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ABSTRACT: Four new flavonol glycosides (1-4), two oligosaccharides (5-6), one α-ionone (7),

and three triterpenoid saponins (8-10), together with four known secondary metabolites (11-14),

were  isolated  from the  aerial  parts  of  Polygala  flavescens  ssp.  flavescens.  All  structures  were

elucidated on the basis of their spectroscopic and spectrometric data. The isolates were assayed for

their inhibitory activity against isoform 5 of human lactate dehydrogenase and compound 11 (3,6'-

di-O-sinapoylsucrose)  showed an IC50 value of  90.4 µM. Modeling studies  were carried  out  to

suggest the putative interaction mode of compound 11 in the enzyme active site.
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Polygala L. is the largest genus of the Polygalaceae, comprising about 500 species (about half of

the entire family), including trees, shrubs, and herbs distributed throughout the world except New

Zealand and the Arctic.1 Some species are used in folk medicine for their content of triterpenoid

saponins,2 but the genus is also well-known for producing several classes of secondary metabolites,

such as xanthones, oligosaccharides, lignans, and other phenolic compounds.2-4 Recently, interest in

the genus has  increased  since only a relatively small  number of  the known species  have been

chemically  and  biologically  explored.  In  Italy,  the  genus  Polygala includes  only  herbs,  with

fourteen specific and subspecific taxa endemic to the country.5,6 Among these Polygala flavescens

DC. is the only Italian species with yellow flowers, with a geographical distribution  ranging from

Liguria to Basilicata, across the Italian peninsula. To the best of our knowledge, all of the Italian

Polygala species have been investigated minimally so far.

In the course of a research program on the lactate dehydrogenase (LDH) inhibitory activity of

different classes of natural products,7,8 P. flavescens ssp.  flavescens was selected as the subject of

this investigation. The human isoform 5 of the enzyme lactate dehydrogenase (hLDH5, composed

of four A subunits), which is overexpressed in many types of invasive tumors, catalyses the final

step  of  glycolysis,  the  reduction  of  pyruvate  to  lactate,  thus  playing  a  key  role  in  cancer  cell

metabolism.  hLDH5 allows energy production in tumor cells,  which largely depend on aerobic

glycolysis for their growth and survival and exhibit high glucose uptake together with an increased

lactate  production.9 Therefore,  hLDH5 inhibition  should  cause  cancer  cell  death  by  starvation,

without  interfering  with  healthy  cells  that  normally  use  oxidative  phosphorylation  for  ATP

generation. So far, several LDH inhibitors have been reported in the literature10 and, in particular,

some  of  them  are  derived  from  natural  sources.11,12 Therefore,  the  search  for  natural  hLDH5

inhibitors represents an attractive goal to find new effective anticancer drugs and prompted the

present investigation. A chemical  study of  P. flavescens ssp.  flavescens led to the isolation and

structural  characterization of ten new compounds,  including four  flavonol glycosides (1-4),  two

oligosaccharides (5 and  6), an  α-ionone (7), and three triterpenoid saponins (8-10), together with
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four known secondary metabolites constituted by two oligosaccharide (11 and 12) and two flavonol

glycosides (13 and 14). The isolates were assayed for their LDH inhibitory activity.

RESULTS AND DISCUSSION

The aerial parts of P. flavescens subsp. flavescens were defatted with n-hexane and extracted with

methanol to afford a MeOH extract, which was partitioned between AcOEt,  n-BuOH, and H2O to

give a n-BuOH residue. This extract  was subjected to size exclusion and RP-HPLC separations to

afford ten new (1-10) and four known compounds (11-14).

Compound 1, a yellow amorphous solid, showed a sodiated molecular ion peak at  m/z 869.2102

for [M + Na]+ in the HRESIMS; this result, together with the 13C NMR data, allowed the assignment

of the molecular formula C39H42O21 to 1. In the ESIMS, fragments obtained in the negative mode at

m/z 723 [M – H – 122]– and 591 [M – H – 122 – 132]– and in the positive mode at m/z 723 [M + Na

– 146]+ revealed the presence of a benzoyl moiety along with one pentose and one deoxyhexose

residue each in the molecule. The UV spectrum of 1 showed two absorption maxima at 260 and 356

nm, indicating the presence of a flavonol derivative. The 1H and 13C NMR spectra of compound 1

(Table 1) showed a typical pattern of a quercetin aglycone, with signals ascribable to sugar moieties

and to a benzoyl residue.13,14 Three sugar residues having anomeric protons at δ 4.50 (d, J = 1.8 Hz),

5.52 (d, J = 3.0 Hz) and 5.60 (d, J = 7.5 Hz), which correlated, respectively, with signals at δ 102.1,

109.5, and 100.5 ppm in the HSQC spectrum, were identified with the help of DQF-COSY and 1D-

TOCSY experiments as one rhamnose, one apiose, and one glucose, respectively. Assignments of

the NMR chemical shifts of compound 1 were accomplished by 1D-TOCSY, DQF-COSY, HSQC,

and HMBC experiments. Key correlation peaks were observed in the HMBC experiment between δ

5.60 (H-1glc) and 134.0 (C-3), δ 3.72 (H-2glc) and 109.5 (C-1api), δ 4.50 (H-1rha) and 68.3 (C-6glc), δ

4.45 (H-5bapi) and 4.66 (H-5aapi) and 168.0 (COO), allowing the substitution sites to be established

4



between the sugars and the aglycone and the benzoyl group to be located at  C-5 of the apiose

moiety. The assignment of the sugar configuration was achieved through hydrolysis of 1 with 1 N

HCl followed by GC analysis through a chiral column of the obtained monosaccharides treated with

1-(trimethylsilyl)imidazole in pyridine. In the light of these data, the structure of 1 was elucidated

as  quercetin  3-O-(5-O-benzoyl)-β-D-apiofuranosyl-(1→2)-O-[α-L-rhamnopyranosyl-(1→6)]-β-D-

glucopyranoside.

The molecular formula of compound 2 (C43H48O24) was determined by its HRESIMS ([M + Na]+

ion at m/z 971.2427) and from its 13C NMR data. The negative-ion ESIMS showed a major peak at

m/z 947 [M – H]– and several fragments at m/z 741 [M – H – 206]–, 609 [M – H – 206 – 132]–, and

301 [M – H – 206 – 132 – 146 – 162]–, indicating the presence of a sinapoyl group and three sugar

residues. Comparison of the NMR spectroscopic data of  2 with those of  1 (Table 1) showed that

these compounds differed in the acyl moiety linked at C-5 of the apiose, which was identified as a

sinapoyl ester moiety in 2 in place of a benzoyl residue in 1.15 Hence, compound 2 was elucidated

as  quercetin  3-O-(5-O-sinapoyl)-β-D-apiofuranosyl-(1→2)-O-[α-L-rhamnopyranosyl-(1→6)]-β-D-

glucopyranoside.

The HRESIMS of compound 3 in the positive ion mode showed a [M + Na]+ sodiated molecular

ion peak at  m/z 941.2366, corresponding  to  a  molecular  formula of C42H46O23.  Its  ESIMS data

showed quasimolecular ion peaks at m/z 917 [M – H]– and 941 [M + Na]+. Three main fragments at

m/z 741 [M – H – 176]–, 609 [M – H – 176 – 132]–, and 301 [M – H – 176 – 132 – 146 – 162]–, due

to the subsequent loss of one feruloyl, one pentose, one deoxyhexose, and one hexose moiety, were

also observed. The signals in the 1H and 13C NMR spectra (Table 1) of 3 were superimposable on

those of 1 except for an acyl moiety identified as a feruloyl group (δHα 6.13/δCα 114.4; δH-5 6.79/δC-5

115.8; δH-6 6.83/δC-6 123.9; δH-2 6.96/δC-2 110.5; δHβ 7.30/δCβ 146.0; δH-OMe 3.87/δC-OMe 55.9).16 From

these results, the structure of compound  3  was determined as  quercetin  3-O-(5-O-feruloyl)-β-D-

apiofuranosyl-(1→2)-O-[α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside.
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Compound 4 was obtained as a yellow amorphous powder with the molecular formula, C41H44O22,

as deduced from the [M + Na]+ peak at  m/z 911.2236 by HRESIMS and confirmed by  13C NMR

data.  The  ESIMS of  compound  4 showed  a  prominent  fragment  at  m/z 887  [M  –  H]– and  a

fragmentation pattern similar to that of the previous compounds 1-3. The spectroscopic data (Table

1) of the aglycone and sugar moieties were identical to those of 1, while the acyl moiety differed

and was characterized as a p-coumaroyl group.17 Thus, compound 4 was defined as quercetin 3-O-

(5-O-p-coumaroyl)-β-D-apiofuranosyl-(1→2)-O-[α-L-rhamnopyranosyl-(1→6)]-β-D-

glucopyranoside.

Compound 5 was assigned a molecular formula of C27H38O18, as deduced from the [M + Na]+ ion

at m/z 673.1943 in the positive HRESIMS, as well as from analysis of its 13C NMR spectroscopic

data (Table 2). The negative ESIMS/MS showed two peaks at m/z 607 ([M –H – 42]–) and 527 ([M

– H – 122]–) due to the presence of an acetyl and a benzoyl group, respectively. The UV spectrum

exhibited an  absorption maximum at  280 nm for  an aromatic  ring conjugated  with a  carbonyl

functionality. The 1H NMR spectroscopic data (Table 2) showed two anomeric protons at δ 4.54 (d,

J = 7.8 Hz) and 5.48 (d, J = 3.0 Hz), which correlated in the HSQC spectrum with signals at 104.7

and 93.2 ppm; these sugars were characterized as a  β-glucose and an α-glucose, respectively. An

additional acetal carbon at 105.5 ppm was evident in the 13C NMR spectrum, leading the presence

of a fructose moiety to be proposed.18 1D-TOCSY, DQF-COSY, and HSQC experiments indicated

that compound 5 contains one D-fructose, two D-glucoses, one benzoyl, and one acetyl moiety. The

HMBC  spectrum  indicated  the  substitution  pattern  on  the  molecule  of  the  glycosyl  and  acyl

moieties, showing correlations between  δ 4.65 (H-6fru) and 168.0 (COO), 5.48 (H-1glc1) and 105.5

(C-2fru),  4.14 (H-6bglc1) and 4.51 (H-6aglc1) and 171.0 (COCH3),  4.54 (H-1glc2) and 85.5 (C-3glc1).

Hydrolysis of 5 with 1 N HCl yielded D-glucose and D-fructose as determined by the GC of their

trimethylsilylated derivatives on a chiral column. Thus, compound 5 was determined to be β-D-(6-

O-benzoyl)-fructofuranosyl-(2→1)-[β-D-glucopyranosyl-(1→3)]-6-acetyl-α-D-glucopyranoside.
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The molecular formula, C25H36O17, was assigned to compound 6 as determined by HRESIMS ([M

+ Na]+ at m/z 631.1848). In the negative ESIMS/MS, fragments at m/z 485 [M – H – 122]–, 323 [M

– H – 122 – 162]–, and 179 [M – H – 122 – 162 – 162]– were observed, due to the subsequent loss of

a benzoyl  and two hexose  residues.  The UV spectrum was similar  to  that  of  5,  suggesting an

oligosaccharide  ester  structure.19 Analysis  of  the  NMR  data  (Table  2)  of  compound  6 and

comparison with those of  5 revealed  6 to differ from 5 only by the absence of the acetyl moiety

linked  at  C-6  of  the  α-glucose.  Thus  compound  6 was  determined  as  β-D-(6-O-benzoyl)-

fructofuranosyl-(2→1)-[β-D-glucopyranosyl-(1→3)]-α-D-glucopyranoside.

The HRESIMS of compound 7 showed a sodiated molecular ion peak at m/z 543.2402 [M + Na]+,

consistent with a molecular formula of C24H40O12. The analysis of the 13C NMR spectrum (Table 2)

allowed 13 signals to be attributed to an α-ionol aglycone and 11 to a sugar residue consisting of

one hexose and one pentose.20 The 1H NMR spectrum (Table 2) showed the presence of four methyl

groups (δH 0.98, 1.15, 1.20, 1.29), two olefinic protons (δH 5.74 and 5.97), and one carbinol proton

(δH 3.75).  The  DQF-COSY  spectrum  of  7  indicated  for  the  aglycone,  two  spin  system

corresponding to  –CH2CHOHCH2– and  –CH3CHOHCH=CH– moieties, respectively. A HSQC

experiment was used to establish the association of the protons with the corresponding carbons and

the HMBC spectrum led to  the  location of  an epoxy group at  C-5 and C-6.  Additionally,  two

anomeric proton resonances appeared at δ 4.34 (1H, d, J = 7.8 Hz, H-1glc) and 4.98 (1H, d, J = 3.0

Hz, H-1api),  which were consistent, when supported by of the  13C NMR spectrum, with a  β C-1

configuration for the glucose unit and a  β C-1 configuration for the apiose moiety. The absolute

configurations of the sugar units were determined as reported for  1.  Definitive evidence  of the

substitution sites was derived by the HMBC spectrum, which clearly showed cross peaks between δ

1.63 (H-4b) and 2.27 (H-4a) and 64.5 (C-3) and 68.6 (C-5), δ 1.20 (Me-13) and 68.6 (C-5) and 71.3

(C-6), δ 4.40 (H-9) and 102.3 (C-1glc), δ 5.97 (H-7) and 71.3 (C-6) and 77.0 (C-9), and δ 4.98 (H-

1api) and 68.0 (C-6glc).  The relative configuration at C-3 was assigned as  β by comparison with
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reported data for similar compounds.20 From all of these data, 7 was characterized as 3β-hydroxy-

5,6-epoxy-β-ionol 9-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside.

Compound  8 was  assigned  a  molecular  formula  of  C55H86O24,  as  determined  by  its  positive

HRESIMS data (m/z 1153.5412 [M + Na]+). The negative ESIMS/MS showed peaks at m/z 907 [M

– H – 60 – 162]–, 761 [M – H – 60 – 162 – 146]–, 629 [M – H – 60 – 162– 146 – 132]–, due to the

presence of an acetyl group, a hexose, a deoxyhexose, and a pentose moiety, respectively. Data

from  the  13C  NMR  spectrum  (Experimental  Section)  suggested  a  triterpenoid  bidesmosidic

glycoside.  The  1H NMR spectrum (Experimental  Section)  of  8 showed  signals  for  six  methyl

singlets (δ 0.83, 0.93, 0.96, 1.17, 1.27, and 1.36), two doublet methyl groups at δ 1.08 (J = 6.0 Hz)

and 1.24 (J = 6.5 Hz), two hydroxymethines typical of H-2ax and H-3ax at δ 4.32 (br dd, J = 7.5, 4.0

Hz) and 4.11 (d,  J = 3.0 Hz), a resonance for an olefinic proton at  δ 5.32 (t,  J = 3.5 Hz), four

anomeric protons [δ 4.44 d (J = 7.8 Hz), 5.10 d (J = 1.8 Hz), 5.14 d (J = 3.0 Hz), 5.47 d (J = 8.0

Hz)], and one acetyl group (δ 2.16, s). The 13C NMR spectrum revealed, for the aglycone moiety, 30

signals that were correlated to the corresponding proton chemical shifts from the HSQC experiment,

leading  to  the  identification  of  the  aglycone  as  2β,3β-dihydroxyolean-12-en-23,28-dioic  acid

(medicagenic  acid).21 The  structures  of  the  oligosaccharide  moieties  were  deduced  using  1D

TOCSY,  DQF-COSY,  HSQC,  and  HMBC experiments  indicating  the  presence  of  an  inner  β-

fucopyranose  acetylated  at  the  C-4  position  (δH 5.30,  δC 73.8),  a  terminal  β-glucopyranose,  a

terminal α-rhamnopyranose, and a terminal β-apiofuranose (Table 3). The chemical shifts of H-1fuc

(δ 5.47) and C-1fuc (94.5 ppm) indicated this sugar moiety to be involved in an ester linkage with the

C-28 carboxylic  acid group (177.0  ppm) and  the  HMBC correlation  peak  between  H-1fuc-C-28

confirmed this substitution. The configuration of the sugar units was assigned as reported for 1. The

HMBC correlations between H-1glc-C-3, H-1rha-C-2fuc, and H-1api-C-3fuc allowed the identification of

the sugar sequence. Therefore, compound 8 was identified as 3-O-β-D-glucopyranosyl medicagenic
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acid  28-O-{α-L-rhamnopyranosyl-(1→2)-[β-D-apiofuranosyl-(1→3)]-[4-O-acetyl]}-β-D-

fucopyranosyl ester.

Compound  9 was isolated only in a small amount. Its molecular formula was determined to be

C67H106O35 from the HRESIMS and 13C NMR data. The ESIMS of 9 showed a [M – H]– ion at m/z

1469 and prominent fragments at m/z 1439 [M – H – 30]–, 1379 [M – H – 30 – 60]–, 1277 [M – H –

30 – 162]–, 1173 [M – H – 30 – 60 – 44 – 162]–, and 1011 [M – H – 30 – 60 – 44 – 162 – 162]–, due

to the subsequent loss of a -CH2OH moiety, an acetyl  group, a hexose saccharide,  a carboxylic

group,  and  another  hexose  moiety;  a  saccharide  moiety  constituted  of  two  hexoses,  two

deoxyhexoses, and one pentose at  m/z 747 [162 + 162 + 146 + 146 +132 – H]– was also evident.

Analysis of the NMR data of compound 9 NMR data (Experimental Section and Table 3) led to the

determination of the presence of a bidesmosidic triterpenoid saponin with six sugar units and an

acetyl group. Comparison of NMR spectra with those of 8 revealed 9 to differ from 8 both in the

aglycone moiety and in the sugar chain at C-28, while the  β-glucopyranosyl moiety at C-3 was

identical. The aglycone of compound 9 showed a hydroxymethylene instead of a methyl group at C-

27,  allowing  its  structure  to  be  established  as  2β,3β,27-trihydroxyolean-12-en-23,28-dioic  acid

(presenegenin).22 The  proton-coupling  network  within  each  sugar  residue  was  traced  using  a

combination  of  1D  TOCSY,  DQF-COSY,  HSQC,  and  HMBC  experiments.  These  results

established that the sugar chain at C-28 in  9 contains one inner  β-fucopyranose acetylated at C-4

position (δH 5.41, δC 75.0), one inner α-rhamnopyranose, one inner β-xylopyranose, one terminal β-

glucopyranose, and one terminal β-galactopyranose. ESIMS/MS fragments and HMBC correlations

led to establish the linkage among inner sugar units  and were in accordance with that  reported

before  for  Polygala saponin  sugar  chains.23 Thus,  the  structure  of  3-O-β-D-glucopyranosyl

presenegenin  28-O-{β-D-galactopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-α-L-

rhamnopyranosyl-(1→2)-[β-D-glucopyranosyl-(1→3)]-[4-O-acetyl]}-β-D-fucopyranosyl  ester  was

tentatively assigned to compound 9.
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Compound 10 was isolated in a trace amount and was not completely pure; its molecular formula

was determined to be C65H104O33 from the HRESIMS and 13C NMR data. The ESIMS/MS showed

peaks at m/z 1249 [M – H – 162]–, 1187 [M – H – 162– 18 – 44]–, 1025 [M – H – 162 – 18 – 44 –

162]–, due to the subsequent loss of one hexose, one water molecule, one carboxylic acid, and one

hexose unit; the fragment at m/z 747 [162 + 162 + 146 + 146 +132 – H]– was again attributed to the

saccharide moiety constituted of two hexoses, two deoxyhexoses, and one pentose unit, leading to

the proposal of a structure similar to those of saponins 8 and 9, as described above. Comparison of

the NMR spectroscopic  data  of  10 (Experimental  Section and Table  3)  with  those of  8 and  9

showed that the aglycone moiety of  10 was completely superimposable with that of  8, while the

sugar moieties were identical to those of  9, except for the absence of the acetyl group on the  β-

fucopyranose position 4. Therefore, the structure of 3-O-β-D-glucopyranosyl medicagenic acid 28-

O-{β-D-galactopyranosyl-(1→4)-β-D-xylopyranosyl-(1→4)-α-L-rhamnopyranosyl-(1→2)-[β-D-

glucopyranosyl-(1→3)]}-β-D-fucopyranosyl ester could be attributed to compound 10.

Compounds  11-14 were  characterized  as  3,6'-di-O-sinapoylsucrose  (11),24 reiniose  F  (12),25

quercetin  3-O-β-D-apiofuranosyl-(1→2)-O-[α-L-rhamnopyranosyl-(1→6)]-β-D-glucopyranoside

(13),26 and rutin (14).13

On the basis  of  previous reports on phenolic derivatives  as inhibitors  of  hLDH5,12,27 phenolic

compounds 1-6,  11-14, and saponin 8 were assayed on the hLDH5 purified isoform to determine

their inhibition potencies (Table 4). Most of the compounds were inactive, with IC50 values greater

than 500 µM, with the exception of two derivatives:  compound  12 showed a certain  inhibition

activity (IC50 value of 190.7 µM) and, most notably, compound 11 exhibited an inhibition potency

comparable or even slightly better than the reference inhibitor galloflavin,28 with an IC50 value of

90.4 µM.

In order to analyze the possible binding mode of compound 11 into  hLDH5, molecular docking

studies followed by molecular dynamics (MD) simulations and binding energy evaluations were

carried out. As a first step, the compound was docked into the catalytic site of hLDH5 (4M49 PDB
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code) using GOLD software29 and the ChemPLP fitness scoring function, as this method has already

shown to be good in predicting the binding mode of  hLDH5 inhibitors.7,30 One hundred different

docking poses were generated and clustered, taking into account as a limit value a root-mean-square

deviation (RMSD) of 2.0 Å. Ten clusters were obtained and for each of them, a representative

docking  pose  was  chosen  and  subjected  to  MD  simulation  to  assess  the  stability  of  the  ten

hypothetical binding modes.31 The complexes were subjected to a total of 22 ns of MD simulation

and the resulting trajectories were analyzed in order to measure the stability of docking poses. As

shown in Figure 1, the RMSD analysis of the position of the ten docking poses with respect to the

input  docking  highlighted  that  only  two  docking  poses,  corresponding  to  the  first  and  second

cluster, showed an average RMSD below the value of 2.0 Å, calculated for the heavy atoms of the

ligand.

The ten trajectories obtained in this way were further analysed through the Molecular Mechanics

and Poisson Bolzmann Surface  Area  (MM-PBSA) method32 that  has  been  shown to accurately

estimate the ligand-receptor energy interaction.33,34 In this case  the MM-PBSA calculations were

used for discriminating among different poses suggested by a docking calculation.35 This approach

averages  the  contributions  of  gas  phase  energies,  solvation  free  energies,  and  solute  entropies

calculated for snapshots of the complex molecule as well as the unbound components, extracted

from MD trajectories, according to the procedure fully described in the Experimental Section. The

MM-PBSA results (Table 5) suggested that the first docking pose was the most favorable, as it

showed an interaction energy ∆PBSA = -32.2 kcal/mol, more than 8 kcal/mol higher than all the

other  binding  poses.  For  these  reasons,  the  pose  corresponding  to  the  first  cluster  has  been

considered as the most reliable binding mode for this compound.

Figure 2 shows the minimized average structure of hLDH5 model complexed with compound 11

in the hypothesized binding mode (Cluster 01) obtained from all the 22 ns of the MD simulation.

The sucrose part of the molecule interacts in the region of interaction of the nicotinamide fragment

of  NADH,  whereas  the  two sinapoyl  esters  explore  completely  different  regions  of  the  LDH5
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binding site (see Figures 2A and 2B). A high number of H-bonds stabilizes the binding disposition

of compound  11:  as shown in Figure 2C, the sucrose central  fragment  forms H-bonds with the

oxygen backbone of T95, the nitrogen backbone and the carboxamide side-chain of N138. The

synapoyl ester attached to the fructose moiety forms an H-bond with the nitrogen backbone of A30

and a lipophilic interaction with Y247; whereas  the synapoyl ester  attached to the glucose ring

forms  H-bonds  with  the  nitrogen  backbone  of  Q100  and  the  side-chain  of  R106  and  shows

lipophilic interactions with L109 and P139.

In conclusion, the isolation and structural characterization of compounds 1-14 from P. flavescens

ssp. flavescens is completely in agreement with secondary metabolites already reported in the genus

Polygala.  Moreover,  to  our  knowledge,  this  is  the  first  report  of  naturally  occurring

oligosaccharides  as  hLDH5  inhibitors,  being  a  new  interesting  scaffold  for  the  potential

development of new anticancer agents.

EXPERIMENTAL SECTION

General Experimental Procedures.  An Atago AP-300 digital polarimeter  with a sodium lamp

(589 nm) and 1 dm microcell was used to measure optical rotations. UV spectra were registered on

a Perkin-Elmer Lambda spectrophotometer. NMR experiments were recorded on a  Bruker DRX-

600 spectrometer equipped with a Bruker 5 mm TCI CryoProbe, acquiring the spectra in methanol-

d4. Standard pulse sequences and phase cycling were used for TOCSY, HSQC, DQF-COSY, and

HMBC NMR experiments.  NMR data were  processed  using XWIN-NMR software.  HRESIMS

were obtained in the positive- and negative-ion mode on a Q-TOF premier spectrometer equipped

with a nanospray ion source (Waters Milford,  MA, USA).  ESIMS were obtained from an LCQ

Advantage ThermoFinnigan spectrometer (ThermoFinnigan, USA). Column chromatography was

performed over Sephadex LH-20.  HPLC analysis was performed using a Shimadzu LC-8A series
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pumping  system equipped  with  a  Shimadzu  RID-10A refractive  index  detector  and  Shimadzu

injector on a C18 µ-Bondapak column (30 cm × 7.8 mm, 10 µm Waters, flow rate 2.0 mL/min). TLC

separations were carried out using silica gel 60 F254 (0.20 mm thickness) plates (Merck) with  n-

BuOH-CH3COOH-H2O (60:15:25) as eluent and cerium sulphate as spray reagent. GC analysis was

performed using a Dani GC 1000 instrument on a  L-CP-Chirasil-Val column (0.32 mm  ×  25 m)

working with the following temperature program: 100 °C for 1 min, ramp of 5 °C/min up to 180 °C;

injector and detector temperature 200 °C; carrier gas N2 (2 mL/min); detector dual FID; split ratio

1:30; injection 5 µL.

Plant Material.  The aerial parts of flowering Polygala flavescens ssp. flavescens were collected

in the Cerbaie hills, Castelfranco di Sotto (Pisa, Italy),  43.751228 N, 10.719234 E, on May 7th,

2015. The plant was identified by the identification keys available in Arrigoni (2014).36 A voucher

specimen  (4273_Polygala_flavescens_ssp._flavescens/5)  was  deposited  at  Herbarium  Horti

Botanici Pisani (PI, acronym following Thiers, 2017).37

Extraction and Isolation. The powdered dried aerial parts of P. flavescens ssp. flavescens (370 g)

were  defatted with  n-hexane and then extracted with MeOH (3 × 2 L), to give 71.1 g of dried

residue. The MeOH extract was partitioned between AcOEt, n-BuOH, and H2O to give 11.5 g, 15.5

g, and 36.2 g of the respective dried residues, together with 7.0 g of compound  14 obtained as

abundant precipitate. Sephadex LH-20 column chromatography (5 × 100 cm) was used to separate

the  n-BuOH soluble fraction (10 g), using MeOH as eluent at a flow rate of 2.0 mL/min, with

fractions of 12 mL collected and grouped into fourteen major fractions (A-N). Fraction N gave pure

compound  14  (100 mg).  Fractions A (424 mg),  B (556 mg),  and C (242 mg) were separately

submitted  to  HPCPC  with  CHCl3-MeOH-H2O-i-PrOH  (5:6:4:1)  in  which  the  stationary  phase

consisted  of  the  lower  phase  (ascending  mode,  flow  rate  3  mL/min),  with  fractions  of  3  mL

collected. HPCPC fractions A2 (50 mg) and B2 (46 mg) were chromatographed by RP-HPLC with

MeOH-H2O (5.5:4.5) to afford compound 9 (1.0 mg, tR 13 min), from fraction A2 and compound 10

(0.5 mg, tR 17 min) from fraction B2. HPCPC fraction C8 (35 mg) after separation with RP-HPLC
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with MeOH-H2O (3:2) yielded compound 8 (4.2 mg, tR 24 min). Fraction E (196.5 mg) was purified

by  RP-HPLC with  MeOH-H2O (2.5:7.5)  as  eluent  to  yield  compound  7  (1.6  mg,  tR 19  min).

Fraction F (524 mg) was subjected to RP-HPLC with MeOH-H2O (3:7) to yield compounds 6 (3.8

mg, tR 17 min) and 5 (7.2 mg, tR 50 min). Fractions H (1948 mg), I (584.6 mg), and J (774 mg) were

chromatographed over RP-HPLC with MeOH-H2O (2:3) to obtain compound  12  (4.4 mg,  tR 39

min), from fraction H, compounds 13 (3.4 mg, tR 21 min), 11 (5.0 mg, tR 27 min), and 1 (6.1 mg, tR

72 min), from fraction I, compounds 13 (14 mg, tR 16 min) and 2 (4.4 mg, tR 24 min), from fraction

J. Fraction K (217 mg) was purified by RP-HPLC with MeOH-H2O (5.5:4.5) to yield compounds

13 (11.7 mg, tR 14 min), 14 (16 mg, tR 19 min), and 3 (8 mg, tR 26 min). Fraction M (453 mg) was

subjected to RP-HPLC with MeOH-H2O (4.5:5.5) to yield compounds 14 (5.4 mg, tR 13 min), 3 (3.1

mg, tR 16 min), and 4 (15.0 mg, tR 17 min).

Compound (1): yellow amorphous powder; [ ]25
Dα -42 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 260

(4.00), 356 (3.92) nm;  1H and  13C NMR, see Table 1;  ESIMS m/z  845 [M  –  H]–, 723 [M –  H –

122]–, 591 [M – H – 122 – 132]–, 869 [M + Na]+, 723 [M + Na – 146]+; HRESIMS m/z 869.2102 [M

+ Na]+, 847.2297 [M + H]+ (calcd for C39H42O21Na 869.2116, C39H43O21 847.2297).

Compound (2): yellow amorphous powder; [ ]25
Dα -25 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 240

sh (3.76), 268 sh (3.90), 335 (3.85) nm; 1H and 13C NMR, see Table 1; ESIMS m/z 947 [M – H]–,

741 [M – H – 206]–, 609 [M – H – 206 – 132]–, 301 [M – H – 206 – 132 – 146 – 162]–; HRESIMS

m/z 971.2427 [M + Na]+, 949.2626 [M + H]+ (calcd for C43H48O24Na 971.2433, C43H49O24 949.2614).

Compound (3): yellow amorphous powder; [ ]25
Dα -62 (c 0.1, MeOH); UV (MeOH) λmax (log ε) 250

sh (3.75), 270 sh (3.93), 259 sh (3.78), 334 (3.91) nm; 1H and 13C NMR, see Table 1; ESIMS m/z

917 [M – H]–, 741 [M – H – 176]–, 609 [M – H – 176 – 132]–, 301 [M – H – 176 – 132 – 146 –

162]–, 941 [M + Na]+, 795 [M + Na – 146]+; HRESIMS m/z 941.2366 [M + Na]+, 919.2547 [M + H]

+ (calcd for C42H46O23Na 941.2328, C42H47O23 919.2508).
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Compound (4): yellow amorphous powder;  [ ]25
Dα -104 (c 0.1, MeOH);  UV (MeOH)  λmax (log  ε)

258 sh (3.93), 269 (4.05), 320 (3.88) nm; 1H and 13C NMR, see Table 1; ESIMS m/z 887 [M – H]–,

741 [M – H – 146]–, 609 [M – H – 146 – 132]–, 301 [M – H – 146 – 132 – 146 – 162]–, 911 [M +

Na]+, 765 [M + Na – 146]+;  HRESIMS  m/z  911.2236 [M + Na]+, 889.2420  [M + H]+ (calcd for

C41H44O22Na 911.2222, C41H45O22 889.2402).

Compound (5): pale yellow amorphous powder; [ ]25
Dα +23 (c 0.1, MeOH); UV (MeOH) λmax (log

ε) 228 (3.78), 280 (3.92) nm; 1H and 13C NMR, see Table 2; ESIMS m/z 649 [M – H]–, 607 [M – H

– 42]–, 589 [M – H – 60]–, 527 [M – H – 122]–, 673 [M + Na]+, 407 [M + Na – 266]+; HRESIMS m/

z 673.1943 [M + Na]+ (calcd for C27H38O18Na 673.1956).

Compound (6): pale yellow amorphous powder; [ ]25
Dα +20 (c 0.1, MeOH); UV (MeOH) λmax (log

ε) 225 (3.77), 282 (3.90) nm; 1H and 13C NMR, see Table 2; ESIMS m/z 607 [M – H]–, 485 [M – H

– 122]–, 323 [M – H – 122 – 162]–, 179 [M – H –122 – 162 – 162]–, 631 [M + Na]+, 469 [M + Na –

162]+, 347 [M + Na – 162 – 122]+, 185 [M + Na – 162 – 122 – 162]+; HRESIMS m/z 631.1848 [M

+ Na]+ (calcd for C25H36O17Na 631.1850).

Compound (7): amorphous powder;  [ ]25
Dα +14 (c 0.1,  MeOH);  1H and  13C NMR, see Table 2;

ESIMS  m/z  543 [M  +  Na]+,  1063 [2M + Na]+;  HRESIMS  m/z  543.2402 [M + Na]+ (calcd for

C24H40O12Na 543.2417).

Compound (8): amorphous  powder;  [ ]25
Dα +36 (c 0.1,  MeOH);  1H NMR data  of  the  aglycone

(CD3OD, 600 MHz) δ 0.83 (3H, s, Me-26), 0.93 (3H, s, Me-29), 0.96 (1H, overlapped, H-16b), 0.96

(3H, s, Me-30), 1.16 (1H, m, H-19b), 1.17 (3H, s, Me-27), 1.21 (1H, overlapped, H-15b), 1.22 (1H,

overlapped, H-21b), 1.24 (1H, overlapped, H-1b), 1.27 (3H, s, Me-25), 1.28 (1H, overlapped, H-

6b), 1.35 (1H, overlapped, H-7b), 1.36 (3H, s, Me-24), 1.41 (1H, m, H-21a), 1.54 (1H, overlapped,

H-7a), 1.55 (1H, overlapped, H-22b), 1.59 (1H, m, H-6a), 1.60 (1H, overlapped, H-9), 1.62 (1H,

overlapped, H-11b), 1.63 (2H, overlapped, H-5 and H-16a), 1.68 (1H, m, H-15a), 1.74 (1H, m, H-

19a), 1.85 (1H, ddd, J = 16.0, 13.5, 4.0 Hz, H-22a), 2.08 (1H, m, overlapped, H-11a), 2.10, (1H,
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overlapped, H-1a), 2.87 (1H, dd, J = 13.5, 3.0 Hz, H-18), 4.11 (1H, d, J = 3.0 Hz, H-3), 4.32 (1H, br

dd, J = 7.5, 4.0 Hz, H-2), 5.32 (1H, t, J = 3.5 Hz, H-12); 13C NMR data of the aglycone (CD3OD,

150 MHz) δ 13.4 (C-24), 16.4 (C-25), 17.0 (C-26), 20.8 (C-6), 23.5 (C-16 and C-30), 23.6 (C-11),

25.6 (C-27), 28.3 (C-15), 31.2 (C-22), 31.3 (C-20), 32.8 (C-29), 33.0 (C-7), 34.4 (C-21), 36.7 (C-

10), 41.0 (C-8), 42.0 (C-18), 42.7 (C-14), 44.1 (C-1), 46.0 (C-19), 47.4 (C-17), 48.8 (C-9), 52.5 (C-

5), 52.8 (C-4), 70.8 (C-2), 86.0 (C-3), 122.4 (C-12), 144.0 (C-13), 177.0 (C-28), 185.0 (C-23); 1H

and 13C NMR of the sugar moieties, see Table 3; ESIMS m/z 1129 [M – H]–, 907 [M – H – 60 –

162]–, 761 [M –  H – 60 – 162 – 146]–, 629 [M –  H – 60 – 162– 146 – 132]–,  1153 [M +  Na]+;

HRESIMS m/z 1153.5412 [M + Na]+ (calcd for C55H86O24Na 1153.5328).

Compound (9): amorphous powder;  [ ]25
Dα -112 (c 0.1,  MeOH);  1H NMR data of  the aglycone

(CD3OD, 600 MHz) δ 0.75 (3H, s, Me-26), 0.92 (3H, s, Me-30), 0.93 (3H, s, Me-29), 1.21 (1H, m,

H-19b), 1.25 (1H, overlapped, H-21b), 1.27 (3H, s, Me-25), 1.29 (1H, overlapped, H-7b), 1.32 (1H,

overlapped, H-16b), 1.30 (1H, overlapped, H-6b), 1.36 (3H, s, Me-24), 1.37 (1H, m, H-21a), 1.59

(1H, overlapped, H-7a), 1.60 (2H, overlapped, H-6a and H-22b), 1.61 (1H, overlapped,  H-19a),

1.64 (2H, overlapped, H-11b and H-16a), 1.65 (2H, overlapped, H2-15), 1.70 (1H, overlapped, H-5),

1.88 (1H, overlapped, H-9), 2.00 (1H, m, overlapped, H-11a), 2.08 (1H, dd, J = 13.0, 3.0 Hz, H-1b),

2.28 (1H, overlapped, H-1a), 2.37 (1H, m, H-22a), 2.80 (1H, dd, J = 13.5, 3.0 Hz, H-18), 3.76 (1H,

overlapped, H-27b), 3.79 (1H, overlapped, H-27a), 4.09 (1H, d, J = 2.5 Hz, H-3), 4.29 (1H, br dd, J

= 7.0, 3.5 Hz, H-2), 5.66 (1H, t,  J = 3.5 Hz, H-12);  13C NMR data of the aglycone (CD3OD, 150

MHz) δ 14.0 (C-24), 16.5 (C-25), 18.0 (C-26), 21.5 (C-6), 23.0 (C-30), 23.7 (C-11 and C-16), 25.0

(C-15), 31.0 (C-20), 32.0 (C-7), 33.0 (C-29), 34.3 (C-21), 34.7 (C-22), 37.1 (C-10), 41.0 (C-8), 42.0

(C-18), 44.4 (C-18), 44.7 (C-1), 46.2 (C-19), 47.4 (C-17), 48.3 (C-14), 49.0 (C-9), 52.0 (C-5), 52.5

(C-4), 62.3 (C-27), 71.2 (C-2), 83.1 (C-3), 128.4 (C-12), 139.2 (C-13), 177.0 (C-28), 180.0 (C-23);

1H and 13C NMR of the sugar moieties, see Table 3; ESIMS m/z 1469 [M – H]–, 1439 [M – H – 30]–,

1379 [M – H – 30 – 60]–, 1277 [M – H – 30 – 162]–, 1215 [M – H – 162– 18 – 44]–, 1173 [M – H –

30 – 60 – 44 – 162]–, 1155 [M – H – 30 – 60 – 18 – 44 – 162]–, 1011 [M – H – 30 – 60 – 44 – 162 –
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162]–, 907 [M – H – 30 – 18 – 44 – 162 – 162 –146]–, 747 [162 + 162 + 146 + 146 +132 – H]–, 438

[747 – 162 – 146 – H]–; HRESIMS m/z 1493.6470 [M + Na]+ (calcd for C67H106O35Na 1493.6412).

Compound (10): amorphous powder;  [ ]25
Dα -135 (c 0.1,  MeOH);  1H and  13C NMR data of the

aglycone moiety were  superimposable  on  those  reported  for  8; 1H and  13C NMR of the  sugar

moieties, see Table 3; ESIMS m/z 1411 [M – H]–, 1249 [M – H – 162]–, 1187 [M – H – 162– 18 –

44]–, 1025 [M – H – 162 – 18 – 44 – 162]–, 1007 [M – H – 162 – 18 – 44 – 162 – 18]–, 747 [162 +

162 + 146 + 146 +132 – H]–,  585 [747 – 162 – H]–,  439 [747 – 162 – 146 – H]–;  HRESIMS m/z

1493.6470 [M + Na]+ (calcd for C67H106O35Na 1493.6412).

Acid Hydrolysis of Compounds 1-10. Acid hydrolysis of compounds  1-10  was carried out as

reported in a  previous report.38 D-Glucose,  D-apiose,  D-xylose,  L-rhamnose,  D-galactose,  and  D-

fucose were identified as the sugar moiety in each case by comparison with the retention times of

authentic samples.

LDH Assays.  Isolated compounds were evaluated against purified human lactate dehydrogenase

isoform  5  (Lee  Biosolution,  Inc.).  The  enzymatic  reaction  was  performed  in  the  ‘‘forward’’

direction  (pyruvate  to  lactate)  and  the  amount  of  consumed  NADH  was  monitored  (emission

wavelength at 460 nm, excitation wavelength at 340 nm). Assays were carried out in 96-well plates,

by using 100 mM phosphate buffer (pH = 7.4), in the presence of 200 µM pyruvate and 40 µM

NADH. Compounds were dissolved in DMSO stock solutions at the maximum concentration of 500

µM (the concentration of DMSO did not exceed 4% during the measurements) and seven different

concentrations (from 500 to 0.7 µM, in duplicate for each concentration) for each compound were

used  to  generate  the  concentration-response  curve.  If  background  fluorescence  or  NADH

fluorescence  quenching  (caused  by  the  compounds)  was  observed,  it  was  subtracted  from  the

measurements.  After 15 min of incubation, the final measurements were carried out by using a

Victor X3 Microplate Reader (Perkin Elmer). IC50 values were produced using GraphPad Prism

software (GraphPad, San Diego, CA, USA).
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Docking Studies. The crystal structure of hLDH5 (4M49 PDB code)37 was taken from the Protein

Data Bank.40 After adding hydrogen atoms the protein complexed with its reference inhibitor was

minimized using AMBER14 software41 and parm03 force field at 300 K (in order to reproduce the

room  temperature  used  in  the  enzymatic  assay). The  complex  was  placed  in  a  rectangular

parallelepiped water box, an explicit solvent model for water (TIP3P) was used and the complexes

were solvated with a 20 Å water cap. Chlorine ions were added as counterions to neutralize the

system. Two steps of minimization were then carried out; in the first stage, the protein was kept

fixed with a position restraint of 500 kcal/mol·Å2 and the positions of the water molecules were

solely minimized.  In the second stage,  the entire system was minimized through 5000 steps of

steepest descent followed by conjugate gradient (CG) until a convergence of 0.05 kcal/Å·mol. The

ligand  was  built  using  Maestro42 and  was  minimized  by  means  of  Macromodel43 in  a  water

environment following the CG method until  a convergence value of 0.05 kcal/Å·mol, using the

MMFFs force field and a distance-dependent dielectric constant of 1.0. Automated docking was

carried out by means of the GOLD 5.1 program. The region of interest for the docking studies was

defined in such a manner that it  contained all residues within 10 Å of the reference ligand and

NADH in the X-ray crystal structure (4M49 PDB code). The “allow early termination” command

was  deactivated,  while  the  possibility  for  the  ligand  to  flip  ring  corners  was  activated.  The

remaining GOLD default  parameters  were used, and the ligands were  submitted to 100 genetic

algorithm runs by applying the ChemPLP fitness function. An RMSD tolerance of 2.0 Å was used

to carry out the cluster analysis of the docking solutions, and all the other settings were left as their

defaults. The ten clusters of solutions thus obtained were taken into account. 

Molecular Dynamic Simulations.  The simulations  were  performed using AMBER14 and the

input  preparation  and  minimization  stages  were  the  same  reported  above.  Molecular  dynamics

trajectory was then run using the energy minimized structure as the input, and particle mesh Ewald

electrostatics44 and periodic boundary conditions were used in the simulation. The time step of the

simulations was 2.0 fs with a cutoff of 12 Å for the non-bonded interaction. SHAKE was employed
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to  keep  all  bonds  involving  hydrogen  atoms  rigid.  The  General  Amber  Force  Field  (GAFF)

parameters were assigned to the ligand. The partial charges were calculated using the AM1-BCC

method, as implemented in the Antechamber suite of AMBER14. The first MD step consisted of 2.0

ns of constant-volume simulation in which the temperature of the system was raised from 0 to 300

K. In the second step a 10 ns constant pressure simulation was carried out to equilibrate the system,

and the temperature of the system was kept constant at 300 K by using the Langevin thermostat. In

both the first and second step, a harmonic potential of 10 kcal/(mol·Å2) was applied to the protein

α-carbons. Step 3 consisted of a 10 ns simulation that was performed using the conditions used in

step 2, but without applying any position restraint in order to leave the system completely free. A

total of 22 ns of MD simulation was thus performed for each analyzed ligand-protein complex.

Evaluation of Binding Energy. Evaluation of the binding energy of the ligand-protein complexes

analyzed through MD simulations was carried out using AMBER14. The trajectories relative to the

last 10 ns of each simulation were extracted and used for the calculation for a total of 100 snapshots

(at time intervals of 100 ps). Van der Waals, electrostatic, and internal interactions were calculated

with  the  SANDER  module  of  AMBER14,  whereas  polar  energies  were  calculated  using  the

Poisson-Boltzman methods with the MM-PBSA module of AMBER14. Dielectric constants of 1

and  80  were  used  to  represent  the  gas  and  water  phases,  respectively,  while  the  MOLSURF

program was employed to estimate the nonpolar energies.  The entropic term was considered as

approximately constant in the comparison of the ligand-protein energetic interactions.

ASSOCIATED CONTENT

Supporting  Information.  HRESIMS  and  NMR  spectra  of  compounds  1-10.  This  material  is

available via the Internet at http://pubs.acs.org.
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Figure 1. Analysis of the MD simulations. The plot shows the RMSD (Å) of the position of the

heavy atoms of the ten docking poses of compound 11.
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Figure 2. Analysis of the minimized average structure of compound 11 bound to hLDH5 (Cluster

01). Comparison between the (A) putative binding pose of the ligand (cyan) in the binding site and

(B) the binding disposition of NADH (green) into hLDH5 (4M49 PDB code); (C) view of the most

relevant ligand-receptor interactions of the 11-hLDH5 complex. Hydrogen bonds are represented as

black dashed lines.
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Table 1. 1H and 13C NMR Data of Compounds 1-4 a

1 2 3 4

position δH δC δH δC δH δC δH δC

2 158.0 158.4 158.0 158.0

3 134.0 134.1 134.7 134.0

4 179.0 179.0 179.3 179.0

5 163.1 163.2 163.0 163.1

6 6.13 d (2.0) 99.6 6.13 d (2.0) 99.3 6.14 d (1.8) 99.3 6.13 d (2.0) 99.5

7 165.5 165.3 165.0 165.0

8 6.07 d (2.0) 94.5 6.07 d (2.0) 94.0 6.09 d (1.8) 94.5 6.14 d (2.0) 94.2

9 158.0 157.7 157.7 157.8

10 105.3 105.7 105.0 105.0

1' 123.6 123.5 123.8 123.6

2' 7.51 d (2.0) 117.2 7.56 d (2.0) 117.2 7.59 d (2.0) 117.2 7.58 d (2.0) 117.2

3' 145.8 146.2 146.0 146.1

4' 149.6 149.4 149.0 149.1

5' 6.84 d (8.0) 116.0 6.88 d (8.0) 115.6 6.84 d (8.0) 116.0 6.86 d (8.0) 115.7

6' 7.52 dd (8.0, 2.0) 123.4 7.60 dd (8.0, 2.0) 123.0 7.57 dd (8.0, 2.0) 122.6 7.57 dd (8.0, 2.0) 122.8

glc-1 5.60 d (7.5) 100.5 5.57 d (7.8) 100.1 5.61 d (8.0) 100.0 5.57 d (7.8) 100.1

2 3.72 dd (9.0, 7.5) 77.2 3.75 dd (9.5, 7.8) 77.8 3.78 dd (9.5, 8.0) 77.7 3.73 dd (9.5, 7.8) 77.3

3 3.60 t (9.0) 78.7 3.58 t (9.5) 78.4 3.60 t (9.5) 78.3 3.57 t (9.5) 78.1

4 3.29 t (9.0) 71.8 3.25 t (9.5) 71.8 3.28 t (9.5) 71.6 3.28 t (9.5) 71.8

5 3.35 m 77.0 3.34b 76.9 3.33b 76.8 3.33b 76.8

6a 3.82 dd (12.0, 3.0) 68.3 3.83 dd (12.0,
2 5)

68.0 3.84 dd (12.0,
3 5)

68.0 3.83 dd (12.0, 3.0) 68.0

6b 3.42 dd (12.0, 4.5) 3.40 dd (12.0,
5 0)

3.40 dd (12.0,
5 0)

3.41 dd (12.0, 5.0)

rha-1 4.50 d (1.8) 102.1 4.50 d (2.0) 101.9 4.52 d (1.8) 101.8 4.51 d (1.8) 101.6

2 3.60 dd (3.0, 1.8) 72.0 3.60 dd (3.0, 2.0) 71.7 3.62 dd (3.0, 1.8) 71.8 3.60 dd (3.0, 1.8) 71.8

3 3.49 dd (9.0, 3.0) 72.0 3.48 dd (9.0, 3.0) 72.0 3.52 dd (9.0, 3.0) 72.0 3.50 dd (9.0, 3.0) 72.0

4 3.25 t (9.0) 74.0 3.24 t (9.0) 74.0 3.22 t (9.0) 73.7 3.24 t (9.0) 73.5

5 3.44 m 69.5 3.43 m 69.6 3.45 m 69.4 3.43 m 69.3

6 1.06 d (6.5) 17.7 1.09 d (6.5) 17.4 1.05 d (6.0) 17.5 1.10 d (6.5) 17.0

api-1 5.52 d (3.0) 109.5 5.52 d (3.0) 109.0 5.53 d (2.5) 109.0 5.51 d (3.0) 108.8

2 3.94 br s 78.1 3.90 br s 78.0 3.94 br s 77.5 3.94 br s 78.1

3 79.6 79.3 80.4 79.6

4a 4.39 d (10.0) 75.2 4.41 d (10.0) 75.5 4.38 d (10.0) 75.0 4.30 d (11.0) 75.2

4b 3.74 d (10.0) 3.74 d (10.0) 3.74 d (10.0) 3.73 d (11.0)

5a 4.66 d (10.5) 69.5 4.53 d (11.0) 69.5 4.53 d (11.0) 69.4 4.48 d (10.5) 69.4

5b 4.45 (10.5) 4.37 (11.0) 4.36 (11.0) 4.35 (10.5)

acyl-1 131.0 126.2 127.0 126.8

2 7.76 dd (7.5, 1.5) 130.1 6.65 s 106.5 6.96 d (2.0) 110.5 7.23 d (7.8) 130.9

3 7.31 t (7.5) 129.3 149.3 149.2 6.77 d (7.8) 116.6

4 7.46 t (7.5) 134.0 139.1 146.7 160.6

5 7.31 t (7.5) 129.3 149.3 6.79 d (7.8) 115.8 6.77 d (7.8) 116.6

6 7.76 dd (7.5, 1.5) 130.1 6.65 s 106.5 6.83 dd (7.8, 2.0) 123.9 7.23 d (7.8) 130.9

α 6.12 d (16.0) 115.2 6.13 d (16.0) 114.4 6.12 d (15.8) 114.2

β 7.26 d (16.0) 146.3 7.30 d (16.0) 146.0 7.35 d (15.8) 147.0

COO 168.0 169.1 168.9 168.8

OMe 3.86 s 56.5 3.87 s 55.9
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aSpectra were run in methanol-d4 at 600 MHz (1H) and 150 MHz (13C). J values are in parentheses and
reported in Hz; chemical shifts are given in ppm; assignments were confirmed by COSY, 1D-TOCSY,
HSQC, and HMBC experiments. bOverlapped signal.
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Table 2. 1H and 13C NMR Data of Compounds 5-7 a

5 6 7

position δH δC δH δC position δH δC

glc-1 5.48 d (3.0) 93.2 5.47 d (3.0) 92.7 1 35.7

2 3.63 dd (9.5, 3.0) 72.4 3.63 dd (9.0, 3.0) 72.3 2a 1.56 dd (14.0, 8.0) 47.6

3 3.92 t (9.5) 85.5 3.91 t (9.0) 85.2 2b 1.22 dd (14.0, 3.0)

4 3.38 t (9.5) 69.7 3.47 t (9.0) 69.7 3 3.75 m 64.5

5 4.15 m 71.0 3.92 m 73.6 4a 2.27 dd (13.0, 3.5) 41.3

6a 4.51 dd (12.0, 3.5) 65.6 3.78 dd (12.0, 3.0) 62.1 4b 1.63 dd (13.0, 9.0)

6b 4.14 dd (12.0, 5.5) 3.65 dd (12.0, 4.5) 5 68.6

COCH3 2.13 s 21.4 6 71.3

COCH3 171.0 7 5.97 d (16.0) 127.8

glc 2-1 4.54 d (7.8) 104.7 4.53 d (8.0) 104.9 8 5.74 dd (16.0, 5.5) 136.9

2 3.29 dd (9.0, 7.8) 75.0 3.29 dd (9.0, 8.0) 75.2 9 4.40 dq (6.5) 77.0

3 3.40 t (9.0) 77.9 3.41 t (9.0) 77.8 10 1.29 d (6.0) 21.0

4 3.31 t (9.0) 71.3 3.31 t (9.0) 71.3 11 1.15 s 29.6

5 3.43 m 77.0 3.36 m 77.8 12 0.98 s 25.0

6a 3.91 dd (12.0, 3.0) 62.0 3.91 dd (12.0, 3.0) 62.0 13 1.20 s 19.9

6b 3.76 dd (12.0, 5.0) 3.78 dd (12.0, 4.5) Glc 1 4.34 d (7.8) 102.3

fru-1 3.65 d (12.0) 63.6 3.67 d (12.0) 64.0 2 3.19 dd (9.5, 7.8) 75.0

2 105.5 105.1 3 3.25 t (9.5) 77.5

3 4.16 d (8.0) 77.8 4.16 d (8.0) 78.5 4 3.33 t (9.5) 71.2

4 4.14 t (8.0) 77.0 4.13 t (8.0) 76.8 5 3.35 m 77.5

5 4.16 m 80.9 4.11 m 80.3 6a 3.96 dd (12.0, 3.5) 68.0

6a 4.65 dd (11.5, 6.0) 67.6 4.65 dd (12.0, 6.5) 67.2 6b 3.58 dd (12.0, 5.0)

6b 4.60 dd (11.5, 4.0) 4.60 dd (12.0, 4.0) Api 1 4.98 d (3.0) 110.0

benzoyl-
1

131.0 130.6 2 3.91 br s 77.5

2/6 8.06 dd (7.5, 1.5) 130.6 8.07 dd (7.5, 1.5) 130.4 3 80.4

3/5 7.50 t (7.5) 129.7 7.51 t (7.5) 129.0 4a 3.98 d (11.0) 74.5

4 7.63 t (7.5) 133.8 7.63 t (7.5) 133.5 4b 3.77 d (11.0)

COO 168.0 167.5 5a 3.75 d (10.5) 64.5

5b 3.58 d (10.5)
aSpectra were run in methanol-d4 at 600 MHz (1H) and 150 MHz (13C). J values are in
parentheses and reported in Hz; chemical shifts are given in ppm; assignments were
confirmed by COSY, 1D-TOCSY, HSQC, and HMBC experiments.
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Table 3. 1H and 13C-NMR Data of Compounds 8-10 Sugar Moieties (CD3OD, 600 MHz, J in Hz) a

position 8 9 10

δH δC δH δC δH δC

glc-1 4.44 d (7.8) 103.8 4.34 d (8.0) 104.1 4.42 d (8.0) 103.5
2 3.23 dd (9.0, 7.8) 75.0 3.24 dd (9.5, 8.0) 75.1 3.23 dd (9.5, 8.0) 75.2
3 3.37 t (9.0) 77.0 3.37 t (9.5) 77.6 3.36 t (9.5) 77.2
4 3.35 t (9.0) 70.5 3.30 t (9.5) 71.0 3.32b 70.5
5 3.26 m 76.3 3.28 m 77.5 3.32b 77.1
6a 3.80 dd (12.0, 3.0) 61.6 3.92 dd (12.0, 2.5) 62.5 3.92 dd (12.0, 2.5) 61.7
6b 3.69 dd (12.0, 4.5) 3.69 dd (12.0, 5.0) 3.69 dd (12.0, 5.0)
fuc-1 5.47 d (8.0) 94.5 5.49 d (7.8) 94.5 5.41 d (7.8) 93.8
2 3.73 dd (9.0, 8.0) 74.0 3.97 dd (9.0, 7.8) 72.7 3.65 dd (9.0, 7.8) 75.7
3 3.89 dd (9.0, 4.0) 79.9 4.05 dd (9.0, 4.0) 79.5 3.86 dd (9.0, 4.0) 85.0
4 5.30 dd (4.0, 2.5) 73.8 5.41 dd (4.0, 2.5) 75.0 3.66 dd (4.0, 2.5) 70.6
5 3.87 m 70.7 3.85 m 72.0 3.74 m 71.0
6 1.08 d (6.0) 16.4 1.15 d (6.0) 16.0 1.16 d (6.0) 16.4
COCH3 172.8 172.0
COCH3 2.16 s 20.0 2.18 s 20.4
rha-1 5.10 d (1.8) 102.1 5.51 d (1.8) 101.2 5.47 d (1.8) 99.5
2 3.95 dd (3.0, 1.8) 70.7 3.97 dd (3.0, 1.8) 71.5 3.95 dd (3.0, 1.8) 71.5
3 3.66 dd (9.0, 3.0) 71.0 3.90 dd (9.0, 3.0) 71.0 3.99 dd (9.0, 3.0) 70.9
4 3.37 t (9.0) 72.8 3.54 t (9.0) 84.0 3.52 t (9.0) 84.0
5 3.70 m 70.3 3.86 m 68.3 3.83 m 69.0
6 1.24 d (6.5) 16.4 1.32 d (6.5) 18.0 1.30 d (6.5) 18.0
xyl-1 4.51 d (7.5) 106.0 4.54 d (7.5) 104.5
2 3.16 dd (9.0, 7.5) 75.0 3.23 dd (9.0, 7.5) 74.7
3 3.49 t (9.0) 76.0 3.29 t (9.0) 76.6
4 3.37 m 77.6 3.36 m 77.0
5a 4.04 dd (11.0, 2.5) 64.7 4.04 dd (11.0, 2.5) 64.5
5b 3.31 dd (11.0, 5.0) 3.28 dd (11.0, 5.0)
gal-1 4.39 d (7.5) 104.1 4.45 d (7.8) 105.7
2 3.59 dd (8.0, 7.5) 72.0 3.53 dd (9.0, 7.8) 73.6
3 3.52 dd (8.0, 4.0) 74.6 3.48 dd (9.0, 3.5) 75.4
4 3.83 dd (4.0, 2.5) 70.0 3.84 dd (3.5, 2.0) 70.7
5 3.64 m 75.9 3.73 m 76.0
6a 3.76 dd (11.5, 2.5) 62.3 3.86 dd (11.0, 2.5) 61.5
6b 3.69 dd (11.5, 4.5) 3.65 dd (11.0, 5.0)
api-1 5.14 d (3.0) 112.0
2 3.97 br s 77.0
3 80.6
4a 3.97 d (10.0) 74.6
4b 3.74 d (10.0)
5 3.52 br s 64.0
glc-1 4.51 d (8.0) 105.2 4.42 d (8.0) 103.0
2 3.24 dd (9.0, 8.0) 75.1 3.24 dd (9.0, 8.0) 75.1
3 3.37 t (9.0) 77.6 3.37 t (9.0) 77.6
4 3.23 t (9.0) 71.0 3.30 t (9.0) 70.0
5 3.31 m 76.0 3.31 m 76.0
6a 3.92 dd (12.0, 3.0) 62.8 3.83 dd (12.0, 3.0) 62.0
6b 3.62 dd (12.0, 4.5) 3.70 dd (12.0, 4.5)
aSpectra were run in methanol-d4 at 600 MHz (1H) and 150 MHz (13C). J values are in
parentheses and reported in Hz; chemical  shifts are given in ppm; assignments were
confirmed by COSY, 1D-TOCSY, HSQC, and HMBC experiments. bOverlapped signal.
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Table 4. hLDH5 Inhibition Potencies
compound hLDH5a (IC50, µM)

1 > 500
2 >500
3 >500
4 >500
5 >500
6 >500
8 >500

11 90.4 ± 4.4
12 190.7 ± 21.8
13 >500
14 >500

galloflavin 102.4 ± 15.0
aValues are reported as the means ± SD 
of three or more independent experiments.

32



Table 5. MM-PBSA Resulting Values for the Ten Different  hLDH5-
Compound 11 Complexes a,b

MM-PBSA evaluation

VDW EEL EPB ENP ∆PBSA

cluster 01 -62.0 -53.1 89.5 -6.6 -32.2

cluster 02 -76.4 -53.2 113.1 -7.4 -23.9

cluster 03 -60.8 -39.5 82.8 -5.9 -23.4

cluster 04 -73.2 -46.1 105.0 -7.0 -21.3

cluster 05 -56.4 -40.5 83.0 -6.4 -20.3

cluster 06 -64.2 -45.5 94.5 -6.9 -22.1

cluster 07 -51.4 -31.5 69.6 -5.6 -18.9

cluster 08 -49.4 -37.6 78.5 -5.8 -14.3

cluster 09 -59.4 -28.6 75.8 -7.1 -19.3

cluster 10 -39.4 -29.5 60.4 -4.8 -13.3
a∆PBSA is the total amount of the electrostatic (EEL), van der Waals
(VDW), polar (EPB) and non-polar (ENP) solvation free energy. bData
are expressed as kcal/mol.
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