
Markov Chain Monte Carlo algorithms for target-oriented and interval-oriented amplitude 

versus angle inversion with non-parametric priors and non-linear forward modellings 

Mattia Aleardi1, Alessandro Salusti1,2 

1University of Pisa, Earth Sciences Department, via S. Maria 53, 56126, Pisa, Italy 

2University of Florence, Earth Sciences Department, via. G. La Pira 4, 50121, Florence, Italy 

Corresponding author: Mattia Aleardi, mattia.aleardi@unipi.it 

 

ABSTRACT 

In geophysical inverse problems the posterior model can be analytically assessed only in case of linear 

forward operators, Gaussian, Gaussian mixture, or generalized Gaussian prior models, continuous 

model properties, and Gaussian-distributed noise contaminating the observed data. For this reason, 

one of the major challenges of seismic inversion is to derive reliable uncertainty appraisals in cases 

of complex prior models, non-linear forward operators and mixed discrete-continuous model 

parameters. We present two amplitude versus angle inversion strategies for the joint estimation of 

elastic properties and litho-fluid facies from pre-stack seismic data in case of non-parametric mixture 

prior distributions and non-linear forward modellings. The first strategy is a 2-dimensional target-

oriented inversion that inverts the Amplitude Versus Angle responses of the target reflections by 

adopting the single-interface full Zoeppritz equations. The second is an interval-oriented approach 

that inverts the pre-stack seismic responses along a given time interval using a 1-dimensional 

convolutional forward modelling still based on the Zoeppritz equations. In both approaches the model 

vector includes the facies sequence and the elastic properties of P-wave velocity, S-wave velocity and 

density. The distribution of the elastic properties at each common-mid-point location (for the target-

oriented approach) or at each time-sample position (for the time-interval approach) is assumed to be 

multimodal with as many modes as the number of litho-fluid facies considered. In this context, an 

mailto:mattia.aleardi@unipi.it


analytical expression of the posterior model is no more available. For this reason, we adopt a Markov 

Chain Monte Carlo algorithm to numerically evaluate the posterior uncertainties. With the aim of 

speeding up the convergence of the probabilistic sampling, we adopt a specific recipe that includes 

multiple chains, a parallel tempering strategy, a delayed rejection updating scheme and hybridizes 

the standard Metropolis-Hasting algorithm with the more advanced Differential Evolution Markov 

Chain method. For the lack of available field seismic data, we validate the two implemented 

algorithms by inverting synthetic seismic data derived on the basis of realistic subsurface models and 

actual well log data. The two approaches are also benchmarked against two analytical inversion 

approaches that assume Gaussian-mixture distributed elastic parameters. The final predictions and 

the convergence analysis of the two implemented methods proved that our approaches retrieve 

reliable estimations and accurate uncertainties quantifications with a reasonable computational effort. 
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INTRODUCTION 

One of the main objectives of reservoir characterization is to exploit the acquired seismic and well 

log data to infer the distribution of elastic parameters and litho-fluid facies around the investigated 

area. From the mathematical point of view this process is an ill-conditioned inverse problem 

(Tarantola, 2005; Aster et al. 2011) in which many models can fit the observed data equally well. For 

this reason, one goal of reservoir characterization studies is the quantification of the uncertainties 

affecting the recovered solution, which are expressed by the so-called posterior probability density 

function (pdf). The Bayesian approach is usually adopted to accurately propagate the uncertainties 

form the available seismic and geologic information to the estimated model. In this context it is crucial 



including as much a-priori information as possible (e.g. expected lateral variability and mutual 

interdependence of the inverted parameters) to successfully constrain the inversion procedure.  

One challenge of this inversion process concerns the simultaneous estimation of discrete (i.e. litho-

fluid facies) and continuous (elastic properties) model parameters from the observed data (Gunning 

and Sams, 2018). Another challenge is related to the complexity of the property distribution and 

correlation. For example, the distribution of elastic properties is often multimodal due to the presence 

of multiple litho-fluid facies. Many inversion methods have been proposed to account for this 

multimodality (Grana and Della Rossa, 2010; Bosh et al. 2010; Aleardi et al. 2018a), but an analytical 

and computationally fast derivation of the posterior model is only possible in cases of linear forward 

operators, Gaussian, Gaussian-mixture, or generalized Gaussian distributed model parameters and 

Gaussian errors in the seismic data. However, the validity of the Gaussian or Gaussian-mixture 

assumptions is often case dependent because they could not be adequate to reliably capture the 

complex relations among elastic attributes and litho-fluid facies. At the same time, the linear forward 

model might not be sufficiently accurate to describe the relation between seismic data and elastic 

parameters in cases of strong elastic contrasts at the reflecting interface and far source-receiver 

offsets. In these cases, oversimplified prior models and/or forward modelling operators could provide 

unreliable or even biased model parameter estimations (Madsen and Hansen, 2018; Aleardi 2018). 

For this reason, it is often advisable to numerically evaluate the posterior model through a Markov 

Chain Monte Carlo (MCMC) algorithm. From the one hand, MCMC methods have been successfully 

applied to solve many geophysical problems (Sambridge and Mosegaard, 2002; Malinverno, 2002; 

Bosh et al. 2007; Aleardi and Mazzotti, 2017) as they can theoretically assess the posterior 

uncertainties in cases of complex (i.e, non-parametric) prior distributions and non-linear forward 

modellings. From the other hand, these methods convert the inversion problem into a sampling 

problem and for this reason they require a much larger computational effort with respect to the 

analytical approach. Moreover, the use of non-parametric priors often complicates the inclusion of 



geostatistical a-priori information (e.g. a semivariogram model) into the inversion procedure and for 

this reason the use of non-parametric models is not so common in geophysical inversions although 

some successful and significative examples can be found in Sabeti at al. (2017) and Grana (2018). 

Finally, classical MCMC methods, such as the Metropolis-Hastings algorithm, are known to mix 

slowly between the modes if the target distribution is multimodal (Holmes et al. 2017).  To partially 

overcome this issue, multiple MCMC chains are usually employed so that the ability to exhaustively 

explore the high probability regions of the model space is enhanced.  

The sampling density of MCMC is designed to be proportional to the posterior, so that the sampled 

models can be used to approximate the statistical properties of the target pdf (the so-called Bayesian 

integrals; Sen and Stoffa, 1996). In more detail, the first stage of the MCMC sampling (usually called 

the burn-in period) can be viewed as a global optimization that moves from a random starting model 

to a high-probability region of the model space. The second stage is often called the sampling stage 

in which the small fluctuation of the misfit value indicates that the MCMC algorithm reaches the 

stationary regime. Usually the samples accepted during the burn-in period do not accurately represent 

the posterior pdf and for this reason they are not considered in the computation of the posterior pdf. 

From a theoretical point of view, it is also known that for independent samples the approximation 

error of MCMC is proportional to 1/√𝑁 where 𝑁 is the number of samples (MacKay, 2003). When 

samples are correlated, not only the convergence is typically slower, but also there is risk to derive 

biased pdf estimations. For this reason, not all the samples collected after the burn-in period are 

usually used to numerically estimate the posterior but several iterations of the algorithm are allowed 

to elapse in between successive samples: this number of iterations is the so-called lag value that can 

be set from the analysis of the autocorrelation function of the sampled models.  

Determining the convergence of the MCMC algorithm to stable posterior distribution is a crucial 

aspect of any MCMC inversion. To this end several strategies can be employed (Gelman and Rubin, 

1992). For example, in cases of multiple chains we can compute the potential scale reduction factor 



(PSRF) for each model parameter. This number quantifies the difference between the “within-walk” 

and “between-walk” estimated variances. The PSRF decreases to 1 as the number of drawn samples 

tends to infinite. A high PSRF value indicates that the variance within the walks is small compared 

to that between the walks and that longer walks are needed to converge to a stable distribution. 

Usually, a PSRF lower than 1.2 for a given unknown proves that convergence has been achieved for 

that model parameter (Gelman et al. 1995). 

In this work, we present two amplitude versus angle (AVA) inversion approaches that invert the pre-

stack seismic response for the simultaneous estimation of elastic properties (P-wave velocity; Vp; S-

wave velocity; Vs; and density ρ), litho-fluid facies and the related uncertainties. The first method 

performs a target-oriented inversion that considers the AVA responses of the target reflection 

extracted along a previously interpreted 2D stratigraphic horizon (Mazzotti and Zamboni 2003; 

Aleardi and Mazzotti 2014; Gongand and McMechan 2016). This target-oriented approach relies on 

two main assumptions: the data are plane waves, and the amplitude and phase effects produced during 

propagation through the overburden are adequately compensated during a tailored seismic processing 

sequence (Mazzotti and Ravagnan, 1995). From the one hand, the main advantage of the target-

oriented approach relies on its limited computational cost with respect to the interval-oriented 

inversion. From the other hand, the target-oriented method requires a previous accurate geological 

interpretation phase in which the target reflection is identified and accurately mapped throughout the 

inverted 3D volume. In addition, a very delicate step is the extraction of the reflection coefficients 

from the observed reflected amplitudes and phases. A robust procedure to accomplish this task is 

described, for example, in Grion et al. (1998). Notwithstanding these limitations, the target-oriented 

approach has been investigated by many authors and successfully applied in different exploration 

areas (e.g., among many others, Adriansyah, and McMechan, 2001; Zhu, X., and McMechan, 2012; 

Aleardi et al. 2017). The second implemented algorithm inverts the 1D pre-stack seismic response 

extracted along a given time-interval and for this reason here we call this method an interval-oriented 

inversion (Buland and Omre, 2003). Both approaches solve the mixed continuous-discrete inversion 



problem by adopting the non-linear Zoeppritz equations as the forward modelling and a non-

parametric mixture prior model. Normal score transformation (Kennedy and Gentle 2018) is used to 

convert the non-parametric prior distribution into a Gaussian model so that geostatistical a-priori 

information about the lateral (for the target-oriented inversion) or vertical (for the interval-oriented 

inversion) variability of elastic parameters can be easily included into the optimization procedure by 

means of a variogram model and kriging interpolation (Doyen, 2007). In addition, a first-order 

Markov chain model is included to preserve the lateral or vertical continuity of the discrete facies 

distribution. 

As previously mentioned, in the context of MCMC algorithms, the simultaneous presence of 

continuous and discrete parameter could result in persistent rejections of models, very low acceptance 

ratio and slow convergence of the sampling. For this reason, we adopt a specific MCMC recipe to 

speed up the convergence of the sampling. Our implementation is inspired by the method proposed 

by Holmes et al. (2017) but also includes multiple chains, a parallel tempering strategy (Falcioni and 

Deem, 1999; Sambridge, 2013), a delayed rejection updating scheme (Tierney and Mira, 1999) and 

hybridizes the standard Metropolis-Hasting algorithm with the more advanced Differential Evolution 

Markov Chain (DEMC) method (ter Braak and Vrugt, 2008).  

The parallel tempering (PT) strategy is a meta-algorithm in which multiple interactive chains run at 

different temperature levels. The introduction of the temperature parameter (T) rescales the pdf to be 

sampled: High-temperature chains ensure a wide exploration of the model space, whereas low-

temperature chains ensure exploitation of high-probability regions. According to stochastic criteria, 

swaps of models are allowed between chains at different temperatures, so that high temperature chains 

ensure that low-temperature chains access all the high probability regions while maintaining an 

efficient exploitation capability. The PT approach revealed to be particularly useful to explore highly 

multimodal posterior pdfs (Dosso et al. 2012). In addition, we include a delayed rejection scheme to 

additionally decrease the computational cost. The basic idea of this method is to learn from the 



previous moves by adapting the proposal distribution to the local shape of the target pdf. Finally, the 

DEMC approach combines a standard MCMC algorithm with principles coming from the differential 

evolution optimization algorithm with the aim to promote the mixing between different chains and 

expedite the convergence of the MCMC sampling to the stationary regime.  

The outcomes yielded by the two proposed MCMC inversion algorithms are compared against those 

provided by analytical inversion approaches that assume Gaussian-mixture distributed model 

parameters and linearized approximations of the Zoeppritz equations as forward modellings. For the 

lack of available field data, we focus our experiments on synthetic data derived on the basis of realistic 

subsurface models and actual well-log information.   

 

THE METHODS 

In this section we give a theoretical overview of the different methods we employ. We start by briefly 

describing the target-oriented and interval-oriented analytical approaches. Then, we discuss in more 

detail the two implemented Markov Chain Monte Carlo (MCMC) algorithms. 

Target-oriented analytical inversion 

In this case the forward modelling is based on the three-term Aki and Richards (1980) equation: 
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where Rpp is the P-P wave reflection coefficient, 𝜃is the incidence angle, ∆𝑥 indicates the contrast 

in the elastic property x across the reflecting interface, whereas �̅� is the average value of the property 

x over the reflecting interface. The terms 
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 are also known as the Vp, Vs and density 



reflectivities and indicated with 𝑅𝑉𝑝, 𝑅𝑉𝑠, and 𝑅𝜌 respectively. Following a matrix formalism, 

equation (1) can be written as: 

𝐝 = 𝐆𝐞,(2) 

where 𝐝 is the observed data vector, 𝐞 is the vector of elastic parameters and G is the forward 

modelling matrix operator. More in detail: 

𝐝 = [𝑅𝑝𝑝(𝜃1), … , 𝑅𝑝𝑝(𝜃𝑁)]𝑇, (3) 

𝐞 = [𝑅𝑉𝑝, 𝑅𝑉𝑠, 𝑅𝜌]𝑇 ,(4) 
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where N is the number of data points, whereas the 
𝑉𝑠̅̅̅̅ 2

𝑉𝑝̅̅ ̅̅ 2 value needed to define the 𝐆 matrix can be 

derived from the available information about the investigated area (i.e. borehole data). In case of a 

target-oriented amplitude versus angle (AVA) inversion, the data are the AVA responses of the target 

reflection extracted for each common-mid-point (CMP) gather along the in-line and cross-line 

directions, whereas the model parameters are the three  𝑅𝑉𝑝, 𝑅𝑉𝑠, and 𝑅𝜌terms pertaining to each 

CMP gather.  

Under the assumption of a Gaussian-mixture prior model, the a-priori information can be written as 

(Grana and Della Rossa, 2010): 

𝑝(𝐞) = ∑ 𝜔𝑖𝑁

𝐾

𝑘=1

(𝐞; 𝛍𝐞
𝑘, 𝚺𝐞

𝑘),(6) 



where K is the total number of components of the Gaussian-mixture distribution, 𝜔𝑖 is the prior weight 

of the i-th component, N indicates the Gaussian distribution with mean vector 𝛍𝐞
𝑘 and covariance 

matrix 𝚺𝐞
𝑘, whereas the superscript k indicates that the mean and the covariance are facies dependent. 

In practice, the elastic reflectivities are assumed to be Gaussian distributed within each facies. The 

number of facies and the statistical properties of each Gaussian component can be determined from 

available geological information about the investigated area. In particular, the coefficients 𝜔𝑖 define 

the a-priori probability of the i-th facies.  

In case of a linear forward operator the posterior model is again a Gaussian-mixture and is given by: 

𝑝(𝐞|𝐝) = ∑ 𝜆𝑖𝑁
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where the posterior weights 𝜆𝑖, and the a-posteriori mean vector and covariances matrix (𝛍𝐞|𝐝
𝑘  and 

𝚺𝐞|𝐝
𝑘 , respectively) can be derived as follows: 
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The coefficients 𝜆𝑖 represent the point-wise posterior probability of facies, where point-wise means 

that the coefficients 𝜆𝑖 at each spatial position are independent from those estimated at the 

neighboring positions. Finally, the a-posteriori mean elastic model can be derived as a weighted 

summation over the posterior Gaussian components (de Figueiredo et al. 2017): 

𝐞𝑒𝑠𝑡 = ∑ 𝜆𝑖𝛍𝐞|𝐝
𝑘

𝐾

𝑘=1

.(11) 



In the context of a target-oriented approach, the inclusion of a 2D geostatistical model to laterally 

constraints the inverted elastic parameters will significantly increase the computational cost of the 

algorithm (Aleardi et al. 2018b). For this reason, no lateral constraints are included into the 

implemented target-oriented analytical approach. In other words, each AVA response extracted from 

each CMP gather is inverted independently. 

 

Interval-oriented analytical inversion 

In this case, the forward modelling is given by the extension along a time interval of the single-

interface reflection coefficients of equation (1) (see Buland and Omre, 2003). If we consider the 

convolutional modelling and we adopt the matrix formalism, the observed CMP gather 𝐝 can be 

computed as: 

𝐝 = 𝐒𝐀𝐃𝐞 = 𝐆𝐞,(12) 

where S is the wavelet matrix, A contains the numerical coefficients 𝛼𝑉𝑝(𝑡), 𝛼𝑉𝑠(𝑡) and 𝛼𝜌(𝑡) of 

equation (1), D is the first order numerical derivative operator and 𝐞 contains discrete time samples 

of the natural logarithm of 𝑉𝑝, 𝑉𝑠, and 𝜌. We again assume a Gaussian-mixture prior model for 𝐞, 

that is we assume the natural logarithm of elastic properties to be Gaussian-distributed within each 

litho-fluid facies. The inversion approach we adopt is a modification of that proposed by de 

Figueiredo et al. (2018) to which we refer the reader for additional details. In this case the statistical 

properties of the posterior model can be derived as:  
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𝜆𝑖 =
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Similarly to the target-oriented approach, the coefficients 𝝀𝒊 express the point-wise posterior 

probability density function (pdf) of facies at each time sample, whereas the vector f is the low frequency 

elastic back-ground model with uncertainties expressed by the matrix 𝚺𝐟. In this case the a-priori 

model covariance matrix 𝚺𝐞
𝒌  expresses both the mutual correlation of elastic properties and their 

vertical variability. In particular, their mutual correlation is given by a stationary covariance matrix, 

while the vertical correlation is obtained by multiplying (Kronecker product) the stationary 

covariance matrix by a first-order exponential function (Buland and Omre, 2003). Again, the a-

posteriori mean elastic model can be derived by means of equation (11). 

  

The implemented Markov Cain Monte Carlo inversions 

In this section we describe the two implemented MCMC algorithms. The MCMC recipes for the 

target- and interval-oriented inversions are exactly the same because the two methods differ only for 

specific details related to the different forward modelling operators (i.e. the single interface Zoeppritz 

equation for the target-oriented approach and the Zoeppritz equations combined with a 1D 

convolutional operator for the interval-oriented inversion) and for the inclusions of geostatistical 

constraints (2D lateral constraints for the target-oriented inversion and 1D vertical constraints for the 

interval-oriented algorithm). For this reason, we first present our MCMC implementation before 

discussing in more details the differences between the two approaches.  

Generally speaking, the MCMC algorithms generates subsurface models that honor the prior 

information and accept or reject these models on the basis of their likelihood value. Being 𝐦 the 

current model and 𝐦′ the proposed (perturbed) model, the probability for the chain to move from m 

to m’ can be computed from the Metropolis-Hasting rule: 



α = 𝑝(𝐦′|𝐦) = min [1, priorratio × likelihoodratio × proposalratio]

= min [1,
𝑝(𝐦′)

𝑝(𝐦)
×

𝑝(𝐝|𝐦′)

𝑝(𝐝|𝐦)
×

𝑞(𝐦|𝐦′)

𝑞(𝐦′|𝐦)
],(16) 

where q() is the proposal distribution that defines the new model 𝐦′ as a random deviate from a 

probability distribution𝑞(𝐦′|𝐦) conditioned only on the current model 𝐦. Note that the proposal 

ratio term in equation (16) vanishes if symmetric proposals (for example a Gaussian proposal) are 

employed. If 𝐦′ is accepted 𝐦 = 𝐦′ and another model is generated as a random perturbation of 𝐦. 

The ensemble of accepted models after the burn-in period is used to numerically compute the 

posterior pdf.  

To derive a reliable posterior model we adopt multiple chains that start from different initial points 

defined on the basis of the a-priori information. The use of multiple chains has several desirable 

advantages, particularly when dealing with complex posterior distributions involving long tails, 

correlated parameters, multi-modality, and numerous local optima. In addition, to speed up the 

convergence of the MCMC sampling we adopt a parallel tempering strategy and a delayed rejection 

updating scheme.  

The parallel tempering strategy runs multiple and interactive chains simultaneously at different 

temperature levels 𝑇 = [𝑇1, 𝑇2, … , 𝑇𝑚𝑎𝑥]. In this context, for symmetric proposal distributions the 

Metropolis-Hasting rule becomes: 

𝑝(𝐦′|𝐦) = min [1,
𝑝(𝐝|𝐦′)1/𝑇

𝑝(𝐝|𝐦)1/𝑇

𝑝(𝐦′)

𝑝(𝐦)
] = min [1, exp (−

φ(𝐦′) − φ(𝐦)

2𝑇
)

𝑝(𝐦′)

𝑝(𝐦)
] , (17) 

where φ(𝐦) = ||𝐂
𝐝

−
1

2(𝐝 − 𝐝𝐩𝐫𝐞)||2
2 is the weighted L2 norm difference between observed and 

predicted data, whereas 𝐂𝐝is the data covariance matrix. In practice the sampling becomes easier as 

the T increases because the likelihood function becomes flatter with increasing temperature. Note that 

for 𝑇 → ∞ the likelihood becomes uninformative and the sampling follows the prior distribution.  In 

the approach to parallel tempering applied here, at each MCMC step the algorithm randomly chooses 



two chains i and j for a proposed swap and these chains are allowed to exchange their current models 

(or equivalently their current temperature levels) with a probability equal to: 

𝑝(𝑖, 𝑗) = min

[
 
 
 
 

1,

exp (−
φ(𝐦𝑗)

𝑇𝑖
−

φ(𝐦𝑖)
𝑇𝑗

)

exp (−
φ(𝐦𝑖)

𝑇𝑖
−

φ(𝐦𝑗)
𝑇𝑗

)



]
 
 
 
 

= min [1, exp [(
1

𝑇𝑖
−

1

𝑇𝑗
) (φ(𝐦𝑖) − φ(𝐦𝑗))]] .(18) 

If the swap is accepted: 

(𝐦𝑖, 𝑇𝑖), (𝐦𝑗 , 𝑇𝑗) → (𝐦𝑗 , 𝑇𝑖), (𝐦𝑖 , 𝑇𝑗).(19) 

Only the models collected at 𝑇 = 1 are considered in the computation of the posterior model because 

the models collected at 𝑇 > 1 sample a biased posterior pdf.  

To further increase the efficiency of the implemented MCMC algorithm we employ a delayed 

rejection strategy. Theoretically the characteristics of the proposal distribution does not influence the 

final estimated posterior pdf if an infinite number of MCMC steps is employed. However, the variance 

of the proposal distribution should be set in accordance to the expected spread of the target pdf: a 

suboptimal variance of the proposal generates persistent rejections of models, thus resulting in an 

increased computational cost and in a slower convergence rate. For this reason, it is advisable 

changing the variance of the proposal distribution when the target pdf is expected to have different 

spreads across different model space dimensions (Bodin and Sambridge, 2009). In the case of AVA 

inversion, we expect the posterior pdf having different spreads along the Vp, Vs and density directions 

due to the different resolvability of these parameters.  In our implementation after a rejected model 

𝐦′, a second attempt is made with a different proposal 𝑞2 that is independent from the previously 

rejected model generated according to the proposal 𝑞1. In this context the acceptance probability can 

be derived as: 



𝑝(𝐦′′|𝐦) = min [1,
𝑝(𝐦′′|𝐝)

𝑝(𝐦|𝐝)

𝑞1(𝐦

′|𝐦′′)

𝑞1(𝐦′|𝐦′)

(1 − 𝑝(𝐦′|𝐦′′))

(1 − 𝑝(𝐦′|𝐦))
].(20) 

In practice we derive 𝐦′′ by perturbing 𝐦 according to a second proposal distribution 𝒒𝟐 

characterized by a reduced variance with respect to the first proposal 𝒒𝟏. 

Let 𝛑 and 𝐞 be the facies and the elastic properties. In our case of a mixed discrete-continuous inverse 

problem, the posterior pdf can be written as: 

𝑝(𝛑, 𝐞|𝐝) =
𝑝(𝐝|𝐞, 𝛑)𝒑(𝐞|𝛑)𝒑(𝛑)

𝑝(𝐝)
=

𝑝(𝐝|𝐦)𝑝(𝐦)

𝑝(𝐝)
,(21) 

where 𝐦 = [𝐞, 𝛑]. Before the MCMC inversion, we exploit the available borehole data and/or the 

available geological information about the investigated area to define the 𝑝(𝛑)and 𝑝(𝐞|𝛑) 

distributions; The former is the prior distribution of facies, whereas the latter is the prior distribution 

of the elastic properties 𝐞 within each considered facies. In our implementation 𝑝(𝐞|𝛑) is a non-

parametric mixture distribution that is directly derived from the available data (e.g. well log data) by 

means of the kernel density estimation algorithm. Then, we apply a normal score transformation to 

convert each non-parametric component of the prior to a Gaussian model, thus deriving the 

𝑝(𝐳|𝛑)distribution where 𝐳 represents the normal-score transformed elastic properties. After this 

transformation the prior 𝑝(𝐳|𝛑)is a Gaussian mixture model from which we extract the mean vector 

and the covariance matrix of each component and the variogram model expressing the expected 

lateral or vertical variability of elastic parameters. From the one hand, the transformation to a 

Gaussian mixture model allows for an easy inclusion of geostatistical constraints into the MCMC 

sampling in the form of a variogram model (Doyen, 2007). From the other hand, this additional 

geostatistical a-priori information is used to attenuate the ill-conditioning of the AVA inversion. In 

other terms, the aim of our strategy is two-fold: preserving the geostatistical constraints in each model 

sampled during the MCMC iterations and generating the starting models using common and 

computationally fast geostatistical simulation techniques such as the truncated Gaussian simulation 

(Matheron et al. 1987) or the fast-Fourier-transform moving average (Ravalec et al. 2000). 



The steps of our MCMC recipe are the following: 

1. Select a given CMP position (for the target-oriented inversion) or time position (for the 

interval-oriented approach). To speed up the convergence of the algorithm this position is 

defined on the basis of the current fit between observed and predicted data. More in detail, 

let us consider the 1D inversion and let 𝐝𝐩𝐫𝐞 and 𝐝𝐨𝐛𝐬 be the predicted and observed CMP 

gathers (with offset distances converted into incidence angles). The probability of selecting 

the i-th time sample is given by: 

𝑝(𝑖) =
∑ (𝐝𝐨𝐛𝐬,𝑞 − 𝐝𝐩𝐫𝐞,𝑞)

2𝑄
𝑞=1

∑ ∑ (𝐝𝐨𝐛𝐬,𝑞,𝑙 − 𝐝𝐩𝐫𝐞,𝑞,𝑙)2𝑄
𝑞=1

𝐿
𝑙=1

,(22) 

where Q and L are the total numbers of incidence angles and time samples considered, 

respectively; 

2. For even iteration numbers: 

2.1 Draw a random number κ uniformly distributed over [0,1] and set the ξ parameter defined 

over [0,1]. Then; 

2.2 Facies Move. If 𝛋 ≤ 𝛏, perturb the current facies model 𝛑 at the selected position i, thus 

deriving 𝛑’. For the interval-oriented and the target-oriented inversions the probability of 

replacing the current facies at the selected time position depends on the previously defined 

vertical and lateral transition matrices (see discussion below). Then, the new elastic 

properties at the i-th position are random realizations from the Gaussian distribution p(𝐳|𝛑’).  

2.3 Elastic Move. If  𝛋 > 𝛏, preserve the current facies at the i-th position (so that 𝛑′ = 𝛑) and 

perturb only the elastic properties 𝐳at the selected position. This perturbation follows a 

Gaussian proposal with a zero mean and a previously defined covariance matrix 𝑁(𝐳; 0, 𝛔𝐨).  

3. For odd iteration numbers: 

3.1  DEMC move. Let p be the index of the current chain and i the time sample or the spatial 

position to be perturbed. The algorithm selects other two chains with indexes a and b that 



share with the chain p the same facies at the i-th position: Then, the perturbed elastic model 

is defined as follows:  

𝐳′𝑝,𝑖 = 𝐳𝑝,𝑖 + β(𝐳𝑎,𝑖 − 𝐳𝑏,𝑖) + δ𝑁(𝐳; 0, 𝛔𝐨)𝑤𝑖𝑡ℎ𝑎 ≠ 𝑏 ≠ 𝑝,(23) 

where β is the jump rate (see Vrugt, 2016) and δis a random number <1. If there are no 

chains a and b that share with the chain p the same facies at the i-th position, move to step 

2.1; 

4. Use a previously defined variogram model and a kriging interpolation to propagate the 

perturbation of the elastic properties at the i-th position over the neighboring CMP positions 

or time samples (Doyen, 2007). This step is crucial to ensure that all the sampled elastic 

models honor the a-priori geostatistical constraints.  

5. Apply the inverse normal score transformation to 𝐳′ to derive 𝐞′; 

6. Use the Zoeppritz equations to compute the data predicted on the proposed elastic model 𝐞′. 

Accept or reject the proposed elastic model according to the Metropolis-Hasting rule. In 

particular, the facies move results in an acceptance probability equal to: 

𝑝(𝐞′|𝐞) = min [1,
𝑝(𝐝|𝐞′)1/𝑇𝑝

𝑝(𝐝|𝐞)1/𝑇𝑝
],(24) 

where 𝑻𝒑 is the temperature level of the considered p-th chain. The elastic move and the 

DEMC move, give an acceptance probability equal to: 

𝑝(𝐞′|𝐞) = min [1,
𝑝(𝐝|𝐞′)1/𝑇𝑝

𝑝(𝐝|𝐞)1/𝑇𝑝

𝑝(𝐞′)

𝑝(𝐞)
],(25) 

7. If the perturbed elastic model is rejected come back to the current model 𝐞 and apply the 

delayed rejection scheme to derive 𝐞′′ (see equation (20)); 



8. If the perturbed model is accepted set 𝐞 = 𝐞′ (or 𝐞 = 𝐞′′) and 𝛑 = 𝛑′. 

9. Collect 𝐦 = [𝐞,𝛑] from the chains with T=1; 

10. Select two chains with indices p and q and apply the parallel tempering strategy (equations 

(18) and (19)): 

11. Apply the normal score transformation to the current elastic model 𝐞 and derive 𝐳; 

12. Repeat from 1 to 11 until the maximum number of iteration is reached; 

13. Considering the selected burn-in phase and the lag value, use the ensemble of accepted 

models to compute the statistical properties of the posterior pdf (e.g. maximum-a-posteriori 

“MAP” solution or mean model) or to visualize the marginal posterior pdf along different 

model dimensions. 

All the user-defined parameters (e.g. 𝛔𝐨, ξ, β)   are properly set in order to ensure an acceptance ratio 

between 0.2-0.4 for the chains at T=1. In particular ξ should be usually lower than 0.5 because the 

sampling space of a continuous property is larger than the sampling space of the underlying discrete 

property (Holmes et al. 2017).  

To decrease the correlation between consecutively sampled models we can consecutively perturb the 

properties at different CMP positions (for the target-oriented inversion) or time positions (for the 

interval-oriented approach), that is we can iterate the steps from 1 to 4 before the normal score 

transformation and the likelihood evaluation (steps 5 and 6; see Aleardi et al. 2018a). This strategy 

increases the likelihood variation between the current and the proposed model with respect to the 

strategy described previously in which only one CMP or time position is perturbed at a time. This 

approach permits the reduction of the lag parameter, but at the expense of a decreasing of the 

acceptance rate. 



To promote the lateral continuity of the discrete property, we employ a first order Markov model 

simulation during the MCMC sampling. In particular, for the target-oriented inversion the probability 

of a transition from facies b to facies a at the spatial position with horizontal coordinates 𝑥 and 𝑦 is 

given by: 

𝑝(𝛑𝑥,𝑦
𝑎 |𝛑𝑥−1,𝑦

ℎ , 𝛑𝑥+1,𝑦
ℎ , 𝛑𝑥,𝑦+1

ℎ , 𝛑𝑥,𝑦−1
ℎ )

= 𝑝(𝛑𝑥−1,𝑦
ℎ |𝛑𝑥,𝑦

𝑎 )𝑝(𝛑𝑥+1,𝑦
ℎ |𝛑𝑥,𝑦

𝑎 )𝑝(𝛑𝑥,𝑦−1
ℎ |𝛑𝑥,𝑦

𝑎 )𝑝(𝛑𝑥,𝑦+1
ℎ |𝛑𝑥,𝑦

𝑎 ),(26) 

where the coordinates (𝑥 − 1, 𝑦), (𝑥 + 1, 𝑦), (𝑥, 𝑦 − 1) and (𝑥, 𝑦 + 1) correspond to the first four 

neighboring CMPs that surround the considered CMP, whereas the subscript h indicates the actual 

facies configuration at each neighboring CMP. The probability to move from facies b at one 

neighboring position to the facies a at position (𝑥, 𝑦) can be derived from the b-th row and a-th column 

of the lateral transition matrix Tl. For example: 

𝑝(𝛑𝑥−1,𝑦
𝑏 |𝛑𝑥,𝑦

𝑎 ) = 𝐓𝑏,𝑎
𝑙 .(27) 

Similarly, the 1D interval-oriented inversion includes a first-order Markov model to define the 

probability of a transition from facies b at the time sample i-1 to facies a at the i-th time position. This 

probability is given by the vertical transition matrix Tv: 

𝑝(𝛑𝑖
𝑎|𝛑𝑖−1

𝑏 ) = 𝐓𝑏,𝑎
𝑣 .(28) 

As previously mentioned, determining the convergence of the sampling to a stable posterior model is 

a crucial aspect of any MCMC inversion. We discuss this aspect in more details in the following 

examples where we analyse the potential scale reduction factor (PSRF) factor and the autocorrelation 

of the sampled models. 

 

INVERSION RESULTS 

Target-oriented inversions  



In this case the reference 2D model simulates a slice from a stratigraphic grid and is derived from a 

geostatistical simulation driven by actual well log data and geological information pertaining to a 

clastic, gas saturated reservoir. The well log data will be also used to derive the a-priori model in the 

following inversion procedure. 

 

Figure 1: Example of in-line and cross-line sections extracted from the simulated 3D models of Vp, 

Vs and density. From this 3D model we extract the 2D reference model for the target-oriented 

inversion, which represents the elastic reflectivity contrasts at the top of the target, gas-saturated 

layer (indicated by the black arrows). 

We employ the truncated Gaussian simulation algorithm (Matheron et al. 1987) to derive the 3D 

discrete facies model, whereas the actual well log data distribution and the fast-Fourier-transform 

moving average (Ravalec et al. 2000) are used to distribute the elastic properties within each facies. 

In Figure 1 we show an in-line and cross-line section extracted from the simulated 3D Vp, Vs and 

density models. In this figure the black arrows identify the considered gas-saturated sand layer that 

is characterized by significant decreases of Vp, Vs and density, with respect to the encasing shales. 

From the so derived 3D model we extract the elastic properties around the top of the considered 

reservoir interval. The elastic reflectivity contrasts along the top of the reservoir are represented in 

Figure 2.  In this case the lowest and highest 𝑅𝑉𝑝, 𝑅𝑉𝑠, 𝑅𝜌 values correspond to gas-saturated sand and 

shale, respectively. The elastic reflectivity contrasts at the target and equation (1) are used to 



analytically compute the observed amplitude versus angle (AVA) responses to which we add 

Gaussian random noise to better simulate a field dataset. The so derived AVA responses constitute 

the observed data for the following inversion procedure.  

 

Figure 2: The reference model for the target-oriented inversion that represents the elastic reflectivity 

contrasts at the top of the considered reservoir interval (see also Figure 1). From left to right we 

represent 𝑅𝑉𝑝, 𝑅𝑉𝑠, 𝑅𝜌. 

Figure 3 compares the a-priori marginal non-parametric and Gaussian mixture distributions for the 

elastic parameters (𝑅𝑉𝑝, 𝑅𝑉𝑠, 𝑅𝜌). We observe a close similarity between the non-parametric and 

Gaussian-mixture distributions. Figure 4 shows normal probability plots for each elastic reflectivity 

and for each considered litho-fluid facies derived from the available well log information (used to 

simulate the model of Figure 1) and computed before and after the normal score transformation 

(Figure 4a and 4b, respectively). Figures 3 and 4 prove that, although some minor deviations from 

the theoretical Gaussian distribution (e.g. skewness) especially in the gas sand, the actual distribution 

of the elastic reflectivities within each facies is very close to a Gaussian model. In other terms, these 

figures prove that in this context the Gaussian-mixture assumption should constitute an acceptable 

compromise between the accuracy of the final predictions and the computational cost requested for a 

reliable assessment of the posterior model. For this reason, the aim of the following inversion tests is 

two-fold:  demonstrate the suitability of the implemented Markov Chain Monte Carlo (MCMC) 

approach for target-oriented AVA inversion; prove that the lateral constraints included into the 



MCMC inversion provide more realistic and stable predictions in case of low signal-to-noise (S/N) 

ratios. 

 

Figure 3: A-priori marginal distributions for the elastic reflectivities within each litho-fluid facies 

derived from the available well log information. a) The a-priori non-parametric distributions derived 

through the kernel density estimation algorithm. b) The Gaussian-mixture prior model.  

 

Figure 4: a) Normal probability plots for each elastic reflectivity and litho-fluid facies derived from 

the available well log information around the target. b) Normal probability plots derived after the 

normal-score transformation of a). In these plots the dotted lines represent the theoretical Gaussian 

distribution, whereas the circles represent the actual data. 

Figure 5 illustrates the actual autocorrelation functions computed on the reference model along the 

in-line and cross-line directions, together with the theoretical autocorrelation functions computed by 



assuming a Gaussian variogram model. The inclusion of this theoretical variogram model into the 

MCMC inversion imposes lateral constraints to the elastic models sampled by the MCMC algorithm 

and ensures more stable results in case of severe noise contamination of the observed data. In case of 

field data inversion, the lateral amplitude variability of the seismic data, integrated by the available 

well log information and by the geological knowledge of the investigated area, can be used to define 

the autocorrelation functions.  

 

Figure 5: Actual (red lines) and theoretical (blue lines) lateral autocorrelation functions for the 

cross-line and in-line directions (parts a) and b), respectively) 

For the MCMC inversion we use 40 parallel and interactive chains, and according to Dosso et al. 

(2012) we choose logarithmic temperature spacing between chains. In particular, we employ 20 

chains at T=1 and the remainder with temperatures logarithmically distributed in the range 10 < 𝑇 ≤

500. The upper temperature limit is set to a value sufficiently large to ensure an acceptance ratio 

around to 0.5-0.6 for the corresponding chain. To decrease the correlation between the current and 

the proposed model we consecutively perturb the properties at 20 different common-mid-point (CMP) 

gather positions before the likelihood evaluation. The number of MCMC iterations is set to 400000 

with a burn-in period of 200000 and a lag of 30. These values have been determined from the 

evolution of the likelihood values of the different chains, from the evolution of the potential scale 



reduction factor (PSRF) for different model parameters and from the inspection of the autocorrelation 

function for different model parameters (see the next section).  

For the comparability of the results, both the analytical and MCMC inversions consider the same 

angle range between 0 and 30 degrees. However, note that the Zoeppritz equations make it possible 

for the MCMC considering a more extended angle range. The lateral transition matrix employed by 

the MCMC algorithm along both the in-line and cross-line directions is the following: 

𝐓𝑙 = [
0.6 0.2 0.2
0.2 0.6 0.2
0.2 0.2 0.6

].(29) 

If we consider the i-th spatial position, the rows (from top to bottom) represent shale, brine sand and 

gas sand at one neighbouring position i-1, whereas the columns (from left to right) represent shale, 

brine sand and gas sand at the i-th position.  The higher values along the main diagonal of 𝐓𝑙 preserve 

the continuity of litho-fluid facies in the sampled models. This matrix can be inferred from available 

geological information and from the lateral variability of the available data. However, a quality 

control of the inversion results (i.e. comparison between inverted properties and well log data) and 

slight modifications of the so derived transition matrices are usually needed to obtain optimal 

predictions. 

In the first inversion example we simulate an optimal signal to noise ratio equal to 50 in the observed 

data. In this favourable scenario we expect that the analytical and MCMC target-oriented inversions 

yield very similar predictions. Indeed, Figure 6 demonstrates that both approaches provide 

comparable elastic a-posteriori mean model. In addition, the comparison of Figure 7 and Figures 8 

show that the analytical and MCMC inversion also achieve very similar maximum-a-posteriori 

(MAP) solutions and posterior probability density functions (pdfs) in the facies classification. 

However, even in this favourable scenario with low noise and almost Gaussian-mixture-distributed 

elastic reflectivities in the reference model, the MCMC approach provides superior facies 

classification results. In particular, note that the analytical approach erroneously predicts brine sand 



between cross-line 40-50 and in-line 30-50 (green circles in Figures 7a-b). Differently, the MCMC 

approach correctly identifies some small and circular shale bodies at these spatial locations (green 

circles in Figures 8a-b).    

 

Figure 6: Results for a high S/N ratio equal to 50. a) Mean a-posteriori models predicted by the 

analytical inversion. b) Mean a-posteriori models predicted by the MCMC inversion. In a) and b) 

𝑅𝑉𝑝, 𝑅𝑉𝑠, 𝑅𝜌 are represented from left to right. 

 

Figure 7: Facies classification results provided by the analytical inversion for a high S/N ratio equal 

to 50. a) True facies model. b) MAP facies solution. c) Posterior probability for shale (left), brine 



sand (center) and gas sand (right).  The circles in (a) and (b) highlight some examples of 

misclassifications. 

 

Figure 8: Facies classification results provided by the MCMC inversion for a high S/N ratio equal to 

50. a) True facies model. b) MAP facies solution. c) Posterior probability for shale (left), brine sand 

(center) and gas sand (right).  The circles in (a) and (b) highlight the same areas evidenced in Figure 

7. Here, note the superior classification results provided by the MCMC method. 

In the next example we decrease the S/N ratio to 2. In this less favourable scenario, we expect that 

the lateral constraints for both the continuous and the discrete properties employed by the MCMC 

algorithm will provide more stable and reliable results than those yielded by the analytical approach 

where the lateral parameter correlation is neglected. Figure 9a shows that the analytical approach now 

provides very scattered estimates of the elastic reflectivities, and final 2D models where the lateral 

formation boundaries are difficult to identify. This scattering is related to the pointwise nature of the 

inversion that does not account for the spatial correlation of the elastic parameters and facies 

distribution. Differently, the MCMC approach preserves the actual lateral variability of the 

𝑅𝑉𝑝, 𝑅𝑉𝑠, 𝑅𝜌  properties and retrieves stables estimates (Figure 9b). In Figures 10 and 11, we observe 

that the overall match between the true and the final facies models is decreased with respect to the 

previous inversion with high S/N ratio. However, the comparison of Figure 10 and Figure 11 again 



confirms that the MCMC inversion provides much less scattered and more stable predictions in which 

the actual lateral continuity of the discrete property is preserved.  

 

Figure 9: As in Figure 6 but for a S/N ratio equal to 2. a) and b) refer to the analytical and MCMC 

estimated mean models, respectively. The 𝑅𝑉𝑝, 𝑅𝑉𝑠, 𝑅𝜌 are represented from left to right. 

 

Figure 10: Facies classification results provided by the analytical inversion for a S/N ratio equal to 

2. a) True facies model. b) MAP facies solution. c) Posterior probability for shale (left), brine sand 

(center) and gas sand (right).   



 

Figure 11: Facies classification results provided by the MCMC inversion for a S/N ratio equal to 2. 

a) True facies model. b) MAP facies solution. c) Posterior probability for shale (left), brine sand 

(center) and gas sand (right).   

Figure 12 shows comparisons for two CMP gathers of the observed AVA responses and the AVA 

responses computed on the mean a-posteriori solutions provided by the analytical and the MCMC 

inversions. In both cases we note a satisfactory match between the predicted and the observed data. 

However, if we compute the L2 norm data misfit we get for the analytical approach values of 0.0661 

(CMP on the left of Figure 12a) and 0.0742 (CMP on the right of Figure 12a), whereas from the 

MCMC predictions we obtain values of 0.0689 (CMP on the left of Figure 12b) and 0.0756 (CMP on 

the right of Figure 12b). The higher data misfits for the MCMC inversions are related to the inclusions 

of the lateral constraints that act as regularization terms that stabilize the solution at the expense of 

an increased data misfit value.   

Finally, some considerations about the computational costs. The analytic inversion takes less than 5 

seconds if we consider a serial Matlab codes running an Intel i7-7700HQ@2.8GHz with 16 Gb RAM. 

For the MCMC inversion we implement a parallel Matlab code that runs in approximately 40 minutes 

on two compute nodes equipped with two deca-core Intel E5-2630 @2.2 GHz (128 Gb RAM). It is 



clear that the MCMC inversion retrieves highly accurate uncertainty appraisals but at the expense of 

an increased computational effort. We return to this aspect in the discussion section. 

 

Figure 12: Examples of observed AVA responses (black lines) and predicted AVA responses (red 

lines) computed on the MAP solutions provided by the analytical inversion (a) and the MCMC 

inversion (b) in case of S/N=2. 

Convergence diagnostic for the implemented target-oriented algorithm 

We now discuss in more detail the convergence of the implemented MCMC algorithm for target-

oriented AVA inversion. Here we limit to the second MCMC example with S/N ratio equal to 2. 

Figure 13 shows examples of evolutions of the negative log-likelihood for 5 out of 40 chains. We 

note that the combined use of parallel tempering and delayed rejection, guarantee optimal exploration 

and exploitation capabilities and makes the algorithm rapidly converge toward the most promising 

portions of the model space. Indeed, the exploitation is guaranteed by the chains at low temperature, 

while the exploration is performed by the chains at high temperature. In particular, the black arrows 

in Figure 13, highlight the beneficial effects produced by swaps of models between different chains. 

These swaps produce an instantaneous decrease of the negative log-likelihood value and allow the 

chains to escape from local optima of the posterior pdf. Note that all the considered chains attain a 



stable negative log-likelihood value after approximately 200000 iterations. This value corresponds to 

the selected burn-in period. 

 

Figure 13: Examples of evolutions of the negative log-likelihood for 5 out of 40 interactive chains. 

The black arrows highlight the beneficial effect of the PT strategy. Different colors represent different 

chains. 

To assess the convergence of the algorithm we monitored the evolution of the potential scale 

reduction factor (PSRF) for different model parameters (elastic reflectivity estimated at different 

CMP locations). Examples of PSRF values for 6 CMP positions are represented in Figure 14. We 

note that only 20000 iterations, approximately, are needed to attain reliable posterior pdf estimations 

for 𝑅𝑉𝑝, whereas 200000 iterations are usually requested to accurately estimate the posterior pdfs for 

𝑅𝑉𝑠 and 𝑅𝜌. These different convergence rates are obviously related to the different influence that the 

elastic parameters exert on the observed data. Indeed, the 𝑅𝑉𝑝 plays the major role in determining the 

observed P-wave reflection coefficients, while 𝑅𝑉𝑠 and 𝑅𝜌 exert weaker influences. 

Finally, Figure 15 represents some examples of normalized autocorrelation functions computed on 

the sampled  𝑅𝑉𝑝, 𝑅𝑉𝑠, and 𝑅𝜌 models. To set the lag value of 30 used in the previous inversion tests, 

we simply count the number of consecutive models requested to obtain autocorrelation values below 

0.5-0.4. This threshold value is assumed to be a good compromise between reliable posterior 

assessments and the overall computational cost of the inversion procedure. A lower threshold value 



would guarantee more accurate pdf estimations but at the expense of an extra computational cost 

requested to sample a number of models sufficient enough to reliably evaluate the posterior. The 

analysis of the evolution of the negative log-likelihood value, of the PSRF, and of the autocorrelation 

function is crucial to determine the number of MCMC iterations requested to attain accurate posterior 

pdf estimations. 

 

Figure 14: Example of evolution of the PSRF value for the elastic reflectivities pertaining to 6 CMP 

gathers. The dotted red lines show the desired PSRF value of 1.2. In each plot, the blue lines pertain 

to model parameters estimated at different CMP gather positions. 

 

Figure 15: Close-up of the normalized autocorrelation functions derived from the 𝑅𝑉𝑝(a), 𝑅𝑉𝑠 (b), 

and 𝑅𝜌(c) vales sampled at a given CMP gather position. 

Interval-oriented inversions 

In this case we consider actual well-log data pertaining to 7 wells investigating a gas-saturated clastic 

reservoir located in a shale-sand sequence. Figure 16 shows the a-priori non-parametric and the 

Gaussian-mixture marginal distributions for each elastic property derived from 5 out of 7 wells 

investigating the reservoir interval. The remaining two wells are used as blind tests in the following 

inversion examples. This characteristic makes the following inversion tests more realistic with respect 



to the previous target-oriented examples. Indeed, now the prior is not directly derived from the 

information used to define the true model but is derived from a subset of the available well log data 

while the remaining well data are used as blind tests. The elastic properties pertaining to the two blind 

wells and the forward modelling of equation (12) are used to compute the CMP gathers. To better 

simulate a filed dataset, we contaminate the observed data with Gaussian uncorrelated noise. We 

employ a 55-Hz Ricker wavelet as the source signature that is assumed known during the inversion, 

whereas the angle range is [0, 30] degrees. Differently from the previous example (Figures 3 and 4), 

we now note some important differences between the two non-parametric and Gaussian-mixture 

distributions. In particular, the distributions are still very similar for shale, but significatively different 

for brine sand and gas sand where the non-parametric distribution shows skewness or even 

multimodalities. Obviously, the Gaussian-mixture model does not capture these characteristics and 

for this reason it constitutes an oversimplified statistical model in this context. For this reason, we 

expect the MCMC inversion outperforms the analytical approach. These considerations are confirmed 

by the normal probability plots of Figure 17a where we observe significative deviations from the 

Gaussian model for Vp and Vs in the brine sand and gas sand. These deviations disappear after the 

normal score transformation (Figure 17b). For comparability in both Figures 16 and 17 we plot the 

natural logarithm of the elastic parameters. 

 

Figure 16: A-priori models for the elastic parameters and for each litho-fluid facies derived from 5 

out of 7 available wells. a) The a-priori non-parametric model derived through the kernel density 



estimation algorithm. b) The Gaussian-mixture prior model. In both a) and b) we consider the natural 

logarithm of the elastic properties. 

 

Figure 17: a) Normal probability plot derived from the actual well log data pertaining to 5 out 7 

available wells. b) Normal probability plot derived on the normal score transformed actual well log 

data. In both a) and b) we consider the natural logarithm of the elastic properties. In these plots the 

dotted lines represent the theoretical Gaussian distribution, whereas the circles represent the actual 

well log data. 

In the example on the first blind well we simulate a S/N ratio of 10 in the observed data, whereas this 

ratio is decreased to 2 in the second blind well example. In the MCMC inversion we use 40 different 

chains running for 10000 iterations each and with a burn-in period of 5000: 20 chains run at T=1, 

while the remainder at logarithmically spaced temperature values. We consecutively perturb the 

elastic properties at ten different time positions before the likelihood evaluation and we set a lag value 

of 20. The vertical transition matrix employed by the MCMC approach is the following: 

𝐓𝑣 = [
0.8 0.1 0.1
0.3 0.7 0
0.1 0.4 0.5

].(30) 

Note the null transition probability from a brine sand above to a gas sand below. As for the target-

oriented approach this matrix can be defined on the basis of available well log data and properly 

modified to avoid unphysical transitions (from example from a brine sand above to a gas sand below). 



Figures 18 and 19 compare the results provided by the analytical and MCMC inversions for the first 

blind well. We observe that both approaches correctly capture the vertical variability of the elastic 

parameters and yield a predicted data that closely matches the observed one. The good agreement 

between the final estimates provided by the two methods seems to confirm the suitability of the 

Gaussian-mixture assumption also in this case. For this reason, for a more quantitative assessment of 

the quality of the analytical and MCMC predictions we compute the coverage probability that is the 

actual probability that a given probability interval (in the following the 0.80 probability interval 

defined around the mean a-posteriori model) contains the true property value. The coverage 

probabilities for the three elastic properties provided by two inversion methods are given in Table 1. 

We observe that the MCMC method yields higher coverage probability values for Vp and density, 

thus confirming the superior quality of the prediction intervals provided by this method with respect 

to those yielded by the analytical approach. The facies classification results are again very similar, 

although the 1D first-order Markov model employed by the MCMC method avoids unphysical 

transitions in the MAP facies solution such as the transition from a brine to a gas saturated sand 

predicted by the analytical approach around 937 ms.  

 

Figure 18: Results provided by the analytical inversion for the first blind well test. In a), b) and c) 

the black lines represent the true property values, the red lines are the estimated mean models, 

whereas the colormap codes the estimated posterior pdf. d) Comparison of observed (black) and 

predicted (red) seismic data computed on the a-posteriori mean model. 



 

Figure 19: As in Figure 14 but for the MCMC inversion. 

 

Figure 20: Facies classification results provided by the analytical inversion for the first blind test. a) 

True facies profile. b) MAP facies solution. c) Estimated posterior pdf of facies. 

 

Figure 21: As in Figure 20 but for the MCMC algorithm. 



Coverage probabilities (0.8) P-wave velocity S-wave velocity Density 

Analytical 0.916 0.912 0.926 

MCMC 0.944 0.902 0.934 

Table 1: Coverage probabilities derived from the posterior pdfs estimated by the analytical and 

MCMC algorithms for the first blind well. 

The comparison of the MCMC and analytical approach is now extended to the second blind well 

where we impose a S/N ratio of 2. Again, the two approaches yield similar predicted elastic profiles 

(see Figures 22 and 23), although the MCMC inversion often provides slightly superior prediction 

intervals as demonstrated by the coverage probability values (see Table 2). In this case the differences 

between the outcomes of the two approaches can be clearly appreciated by comparing the facies 

classification results. Indeed, just a visual inspection of the estimated facies models and the associated 

posterior pdfs confirms that the MCMC method outperforms the analytical inversion as it estimates a 

MAP facies solution with a closer match with the actual facies profile especially below 935 ms, where 

the analytical approach erroneously interprets a finely layered shale-brine sand sequence as a gas 

saturated layer enclosed in a thick brine sand sequence. Finally, Figure 26 shows a comparison 

between the marginal distributions derived from the actual elastic properties of the second blind well 

and the marginal distributions derived from the ensemble of accepted MCMC models. This figure 

proves that the implemented MCMC algorithm successfully samples the actual multimodal 

distribution of the elastic parameters. 

  



 

Figure 22: Results provided by the analytical inversion for the second blind well test. In a), b) and c) 

the black lines represent the true property values, the red line are the mean models, whereas the 

colormap codes the estimated posterior pdf. d) Comparison of observed (black) and predicted (red) 

seismic data computed on the a-posteriori mean model. 

 

Figure 23: As in Figure 22 but for the MCMC inversion.  



 

Figure 24: Facies classification results provided by the analytical inversion for the second blind test. 

a) True facies profile. b) MAP facies solution. c) Estimated posterior pdf of facies. 

 

Figure 25: As Figure 20 but for the MCMC algorithm.  

Coverage probabilities (0.8) P-wave velocity S-wave velocity Density 

Analytical 0.824 0.796 0.805 

MCMC 0.924 0.865 0.906 

Table 2: Coverage probabilities derived from the posterior pdfs provided by the analytical and 

MCMC algorithms for the second blind well. 

 



 

Figure 26: Comparison between the actual marginal distributions of elastic parameters along the 

second blind well (blue curves) and the marginal distributions derived from the accepted MCMC 

models (red bars).  

This example proves that in the investigated area, the correct modelling of the facies dependency of 

the elastic properties is crucial to achieve accurate estimations and reliable prediction intervals. For 

what concern the computational costs, the analytical method runs in very few seconds if we consider 

a serial Matlab code, running on an Intel i7-7700HQ@2.8GHz with 16 Gb RAM. For the MCMC 

inversion we employ a parallel Matlab code that runs in approximately 12 minutes on two compute 

nodes equipped with two deca-core Intel E5-2630 @2.2 GHz (128 Gb RAM). 

 

Convergence diagnostic for the interval-oriented algorithm 

We now focus the attention on the second blind well example to analyse the convergence of the 

interval-oriented algorithm. The evolution of the log-likelihood values for 5 out of 40 chains (Figure 

27) proves that the algorithm attains the stationary regime after 5000 iterations, approximately, after 



which the likelihood values fluctuate around a stable value. Figure 28 shows examples of evolutions 

of the PSRF value for the Vp, Vs, and density values extracted from six different time positions. It 

emerges that 1000 iterations, approximately, are needed to achieve reliable uncertainty 

quantifications for the Vp parameter, whereas the convergence for the Vs and density is attained after 

5000 iterations. These different convergence rates are again related to the different influence played 

by Vp, Vs, and density on the observed seismic amplitudes. The analysis of the normalized 

autocorrelation functions was used to set the lag-period value in the MCMC sampling (Figure 29). 

We observe that approximately 20 consecutive models are needed to obtain a correlation value below 

the selected threshold of 0.5-0.4.  

 

Figure 27: Example of evolutions of the negative log-likelihood for 5 out of 40 interactive chains.  

 

Figure 28: Examples of evolution of the PSRF value for the elastic properties estimated at 6 different 

time positions. In Each plot the dotted red lines show the desired PSRF value of 1.2, whereas the blue 

lines pertain to the elastic properties estimated at different time samples. 

 



 

Figure 29: Close-up of the normalized autocorrelation functions for the 𝑉𝑝(a), 𝑉𝑠 (b), and density 

(c) models sampled at a given time position. 

 

DISCUSSION 

The aim of the implemented Markov Chain Monte Carlo (MCMC) inversions is to accurately estimate 

the multi-modal posterior distribution of facies and elastic properties in a high-dimensional parameter 

space. In our inversion examples, we assume the noise to be uncorrelated and Gaussian-distributed. 

Possible improvements could be including the noise spatial correlation (Madsen et al. 2017) and/or 

the noise standard deviation as additional unknowns to be sampled during the inversion (Bodin et al. 

2012; Sambridge 2014). In other words, this strategy let the algorithm infer the appropriate level of 

fitting and prevents to overfit or underfit the observed data. We are now working on these research 

topics.  

From a mathematical point of view, the 1D interval approach can be easily extended to 2D or 3D 

cases by adding lateral constrains for the continuous and discrete model parameters.  One of the 

challenges in field case applications, is the convergence of the algorithm, which can be very slow in 

high dimensional spaces due to the long time necessary to reach the stationary regime. In these cases, 

the posterior probability density function (pdf) tends to be highly localized within each model 

dimension and this results in a low acceptance ratio and a very slow convergence of the chain. In 

other terms, the chain tends to converge to local optima of the target pdf represented by a given facies 

configuration. To partially attenuate this situation, we suggest using high ξ value (around 0.8-0.9) at 



the beginning of the inversion in order to promote jump between different facies configurations. Then, 

the ξ value should be decreased (i.e. to 0.2-0.3) during the sampling to get a robust estimate of the 

posterior pdf of the continuous property. In addition, the use of the a-priori as the proposal usually 

reduces the acceptance ratio of the chain and slows down the convergence. For this reason, the 

algorithm can be improved by sampling from an approximate posterior distribution rather than from 

the prior model. To this end many strategies could be adopted, for example implementing the adaptive 

Metropolis algorithm (Haario et al. 2001), or sampling from an approximated estimate of the posterior 

covariance matrix computed from a local approximation of the Jacobian matrix (see Dosso et al. 

2014).  

In a 2D interval-oriented inversion of field seismic data we performed (not shown here for 

confidentiality reasons), we found also particularly useful deriving the starting model for the MCMC 

sampling from the results of a previous Bayesian linear inversion. In this way, the burn-in period that 

is needed to attain the stationary regime is drastically reduced. However, if we consider the current 

implementation there is still room for a further reduction of the computational cost, for example by 

employing a more efficient and scalable parallel code.  However, it is the author’ opinion that all 

these improvements are not enough to make the algorithm applicable in 3D inversions. For this 

reason, we are now working on more advanced MCMC algorithms that incorporate the principles of 

Hamiltonian dynamics into the standard Metropolis-Hasting method (Betancourt, 2017). This 

approach exploits the derivative information of the objective function (the negative log-likelihood) 

to speed up the converge of the MCMC sampling toward the stationary regime. An additional, 

outstanding benefit of this method is that it produces largely independent models so that it allows for 

a substantial reduction of the lag parameter. This reflects in more accurate posterior estimations and 

in a significant reduction of the computational effort.   

 

 



CONCLUSIONS 

We presented two Markov Chain Monte Carlo (MCMC) inversion algorithms for target- and interval-

oriented amplitude versus angle (AVA) inversion. The main advantage of the implemented MCMC 

recipe is that it is suitable for mixed discrete-continuous inverse problems, non-linear forward 

modellings and multimodal, non-parametric prior distributions. In other terms, our approach does not 

require any assumptions (i.e. Gaussianity) about the distribution of the continuous properties in a 

given facies. The first algorithm performs a 2D target-oriented inversion where only the AVA 

responses of the target reflection are considered. Differently, the second approach performs a 1D 

interval-oriented inversion in which a given time range around the target reflection is inverted. Both 

methods include geostatistical constraints for the elastic parameters, a 1D Markov prior models for 

the facies distribution, and use the exact non-linear Zoeppritz equations as the forward modelling. 

Our implemented MCMC recipe is especially aimed at decreasing the computational effort and it 

includes multiple chains, a parallel tempering strategy, a delayed rejection updating scheme and 

hybridize the standard Metropolis-Hastings algorithm with the Differential Evolution Markov Chain 

method. Our inversion results and the convergence analysis of the MCMC sampling demonstrated 

that two implemented algorithms efficiently sample from a multimodal non-parametric mixture 

distribution with a reasonable computational effort.  The outcomes of the two implemented methods 

have been assessed by comparison with the results provided by analytical inversions that consider 

Gaussian-mixture distributed elastic properties.  

Our examples showed that the proposed target-oriented MCMC approach yields final predictions 

very similar to the analytical inversion in case of optimal signal-to-noise ratio and when the actual 

model parameter distribution can be reasonably approximated to a Gaussian-mixture model. 

Differently, the lateral constraints included in the target-oriented MCMC method ensured more stable 

and more reliable predictions in cases of poor signal-to-noise ratio. The experiments on the 1D 

interval-oriented approach demonstrated the importance of correctly modelling the multimodal 



behavior of the elastic properties to retrieve accurate predictions. Indeed, although the analytical 

inversion algorithm achieved satisfactory results, the non-parametric prior considered by the MCMC 

approaches guaranteed superior solutions and more accurate uncertainty quantifications. 

Obviously, for the applications of the proposed methods all the requirements for AVA inversion must 

be met (controlled amplitude processing, good data quality). In addition, the local 1D assumption for 

the subsurface model must be valid. For this reason, in case of lateral velocity variations the seismic 

data input for the inversion should be accurately pre-stack time migrated. 

 

Data Availability Statement 

Data available on request due to privacy/ethical restrictions 
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