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Dynamics and symmetry realization in various chiral gauge theories in four dimensions are investigated,
generalizing a recent work by Shifman and the present authors, by relying on the standard ’t Hooft anomaly
matching conditions and on some other general ideas. These requirements are so strong that the dynamics of
the systems are severely constrained. Color-flavor or color-flavor-flavor locking, dynamical Abelianization,
and combinations of these are powerful ideas which often lead to solutions of the anomaly matching
conditions. Moreover, a conjecture is made on the generation of a mass hierarchy associated with symmetry
breaking in chiral gauge theories, which has no analogs in vectorlike gauge theories such as QCD.
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I. INTRODUCTION

Our world has a nontrivial chiral structure. Macroscopic
structures such as biological bodies often have approxi-
mately left-right symmetric forms, but not exactly. At
molecular levels, Oð10−6 cmÞ, the structure of DNA has a
definite chiral spiral form.At themicroscopic length scales of
the fundamental interactions, Oð10−14 cmÞ, the left- and
right-handed quarks and leptons have different couplings to
the SUð3Þ × SULð2Þ ×UYð1Þ gauge bosons. In spite of the
impressive success of the standard model, and after many
years of theoretical studies of four-dimensional gauge
theories, our understanding today of strongly coupled chiral
gauge theories is surprisingly limited.1 Almost a half century
of studies of vectorlike gauge theories like SUð3Þ quantum
chromodynamics (QCD), based on lattice simulations with
ever more powerful computers, and roughly 25 years of
beautiful theoretical developments in models with N ¼ 2
supersymmetries both concern vectorlike theories only.
Perhaps it is not senseless to make more effort to understand
this class of gauge theories, which nature might be making
use of in an as yet unknown way to us.
Urged by such a motivation, we have recently revisited

the physics of some chiral gauge theories [15]. In this
paper, we generalize the analysis done there to a wider class

of models and try to learn some general lessons from them.
We use as a guiding light the standard ’t Hooft anomaly
matching conditions [16]. To be concrete, we shall limit
ourselves to SUðNÞ gauge theories with a set of Weyl
fermions in a complex representation of the gauge group.
Also, only asymptotically free types of models will be
considered, as weakly coupled infrared-free theories can
be reliably analyzed in perturbation theory, as in the case
of the standard electroweak model. For simplicity, we
shall restrict ourselves to various irreducibly chiral2

SUðNÞ theories, with Nψ fermions ψfijg in the symmetric
representation, N χ fermions χ½ij� in the antisymmetric re-
presentation, and a number of antifundamental (or fun-
damental) multiplets, ηAi (or η̃Ai).3 The number of the latter
is fixed by the condition that the gauge group be
anomaly-free.
Figure 1 gives a schematic representation of the various

irreducibly SUðNÞ chiral theories we shall be interested in.
Both Nψ and N χ can go up to 5 without loss of asymptotic
freedom for large N. The ones we will explicitly consider
are summarized in Table I with their b0 coefficient. The
gauge interactions in these models become strongly
coupled in the infrared. There are no gauge-invariant
bifermion condensates, no mass terms or potential terms
(of renormalizable type) can be added to deform the
theories, and no θ parameter exists. The main questions
we would like to address, given a model of this sort, are
how to solve the ’t Hooft anomaly matching conditions in
the IR, and whether there is more than one apparently
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1See, however, [1–13] for a partial list of earlier studies of
these theories. See [14] for a recent work on the infrared fixed
point in a class of chiral gauge theories.

2For example, we do not consider addition of fundamental-
antifundamental pairs of fermions. Models of this type in the
simplest cases, ðNψ ; N χÞ ¼ ð1; 0Þ; ð0; 1Þ, were studied in [9].

3Let us use the indices A; B;… for flavor and the indices
i; j;… for color below.

PHYSICAL REVIEW D 100, 114008 (2019)

2470-0010=2019=100(11)=114008(22) 114008-1 Published by the American Physical Society

https://orcid.org/0000-0002-4944-5444
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.100.114008&domain=pdf&date_stamp=2019-12-04
https://doi.org/10.1103/PhysRevD.100.114008
https://doi.org/10.1103/PhysRevD.100.114008
https://doi.org/10.1103/PhysRevD.100.114008
https://doi.org/10.1103/PhysRevD.100.114008
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


possible dynamical scenario that is consistent with the
matching conditions.
The paper is organized as follows. In Sec. II, we revisit the

ðNψ ; N χÞ ¼ ð1; 1Þ model previously considered in [15].
In Secs. III–X, we consider, respectively, the models
ðNψ ; N χÞ ¼ ð1; 0Þ; ð2; 0Þ; ð3; 0Þ; ð0; 1Þ; ð0; 2Þ; ð0; 3Þ; ð2; 1Þ;
ð1;−1Þ. In Sec. XI, we discuss the pion-decay constant
and a possible new hierarchy mechanism. We conclude in
Sec. XII by trying to learn some general lessons for strongly
coupled chiral gauge theories. Consistency checks of the

many proposed phases with the a theorem and with the
Appelquist-Cohen-Schmaltz (ACS) criterion is done in the
Appendix.

A. Dynkin index and symmetric traces
of the symmetric and antisymmetric

representations in SUðNÞ
We recall here, for the convenience of the reader, a few

well-known Dynkin indices and symmetric traces which
are repeatedly used in the following analyses. The Dynkin
index TðRÞ is defined by

Tr taRt
b
R ¼ TðRÞδab: ð1:1Þ

Summing over a ¼ b, one gets

DðRÞC2ðRÞ ¼ TðRÞðN2 − 1Þ;X
a

taRt
a
R ¼ C2ðRÞ1DðRÞ; ð1:2Þ

where DðRÞ is the dimension of the representation and
C2ðRÞ is the quadratic Casimir. For the fundamental,

ð1:3Þ

and for the adjoint,

C2ðRÞ ¼ N; DðRÞ ¼ N2 − 1; ∴ Tadj ¼ N: ð1:4Þ

For the symmetric and antisymmetric representations,

ð1:5Þ

The conjugate representations have the same Dynkin index.

The symmetric traces appearing in the triangle anomalies
are defined by

dðRÞ ¼ Tr taRt
b
Rt

c
R þ ðb ↔ cÞ: ð1:6Þ

For the symmetric and antisymmetric representations,

ð1:7Þ

Furthermore, for a pair of conjugate representations,

FIG. 1. A class of chiral QCD theories at large N in the plane
ðNψ ; N χÞ.

TABLE I. First coefficients of the beta function.

Model 3b0

(1,1) 9N − 8
(1,0) 9N − 6
(2,0) 7N − 12
(3,0) 5N − 18
(0,1) 9N þ 6
(0,2) 7N þ 12
(0,3) 5N þ 18
(2,1) 7N − 14
ð1;−1Þ 7N
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dðR�Þ ¼ −dðRÞ: ð1:8Þ

These are all that we need for our analysis.

II. REVISITING THE ðNψ ;Nχ Þ= ð1;1Þ
(“ψχη”) MODEL

We first review the analysis of the model with left-
handed fermion matter fields

ψfijg; χ½ij�; ηAi ; A ¼ 1; 2;…; 8; ð2:1Þ

a symmetric tensor, an antiantisymmetric tensor, and eight
antifundamental multiplets of SUðNÞ, and we add a few
new comments with respect to [15].4 It is asymptotically
free, with the first coefficient of the beta function being

b0 ¼
1

3
½11N − ðN þ 2Þ − ðN − 2Þ − 8� ¼ 9N − 8

3
: ð2:2Þ

It is a very strongly coupled theory in the infrared and
unlikely to flow into an infrared-fixed point conformal field
theory. A nonvanishing instanton amplitude

hψψ…ψ χ χ… χη…ηi ≠ 0 ð2:3Þ

involves N þ 2 ψ’s, N − 2 χ’s, and eight η’s.
The model has a global SUð8Þ symmetry. It also has

three Uð1Þ symmetries, Uψð1Þ, U χð1Þ, and Uηð1Þ, of
which two combinations are anomaly-free. They can be
taken, e.g., as

U1ð1Þ∶ ψ → ei
α

Nþ2ψ ; η → e−i
α
8η;

U2ð1Þ∶ ψ → ei
β

Nþ2ψ ; χ → e−i
β

N−2 χ: ð2:4Þ

There are also anomaly-free discrete subgroups ZNþ2 ⊗
ZN−2 ⊗ Z8 of Uψ ð1Þ, U χð1Þ, and Uηð1Þ which are not
broken by the instantons. However, they are not indepen-
dent of each other, in view of the nonanomalous sym-
metries (2.4) The global continuous symmetry of the
ψ − χ − η model is

Gf ¼ SUð8Þ ×U1ð1Þ ×U2ð1Þ: ð2:5Þ

A. Partial color-flavor locking

Possible dynamical scenarios in this model were ana-
lyzed and discussed in [15]. It was proposed that a possible
phase (valid for N ≥ 12) can be described by the non-
vanishing bifermion condensates

hϕiAi ¼ hψ ijηAj i; hϕ̃i
ji≡ hψ ik χkji: ð2:6Þ

More concretely, the proper realization of the global SUð8Þ
symmetry has led us to assume the following form for these
condensates:

hψ ijηAj i ¼ Λ3

�
c18

0N−8;8

�
iA
;

hψ ik χkji ¼ Λ3

0
BBBBBB@

a18
d1

. .
.

dN−12

b14

1
CCCCCCA

i

j

;

ð2:7Þ

where

8aþ
XN−12

i¼1

di þ 4b ¼ 0; a; di; b ∼Oð1Þ: ð2:8Þ

The symmetry breaking pattern is, therefore,

SUðNÞc × SUð8Þf × Uð1Þ2
→ SUð8Þcf ×Uð1ÞN−11 × SUð4Þc: ð2:9Þ

The theory dynamically Abelianizes (in part). SUð8Þ ⊂
SUðNÞ is completely Higgsed, but due to color-flavor
(partial) locking, no Nambu-Goldstone (NG) bosons
appear in this sector [the would-be NG bosons make the
SUð8Þ ⊂ SUðNÞ gauge bosons massive]. Only SUð4Þ ⊂
SUðNÞ remains unbroken and confining. The remainder of
the gauge group Abelianizes. The baryons

B̃A
j ¼ ψ ik χ½kj�ηAi ∼ ηAj ; ð9 ≤ j ≤ N − 4Þ; ð2:10Þ

and

BfABg ¼ ψ ijηAi η
B
j ; ð2:11Þ

symmetric in the flavor indices (A ↔ B),5 remain massless
and together saturate the ’t Hooft anomaly matching
condition for SUð8Þ:

8þ 4þ N − 12 ¼ N: ð2:12Þ

Note that both nonanomalous continuous U1;2ð1Þ’s are
broken by the two condensates. Actually, for some N,
a discrete symmetry survives condensates of the form of

4Earlier studies on this model can be found in [5,6,11].

5If the massless BfABg were antisymmetric in the flavor
indices, they would contribute 8 − 4 ¼ 4 to the SUð8Þ anomaly.
We would then need N − 4 massless fermions of the form
B̃A
j ∼ ηAj , but this is impossible, as the latter arises from the

Abelianization of the rest of the color gauge group, SUðN − 8Þ.
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Eq. (2.6), and the discrete anomaly matching must be taken
into account.

1. Discrete symmetries

Under the discrete symmetries, the fields transform as

ZNþ2 ⊂ Uψð1Þ∶ ψ → ei
2πk
Nþ2ψ ; k ¼ 0; 1;…; N þ 1;

ZN−2 ⊂ U χð1Þ∶ χ → ei
2πl
N−2 χ;l ¼ 0; 1;…; N − 3;

Z8 ⊂ Uηð1Þ∶ η → ei
2πm
8 η; m ¼ 0; 1;…; 7: ð2:13Þ

A discrete subgroup survives condensates (2.6) if

k
N þ 2

−
l

N − 2
∈ Z;

k
N þ 2

−
m
8
∈ Z: ð2:14Þ

Clearly there is no discrete surviving symmetry for odd N.
For N even, the above shows that there remains a Z2

symmetry, for N ¼ 4n, n ∈ Z, or a Z4 symmetry, for
N ¼ 4nþ 2.
To be concrete, consider N ¼ 14. The conditions above

read, in this case,

k
16

−
l
12

∈ Z;
k
16

−
m
8
∈ Z: ð2:15Þ

The transformation

ψ → eπi=2ψ ; χ → e−πi=2 χ; η → e−πi=2η ð2:16Þ

generates Z4, which is kept unbroken by hψ χi and
hψηi. The Z4 charge of the ðψ ; χ; ηÞ fields is
ð1;−1;−1Þ Mod 4.
Consider the discrete anomaly SUð8Þ2Z4 [17]. In

the UV, the only contribution is from the η fields,
which gives

N · 1 · ð−1Þ ¼ −N ¼ −14: ð2:17Þ

In the IR, ηAj ð9 ≤ j ≤ N − 4Þ gives

ðN − 12Þ · 1 · ð−1Þ ¼ −2; ð2:18Þ

whereas BfABg ¼ ψ ijηAi η
B
j contributes

1 · ð8þ 2Þ · ð−1Þ ¼ −10; ð2:19Þ

totalling

−2 − 10 ¼ −12: ð2:20Þ

The difference between the UV and the IR is

−14 − ð−12Þ ¼ −2 ≠ 0 Mod 4: ð2:21Þ

Thus the discrete SUð8Þ2Z4 anomaly does not match for
N ¼ 14. A similar situation is found for all N of the form
4nþ 2, n ¼ 3; 4; 5;….
As for the discrete Grav2Z4 anomaly, we count only the

Z4 charges and the multiplicities: in the UV, it is

N · 1 · ð−1Þ ¼ N ¼ −14; ð2:22Þ

whereas in the IR, the value is

2 · 1 · ð−1Þ þ 8 · 9
2

· ð−1Þ ¼ −38: ð2:23Þ

The difference is

38 − 14 ¼ 24 ¼ 0 Mod 4; ð2:24Þ

so they match.
For N ¼ 4n, the conditions

k
4nþ 2

−
l

4n − 2
∈ Z;

k
4nþ 2

−
m
8
∈ Z ð2:25Þ

leave a Z2 symmetry generated by the transformations with
k ¼ 2nþ 1, l ¼ 2n − 1, andm ¼ 4. It is easy to verify that
all of the discrete anomalies involving Z2 match in the UV
and in the IR.
The fact that discrete anomaly matching does not work

for N ¼ 4nþ 2 renders the scenario (2.6)–(2.9) unlikely to
be realized for any N. There are, however, other possibil-
ities, as discussed below.

B. Color-flavor locking and dynamical
Abelianization: An alternative scenario

Another possible phase, for N ≥ 8, which was not
considered in [15], is described by condensates (2.6),
but this time of the form

hψ ijηAj i ¼ Λ3

�
c18

0N−8;8

�
iA
;

hψ ik χkji ¼ Λ3

0
BBBBB@

08
d1

. .
.

dN−8

1
CCCCCA

i

j

:

ð2:26Þ

The symmetry breaking pattern is

SUðNÞ × SUð8Þ ×Uð1Þ2 → SUð8Þcf × Uð1ÞN−8: ð2:27Þ

As Uð1ÞN−8 is an Abelian subgroup of the color SUðNÞ,
whereas both nonanomalous flavor Uð1Þ are broken by the
condensates, we shall consider only the SUð8Þ3cf anomalies.
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Indicating the color indices up to 8 by i1 or j1 and those
larger than 8 by i2 or j2, one has the decomposition of the
fields in SUð8Þcf multiplets; see Table II. The massless
baryons are shown in the lower part of Table II. The SUð8Þ3
matching works, as in the infrared,

ðN − 8Þ þ ð8 − 4Þ þ ð8 − 4Þ ¼ N: ð2:28Þ

As for the discrete symmetry, the surviving symmetry is
either Z2, for N ¼ 4n, n ∈ Z, or Z4 symmetry, for
N ¼ 4nþ 2, under which the fields ψ , χ, and η are
charged with ð1;−1;−1Þ. An inspection of Table II shows
that all discrete anomaly matching is also satisfied in this
case, in contrast to the previous case.

C. Partial color-flavor locking for N ≤ 8

ForN < 8, the scenario above is not viable. It is possible,
however, that color-flavor locking still takes place in a
different way (this possibility was not considered in [15]
either). Let us assume that

hψ ijηAj i¼Λ3
�
c1N 0N;8−N

�
iA
; hψ ik χkji¼ 0: ð2:29Þ

The symmetry breaking pattern is now

SUðNÞ×SUð8Þ×Uð1Þ2→ SUðNÞcf ×SUð8−NÞ× Ũð1Þ:
ð2:30Þ

The fermions decompose as in Table III. The massless
baryons which saturate the anomalies are made of

ð2:31Þ

D. Full Abelianization and general N

The dynamical scenarios (2.9) assumes that N ≥ 12,
whereas the one in Eq. (2.27) requiresN ≥ 8 and Eq. (2.30)
requires N ≤ 8.
Still another option, consistent for any value of N and

considered in [15], is that the gauge group dynamically
Abelianizes completely, by the adjoint condensates

hψ ijηAj i¼ 0; hψ ik χkji¼Λ3

0
BB@
d1

. .
.

dN

1
CCA

i

j

; ð2:32Þ

with
P

j dj ¼ 0 and no other particular relations among the
dj’s. No color-flavor locking takes place. The symmetry
breaking occurs as

SUðNÞc × SUð8Þf ×Uð1Þ2 →
YN−1

l¼1

Ulð1Þ× SUð8Þf × Ũð1Þ;

ð2:33Þ

where Ũð1Þ is an unbroken combination of the two non-
anomalous Uð1Þ’s, Eq. (2.4), with charges

ψ∶ 2; χ∶ − 2; η∶ − 1: ð2:34Þ

TABLE II. B½AB� ∼ ψ ijη½Ai η
B�
j and B̂½AB� ∼ ðψηÞA;i χijðψηÞB;j. ηAj2

are weakly coupled due to the Abelianization of
SUðN − 8Þ ×Uð1Þ ⊂ SUðNÞ. They can be interpreted as
B̃A
j ∼ ðψ χηÞAj . The color indices up to 8 are indicated by i1 or

j1 and those larger than 8 by i2 or j2. In this and other tables in the
paper, the multiplicity, the charges, and the representation are
shown for each (set of) fermion components. ð·Þ stands for a
singlet representation.

Fields SUð8Þcf
UV ψ i1j1

ψ i1j2

ψ i2j2

χi1;j1

χi1;j2
χi2;j2

ηAj1

ηAj2

IR B̃A
j2
∼ ηAj2

B½Aj1� ∼AðηAj1Þ

B̂½i1j1� ∼ χi1j1
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The fields ηAi are all massless and weakly coupled (only to
the gauge bosons from the Cartan subalgebra which we will
refer to as the photons; they are infrared-free) in the
infrared. Also, some of the fermions ψ ij do not participate
in the condensates. Owing to the fact that ψfijg are
symmetric and χ½ij� are antisymmetric, only nondiagonal
elements of ψfijg actually condense and get mass. The
diagonal fields ψfiig, i ¼ 1; 2;…; N, remain massless and
weakly coupled. Also, there is one NG boson. The anomaly
matching works as shown in Table IV. Concretely,

(i) SUð8Þ3: Only ηAi contribute both in the UV and in
the IR. They trivially satisfy the matching condition.

(ii) SUð8ÞŨð1Þ2: Again only ηAi contribute both in the
UV and in the IR. The matching is trivial.

(iii) Ũð1Þ3: In the UV, ψ , χ, and η all give contributions,

8 ·
NðN þ 1Þ

2
− 8 ·

NðN − 1Þ
2

− 8N ¼ 0; ð2:35Þ

in the IR, ψ ii and ηAi contribute,

8 · N − 8 · N ¼ 0: ð2:36Þ

(iv) Ũð1Þ: In the UV, ψ , χ, and η give

2 ·
NðNþ1Þ

2
−2 ·

NðN−1Þ
2

−8 ·N¼−6N; ð2:37Þ

whereas in the IR, ψ ii and ηAi give

2 · N − 8N ¼ −6N: ð2:38Þ

III. ðNψ ;Nχ Þ= ð1;0Þ
Let us review the ðNψ ; N χÞ ¼ ð1; 0Þ model studied in

[2,7–10,13]. The matter fermions are

ψfijg; ηBi ; B ¼ 1; 2;…; N þ 4; ð3:1Þ

or

ð3:2Þ

The first coefficient of the beta function is

b0 ¼
1

3
½11N − ðN þ 2Þ − ðN þ 4Þ� ¼ 9N − 6

3
: ð3:3Þ

The (continuous) symmetry of this model is

SUðNÞc × SUðN þ 4Þf ×Uð1Þ; ð3:4Þ

where Uð1Þ is an anomaly-free combination of Uψ ð1Þ and
Uηð1Þ, with

Qψ∶ N þ 4; Qη∶ − ðN þ 2Þ: ð3:5Þ

There are also discrete symmetries

Zψ ¼ ZNþ2 ⊂ Uψ ð1Þ; Zη ¼ ZNþ4 ⊂ Uηð1Þ: ð3:6Þ

A. Chirally symmetric phase in the (1,0) model

Let us first examine the possibility that no condensates
form, the system confines, and the flavor symmetry is
unbroken [2]. The candidate massless baryons are

B½AB� ¼ ψ ijηAi η
B
j ; A; B ¼ 1; 2;…; N þ 4; ð3:7Þ

antisymmetric in A ↔ B. All of the SUðN þ 4Þf ×Uð1Þ
anomalies are saturated by B½AB�, as can be seen by
inspection of Table V. The discrete anomaly ZψSUðNÞ2
is also matched, as can be easily checked.

TABLE III. Partial color-flavor locking for N ≤ 8 and the
SUð8Þ anomaly matching of Sec. II C. A1, B1 stand for the
flavor indices up to Nð<8Þ, A2, B2 for the rest. In this and other
tables in the paper, the multiplicity, the charges, and the
representation are shown for each fermion component.

Fields SUðNÞcf SUð8 − NÞ Ũð1Þ
UV ψ NðNþ1Þ

2
· ð·Þ N þ 2

χ NðN−1Þ
2

· ð·Þ − ðN−6ÞðNþ2Þ
N−2

ηA1 N2 · ð·Þ −ðN þ 2Þ

ηA2 −ðN þ 2Þ

IR B½A1B1� NðN−1Þ
2

· ð·Þ −ðN þ 2Þ

B½A1B2� −ðN þ 2Þ
B̂½A1B1� NðN−1Þ

2
· ð·Þ − ðN−6ÞðNþ2Þ

N−2

TABLE IV. Full dynamical Abelianization in the ψ χη model
in Sec. II D.

Fields SUð8Þ Ũð1Þ
UV ψ NðNþ1Þ

2
· ð·Þ NðNþ1Þ

2
· ð2Þ

χ NðN−1Þ
2

· ð·Þ NðN−1Þ
2

· ð−2Þ
ηA 8N · ð−1Þ

IR ðψ χψÞii ∼ ψ ii N · ð·Þ N · ð2Þ
ψ χηA ∼ ηA 8N · ð−1Þ
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B. Color-flavor locked Higgs phase

It is also possible that a color-flavor locked phase
appears [8,14], with

hψfijgηBi i ¼ cΛ3δjB; j; B ¼ 1; 2;…N; ð3:8Þ

in which the symmetry is reduced to

SUðNÞcf × SUð4Þf ×U0ð1Þ: ð3:9Þ

As this forms a subgroup of the full symmetry group,
Eq. (3.4), it is quite easily seen, by making the decom-
position of the fields in the direct sum of representations in
the subgroup, that a subset of the same baryons saturates all
of the triangles associated with the reduced symmetry
group; see Table VI.
The discrete anomaly Zψ is broken by the condensate

ψη. There is (for generic N) no combination between Zψ

and Zη which survives; therefore there is no discrete
anomaly matching condition.
It is not known which of the possibilities, that in

Sec. III A or that in Sec. III B, is realized in the (1,0)
model. The low-energy degrees of freedom are ðNþ4ÞðNþ3Þ

2

massless baryons in the former case, and N2þ7N
2

massless
baryons together with 8N þ 1 Nambu-Goldstone bosons in

the latter. Thus the complementarity [18], as noted in [15],
does not work here even though the (dynamical) Higgs
scalars ψη are in the fundamental representation of the
color.

IV. ðNψ ;Nχ Þ= ð2;0Þ
This is a straightforward generalization of the ψη model

above. The matter fermions are

ψfij;mg; ηBi ; m¼ 1;2; B¼ 1;2;…;2ðNþ4Þ; ð4:1Þ

or

ð4:2Þ

The (continuous) symmetry of this model is

SUðNÞc × SUð2Þf × SUð2N þ 8Þf ×Uð1Þ; ð4:3Þ

where Uð1Þ is an anomaly-free combination of Uψ ð1Þ and
Uηð1Þ,

Uð1Þ∶ ψ → eiα=2ðNþ2Þψ ; η → e−iα=2ðNþ4Þη: ð4:4Þ

The first coefficient of the beta function is

b0 ¼
1

3
½11N − 2ðN þ 2Þ − 2ðN þ 4Þ� ¼ 7N − 12

3
; ð4:5Þ

which is positive for N ≥ 2.

A. No chiral symmetry breaking in the (2,0) model?

Let us first assume that no condensates form and that no
flavor symmetry breaking occurs. Assuming confinement,
the possible massless baryons are

Bm;AB ¼ ψ ij;mηAi η
B
j : ð4:6Þ

They cannot, however, saturate the triangles associated
with the flavor symmetry

SUð2Þf × SUð2N þ 8Þf ×Uð1Þ: ð4:7Þ

For instance, the SUð2N þ 8Þ3 anomaly, which is equal to
N in the UV, would be at least ∼2N for any baryon like
Eq. (4.6), and thus it is not reproduced in any way in the IR.
We must conclude that a confinement phase with unbroken
flavor symmetries cannot be realized in this system. This is
in contrast to the (1,0) model which is reviewed in
Sec. III A.

B. Partial color-flavor locking?

Let us consider next a partial color-flavor locking
condensate

TABLE V. Chirally symmetric phase of the (1,0) model. As in
other tables in the paper, the multiplicity, the charges, and the
representation are shown for each set of fermions. ð·Þ stands for a
singlet representation.

Fields SUðNÞc SUðN þ 4Þ Uð1Þ
UV ψ NðNþ1Þ

2
· ð·Þ N þ 4

ηA −ðN þ 2Þ

IR B½AB� ðNþ4ÞðNþ3Þ
2

· ð·Þ −N

TABLE VI. Color-flavor locked phase in the (1,0) model
discussed in Sec. III B. A1 or B1 stand for A; B ¼ 1; 2;…; N,
A2 or B2 the rest of the flavor indices.

Fields SUðNÞcf SUð4Þf U0ð1Þ
UV ψ NðNþ1Þ

2
· ð·Þ 1

ηA1 N2 · ð·Þ −1

ηA2 − 1
2

IR B½A1B1� NðN−1Þ
2

· ð·Þ −1

B½A1B2� − 1
2
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hψfij;1gηBi i ¼ cΛ3δjB; j; B ¼ 1; 2;…; N; ð4:8Þ

which breaks the symmetry to

SUðNÞcf × SUðN þ 8Þ × Ũð1Þ; ð4:9Þ

SUð2Þ is broken. Ũð1Þ is a linear combination of Eq. (4.4)
and

U1ð1Þ ¼
�− 1

N 1N 0

0 1
Nþ8

1Nþ8

�
⊂ SUð2ðN þ 4ÞÞ: ð4:10Þ

So the unbroken Ũð1Þ acts on the fields as

ψ→ei
α

2ðNþ2Þψ ;

ηAi →e−i
α

2ðNþ2ÞηAi ðA¼1;2;…;NÞ;
ηAi →e−i

αðNþ4Þ
2ðNþ2ÞðNþ8ÞηAi ðA¼Nþ1;Nþ2;…;2Nþ8Þ: ð4:11Þ

The charges with respect to Ũð1Þ are

ψ∶ 1; η<∶ − 1; η>∶ −
N þ 4

N þ 8
: ð4:12Þ

The massless baryons are assumed to be of the form

BAB ¼ ψ ij;1ηAi η
B
j ; A; B ¼ 1; 2;…; N; ð4:13Þ

and

B̃AB¼ψ ij;1ηAi η
B
j ; A¼1;2;…;N; B¼Nþ1;…;2Nþ8:

ð4:14Þ

Here we must choose BAB in the symmetric or anti-
symmetric representation of the SUðNÞcf group and B̃AB

in the ðN;N þ 8Þ of SUðNÞcf × SUðN þ 8Þflavor. The Ũð1Þ
charges of BAB and B̃AB are

BAB∶ − 1; B̃AB∶ −
N þ 4

N þ 8
: ð4:15Þ

These assumptions are made such that the SUðN þ 8Þ3f and
Ũð1ÞSUðN þ 8Þ2f anomalies are matched in the UVand IR;
however, it is easy to verify that the triangles Ũð1Þ3 and
SUðNÞ3cf cannot be matched. Therefore the phase (4.8) and
(4.9) cannot be realized.

C. A possible phase: A double color-flavor locking

Another possibility is to assume a double SUðNÞ color-
flavor-flavor locking

hψfij;1gηBj i ¼ cΛ3δi;B; j; B ¼ 1; 2;…; N;

hψfij;2gηBj i ¼ c0Λ3δi;B−N; j ¼ 1; 2;…; N;

B ¼ N þ 1;…; 2N: ð4:16Þ

The symmetry is broken down to

SUðNÞcf × Ũð1Þ ×U0ð1Þ × SUð8Þ; ð4:17Þ

where Ũð1Þ acts as before:

ψ∶ 1; ηB≤2N∶ − 1; ηB>2N∶ −
1

2
: ð4:18Þ

There are

3N2 þ 32N þ 3 ð4:19Þ
NG bosons. U0ð1Þ is a subgroup of SUð2Þff , defined below
Eqs. (4.26) and (4.27), which survives condensates (4.16).
In order to saturate all of the anomalies, one assumes that

somehow only

B̂A;B ¼ ψ ij;1ηAi η
B
j ; A ¼ 1; 2;…; N;

B ¼ 2N þ 1;…; 2N þ 8; ð4:20Þ
or

B̃A;B ¼ ψ ij;1ηAi η
B
j ; A ¼ N þ 1; N þ 2;…; 2N;

B ¼ 2N þ 1;…; 2N þ 8 ð4:21Þ

(but not both) remain massless. One could write these
states as

B̂B
a ¼

X2N
A¼1

X
m¼1;2

ca;m;Aψ
ij;mηAi η

B
j ; a ¼ 1; 2;…; N;

B ¼ 2N þ 1;…; 2N þ 8: ð4:22Þ

Furthermore, we shall need also two types of baryons,

B½AB�;1 ¼ψ ij;1ηAi η
B
j ; A;B¼ 1;2;…;N;

B½AB�;2 ¼ψ ij;1ηAi η
B
j ; A;B¼Nþ1;Nþ2;…;2N; ð4:23Þ

both of which are antisymmetric in AB and all of which
remain massless. It is a simple exercise to check that all
anomalies, SUð8Þ3, SUð8Þ2Ũð1Þ, Ũð1Þ3, Ũð1Þ, SUðNÞ3,
SUðNÞ2Ũð1Þ, are matched.
In conclusion, the double color-flavor locking phase,

with massless baryons B̂A;B or B̃A;B, or analogous states
with 1 ↔ 2, together with BAB;1 and BAB;2 (both antisym-
metric in AB), is consistent with anomaly matching. The
asymmetric way that ψ ij;1 and ψ ij;2 appear in the IR
baryons is consistent, as the SUð2Þ is broken.
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D. Phase with unbroken SUð2Þ
Another phase is the one with an unbroken SUð2Þ

symmetry. Assume Eq. (4.16) with the same coefficients,

c ¼ c0: ð4:24Þ

The symmetry is broken down to

SUðNÞcf × Ũð1Þ × SUð2Þff × SUð8Þ; ð4:25Þ

where SUð2Þff is a linear combination of SUð2Þf and

SUð2Þ ⊂ SUð2NÞ ⊂ SUð2N þ 8Þ; ð4:26Þ

which exchange the first and second N flavors. The charges
of the unbroken SUð2Þ are

�
ψ ij;1

ψ ij;2

�
∼ 2;

�
ηA≤Ni

ηN≤A≤2N
i

�
∼ 2�: ð4:27Þ

The Ũð1Þ charges are as before,

ψ∶ 1; ηB≤2N∶ − 1; ηB>2N∶ −
1

2
: ð4:28Þ

The baryons are

BA;C ¼
X
i;j

ðψ ij;1ηA≤Ni ηCj þ ψ ij;2ηN<A≤2N
i ηCj Þ; C > 2N;

ð4:29Þ

which is a SUð2Þ singlet; the others are

B½A1B1�;1 ¼ ψ ij;1ηA1

i ηB1

j ; A1;B1 ¼ 1;2;…;N;

B½A2B2�;2 ¼ ψ ij;2ηA2

i ηB2

j ; A2;B2 ¼ Nþ 1;Nþ 2;…;2N;

ð4:30Þ

which form a doublet. Their Ũð1Þ charges are

BA;C∶ −
1

2
; B½AB�;m∶ − 1: ð4:31Þ

The anomaly saturation can again be seen quickly by
inspecting Table VII. The discrete symmetries Zψ ¼
Z2ðNþ2Þ and Zη ¼ Z2ðNþ4Þ are both broken by the con-
densates. Also, Witten’s SUð2Þ anomaly matches: there are

NðN þ 1Þ
2

þ N2 ð4:32Þ

left-handed SUð2Þ doublets in the UV, whereas the corre-
sponding number in the IR is

NðN − 1Þ
2

; ð4:33Þ

the difference is

NðN þ 1Þ; ð4:34Þ

which is always even.

1. Remarks on less symmetric phases

The less symmetric phases discussed in Sec. IV C can be
derived from the most symmetric phase discussed here.
Namely, when the bifermion condensates have no special
relations, some of the global symmetries are broken, and a
multiplet (irreducible representation) with respect to such a
subgroup [e.g., SUðNÞcf or SUð2Þ] is replaced by a simple
multiplicity of states of similar types, both for elementary
fermions and for composite ones. Clearly the anomaly
saturation valid in the most symmetric case implies similar
results for the subset of fermions/subgroups in the less
symmetric phases.

TABLE VII. An SUð2Þ flavor-flavor locked symmetric phase in the (2,0) model, discussed in Sec. IV D. Ai and Bi
(i ¼ 1, 2) indicate the flavor indices up to 2N, C the rest, 2N þ 1;…; 2N þ 8.

Fields SUðNÞcf SUð8Þ SUð2Þ Ũð1Þ
UV ψ NðN þ 1Þ · ð·Þ 1

ηAi 2N2 · ð·Þ −1

ηC 8N · ð·Þ − 1
2

IR BA;C 8N · ð·Þ − 1
2

B½AiBi�;m NðN − 1Þ · ð·Þ −1
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V. (Nψ ;Nχ )= (3;0)

Let us consider a further generalization. The matter
fermions are

ψfij;mg; ηBi ; m¼1;2;3; B¼1;2;…;3ðNþ4Þ; ð5:1Þ

or

ð5:2Þ

The (continuous) symmetry of this model is

SUðNÞc × SUð3Þf × SUð3N þ 12Þf ×Uð1Þ; ð5:3Þ

where Uð1Þ is the anomaly-free combination of Uψð1Þ and
Uηð1Þ,

Uð1Þ∶ ψ → eiα=3ðNþ2Þψ ; η → e−iα=3ðNþ4Þη: ð5:4Þ

The first coefficient of the beta function is

b0 ¼
1

3
½11N − 3ðN þ 2Þ − 3ðN þ 4Þ� ¼ 5N − 18

3
; ð5:5Þ

which is positive for N ≥ 4. It can be seen that, as for
the (2,0) model, the chiral symmetric phase and partial
color-flavor locking do not provide solutions to the
anomaly matching.

A. Triple color-flavor locking

Generalizing Sec. IV C, one may assume a triple color-
flavor locking here:

hψfij;1gηBi i¼ cΛ3δjB; j;B¼ 1;2;…;N;

hψfij;2gηBi i¼ c0Λ3δj;B−N; j;B¼Nþ1;Nþ2;…;2N;

hψfij;3gηBi i¼ c00Λ3δj;B−2N; j;B¼ 2Nþ1;2Nþ2;…;3N:

ð5:6Þ

The symmetry realization is

SUðNÞcf × Ũð1Þ × SUð12Þ; ð5:7Þ

where Ũð1Þ acts as

ψ→ei
α

3ðNþ2Þψ ;

ηAi →e−i
α

3ðNþ2ÞηAi ; A¼1;2;…;3N;

ηAi →e−i
α

6ðNþ2ÞηAi ; A¼3Nþ1;3Nþ2;…;3Nþ12; ð5:8Þ

or by renormalizing the charges:

Q̃ψ∶ 1; Q̃η<∶ − 1; Q̃η>∶ −
1

2
: ð5:9Þ

We now check the matching with massless baryons

B̂A;B ¼ ψ ij;1ηAi η
B
j ; A ¼ 1; 2;…; N;

B ¼ 3N þ 1;…; 3N þ 12;

B½AB�;1 ¼ ψ ij;1ηAi η
B
j ; A; B ¼ 1; 2;…; N;

B½AB�;2 ¼ ψ ij;1ηAi η
B
j ; A; B ¼ N þ 1; N þ 2;…; 2N;

B½AB�;3 ¼ ψ ij;1ηAi η
B
j ; A; B ¼ 2N þ 1; 2N þ 2;…; 3N:

ð5:10Þ

The Ũð1Þ charges of these baryons are

B̂A;B∶ −
1

2
; ð5:11Þ

B½AB�;1; B½AB�;2; B½AB�;3∶ − 1: ð5:12Þ

It can be readily verified that the anomalies with respect
to SUð12Þ3, SUð12Þ2Ũð1Þ, Ũð1Þ3, Ũð1Þ, SUðNÞ3, and
SUðNÞ2Ũð1Þ agree in the UV and in the IR.

B. SUð3Þ symmetric phase

As in Sec. IV D, one may assume a more symmetric form
of condensates (5.6) with equal coefficients,

c ¼ c0 ¼ c00: ð5:13Þ

In this case, a diagonal SUð3Þ between SUð3Þψ and
SUð3Þ ⊂ SUð3NÞ remains unbroken. The low-energy sym-
metry realization is then

SUðNÞcf × SUð3Þ × Ũð1Þ × SUð12Þ: ð5:14Þ

There are two more triangles, SUð3Þ3 and SUð3Þ2Ũð1Þ,
in addition to the six types of anomalies considered in
the previous subsection. The charges with respect to this
SUð3Þ are

0
B@

ψ ij;1

ψ ij;2

ψ ij;3

1
CA ∼ 3;

0
B@

ηA≤Ni

ηN<A≤2N
i

η2N<A≤3N
i

1
CA ∼ 3�: ð5:15Þ

The massless baryons are

BA;C ¼
X
i;j

ðψ ij;1ηA≤Ni ηCj þ ψ ij;2ηN<A≤2N
i ηCj

þ ψ ij;3η2N<A≤3N
i ηCj Þ; C > 3N; ð5:16Þ

which is an SUð3Þ singlet; the others are
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B½AB�;1 ¼ ψ ij;1ηAi η
B
j ; A; B ¼ 1; 2;…; N;

B½AB�;2 ¼ ψ ij;2ηAi η
B
j ; A; B ¼ N þ 1; N þ 2;…; 2N;

B½AB�;3 ¼ ψ ij;2ηAi η
B
j ; A; B ¼ 2N þ 1; 2N þ 2;…; 3N;

ð5:17Þ

which form an antitriplet, 3�.
Again it is convenient to have the decomposition of the

fields with respect to the unbroken groups. The saturation
of the anomalies SUð12Þ3, SUð12Þ2Ũð1Þ, Ũð1Þ3, Ũð1Þ,
SUðNÞ3, SUðNÞ2Ũð1Þ, SUð3Þ3, and SUð3Þ2Ũð1Þ is seen at
once by inspection of Table VIII. For illustrative purposes,
let us make the equations explicit:

(i) SUð12Þ3:

N ¼ N: ð5:18Þ

(ii) SUð12Þ2Ũð1Þ:

−
1

2
¼ −

1

2
: ð5:19Þ

(iii) Ũð1Þ3: In both the UV and the IR,

−
3N2

2
: ð5:20Þ

(iv) Ũð1Þ: In the UV,

3 ·
NðNþ1Þ

2
−3N2−

1

2
·12N¼−

3ðN2þ3NÞ
2

; ð5:21Þ

whereas in the IR,

− ·3 ·
NðN−1Þ

2
−
1

2
·12N¼−

3ðN2þ3NÞ
2

: ð5:22Þ

(v) SUðNÞ3: In the UV, it is 3N. In the IR,

12þ 3ðN − 4Þ ¼ 3N: ð5:23Þ

(vi) SUðNÞ2Ũð1Þ: In the UV,

−3N; ð5:24Þ

while in the IR,

−3ðN − 2Þ − 1

2
· 12 ¼ −3N; ð5:25Þ

also.
As seen in the (2,0) model, Sec. IV D 1, less symmetric

phases are possible in the (3,0) model as well. Condensates
(5.6) are of more general forms in those cases, with unequal
values, and one or both of the symmetries SUðNÞcf and
SUð3Þ can be broken spontaneously. The set of the baryons
BA;C and B½AB�;m will continue to saturate the anomaly
triangles of the remaining symmetries.

VI. (Nψ ;Nχ )= (0;1)

Let us review the ðNψ ; N χÞ ¼ ð0; 1Þ model studied in
[2,7–10,13,15]. The matter fermions are

χ½ij�; η̃Bj; B ¼ 1; 2;…; ðN − 4Þ: ð6:1Þ

The first coefficient of the β function is

b0 ¼
1

3
½11N − ðN − 2Þ − ðN − 4Þ� ¼ 9N þ 6

3
: ð6:2Þ

The (continuous) symmetry is

SUðNÞc × SUðN − 4Þf × Uð1Þ; ð6:3Þ

where the anomaly-free Uð1Þ charge is

χ∶ N − 4; η̃Bj∶ − ðN − 2Þ: ð6:4Þ

There are also discrete symmetries

Z χ ¼ ZN−2 ⊂ Uψð1Þ; Zη ¼ ZN−4 ⊂ Uηð1Þ: ð6:5Þ

TABLE VIII. Color-favor-flavor locked SUð3Þ symmetric phase in the (3,0) model discussed in Sec. V B.

Fields SUðNÞcf SUð12Þ SUð3Þ Ũð1Þ
UV ψ 3NðNþ1Þ

2
· ð·Þ 1

ηA≤3N 3N2 · ð·Þ −1

ηA>3N 12N · ð·Þ − 1
2

IR BA<;C> 12N · ð·Þ − 1
2

B½AB�;m 3NðN−1Þ
2

· ð·Þ −1
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A. Chirally symmetric phase in the (0,1) model

Let us first examine the possibility that no condensates
form, the system confines, and the flavor symmetry is
unbroken [2]. The massless baryons are

BfCDg ¼ χ½ij�η̃iCη̃jD; C;D ¼ 1; 2;…; ðN − 4Þ; ð6:6Þ

symmetric in C ↔ D. They have the Uð1Þ charge −N. The
matching of the anomalies can be read off of Table IX.

B. Color-flavor locked vacuum

It was pointed out in [9] that this system may instead
develop a condensate of the form

h χ½ij�η̃Bji ¼ constΛ3δBi ; i; B ¼ 1; 2;…; N − 4; ð6:7Þ

namely,

ð6:8Þ

The symmetry is broken down to

SUðN − 4Þcf ×U0ð1Þ × SUð4Þc: ð6:9Þ
The massless baryons (6.6) saturate all of the anomalies
associated with SUðN − 4Þcf ×U0ð1Þ. There remain the
χi2j2 fermions which remain massless and strongly coupled
to the SUð4Þc. We may assume that SUð4Þc confines, that
the condensate

h χ χi ≠ 0 ð6:10Þ

in

ð6:11Þ

forms, and that χi2j2 dynamically acquire mass. Assuming
that the massless baryons are

BfABg ¼ χ½ij�η̃iAη̃jB; A; B ¼ 1; 2;…; ðN − 4Þ; ð6:12Þ

the saturation of all of the associated triangles can be seen
in Table X. Complementarity [15,18] does work here.

VII. (Nψ ;Nχ )= (0;2)

Let us now consider a generalization of the χη̃ model
with

χm½ij�; η̃Bj; m¼ 1;2; B¼ 1;2;…;2ðN−4Þ; ð7:1Þ

or

ð7:2Þ

The first coefficient of the β function is

b0¼
1

3
½11N−2ðN−2Þ−2ðN−4Þ� ¼ 1

3
ð7Nþ12Þ: ð7:3Þ

A. No chiral symmetry breaking in the (0, 2) model?

The symmetry is

SUðNÞc × SUð2Þf × SUð2N − 8Þf × Uð1Þ; ð7:4Þ

where the anomaly-free Uð1Þ charge is

χ∶ N − 4; η̃Bj∶ − ðN − 2Þ: ð7:5Þ

Let us assume that the massless baryons are

BfCDg;m ¼ χm½ij�η̃
iCη̃jD;

C;D ¼ 1; 2;…; 2ðN − 4Þ; m ¼ 1; 2; ð7:6Þ

TABLE IX. Confinement and unbroken symmetry in the (0,1)
model.

Fields SUðNÞc SUðN − 4Þ Uð1Þ
UV χ NðN−1Þ

2
· ð·Þ N − 4

η̃A −ðN − 2Þ

IR BfABg ðN−4ÞðN−3Þ
2

· ð·Þ −N

TABLE X. Color-flavor locking in the (0,1) model. The color
index i1 or j1 runs up to N − 4, and the rest is indicated by i2
or j2.

Fields SUðN − 4Þcf U0ð1Þ SUð4Þc
UV χi1j1 N ðN−4ÞðN−5Þ

2
· ð·Þ

χi1j2
N
2

χi2j2
4·3
2
· ð·Þ 0

η̃A;i1 −N ðN − 4Þ2 · ð·Þ

η̃A;i2 − N
2

IR BfABg −N ðN−4ÞðN−3Þ
2

· ð·Þ
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symmetric in CD. They have the Uð1Þ charge −N.
There is no way that BfCDg can saturate the anomalies in
SUð2N − 8Þf × Uð1Þ.
One concludes that the confinement phase with unbro-

ken chiral symmetry SUð2Þ × SUð2N − 8Þf ×Uð1Þ is
not possible. This is, again, in contrast to the ðNψ ; N χÞ ¼
ð0; 1Þ model.

B. Color-flavor locking

Let us instead assume a color-flavor locked diagonal
vacuum expectation value (VEV),

h χ1½ij�η̃iBi ¼ cΛ3δBj ; j; B ¼ 1; 2;…; N − 4;

h χ2½ij�η̃iBi ¼ c0Λ3δB−ðN−4Þ
j ; j ¼ 1;…; N − 4;

B ¼ N − 3;…; 2N − 8: ð7:7Þ

Then the symmetry is broken down to

SUðN − 4Þcf ×U0ð1Þ × SUð4Þc; ð7:8Þ

where Uð1Þ0 is the unbroken linear combination between
the anomaly-free Uð1Þ, Eq. (7.5), and a subgroup of the
color SUðNÞ, diagð 1

N−4 1N−4;− 1
4
14Þ. We assume that the

massless baryons are

BfCDg;1¼ χ1½ij�η̃
iCη̃jD; C;D¼ 1;2;…;N−4;

B̂fCDg;1¼ χ1½ij�η̃
iCη̃jD; C;D¼N−3;N−2;…;2ðN−4Þ:

ð7:9Þ

The charges under SUðN − 4Þcf ⊗ U0ð1Þ are given in
Table XI, where the Uð1Þ0 charges are appropriately
renormalized by a common factor. All anomalies
SUðN − 4Þ3cf , Uð1Þ03, Uð1Þ0, Uð1Þ0SUðN − 4Þ2cf work
out fine.

C. Phase with unbroken SUð2Þ
Assume instead that condensates (7.7) occur with with

the same coefficients,

c ¼ c0: ð7:10Þ

Then the residual symmetry is bigger:

SUðN − 4Þcf × SUð2Þ ×U0ð1Þ × SUð4Þc: ð7:11Þ

The baryons are

BfCDg;1¼ χ1½ij�η̃
iCη̃jD; C;D¼ 1;2;…;N−4;

BfCDg;2¼ χ2½ij�η̃
iCη̃jD; C;D¼N−3;N−2;…;2ðN−4Þ;

ð7:12Þ

symmetric in CD. The charges with respect to this
SUð2Þ are

� χ1½ij�
χ2½ij�

�
∼ 2;

�
η̃A≤N−4
i

η̃N−4<A≤2N−8
i

�
∼ 2�: ð7:13Þ

The charges of the fields with respect to the unbroken
symmetries are in Table XII. The saturation of all seven
types of triangles can be seen by inspection.
SUð2Þ has no (perturbative) triangle anomaly, but it does

have a global anomaly (Witten). It can be readily checked
to see that the difference of the number of the doublets in
the UV and in the IR is even.
As in the (0,1) model, the fermions χm½i2j2� remain

massless and coupled strongly by the unbroken color
SUð4Þc. It is possible that they condense as

hϵijkl χmij χnkli ≠ 0; m; n ¼ 1; 2: ð7:14Þ

As they are symmetric in m and n, the symmetry is
broken as

SUð2Þ → SOð2Þ ¼ Uð1Þ; ð7:15Þ

in a scenario similar to tumbling.
So, after all, SUð2Þ is dynamically broken. The fate of

the unbroken, residual SUð4Þc is similar to what happens in
the second, chiral-symmetry-breaking (XSB) scenario in
Sec. VI B.

VIII. (Nψ ;Nχ )= (0;3)

The model to be considered now is

χm½ij�; η̃Bj; m¼ 1;2;3; B¼ 1;2;…;3ðN−4Þ; ð8:1Þ

or

TABLE XI. Color-flavor locking in the (0,2) model. The color
index i1 or j1 runs up to N − 4. The rest is indicated by i2 or j2.

Fields SUðN − 4Þcf U0ð1Þ
UV χ1½i1j1� 1

χ1½i1j2�
1
2

χ1½i2j2� ð·Þ 0

η̃B;i1 −1

η̃B;i2 − 1
2

IR BfCD1g −1

B̂fCD1g −1
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ð8:2Þ

The first coefficient of the β function is

b0¼
1

3
½11N−3ðN−2Þ−3ðN−4Þ� ¼ 1

3
ð5Nþ18Þ: ð8:3Þ

The symmetry is

SUðNÞc × SUð3Þ × SUð3N − 12Þf ×Uð1Þ; ð8:4Þ

where the anomaly-free Uð1Þ charge is

χ∶ N − 4; η̃Bj∶ − ðN − 2Þ: ð8:5Þ

Again the option of confinement with no flavor symmetry
breaking is excluded.

A. Color-flavor locking

Let us try to generalize the color-flavor locking of the
ðNψ ; N χÞ ¼ ð0; 2Þ case to our ðNψ ; N χÞ ¼ ð0; 3Þ model by
assuming that

h χ1½ij�η̃iBi ¼ cΛ3δBj ≠ 0; j; B ¼ 1; 2;…; N − 4;

h χ2½ij�η̃iBi ¼ cΛ3δB−ðN−4Þ
j ≠ 0; j ¼ 1; 2;…; N − 4;

N − 3 ≤ B ≤ 2N − 8;

h χ3½ij�η̃iBi ¼ cΛ3δB−ðN−4Þ
j ≠ 0; j ¼ 1; 2;…; N − 4;

2N − 7 ≤ B ≤ 3N − 12: ð8:6Þ

Then the symmetry breaking pattern is

SUðN − 4Þcf ×U0ð1Þ × SUð3Þ × SUð4Þc; ð8:7Þ

where Uð1Þ0 is the unbroken linear combination between
the anomaly-free Uð1Þ, Eq. (8.5), and a subgroup of the
color SUðNÞ, diagð4 1N−4;−ðN − 4Þ14Þ. The would-be
SUð3Þ multiplets are

0
BBB@

χ1½ij�
χ2½ij�
χ3½ij�

1
CCCA ∼ 3;

0
B@

η̃A≤N−4
i

ηN−4<A≤2N−8
i

η2N−8<A≤3N−12
i

1
CA ∼ 3�: ð8:8Þ

We assume that the massless baryons are

BfCDg;1¼ χ1½ij�η̃
iCη̃jD; C;D¼1;2;…;N−4;

B̂fCDg;2¼ χ2½ij�η̃
iCη̃jD; C;D¼N−3;…;2ðN−4Þ;

B̃fCDg;3¼ χ3½ij�η̃
iCη̃jD; C;D¼2N−7;…;3ðN−4Þ; ð8:9Þ

symmetric in CD. These baryons transform as 3�.
Unlike what happens to the (0,2) model, or to the (3,0)

model, however, here the unbroken SUð3Þ symmetry
cannot be realized manifestly in the infrared: SUð3Þ3
triangles do not match in the UV and IR, see Table XIII.
A possibility is that the condensates (8.6) take unequal

values. With SUð3Þ broken, the baryons BfCDg;m saturate
the anomalies in SUðN − 4Þcf ×U0ð1Þ × SUð4Þc.
Another possibility is suggested by the presence of

massless fermions χm½ij�ði>; j>Þ, which interact strongly
with the remaining gauge group SUð4Þc. It is possible that
condensates

hϵijkl χmij χnkli ≠ 0; m; n ¼ 1; 2; 3: ð8:10Þ

form. As they are symmetric in m, n, the symmetry is
broken as

TABLE XII. SUð2Þ symmetric phase in the (0,2) model. i1, j1 stand for the color indices up toN − 4, and i2, j2 the
last four.

Fields SUðN − 4Þcf SUð2Þ U0ð1Þ SUð4Þc
UV χm½i1j1� 1 ðN − 4ÞðN − 5Þ · ð·Þ

χm½i1j2�
1
2

χm½i2j2� 12 · ð·Þ 0

η̃Bi1 −1 2ðN − 4Þ2 · ð·Þ

η̃Bi2 − 1
2

IR BCD;m −1 ðN − 4ÞðN − 3Þ · ð·Þ
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SUð3Þ → SOð3Þ; ð8:11Þ

which is free of anomalies.

IX. (Nψ ;Nχ )= (2; 1)

Next consider the SUðNÞ gauge model with the chiral
fermion sector

ψfijg;m; χ½ij�; ηBj ;

m ¼ 1; 2; B ¼ 1; 2;…; N þ 12; ð9:1Þ

or

ð9:2Þ

The symmetries of the theory are

SUðNÞc × SUð2Þf × SUð12þ NÞf ×Uð1Þ2: ð9:3Þ

The two Uð1Þ’s are anomaly-free combinations of Uψð1Þ,
U χð1Þ, and Uηð1Þ, which can be taken as

U1ð1Þ∶ ψ → ei
α

2ðNþ2Þψ ; η → e−i
α

Nþ12η;

U2ð1Þ∶ ψ → ei
β

2ðNþ2Þψ ; χ → e−i
β

N−2 χ: ð9:4Þ

The first coefficient of the β function is

b0 ¼
1

3
½11N − 2ðN þ 2Þ − ðN − 2Þ − ð12þ NÞ�

¼ 1

3
ð7N − 14Þ: ð9:5Þ

A. Color-flavor locking?

A possibility is that a (partial) color-flavor locking
condensate

hψfijg;1ηBj i ¼ cΛ3δiB; i; B ¼ 1; 2;…; N; ð9:6Þ

develops, where the direction of the SUψð2Þ breaking is
arbitrary. Let us assume that there is no adjoint condensate
hψ χi. The unbroken symmetry is

SUðNÞcf × SUð12Þf × Ũð1Þ; ð9:7Þ

where the Ũð1Þ charges are

Qψ ¼ 1; Q χ ¼ −
N − 8

N − 2
; Qη ¼ −1: ð9:8Þ

The candidate baryons are

BCD;m ¼ ψfijg;mηCi η
D
j : ð9:9Þ

An inspection shows that these baryons do not saturate the
Gf anomalies, and one concludes that phase (9.6) is not
possible.

B. Color-flavor-flavor locking?

Let us assume, for N ≤ 12, condensates of the form

hψfijg;1ηB1

j i ¼ cΛ3δi;B1 ;

hψfijg;2ηB2

j i ¼ cΛ3δi;B2−N; ð9:10Þ

where the flavor indices B1 run up to N and B2 from N þ 1
to 2N. The symmetry is broken down to

TABLE XIII. The decomposition of the fields in the (0,3) model. The color indices are divided into two groups: i1,
j1 run up to N − 4, and i2, j2 cover the rest. Moreover, the color and flavor indices are combined as in Sec. VIII A

Fields SUðN − 4Þcf SUð3Þ U0ð1Þ SUð4Þc
UV χm½i1j1� 1 3ðN − 4ÞðN − 5Þ

2
· ð·Þ

χm½i1j2�
1
2

χm½i2j2� 18 · ð·Þ 0

η̃Bi1 −1 3ðN − 4Þ2 · ð·Þ

η̃Bi2 − 1
2

IR BfCDg;m −1 3ðN − 4ÞðN − 3Þ
2

· ð·Þ
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SUðNÞcf × SUð2Þff × SUð12 − NÞf × U0ð1Þ: ð9:11Þ

The candidate baryons have the form

BAB;m ¼ ψfijg;mηAi η
B
j ; ð9:12Þ

but it is not possible to achieve the anomaly matching (see
Table XIV).

C. Dynamical Abelianization

Assuming that the adjoint condensate forms

hψfijg;1 χ½ik�i ¼ cjΛ3δjk; j; k ¼ 1; 2;…; N; ð9:13Þ

with cj’s all being different and the Cartan subgroup of
SUðNÞc surviving in the infrared. SUð2Þf is broken. There
is a Uð1Þ symmetry which remains unbroken, Ũð1Þ, under
which

ψ∶ N þ 12; χ∶ − ðN þ 12Þ; η∶ − ðN þ 6Þ:
ð9:14Þ

The unbroken symmetry group is

SUðN þ 12Þf × Ũð1Þ: ð9:15Þ

The low-energy degrees of freedom are the fermion
fields ηBj , which are unconfined and are weakly coupled to
the Uð1ÞN−1 photons, the diagonal ψfiig;1, and all of the
ψfijg;2. Also, there are 3þ 1 ¼ 4 NG bosons.
The anomaly equalities for SUð12þ NÞ3f , Ũð1ÞSUð12þ

NÞ2f , Ũð1Þ3, and Ũð1Þ can be straightforwardly checked;
see Table XV.

X. (Nψ ;Nχ )= (1;− 1)
Consider now a model with

ψfijg; χ̃½ij�; ηAi ; A ¼ 1; 2;…; 2N; ð10:1Þ

or

ð10:2Þ

i.e., a symmetric tensor, an antisymmetric tensor, and 2N
antifundamental multiplets of SUðNÞ. The first coefficient
of the beta function is

b0 ¼
1

3
½11N − ðN þ 2Þ − ðN − 2Þ − 2N� ¼ 7N

3
: ð10:3Þ

The symmetry of the system is

SUðNÞc × SUð2NÞf ×U1ð1Þ ×U2ð1Þ ð10:4Þ

TABLE XIV. SUð2Þ symmetric phase in the (2,1) model. A1, B1 stand for the flavor indices up to N, A2, B2 from N þ 1 to 2N, and A3,
B3 the last 12 − N. Anomaly matching fails in this case.

Fields SUðNÞcf SUð2Þ SUð12 − NÞ U0ð1Þ
UV ψfijg;m NðN þ 1Þ · ð·Þ 1

χ½ij� NðN − 1Þ
2

· ð·Þ NðN − 1Þ
2

· ð·Þ −
N − 8

N − 2

ηB1

i ; ηB2

i 2N2 · ð·Þ −1

ηB3

i
Nð12 − NÞ · ð·Þ −1

IR B½A1B2�;m NðN − 1Þ · ð·Þ −1

B½A1B3�;m Nð12 − NÞ · ð·Þ −1

TABLE XV. The decomposition of the fields in the (2,1) model,
assuming complete dynamical Abelianization.

Fields SUðN þ 12Þ Ũð1Þ
UV ψ 2 · NðNþ1Þ

2
· ð·Þ N þ 12

χ NðN−1Þ
2

· ð·Þ −ðN þ 12Þ
ηA −ðN þ 6Þ

IR ψ ii;1 N · ð·Þ N þ 12

ψ ij;2 NðNþ1Þ
2

· ð·Þ N þ 12

ψ χηA ∼ ηA −ðN þ 6Þ

STEFANO BOLOGNESI and KENICHI KONISHI PHYS. REV. D 100, 114008 (2019)

114008-16



times some discrete symmetry. The Uð1Þ charges are

U1ð1Þ∶ Qψ ¼ 1

N þ 2
; Q χ̃ ¼ −

1

N − 2
; Qη ¼ 0;

U2ð1Þ∶ Qψ ¼ 1

N þ 2
; Q χ̃ ¼ 0; Qη ¼ −

1

2N
:

ð10:5Þ

Possible baryon states are

BAB ¼ ψfijgηAi η
B
j ; B̂AB ¼ χ̃½ij�ηAi η

B
j ; ð10:6Þ

both of which could form either symmetric or antisym-
metric tensors in the flavor. Confinement without
chiral symmetry breaking appears to be excluded: there
is no way that BAB or B̂AB can match the UV SUð2NÞf
anomaly, N.

A. Color-flavor locking

Let us try a color-flavor locking

hψfijgηAj i ¼ cΛ3δiA; i; A ¼ 1; 2;…; N;

h χ̃½ij�ηAj i ¼ c0Λ3δiA; i; A ¼ 1; 2;…; N: ð10:7Þ

The symmetry is broken down to

SUðNÞcf × SUðNÞf × Ũð1Þ; ð10:8Þ

where Ũð1Þ is an unbroken combination of U1;2ð1Þ with
charges

Ũð1Þ∶ Qψ ¼ −1; Q χ̃ ¼ −1; Qη ¼ 1: ð10:9Þ

Again we list the fields and their decomposition in the low-
energy symmetry groups. Assuming that the only massless
baryons are BAB, with A ≤ N and B ≥ N, the anomaly
matching is obvious; see Table XVI.

XI. PION-DECAY CONSTANT
IN CHIRAL THEORIES

After these exercises with various ðNψ ; N χÞ models, it
would be useful to try to draw some lessons. One concerns
the nature of the Nambu-Goldstone bosons (called pions
below symbolically) and the quantity analogous to the
pion-decay constant in chiral SUð2ÞL × SUð2ÞR QCD. As
we shall see, there is a qualitative difference between the
wisdom about the chiral dynamics with light quarks in
QCD, which is a vectorlike theory, and what is to be
expected in general chiral theories.
Consider any global continuous symmetry Gf and the

associated conserved current Jμ, the field ϕ (elementary or
composite) which condenses and breaks Gf , and the field ϕ̃
which is transformed into ϕ by the Gf charge

Q≡
Z

d3xJ0; ½Q; ϕ̃� ¼ ϕ; hϕi ≠ 0: ð11:1Þ

Thus

lim
qμ→0

iqμ
Z

d4x e−iq·xh0jTfJμðxÞϕ̃ð0Þgj0i

¼ lim
qμ→0

Z
d4x e−iq·x∂μh0jTfJμðxÞϕ̃ð0Þgj0i

¼
Z

d3xh0j½J0ðxÞ; ϕ̃ð0Þ�j0i ¼ h0j½Q; ϕ̃ð0Þ�j0i

¼ h0jϕð0Þj0i ≠ 0: ð11:2Þ

This Ward-Takahashi-like identity implies that the two-
point function

Z
d4x e−iq·xh0jTfJμðxÞϕ̃ð0Þgj0i ð11:3Þ

is singular at q → 0. If the Gf symmetry is broken
spontaneously, such a singularity is due to the massless
NG boson, π, such that

h0jJμðqÞjπi ¼ iqμFπ; hπjϕ̃j0i ≠ 0; ð11:4Þ

such that the two-point function behaves as

qμ · qμ
Fπhπjϕ̃j0i

q2
∼ const: ð11:5Þ

at q → 0.
In the standard SUð2ÞL × SUð2ÞR → SUð2ÞV chiral

symmetry breaking in QCD, the quarks are

ψL ¼
�
uL
dL

�
; ψR ¼

�
uR
dR

�
; ð11:6Þ

TABLE XVI. The color-flavor locking scheme for the ð1;−1Þ
model. The flavor indices A1, B1 stand for those up to N, A2, B2

for N þ 1;…; 2N.

Fields SUðNÞcf SUðNÞf Ũð1Þ
UV ψ NðNþ1Þ

2
· ð·Þ −1

χ NðN−1Þ
2

· ð·Þ −1

ηA1 N2 · ð·Þ 1

ηA2 1

IR BA1B2 1
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and by taking

ϕ ¼ ψ̄RψL þ H:c:; ϕ̃ ¼ ψ̄RtbψL − H:c:;

J5;aμ ¼ iψ̄Lσ̄μtaψL − ðL ↔ RÞ; ð11:7Þ

ta ¼ τa

2
; a ¼ 1; 2; 3: ð11:8Þ

It is believed that the field

hϕi ¼ hūRuL þ d̄RdL þ H:c:i ∼ −Λ3 ð11:9Þ

condenses, leaving SUð2ÞV unbroken; the axial SUð2ÞA
is broken. In QCD, Λ is of the same order of the confine-
ment mass scale, the dynamically generated mass scale
of QCD,

Λ ∼ 200 MeV: ð11:10Þ

The pions are associated with the interpolating field

πa ∼ ϕ̃a ¼ ψ̄RtaψL − H:c: ∼ ψ̄Dγ
5taψD ð11:11Þ

(where ψD is the Dirac spinor for the quarks). It is natural to
expect that the pion-decay constant, the amplitude with
which the current operator J5;aμ produces the pions from the
vacuum, is of the same order of magnitude as Λ itself,

Fπ ∼ Λ: ð11:12Þ

Indeed, the best experimental estimate for Fπ is

Fπ ∼ 130 MeV; ð11:13Þ

cf. Eq. (11.10).
Now let us study the case of chiral gauge theories, as

those considered in this paper. To be concrete, consider the
dynamical scenarios, Sec. IV C in the (2,0) model. The
symmetry breaking pattern is

SUðNÞc × SUð2Þf × SUð2N þ 8Þf × Uð1Þ
→ SUðNÞcf × Ũð1Þ ×U0ð1Þ × SUð8Þ: ð11:14Þ

The Nambu-Goldstone modes are associated with the
breaking

SUð2Þf × SUð2N þ 8Þf → SUð8Þ ×U0ð1Þ: ð11:15Þ

There are

3N2 þ 32N þ 3 ð11:16Þ

NG bosons.

To simplify the discussion, let us concentrate our
attention to the two NG bosons associated with the
SUψ ð2Þ → U0ð1Þ breaking.6 The SUfð2Þ current is

Jaμ ¼ iψ̄ ij;mσ̄μ

�
τa

2

�
mn
ψ ij;n; ð11:17Þ

and the charges are

Qa ¼
Z

d3x Ja0: ð11:18Þ

One can choose

ϕ̃b ¼
X
i;j;k;B

ðψfij;mgηBi Þ�
�
τb

2

�
mn
ψfkj;ngηBk ð11:19Þ

in Eq. (11.2) so that

h½Qa; ϕ̃b�i ¼ δab
�X

i;j;k;B

ðψfij;mgηBi Þ�ðψfkj;mgηBk Þ
�

≠ 0:

ð11:20Þ

An important issue here is the fact that, even though the
dynamical gauge and flavor symmetry breaking is (by
assumption) determined by the “dynamical Higgs scalar”
condensates

hψfij;1gηBj i ¼ cΛ3δi;B; j; B ¼ 1; 2;…; N;

hψfij;2gηBj i ¼ c0Λ3δi;B−N; j ¼ 1; 2;…; N;

B ¼ N þ 1;…; 2N; ð11:21Þ

at some mass scale, Λ, the pion interpolating fields
appearing in the Ward-Takahashi identity must be gauge
invariants such as Eq. (11.19), which are necessarily four-
fermion composites. On the other hand, the pion-decay
constant is defined as usual,

h0jJaμjπai ¼ iqμFπ;

Jaμ ¼ iψ̄ ij;mσ̄μ

�
τa

2

�
mn
ψ ij;n; ð11:22Þ

as the amplitude with which the current operator
produces the NG bosons from the vacuum. It is quite
possible that the pion-decay constant in chiral theories is
such that

Fπ ≪ Λ; ð11:23Þ

6Naturally the same discussion holds for other 3N2 þ 32N þ 1
NG bosons, but the expressions would become more clumsy.
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as the bifermion current operator must produce pions,
which are four-fermion composite particles, from the
vacuum.7

Another way of seeing the same question is to think of
the pion effective action,

Lðϕ̃a; ∂μϕ̃
aÞ ¼ 1

2
∂μϕ̃

a∂μϕ̃a þ � � � ; ð11:24Þ

in which the interaction strength among the pions is given
by Fπ. The effective action involves 8-fermion, 16-fermion,
etc., amplitudes, and a result such as Eq. (11.23) could
well be realized using the complicated strong interaction
dynamics.

XII. DISCUSSION

Let us recapitulate the class of ðNψ ; N χÞ models ana-
lyzed here. The gauge group is taken to be SUðNÞ. The
numbers of Weyl fermions ψ and χ in the representations

ð12:1Þ

are indicated byNψ andN χ . Let us takeNψ ≥ 0. In the case
N χ < 0, −N χ indicates the number of the fields χ̃ in the
representation

ð12:2Þ

instead. The number of the fermions in the antifundamental
(or fundamental) representations ηa (or η̃a) is fixed by the
condition that the gauge group SUðNÞ be anomaly-free.
Also, we restrict the numbers Nψ and N χ such that the
model is asymptotically free.
The systems considered here are rather rigid. No

fermion mass terms can be added in the Lagrangian,
and this also means that no gauge-invariant bifermion
condensates can form. They cannot be deformed by the
addition of any other renormalizable potential terms
either, including the topological θFμνF̃μν term. The pre-
sence of massless chiral matter fermions means that all
values of θ are equivalent to θ ¼ 0. The vacuum, apart
from possible symmetry breaking degeneration, is
expected to be unique. The system is strongly coupled
in the infrared. Our ignorance about these simple models,
after more than a half century of studies of quantum field
theories, certainly is severely hindering our capability of
finding any application of them in a physical theory
describing nature.

In the absence of other theoretical tools, we have
insisted in this paper upon trying to find possible useful
indications following the standard ’t Hooft anomaly
matching constraints (for application of some new ideas
such as the generalized symmetries and higher-form
gauging to these chiral gauge theories; see [19]). The
main lesson to be learned is perhaps the fact that color-
flavor (or color-flavor-flavor) locking and dynamical
Abelianization, in various combinations, always provides
natural ways to solve these consistency constraints and to
find possible phases of the system.
The strategy we used in the paper, for all of the models,

is summarized as follows. First we chose a set of
bifermions operators that may condense. Since we do
not have a gauge-invariant bifermion in our theories, we
chose among the gauge-noninvariant ones, possibly guided
by the maximal attractive channel (MAC) criterion. Con-
densation has two important effects: it breaks part or all of
the color symmetry, and it breaks part or all of the flavor
symmetry. The broken part of the gauge group is dynami-
cally Higgsed. The unbroken part confines or remains in
the IR if it is in the Coulomb phase (as for the dynamical
Abelianization). We then have to look at the anomaly
matching conditions. The part of the flavor symmetry that
is broken by the condensate is saturated by massless NG
boson poles. For the unbroken part instead, we need to find
a set of fermions in the IR to match the computation in the
UV. We then decompose the UV fermion into a direct sum
of representations of the unbroken flavor subgroup that
remains unbroken. Unlike the UV representation, which is
chiral, the IR decomposed representations have in general
vectorial subsets. All of the vectorial parts can be removed
since they presumably get massive and in any case they do
not contribute to the ’t Hooft anomaly of the unbroken
group. Other fermions remain in the IR as massless baryons
and saturate the ’t Hooft anomalies.
The fact that, in models (1,0) and (0,1), one can find a set

of candidate massless fermions saturating the anomalies of
the full unbroken flavor symmetries seems to be fortuitous,
rather than being a rule. In fact, no analogous set of
candidate massless baryons can be found in other (2,0),
(3,0) or (0,2), (0,3) models. On the other hand, the color-
flavor breaking (dynamical Higgs) phase of the (1,0) and
(0,1) models finds natural generalizations in these more
complicated systems.
In this sense, our proposal shares a common feature

with the tumbling scheme, but it does not follow the
MAC criterion literally with the multiscale chains of
dynamical gauge symmetry breaking, as in the original
proposal [1]. There are a few cases, however, in which the
appearance of hierarchy of mass scales, for reasons entirely
different from that in the tumbling mechanism, is rather
natural.
The local gauge symmetries can never be “truly”

spontaneously broken, and any dynamical or elementary
7Large N scaling would ruin this hierarchy, so N must be kept

finite.
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Higgs mechanism (including the case of the standard
Higgs scalar in the Weinberg-Salam electroweak theory)
must be reinterpreted in a gauge-invariant fashion.8 What
happens in the chiral gauge theories considered here
is that the system produces a bifermion composite state
such as

ψðxÞηðxÞ; ψðxÞ χðxÞ; ð12:3Þ

which then act as an effective Higgs scalar field. As these
“dynamical” Higgs fields are still strongly coupled in
general, the way their condensates and consequent flavor
symmetry breaking is reinterpreted in a gauge-invariant
fashion may be more complicated than in the standard
electroweak theory where the Higgs scalars are weakly
coupled and described by perturbation theory. Even though,
in strongly coupled chiral gauge theories, one does not have
a simple potential describing the degenerate vacua, bifer-
mion condensates of composite scalars such as Eq. (12.3)
are just analogs of the gauge-noninvariant (and gauge
dependent) Higgs scalar VEV.9

The proposed dynamical Higgs mechanism does, how-
ever, make a definite statement about the flavor symmetry
breaking: the latter is described by the condensate of the
composite (dynamical) Higgs fields such as those above, at
the mass scale associated with them.
This brings us to a possibly relevant observation made in

Sec. XI. A study of chiral Ward-Takahashi identities shows
that, in contrast to what happens in vectorlike gauge theory
such as QCD, the system might generate a hierarchy of
mass scales between the mass scale of the condensates of
the composite Higgs fields (12.3), “Λ,” and the quantity
corresponding to the pion-decay constant, “Fπ .” The latter
is the amplitude that the (broken) symmetry current
produces a NG boson (pion) from the vacuum. The fact
that in chiral gauge theories the current is a two-fermion
operator, while the pions are in general four-fermion
composites, in contrast to what happens in the case of
axial symmetry breaking in vectorlike theories, could imply
a large hierarchy, Eq. (11.23). Such a possibility appears to
be worthy of further study, both from theoretical and
phenomenological points of view.
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APPENDIX: a THEOREM AND
THE ACS CRITERION

For free theory of bosons and fermions, the a and c
coefficients are given by

a ¼ 1

360

�
NS þ

11

2
Nf þ 62NV

�
;

c ¼ 1

120
ðNS þ 6Nf þ 12NVÞ; ðA1Þ

whereNS is the number of scalar particles,Nf is the number
of Weyl fermions, and NV is the number of vector bosons.
The a theorem indicates that

aIR ≤ aUV: ðA2Þ
On the other hand, the free energy is

f ¼ NB þ 7

4
Nf ; ðA3Þ

where Nf is the number of the Weyl fermions and NB is the
number of bosons. The ACS criterion is that [7,8]

fIR ≤ fUV: ðA4Þ

For simplicity, we shall use ã ¼ 360a. For the ðNψ ; N χÞ
model,

ãUV ¼ 62ðN2 − 1Þ þ 33

4
NψNð3þ NÞ − 11

4
N χNðN − 7Þ;

ðA5Þ

ãIR ¼ NS þ
11

2
Nf þ 62NV; ðA6Þ

where NV , NS, and Nf are the number of vector bosons,
scalars, andWeyl fermions in the infrared. For the ACS free
energy,

fUV ¼ 2ðN2 − 1Þ þ 7Nψ

8
ðN2 þ 3N þ 8Þ

þ 7N χ

8
ðN2 − 3N þ 8Þ; ðA7Þ

fIR ¼ NB þ 7

4
Nf : ðA8Þ

We put those two criteria to the test in Tables XVII
and XVIII for the theories and their possible IR phases
discussed in the paper. In all cases the a theorem is
satisfied, whereas the ACS criterion fails only for the
(3,0) and (0,3) models.

8As explained by ’t Hooft, the Higgs VEV of the form
hϕi ¼ vð 10 Þ, found in all textbooks on electroweak theory, is
just a gauge dependent way of describing the gauge-invariant
VEV hϕ†ϕi, so it is a statement such as the left-hand fermion
being equal to ψL ¼ ðνLeLÞ.9After all, the Higgs mechanism was first discovered in the
context of superconductivity: the Cooper pair condenses due to
the interactions between the electrons and the lattice phonons.
The Cooper pair, having charge 2, is not a gauge-invariant
object. It is perhaps useful to remember that the Higgs mecha-
nism was thus first discovered in the context of a dynamical
Higgs mechanism.
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