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Abstract
A number of digestive and extra-digestive disorders, including inflammatory
bowel diseases, irritable bowel syndrome, intestinal infections, metabolic
syndrome and neuropsychiatric disorders, share a set of clinical features at
gastrointestinal level, such as infrequent bowel movements, abdominal
distension, constipation and secretory dysfunctions. Several lines of evidence
indicate that morphological and molecular changes in intestinal epithelial barrier
and enteric neuromuscular compartment contribute to alterations of both bowel
motor and secretory functions in digestive and extra-digestive diseases. The
present review has been conceived to provide a comprehensive and critical
overview of the available knowledge on the morphological and molecular
changes occurring in intestinal epithelial barrier and enteric neuromuscular
compartment in both digestive and extra-digestive diseases. In addition, our
intent was to highlight whether these morphological and molecular alterations
could represent a common path (or share some common features) driving the
pathophysiology of bowel motor dysfunctions and related symptoms associated
with digestive and extra-digestive disorders. This assessment might help to
identify novel targets of potential usefulness to develop original pharmacological
approaches for the therapeutic management of such disturbances.

Key words: Digestive disease; Enteric nervous system; Intestinal epithelial barrier;
Intestinal motility; Metabolic disorders; Neuropsychiatric disorders
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enteric neuromuscular compartment might represent a common condition underlying the
onset/progression of bowel functional disturbances in both digestive and extra-digestive
diseases. In this review, we summarize the impact of morphological and molecular
alterations occurring in intestinal epithelial barrier and enteric neuromuscular
compartment on bowel motor and secretory functions in digestive and extra-digestive
diseases. This assessment, beyond to provide insight on the pathophysiology of bowel
motor dysfunctions, could pave the way to the identification of novel therapeutic targets
for the management of bowel dysfunctions associated with digestive and extra-digestive
disorders.

Citation: D’Antongiovanni V, Pellegrini C, Fornai M, Colucci R, Blandizzi C, Antonioli L,
Bernardini N. Intestinal epithelial barrier and neuromuscular compartment in health and
disease. World J Gastroenterol 2020; 26(14): 1564-1579
URL: https://www.wjgnet.com/1007-9327/full/v26/i14/1564.htm
DOI: https://dx.doi.org/10.3748/wjg.v26.i14.1564

INTRODUCTION
A number of digestive and extra-digestive disorders, such as inflammatory bowel
diseases  (IBDs),  irritable  bowel  syndrome (IBS),  intestinal  infections,  metabolic
syndrome  and  neuropsychiatric  disorders,  share  a  set  of  clinical  features  at
gastrointestinal (GI) level. Digestive functional disturbances, such as infrequent bowel
movements, abdominal distension, constipation and secretory dysfunctions, are often
complained by patients affected by the above diseases, undermining their quality of
life and contributing relevantly to morbidity[1-4].

Several lines of evidence indicate that morphological and molecular changes in
intestinal epithelial barrier (IEB) and enteric neuromuscular compartment can be
associated with both digestive and extra-digestive diseases. For instance, both IBD
and obese patients are characterized by an impairment of IEB and remodeling of
enteric neuromuscular compartment, which appear to contribute to alterations of both
intestinal  motor  and  secretory  functions[5,6].  In  parallel,  the  same  or  similar
morphofunctional GI alterations characterize different neuropsychiatric disorders,
such as Parkinson’s disease (PD), Alzheimer’s disease (AD), multiple sclerosis (MS),
amyotrophic  lateral  sclerosis  (ALS),  autism  spectrum  disorder  (ASD)  and
depression[7-9].

Based on this background, the present review has been conceived to provide a
comprehensive and critical overview of available knowledge on the morphological
and molecular changes occurring in IEB and enteric neuromuscular compartment in
both digestive and extra-digestive diseases. In addition, our intent was to highlight
whether these alterations could represent a common path (or share some common
features)  driving the  pathophysiology of  bowel  motor  dysfunctions  and related
symptoms associated with digestive and extra-digestive disorders. This assessment
might  help  to  identify  novel  targets  of  potential  usefulness  to  develop  novel
pharmacological approaches for the therapeutic management of such disturbances.

MORPHOLOGY AND FUNCTION OF IEB AND
NEUROMUSCULAR COMPARTMENT UNDER
PHYSIOLOGICAL CONDITIONS
A  dynamic  interplay,  occurring  between  IEB,  enteric  immune  system  and
neuromuscular  compartment,  contributes  relevantly  to  the  maintenance  of  gut
homeostasis[10]. The IEB represents the main physical barrier between the lumen and
tissue compartments[11].  The luminal surface of intestinal mucosa is covered by a
hydrated gel, consisting mainly of mucins secreted by goblet cells[11]. The outer mucus
layer provides a habitat for commensal microorganisms, while the inner mucus layer
acts as a physical barrier preventing the penetration of microorganisms and other
noxious agents into bowel tissues[11] (Figure 1). Under physiological conditions, there
is  an  equilibrium  between  the  mucus  secretion  rate  and  its  erosion,  due  to  the
movement of luminal contents, ensuring a stable thicknesses of the mucus layer.

Below the mucus layer, the IEB, an epithelial cell monolayer arranged into finger-
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Figure 1

Figure 1  Diagram showing the morphology of intestinal epithelial barrier and neuromuscular compartment. (1) The intestinal mucosa is covered by a
hydrated gel, consisting mainly of mucins secreted by goblet cells The outer mucus layer provides a habitat for commensal microorganisms, while the inner mucus
layer acts as a physical barrier preventing the penetration of microorganisms and other noxious agents into bowel tissues; (2) The epithelium includes: enterocytes
that act as a selective physical barrier and regulatenutrient absorption, goblet cells, entero-endocrine cells that release intestinal hormones or peptides, and Paneth
cells that regulate microbial populations and protect neighboring stem cells; (3) Junctional complexes confer mechanical strength to the intestinal epithelial barrier and
regulate paracellular permeability; (4) The lamina propria, besides containing a number of innate and adaptive immune cells that respond to the insults with the
secretion of inflammatory mediators, such as prostaglandins, histamine, and cytokines, is characterized by an intricate network of fibroblasts playing a key role in the
proliferation of intestinal epithelium; and (5) Enteric glial cells, a cellular component of the enteric nervous system, are associated with both submucosal and myenteric
neurons and are located also in proximity of epithelial cells. They coordinate signal propagation from and to myenteric neurons and epithelial cells, thus regulating
bowel motility as well as the secretory and absorptive functions of enteric epithelium; interstitial cells of Cajal are the source of the electrical slow waves responsible
for the transmission of excitation to the neighboring smooth muscle cells.

like protrusions (villi) and invaginations (crypts), forms a selective physical barrier[11].
The villi provide an efficient surface for nutrient absorption, while stem cells, located
at the basis of crypts, give rise to several types of epithelial cells: Enterocytes, goblet
cells, entero-endocrine cells and Paneth cells[11] (Figure 1). Enterocytes are the major
cell  type in  intestinal  epithelium.  Beyond their  critical  role  as  selective  physical
barrier,  they  tightly  regulates  the  nutrient  absorption  (e.g.,  ions,  water,  sugar,
peptides, and lipids) as well as the secretion of immunoglobulins. In parallel, the
entero-endocrine cells release intestinal hormones or peptides into bloodstream upon
stimulation, to activate nervous responses. Finally, Paneth cells, located at the base of
small intestinal crypts, regulate microbial populations and protect neighboring stem
cells, through the secretion of antimicrobial peptides[11].

The  IEB  holds  three  fundamental  functions:  (1)  It  acts  as  a  physical  barrier,
preventing the passage of harmful intraluminal entities; (2) It operates as a selective
filter, allowing the passage of nutrients and water; and (3) It has secretory functions,
such as the release of mucus and immunoglobulins[11].

The efficiency of IEB depends on the maintenance of its integrity, ensured by three
junctional complexes that join adjacent epithelial cells and include tight junctions
(TJs),  adherent  junctions  and  desmosomes[11]  (Figure  1).  TJs,  the  most  apical
intercellular junctions, consist of trans-membrane proteins, such as claudins, occludin
and tri-cellulin, which are anchored to the actin cytoskeleton via a cytoplasmic plaque
including the zona occludens (ZO-1, ZO-2 and ZO-3)[11]. Adherent junctions, located
just beneath TJs, share a common structural organization with the junctional complex
mentioned above. Desmosomes are located along the lateral membranes beneath
adherent  junctions.  The  main  tasks  of  such  junctional  complexes  are  to  confer
mechanical strength to the IEB and regulate paracellular permeability[11].

With regard for the enteric immune system, several review articles have provided a
thorough overviews about the intricate networks occurring among the immune cells,
resident  both  in  the  lamina  propria  and  Peyer’s  patches,  and  the  mucosal  and
neuromuscular compartment[10] (Figure 1).
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The enteric nervous system (ENS) holds a pivotal role in shaping the majority of GI
functions[12]. This nervous network is arranged into two plexuses: The submucosal
plexus (or Meissner’s plexus), located in the submucosa, and the myenteric plexus (or
Auerbach’s plexus), located between the circular and longitudinal muscle layer[12]

(Figure 1).  The neurons of submucosal plexus,  besides contributing to the motor
control of smooth muscles, regulate secretive and absorptive functions, whereas those
of the myenteric plexus are involved mainly in the initiation and control of gut motor
activity[12]. The ENS, beyond the regulation of GI motor functions, contributes to the
control of key functions involved in the maintenance of IEB homeostasis, including
paracellular  or  transcellular  permeability,  epithelial  cell  proliferation  and  TJ
expression; it regulates also several mucosal functions, independently of cerebral
inputs[13].

Among the cellular components of ENS, there is increasing evidence highlighting a
pivotal involvement of enteric glial cells (EGCs), interstitial cells of Cajal (ICC) and
smooth muscle cells in the regulation of gut homeostasis. EGCs are associated with
both  submucosal  and  myenteric  neurons  and  are  located  also  in  proximity  to
epithelial cells[12]. They coordinate signal propagation from and to myenteric neurons
and epithelial cells, thus taking a significant part to the control of bowel motility as
well as the secretory and absorptive functions of the enteric epithelium[14,15] (Figure 1).
A crucial role in the control of the motor functions of enteric smooth myocytes is
played  by  the  ICC,  located  in  the  tunica  muscularis[12].  These  cells  generate
spontaneous  and  rhythmic  electrical  activity,  on  the  basis  of  which  they  are
considered as pacemakers for gut motility[12] (Figure 1). The muscular compartment
consists  of  two layers of  smooth muscle cells:  The circular  one,  where fibers are
oriented along the transversal axis and generate forward transit with relatively little
mixing, and the longitudinal muscle layer, equipped with fibers oriented along the
longitudinal axis, that, beyond the maintenance of intestinal muscle tone, contributes
to shorten the lumen and support the propulsion[12] (Figure 1). The outer surface of the
muscular  layer  is  covered by the adventitia,  which secretes  lubricating fluids to
reduce friction generated by muscle movements[12].

Overall,  the  structural  and  functional  integrity  of  IEB  and  neuromuscular
compartment are essential to ensure an adequate implementation of digestive motor
and secretory functions. In particular, a proper interplay between IEB and ENS gives
rise to a dynamic network aimed at coordinating the GI physiology and preserving
the integrity of gut microenvironment.

MORPHOLOGICAL FEATURES OF IEB AND
NEUROMUSCULAR COMPARTMENT IN DIGESTIVE
DISEASES

IBDs
IBDs, comprising mainly ulcerative colitis (UC) and Crohn’s disease (CD), are chronic
intestinal  inflammatory  disorders,  characterized  clinically  by  abdominal  pain,
diarrhea or constipation, and weight loss[1].  Anatomically, UC is restricted to the
rectum,  colon  and  caecum,  while  CD  can  affect  the  entire  GI  tract,  although  it
commonly affects the terminal ileum and colon[1]. Currently, the etiology of IBDs has
not been completely elucidated. Intensive research efforts have been focused on the
characterization of the role of IEB and enteric neuromuscular compartment in the
onset of IBDs and related digestive disturbances.

Several  studies  have documented a  defective  mucus  layer  in  IBD patients.  In
particular, the histological analysis of UC colonic biopsies has shown a depletion of
goblet  cells,  a  reduced  mucin  glycosylation,  and  a  decrease  in  mucin  (MUC)-2
biosynthesis  and  secretion[16-19].  By  contrast,  CD  patients  display  an  abnormal
glycosylation and mucin hyperproduction accompanied by goblet cell hyperplasia[17]

(Table 1). Such alterations can increase the epithelial permeability to luminal bacteria
and microbial  products,  which,  upon interaction with immune cells,  trigger and
maintain the inflammatory response[18-20].

A common feature of IBD patients is the increase in paracellular permeability due
to TJ  abnormalities  that,  besides altering the transport  of  solutes  and water  and
causing leak flux diarrhea, allow the tissue penetration of large molecules and luminal
pathogens, triggering innate immune responses[5,21,22]. In this regard, IBD patients have
been found to display an increased expression of claudin-2 and claudin-18 as well as a
decreased expression and tissue redistribution of occludin, along with an increased
serum ZO-1 concentration[5,23-26] (Table 1).

IBD patients are commonly affected by GI motility disorders[27,28]. Indeed, changes
in small bowel transit have been reported in both UC and CD patients[27]. Consistent
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Table 1  Summary of current human and experimental data on molecular, morphological and functional changes in intestinal epithelial
barrier and neuromuscular compartment in digestive disorders

Digestive disorder
Morphofunctional
changes in intestinal
epithelial barrier

Morphofunctional
changes in enteric
neuromuscular
compartment

Notes Ref.

Human investigations

IBD Altered composition of
mucus layer

↓ Myenteric neurons (b) (a) UC ↓ claudin-1 and -4; CD
↓ claudin-3, -5 and -8

[5,16-19,23-26,29-36]

Abnormal glycosylation of
mucins

↑ SP release (c) (b) Another study reported
an increment of the enteric
neuron number

↑ Paracellular and
transcellular permeability

↑ NK-1 and NK-2 receptors

↑ Claudin-2 and claudin-18
(a)

Altered morphology of ICC (c) Other authors reported a
significant reduction of both
AChE activity and ACh
release in IBD patients
suffering from moderate-
severe disease, as compared
with healthy controls or IBD
patients with low disease
severity

↓ Occludin and ZO-1 Functional alterations of
EGCs

IBS ↑ Mucus secretion ↓ Thickness of muscle layer (d) Positive correlation
between increased intestinal
permeability and visceral
pain

[51,54-63]

↑ Paracellular permeability
(d)

↑ Entero-endocrine cell
activity

↓ Occludin and ZO-1 ↑ SP release (f)

Altered expression of
claudins (e)

Altered circulating levels of
5-HT

(e) IBS-D: ↓ claudin-1 and
claudin-4, resulting in
diarrhea; IBS-C: ↑ claudin-1,
claudin-3 and claudin-4,
resulting in constipation

Altered number and
morphology of ICC

(f) Positive correlation
between increased SP release
and pain scores↑ EGC density

Intestinal infections Altered composition of
mucus layer

↓ Circulating levels of 5-HT
[72,74,75,76,78,79]

↓ Goblet cell number ↑ SP release

↑ Paracellular permeability
altered TJs

↑ Epithelial apoptosis

Diverticulosis and
diverticulitis

↑ Mucosal folds Altered smooth muscle cells (g) A more recent study did
not observe alterations of
ENS

[77,80-83]

Mucosal ulcerations Altered serotonergic system

Crypt distortion ↑ Tachykinergic contractile
activity

↓ Cholinergic pathway
activity

↓ ICC number

↓ EGC density (g)

Experimental models

IBD Altered composition of
mucus layer

↓ Myenteric neurons
[37-50]

↓ Goblet cell number Altered morphology of ICC

↑ Paracellular and
transcellular permeability

↓ EGC density

↑ Claudin-1 and claudin-2

↓ Occludin and ZO-1

IBS ↑ Mucus secretion ↓ Thickness of muscle layer (h) Positive correlation
between increased intestinal
permeability and visceral
pain

[63,65-68,70]

↑ Paracellular permeability
(h)

Altered number of ICC

↓ Occludin and ZO-1 ↑ SP release
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↓ Circulating levels of 5-HT

↑ EGC density

Intestinal infections ↑ MUC1 expression ↑ SP release
[84-87]

↓ MUC2 expression

↑ Paracellular permeability

Altered TJs

↑: Increase; ↓: Decrease; 5-HT: Serotonin; Ach: Acetylcholine; AChE: Acetylcholinesterase; CD: Crohn’s disease; EGCs: Enteric glial cells; ENS: Enteric
nervous system; IBD: Inflammatory bowel disease; IBS: Irritable bowel syndrome; IBS-C: IBS with constipation; IBS-D: IBS with diarrhea; ICC: Interstitial
cells of Cajal; MUC: Mucin; NK: Neurokinin; SP: Substance P; TJ: Tight junction; UC: Ulcerative colitis; ZO-1: Zonulin-1.

with these  clinical  findings,  several  lines  of  evidence  indicate  the  occurrence  of
neuroplastic changes in the neuromuscular compartment and suggest that these are
critical steps in contributing to the alterations of digestive motility in the presence of
IBDs.  In  particular,  several  studies  have  described  a  reduction  of  myenteric
neurons[29], mainly in UC than CD tissues[30], likely resulting from increased apoptotic
processes, not restricted to specific neural populations[31]. IBD patients display also
subtle changes in the expression of enteric neurotransmitters or their receptors. For
instance,  high  levels  of  substance  P  (SP)  and  upregulation  of  NK-1  and  NK-2
receptors have been observed in the colon and rectum of IBD patients[32-34].  Other
human studies reported morphological abnormalities of ICC and EGCs, that could
participate to the initiation/maintenance of IBDs and their associated symptoms[28,29,35].
In support  of  this  view, histological  examinations of  UC and CD bowel biopsies
pointed out an increase in glial fibrillary acidic protein (GFAP), S100 calcium-binding
protein  B (S100B),  and glial  cell  line-derived neurotrophic  factor  (GDNF) in  the
inflamed  area,  suggesting  that  EGCs  were  activated  during  the  inflammatory
processes[36] (Table 1).

The mechanisms underlying pathological interplays among immune/inflammatory
processes, IEB, neuromuscular compartment and bowel motor dysfunctions in IBDs
remain to be elucidated. In this respect, interesting evidence comes from studies on
IBD animal models. Il10-/- mice (lacking the expression of IL-10 and developing colitis
spontaneously),  as  well  as  colitis  induced  by  dextran  sodium  sulfate  (DSS)  or
dinitrobenzene sulfonic acid (DNBS) display a significant loss of goblet cells and
alterations of mucus layer composition, implying a dysfunction in the mucus barrier
permeability[18,37-39]. In addition, mouse with DSS colitis showed a reduced expression
of occludin and ZO-1 as well as an increase of claudin-1 and claudin-2, along with a
marked increase  in  apoptotic  death of  epithelial  cells[40,41]  (Table  1).  Of  note,  the
reduction  of  ZO-1  expression  was  found  to  precede  the  onset  of  intestinal
inflammation,  suggesting that  the ZO-1 alteration was not  a  consequence of  the
inflammatory process, but rather an early event, prodromal to the onset of colitis[40]. In
support to this view, studies conducted in Il10-/- mice, beyond showing alterations of
villus and crypt architecture, displayed an increment of intestinal permeability, that
occurred as a primary defect, before the onset of mucosal inflammation, suggesting a
disruption of IEB[42,43].

The occurrence of ENS abnormalities, including axonal hypertrophy, a decrease in
the  number  of  enteric  neurons  and  morphological  alterations  of  ICC,  has  been
described also in animal models of IBD[44-48]. Brown et al[49] reported that the activation
of EGCs in the context of neuroinflammation induce enteric neuronal death in DNBS-
treated  mice,  suggesting  that  glial  response  to  inflammatory  mediators  might
contribute to the development of bowel motor abnormalities. Currently, only one pre-
clinical  study,  conducted in rats  with 2,4,6-trinitrobenzene sulfonic  acid (TNBS)
colitis, reported a loss of EGCs following bowel inflammation, demonstrating that
colitis can affect differently the EGCs in the submucosal and myenteric plexus[50]

(Table 1). Of note, at present studies on histological alterations of EGC markers such
as GFAP, S100B and GDNF in animal tissues of IBDs are lacking. Therefore, further
investigations should be implemented to help better clarifying putative correlations
among the morphofunctional alterations of EGCs, bowel inflammation and motor
dysfunctions in IBDs.

IBS
IBS is a frequent disorder affecting up to 15%-25% of the adult population[2].  IBS
patients are classified into subtypes by predominant stool pattern: IBS with diarrhea
(IBS-D); constipation (IBS-C); mixed (IBS-M); and unsubtyped IBS (IBS-U)[2]. Among
the  patients  complaining  of  constipation,  11%  have  functional  slow  transit
constipation (STC); such patients differ from IBS-C due to the absence of abdominal
pain. Emerging evidence suggests that, beyond psychosocial factors and low-grade
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intestinal inflammation, alterations of IEB and enteric neuromuscular compartment
could contribute to IBS onset, development and related symptoms.

Human studies have reported a status of exuberant mucin secretion by goblet cells
along with an increased paracellular permeability due to TJ abnormalities in IBS
patients[51]. The increment of IEB permeability is thought to represent an important
step  in  the  sequence  of  events  leading  to  the  onset  of  low-grade  intestinal
inflammation and disturbed bowel functions[52,53]. The integrity of IEB in IBS patients
has been investigated by evaluating the urinary excretion of oral probes, such as 13C
mannitol[54].  This approach has allowed to document an increase in the intestinal
permeability of IBS patients, likely reflecting alterations of TJs occurring during the
acute phase of the disorder[54]. Histological examinations of colonic biopsies showed
an abnormal cellular distribution of claudins as well as a reduced expression of ZO-1
and occludin in all  IBS subtypes as compared to healthy controls[51,55,56]  (Table 1).
Currently there is no evidence regarding changes in IEB in STC patients.

As far as the neuromuscular compartment is concerned, several alterations have
been described in patients, suggesting their contribution to the pathophysiology of
IBS symptoms, such as bowel dysmotility. However, no predominant patterns of
motor activity have emerged as markers for IBS. In this context, translational evidence
highlighted  a  hypertrophy  of  the  muscle  layer,  mainly  in  IBS-D  patients,  and
alterations of the number and size of ICC both in IBS and STC patients[57-60]. Cheng et
al[51] reported an abnormal density of entero-endocrine cells in rectal biopsies of IBS
patients, along with a strong secretory status, suggesting that the endocrine system
may play an important role in the pathophysiology of IBS. Other studies observed an
increase  in  circulating  serotonin  levels  in  IBS-D  patients,  contrary  to  IBS-C,
characterized by reduced levels of circulating serotonin[61,62]. These findings suggest
that serotonin, beyond regulating gut motility, plays an important role in immune
activation  and  inflammation,  thus  contributing  to  the  pathophysiology  of  IBS.
Currently, only few studies have taken into consideration the morphology of EGCs in
IBS. For instance, Wang et al[63] observed an increment of EGCs in the colonic mucosa
of IBS patients (Table 1). By contrast, STC patients displayed a significant decrease in
EGCs in both the myenteric and submucosal plexus[64]. At present, there is no evidence
to explain the relationship between the altered number of EGCs and bowel motor
dysfunctions in IBS and STC patients. Therefore further studies are needed.

Consistently  with  human  findings,  an  increment  of  mucus  secretion  and
hyperplasia of goblet cells has been observed in IBS animal models[65]. In addition, in
an  IBS-D rat  model  induced by  acetic  acid,  a  significant  reduction  of  ZO-1  and
occludin expression has been shown[66]. These findings suggest that morphological
alterations of mucus layer and TJ proteins could contribute to the increased sensitivity
to visceral pain and other aspects of IBS symptoms[65,67] (Table 1).

The occurrence of ENS abnormalities has been described also in IBS animal models.
Indeed, similarly to patients, murine models of IBS showed a significant reduction of
the total thickness of muscle layer and alterations of ICC[65,68]. Likewise, Wang et al[69]

showed a significant reduction of ICC number in a rat model of STC. Thus, current
data from human and pre-clinical studies indicate that changes in ICC numbers are
closely  associated  with  alterations  of  intestinal  motor  patterns  in  both  IBS  and
STC[57,68,70]. Of interest, similarly to IBS patients, Wang et al[63] reported an increase in
the number of EGCs, observing a positive correlation between changes in EGCs and
abdominal pain (Table 1).

Other digestive disorders
For a variety of digestive disorders, such as intestinal infections and diverticular
disease (including diverticulosis and diverticulitis), the pathogenesis remains unclear
and several hypotheses have been formulated. Nevertheless, alterations of IEB and
enteric neuromuscular compartment have been described as common features likely
involved in the pathogenesis and progression of these diseases.

In  intestinal  infections,  the  presence  of  pathogens  in  the  intestine  can induce
pathological  alterations  of  the  mucus  layer  and  IEB,  resulting  in  the  onset  of
inflammatory responses within the gut wall[71]. Indeed, infectious agents may damage
the intestinal mucosa by a direct interaction with mucins or the release of toxins[72,73].
In this regard, human studies have documented a depletion of goblet cells and an
altered composition of mucus, resulting in an enhanced interaction between harmful
intraluminal entities and enteric epithelium, exacerbating intestinal inflammation[72,74].
On the other hand, infectious agents have developed mechanisms that target the
host's  TJs.  Clinical  data  from norovirus-infected patients  showed a flattening of
epithelium and a severe loss of villi as well as a reduction of TJ expression and an
increment of epithelial apoptosis[75,76] (Table 1).

When considering the morphofunctional alterations of the mucus layer and IEB
occurring in diverticular disease,  a  limited number of  clinical  data are currently
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available. For instance, a recent study showed a prominent mucosal folding with
crypt distortion, mucosal ulcerations and infiltration of inflammatory cells in patients
with diverticulitis[77] (Table 1).

With  regard  for  the  neuromuscular  compartment,  structural  and  functional
abnormalities have been observed, either in patients with intestinal infections and
subjects affected by diverticular disease. A common feature in such disorders is the
alteration of enteric neurotransmitters. Clinical evidence in Giardia duodenalis-infected
patients showed a reduction of circulating serotonin and a decreased number of
serotonin-containing enterochromaffin cells in the duodenal mucosa[78]. Other authors
reported  an  increment  of  SP  levels  in  the  gut  of  patients  infected  with
Cryptosporidium[79]  (Table  1).  Similarly  to  intestinal  infections,  patients  with
diverticular  disease  displayed  alterations  of  the  serotonergic  system[80]  and  an
increment  of  tachykinergic  motor  activity  as  well  as  a  reduction  of  cholinergic
motility[81].  Other  authors  reported  an  altered  expression  patterns  of  important
molecular factors involved in the regulation of smooth muscle cells contractility at
level of the tunica muscularis[82]. In addition, Wedel et al[83] observed a thickening of
muscle layers, along with a reduced number of EGCs and ICC (Table 1).

Consistently  with  human  findings,  pre-clinical  studies  in  mice  infected  with
Citrobacter rodentium or Campylobacter jejuni, beyond showing a depletion of MUC2,
displayed an increment of MUC1 secretion[84].  Such an increase, observed both in
human and pre-clinical studies, highlights a mechanism of host defense aimed at
trapping parasites in the mucus, thereby favoring their expulsion. On the other hand,
Elmi et al[85] reported an increment of IEB permeability due to TJ alterations in mice
infected with Campylobacter  jejuni,  Escherichia  coli  and Citrobacter  rodentium,  that
contributed to promote bacterial invasion into host cells and the development of
inflammatory process (Table 1).

When  considering  the  morphofunctional  alterations  of  neuromuscular
compartment in animal  models  of  intestinal  infections,  some authors reported a
significant increase in SP levels in Cryptosporidium-infected macaque or rats infected
with  Trichinella  spiralis,  suggesting  a  relationship  between  the  SP  content  and
inflammation associated with pathogen invasion as well as a positive correlation
between SP levels and the severity of diarrhea[86,87] (Table 1). Current animal models of
diverticular disease, based on low-fiber diets, have generated very inconsistent results
and/or a significant impairment of the systemic health status[88]. Thus, at present, pre-
clinical studies on the histological alterations of IEB and ENS in models of diverticular
disease are strongly needed.

MORPHOLOGICAL FEATURES OF IEB AND
NEUROMUSCULAR COMPARTMENT IN EXTRA-DIGESTIVE
DISEASES

Metabolic disorders (obesity and diabetes)
Patients with metabolic disorders, including obesity and type 2 diabetes mellitus,
often experience GI dysfunctions,  such as impaired gastric emptying, infrequent
bowel movements and constipation[3]. In this setting, several lines of evidence support
the contention that a chronic low-grade systemic inflammatory condition, besides
interfering with the metabolic processes, could contribute to alterations of IEB and
enteric neuromuscular compartment, which, in turn, could lead to the onset of bowel
motor abnormalities.

A recent study showed that obese patients display an increase in IEB permeability,
along with a decreased expression of occludin and tri-cellulin as well as an increase in
circulating lipopolysaccharide (LPS), an indirect index of intestinal permeability, and
ZO-1 levels[6]  (Table 2).  However,  despite  these interesting observations,  human
studies,  showing  a  correlation  between  altered  IEB,  changes  in  the  enteric
neuromuscular compartment and intestinal motor dysfunctions, are currently lacking.
In this respect, pioneering evidence, supporting the relevance of IEB alterations in the
pathophysiology of bowel dysmotility in metabolic disorders, comes from pre-clinical
studies.  For instance,  mice with high fat diet (HFD)-induced obesity displayed a
decrease  in  ZO-1,  occludin  and  claudin  expression,  as  well  as  an  increase  in
circulating LPS levels[89-91]. Likewise, leptin-deficient mice (genetic model of obesity)
showed  an  increased  IEB  permeability  along  with  morphological  changes  in
villi/crypt length and decreased expression of TJ- and mucus-related genes, that
could contribute to the alterations of intestinal motility[92] (Table 2).

Of note, pre-clinical studies have shown that obese mice are characterized by a
remarkable morphofunctional rearrangement of the ENS, such as a decrease in the
density of nitrergic and VIPergic neurons and an altered intestinal smooth muscle cell
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Table 2  Summary of current human and experimental data on molecular, morphological and functional changes in intestinal epithelial
barrier and neuromuscular compartment in metabolic disorders

Metabolic disorder Morphofunctional changes in
intestinal epithelial barrier

Morphofunctional changes in
enteric neuromuscular
compartment

Ref.

Human investigations

Obesity ↑ Circulating LPS NA
[6]

↓ Occludin and tri-cellulin
immunopositivity

↑ ZO-1

Diabetes ↑ Intestinal permeability (urinary
excretion of lactulose)

NA
[6]

Experimental models

HFD-induced obese mice ↓ ZO-1, occludin and claudins ↓ Nitrergic and VIPergic neurons
Altered smooth muscle cell
excitability

[89-91,93,94,96,97]

↑ Circulating LPS ↓ Enteric inhibitory
neurotransmission

↑ Enteric excitatory tachykininergic
neurotransmission

↑ SP immunopositivity

↑ A2B adenosine receptor expression

Lep ob/ob mice ↑ Intestinal permeability NA
[92]

Alterations of villi/crypt length

↓ TJs and mucus-related genes

Ob/ob mice ↑ Paracellular permeability ↓ Intestinal motor activity
[95]

Altered TJs ↓ ACh receptors

Delayed intestinal transit rate

↑: Increase; ↓: Decrease; A2B: Adenosine 2B receptor; Ach: Acetylcholine; HFD: High-fat diet; Lep: Leptin; LPS: Lipopolysaccharide; NA: Not available;
Ob/ob: Obese mice; SP: Substance P; TJ: Tight junction; ZO-1: Zonulin-1.

excitability, with consequent impairment of enteric inhibitory neurotransmission[93,94].
In addition, Schacht et al[95] showed that ob/ob mice (a genetic model of diabetes)
displayed a  decrease in the intestinal  transit  rate,  likely resulting from a loss  of
acetylcholine receptors in muscle layers and an impaired intestinal motor activity
(Table  2).  These  findings  support  the  view  that  alterations  of  the  enteric
neuromuscular compartment could contribute to bowel dysmotility in metabolic
disorders. Consistently with this hypothesis, a recent study showed that HFD mice
displayed  a  marked  enhancement  of  enteric  excitatory  tachykininergic
neurotransmission along with an increase in SP immunoreactivity that contributes to
colonic dysmotility[96]. In addition, these authors demonstrated that an increase in
colonic  adenosine  A2B  receptor  expression  modulated  the  activity  of  excitatory
tachykininergic  nerves,  participating  to  the  enteric  dysmotility  associated  with
obesity[97] (Table 2).

Neuropsychiatric disorders
Patients  with  neuropsychiatric  diseases,  including  PD,  AD,  ALS,  MS,  ASD and
depression, are often characterized by functional digestive disturbances, including
infrequent bowel movements, abdominal distension and constipation[4]. Several lines
of evidence suggest that changes in gut microbiota composition, impairments of IEB,
intestinal  inflammation  and  rearrangements  of  the  enteric  neuromuscular
compartment contribute to these bowel motor dysfunctions[4].  In this section, we
summarize the most prominent data about the morphofunctional changes in IEB and
neuromuscular compartment in the most common central nervous system (CNS)
disorders.

Patients with early PD display an increase in IEB permeability, which correlates
with staining of  intestinal  mucosa for Escherichia  coli,  tissue oxidative stress and
enteric α-synuclein accumulation[98].  Clairembault et al[99]  reported an alteration of
occludin expression in colonic biopsies from PD patients, although the paracellular
and transcellular permeability did not differ among PD patients and controls. Others
observed an increase in IEB permeability and decreased colonic ZO-1 expression in
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PD  patients  with  severe  intestinal  symptoms,  thus  supporting  the  view  that
morphofunctional alterations of IEB could contribute to bowel motor dysfunctions in
PD[7].  Of  note,  changes  in  intestinal  permeability  have been documented also in
patients with MS and ASD, and in all these settings the respective patterns appear to
correlate with the disability status[8,9] (Table 3). Nevertheless, current evidence doesn’t
allow  to  establish  a  clear  casual  link  between  IEB  alterations  and  bowel  motor
dysfunctions in CNS disorders.

Besides IEB alterations, several evidence suggest that patients with CNS diseases
display alterations of enteric neuromuscular compartment, that could contribute to
bowel dysmotility.  A recent study has reported an increment of EGCs in colonic
biopsies from PD patients[100]. Wunsch et al[101] described the presence of ENS nerve
fiber disintegration and EGC activation in MS patients. Others reported an increased
α-synuclein as well as β-amyloid (Aβ) protein, β-amyloid protein precursor (AβPP)
and  phosphorylated  Tau  (p-Tau)  immunoreactivity  in  colonic  myenteric  and
submucosal  neurons  from  PD  and  AD  patients,  respectively,  suggesting  that
morphological changes in ENS and protein accumulation in enteric neurons could
contribute to bowel motor dysfunctions in CNS diseases[98,102] (Table 3).

However, current human studies don’t allow to establish a clear casual link among
changes  in  IEB,  alterations  of  neuromuscular  compartment  and  bowel  motor
dysfunctions in CNS disorders. In this regard, research efforts have been made in pre-
clinical  models  of  neurological  disorders.  Wu  et  al[103]  showed  an  increase  in
circulating  LPS  levels,  a  decrease  in  ZO-1  and  E-cadherin  expression,  and  an
abnormal increase in the number of Paneth cells in ALS mice. Other studies observed
the  concomitance  of  abnormal  intestinal  permeability,  enteric  α-synuclein
accumulation  and  delayed  bowel  transit  in  mice  with  PD  induced  by  LPS  and
rotenone[7,104]. Recent pioneering studies in different animal models of PD highlighted
relevant  rearrangements  in  the  chemical  coding  of  both  enteric  inhibitory  and
excitatory neurons,  along with impairments of  ileum and colonic motor activity,
which likely contribute to the decrease in small intestinal and colonic transit rate as
well  as  the  efficiency  of  peristaltic  reflex[105-107].  Of  note,  alterations  of  enteric
neurochemical coding, characterized by a decrease in neuronal nitric oxide synthase
(nNOS) and choline acetyltransferase (ChAT), age-related loss of myenteric neurons,
EGC activation, intestinal smooth muscle cell atrophy and altered bowel motility have
been observed in several animal models of CNS diseases,  including AD, MS and
ALS[4] (Table 3).

CONCLUSION
Current data from human and pre-clinical studies suggest that impairments of IEB
and  enteric  neuromuscular  compartment  might  represent  a  common  condition
underlying the onset/progression of bowel functional disturbances in both digestive
and extra-digestive diseases. Indeed, even though each disease displays different
clinical and neuropathological features, patients with IBD, IBS, intestinal infections,
diverticular disease as well as metabolic and CNS disorders are characterized by
significant molecular and morphofunctional alterations of IEB, ENS and intestinal
muscular layers. In particular, changes in TJ protein expression and distribution as
well as morphofunctional alterations of EGCs represent a common feature of such
disorders, that could contribute to the pathophysiology of bowel motor disturbances.
However, the molecular mechanisms underlying the interplays between IEB and
enteric neuromuscular compartment as well as their role in the pathophysiology of
bowel dysmotility in digestive and extra-digestive disorders remain to be elucidated.

Another important aspect of the current evidence from the literature is that changes
in gut microbiota composition could also promote the development of functional
bowel disorders[108,109]. Indeed, a number of exhaustive review articles have widely
described  changes  of  intestinal  microbiota  in  patients  with  digestive  and
neuropsychiatric disorders[110-113]. However, human studies do not allow to establish a
causal role between gut dysbiosis and bowel functional disturbances in digestive and
extra-digestive diseases. Therefore, an integrated overview about the relationship
between alterations in gut microbiota composition and bowel functional disturbances
associated  with  digestive  and  extra-digestive  diseases  is  missing  and  requires
investigations.

In conclusion, based on current knowledge, some important issues remain to be
addressed: (1) What is the role of IEB in bowel motor dysfunctions associated with
digestive  and extra-digestive  diseases?  (2)  What  are  the  molecular  mechanisms
underlying the interplay between IEB and enteric neuromuscular compartment in the
onset of bowel motor abnormalities associated with digestive and extra-digestive
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Table 3  Summary of current human and experimental data on molecular, morphological and functional changes in intestinal epithelial
barrier and neuromuscular compartment in central nervous system disorders

Central nervous system
disorder

Morphofunctional changes in
intestinal epithelial barrier

Morphofunctional changes in
enteric neuromuscular
compartment

Ref.

Human investigations

PD ↑ Intestinal permeability ↑ EGC density
[7,98-100]

↓ Occludin and ZO-1 expression α-syn accumulation in myenteric
neurons

AD NA ↑ Aβ, AβPP and p-Tau
immunoreactivity in colonic
myenteric and submucosal neurons

[102]

MS ↑ Intestinal permeability (urinary
mannitol concentration)

ENS fiber disgregation
[8,101]

EGC activation

ASD Altered intestinal permeability NA
[9]

Experimental models

Rotenone-induced central
dopaminergic neurodegeneration

↑ Intestinal permeability α-syn accumulation in myenteric
neurons

[7,104]

Delayed bowel transit

LPS-induced central dopaminergic
neurodegeneration

↑ intestinal permeability
(lactulose/mannitol ratio and
sucralose levels)

α-syn accumulation in myenteric
neurons

[7,104]

Delayed bowel transit

6-OHDA-induced nigrostriatal
neurodegeneration

NA Impairment of colonic cholinergic
and tachykininergic motor activity

[105-106]

Tg A53T mice (genetic model of PD) NA Impairment of colonic cholinergic
motor activity

[107]

α-syn accumulation in myenteric and
submucosal neurons

APP/PS1 mouse (genetic model of
AD)

NA ↑ Aβ protein precursor, Aβ
[4]

Protein and p-Tau

↓ nNOS and ChAT

EGC activation

Tg CRND8 mice (genetic models of
AD)

NA ↑ Aβ protein precursor in myenteric
neurons

[4]

Enteric glial activation (GFAP, nestin)

Enteric neuronal loss

Smooth muscle cell atrophy

EAE (animal model of MS) Abnormal intestinal permeability
(plasma Na-F and FITC levels)

Crypt depth and thickness of
submucosal and muscular layers

[4]

↓ ZO-1 expression Enteric glial activation

Neuronal loss

Abnormal GI motility

G93A mice (genetic model of ALS) ↑ Circulating LPS NA
[4,103]

↓ ZO-1 and E-cadherin expression

↑ Paneth cells number

↑: Increase; ↓: Decrease; 6-OHDA: 6-hydroxydopamine; α-syn: α-synuclein; Aβ: Amyloid β; AβPP: β-amyloid protein precursor; AD: Alzheimer’s disease;
ALS: Amyotrophic lateral sclerosis; ASD: Autism spectrum disorder; ChAT: Choline acetyltransferase; EGC: Enteric glial cell; ENS: Enteric nervous system;
FITC: Fluorescein isothiocyanate; GFAP: Glial fibrillary acidic protein; GI: Gastrointestinal; LPS: Lipopolysaccharide; nNOS: Neuronal nitric oxide
synthase; MS: Multiple sclerosis; NA: Not available; PD: Parkinson’s disease; p-Tau: Phosphorylated Tau; ZO-1: Zonulin.

diseases? (3) Can diet influence the alterations of IEB and enteric neuromuscular
compartment in digestive and extra-digestive diseases? And (4) What is the impact of
gut  dysbiosis  in  bowel  motor  dysfunctions  associated with  digestive  and extra-
digestive diseases?

To  address  these  points,  research  efforts  should  be  made  to  characterize
simultaneously the alterations of IEB and neuromuscular compartment, regarded as
an integrated network, in animal models and patients. Understanding these aspects
could  pave  the  way  to  the  identification  of  novel  therapeutic  targets  and  the
development  of  novel  pharmacological  entities  for  the  management  of  bowel
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dysfunctions associated with digestive and extra-digestive disorders.  Indeed,  at
present, there is a lack of therapeutic interventions able to restore IEB integrity and
dysfunctions of the enteric neuromuscular compartment. A limited number of clinical
studies have reported some benefits in terms of improvement of IEB integrity and
restoration  of  ENS  functions,  following  the  administration  of  probiotics  and
prebiotics. However, clinical results remain patchy due to heterogenitcity of study
protocols, related mainly to the selection of study population, sample size, dosage,
formulation and bacterial strains used, as well as the duration of therapy and outcome
measures. Therefore, intensive research efforts are needed to deepen the beneficial
effects of probiotics and prebiotics observed in clinical studies. Moreover, further
research in this area is necessary to identify novel therapeutic targets suitable for
strengthening IEB and to treat or prevent GI disorders.
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