inequality in {Ω
λ
with exponents 3/2 and3,with theusual interpolation

and Young’s inequality, we get∫
{Ω

λ

|ω(x)|2 P.V . 3
4π

∫
R3

(
1 − ρ(|y|)

)
F(dx, dy) dxdy ≤ C√

λ

‖ω‖23,Ω‖ω‖2

≤ C
λ

‖ω‖2‖∇ω‖2 + ‖ω‖2.

The other term is the one such that the singular integral is not truncated by the cut-o� function but we can
use on it the smallness condition on the angle to show∫

{Ω
λ

|ω(x)|2 P.V . 3
4π

∫
R3

ρ(|y|)F(dx, dy) dxdy ≤ ϵ0‖ω‖23,Ω{λ
‖ω‖2

≤ ϵ20C‖ω‖2‖∇ω‖2 + ‖ω‖2.

Next, we consider the integral over the setΩ
λ
, where do not have control on the direction of the vorticity. First

we use the Hölder inequality and the norm of S[ω](x) is a proper singular integral on the whole space, this
proves the following inequality∣∣∣∣∣∣∣

∫
Ω
λ

S[ω](x)ω(x) · ω(x) dx

∣∣∣∣∣∣∣ ≤ C‖ω‖23,Ωλ‖ω‖3,R3 ,

and the constant C is independent of the data of the problem (depends only on the space dimension). Next,
we use the usual Sobolev and convex interpolation inequalities (with constants independent of the solution)
in the whole space and the Hölder inequality with exponents 3/2, 12, and 4 to prove∣∣∣∣∣∣∣

∫
Ω
λ

S[ω](x)ω(x) · ω(x) dx

∣∣∣∣∣∣∣ ≤ C‖ω‖23,Ωλ‖ω‖1/32,R3‖ω‖1/62,R3‖∇ω‖1/22,R3

≤ Cν−
3
8 ‖ω‖33,Ω

λ

‖ω‖1/22,R3 + ‖ω‖22,R3 + ν2‖∇ω‖
2
2,R3 .

Hence, by collecting all the inequalities, we get

1
2
d

dt

‖ω‖22 +
[
ν

2 −
(
ϵ

2
0 +

1
λ

)
‖ω‖4/32

]
‖∇ω‖22 +

(
C
S,ω − Cν−

3
8 ‖ω‖1/22

)
‖ω‖33,Ω

λ

≤ ‖ω‖22.

This shows that by an appropriate choice of the constant C
S,ω large enough, then the following a priori esti-

mate holds true
ω ∈ L∞(0, T; L2(R3)) ∩ L2(0, T;H1(R3)),

provided ϵ0 is chosen small enough and λ large enough.
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Remark 4.5. In the de�nition of the set Ω
λ
there are two parameters, one related with the relative non-

alignment of the vorticity and the other with the size of the set where the condition has to be checked. In some

sense both depend on the viscosity, since the a priori estimate requires the smallness of ϵ0 and the largeness of

λ in order to have non negative terms. In this way we quantitatively link the amount of damping on the vorticity

with the size of the set where this has to be ful�lled. In practice, controlling the vorticity direction in a small set

imposes as counterpart to have larger constants for the dissipative term.
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