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Abstract. Today the state-of-the-art performance in classification is achieved by
the so-called black boxes”, i.e., decision-making systems whose internal logic is
obscure. Such models could revolutionize the health-care system, however their
deployment in real-world diagnosis decision support systems is subject to several
risks and limitations due to the lack of transparency. The typical classification
problem in health-care requires a multi-label approach since the possible labels
are not mutually exclusive, e.g. diagnoses. We propose MARLENA, a model-
agnostic method which explains multi-label black box decisions. MARLENA
explains an individual decision in three steps. First, it generates a synthetic neigh-
borhood around the instance to be explained using a strategy suitable for multi-
label decisions. It then learns a decision tree on such neighborhood and finally
derives from it a decision rule that explains the black box decision. Our exper-
iments show that MARLENA performs well in terms of mimicking the black
box behavior while gaining at the same time a notable amount of interpretability
through compact decision rules, i.e., rules with limited length.

1 Introduction

Machine learning algorithms are often the heart of many opaque decision systems that
take critical decisions that heavily impact on our life and society. Thanks to the ability of
machine learning algorithms to leverage large volumes of health-related data, decision
systems have the potential to help doctors in their diagnosis, in predicting the spread of
diseases and in identifying groups of high-risk patients with high performance [7]. To
this end, machine learning algorithms learn patterns from this available data in order to
construct predictive models mapping features into a decision [6, 18, 21]. Unfortunately,
real historical data used for the learning process may contain human biases which could
lead to wrong or unfair decisions. The lack of transparency in the behavior of machine
learning algorithms and the inability of explaining the logic involved in their decision
process may limit the social acceptance and trust on their adoption in many sensitive
contexts. Moreover, the lack of explanations for the decisions of black box systems is
also a legal issue addressed in the General Data Protection Regulation approved by the
European Parliament in May 2018. Besides giving people control over their personal
data, it also provides restrictions and guidelines for automated decision-making pro-
cesses (prediction models in this case) which, for the first time, introduce a right of ex-
planation. This means that an individual has the right to obtain meaningful explanations
about the logic involved when automated decision making takes place [25, 15, 12].
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Some machine learning techniques aiming at learning predictive model in health-
care, rather than specialize in predicting a particular outcome (heart-failure, in-hospital
mortality, etc), focus on developing generic predictive models able to forecast any kind
of future diagnosis. This task is called multi-label classification problem since diag-
noses are not mutually exclusive, so a multilabel classifier has to assign to each sample
a set of target labels (decisions). For example, in [6] a RNN is trained to implement a
temporal model to predict the patient’s next visit time, diagnosis and medication order.

In this paper we address the problem of explaining the decision taken by a multi-
label black box classifier by providing “meaningful explanations” of the logic involved
in the decision process. This task is particularly relevant in health-care applications
since machine learning-based diagnosis decision support systems able to tackle mixed
scenarios solve a multi-label classification problem. To this end, we propose a model ag-
nostic solution called MARLENA (for Multi-label Rule-based ExplaNAtions). Given
any kind of multi-label black box predictor b and a specific instance x labeled with
outcome y by b, we build an interpretable multi-label predictor by first generating a set
of synthetic neighbor instances of the given instance x through an ad-hoc strategy, and
then extracting from such a set a multi-label decision tree classifier. A local explanation
represented by a decision rule is then extracted from the obtained decision tree. For the
generation of the neighborhood of x we propose two alternative strategies based on the
idea of generating neighbors close to x with respect to the feature values and the deci-
sion assigned by the black box b. The idea of miming the local behaviour of a black box
is common with other approaches such as LIME [19] and LORE [10]. However, none
of these approaches is applicable to explain multi-label black box classifiers. We vali-
date our explanation method with experiments on real datasets to assess quantitatively
its accuracy in miming a black box and the complexity of the produced explanations.

The rest of this work is organized as follows. In the Related Work Section 2 we
discuss relevant works on multi-label classification for health applications and black
box decision explanation. Then, Setting the Stage Section 3 introduces important no-
tions as multi-label classification, black box classifier and interpretable classifier. Sec-
tion 4 Multi-label black box Outcome Explanation presents a problem formalization
and Multi-label Explainer Section 5 describes the details of the proposed explanation
method. In the Experiments Section 6 we report a deep experimentation using datasets
concerning health applications. Finally, we conclude the paper by discussing strengths
and weaknesses of the proposed solutions and future research directions.

2 Related Work

The recent availability of large amounts of electronic health records (EHRs) provides an
opportunity for training classification algorithms to develop health applications. EHRs
are usually noisy, sparse, have high dimensionality and nonlinear relationships among
variables [26]. Deep Learning ability to model non-linear relationships [14] led to suc-
cessful applications of such technologies to clinical tasks based on EHR data [21]. Deep
Learning techniques have been proven useful for patients and medical concepts repre-
sentation [16], outcome prediction [6, 18, 21] and new phenotype discovery [4, 13].
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Consequence of the wide use of black box techniques is a remarkable interest in de-
veloping interpretable predictive systems for health applications. To give insights to the
behavior of their model, the authors of [6] studied the relationship between the length of
the patient medical history and the prediction performance. However, their finding do
not help in explaining how the system reasons. In [9] the authors propose a multichan-
nel convolutional neural network based on embeddings of medical concepts to examine
the effect of patient characteristics on total hospital costs and length of stay. Despite the
good performance the proposed method is completely obscure. A partially interpretable
solution to the same problem is described in [2]. The authors propose a model based on
the fact that different patient conditions have different temporal progression patterns.
The model learns time decay factors for every medical code and allows to analyze the
attention weights and disease progression for interpreting the predictions and under-
stand how risks of future visits change over time. However, this approach still depends
on a neural network and is not reusable for other applications.

In line with [19, 10], our proposal is not to develop interpretable solutions specifi-
cally designed for some applications, but to provide an agnostic-approach able to deal
with multiple applications and to explain the predictions of high performance classi-
fiers. In [5] the authors compress the knowledge learned by several deep networks into
a more interpretable model (gradient boosting trees) which mimics the global behavior
of the black box achieving similar performance. In contrast, our approach explains the
black box local behavior.

Concerning multi-label prediction, in the literature, there are various approaches
using transparent or obscure models. In [24, 3] are proposed variants of decision trees
to deal with multi-labels organized into a hierarchy. On the other hand, yet to deal with
the multi-label problem, in [1, 20] are presented respectively a fuzzy SVM and a fuzzy
neural network. Despite the usage of interpretable models, these work do not offer any
specific clue on how to employ them for explanability purposes.

To the best of our knowledge our work is the first attempt to solve local explana-
tion [11] for agnostic health applications in with multi-label classification.

3 Setting the Stage

We recall basic notations on multi-label classification [23], the definition of the out-
come explanation problem [11], and then, we define the notion of explanation for multi-
label classifiers for which we propose a solution. A multi-label classifier, is a function
b:X (m)→Y(l) which maps data instances (tuples) x from a feature space X (m) with m
input features to a decision vector y in a target space Y(l)={0, 1}l. Note that, yi=1 if
the ith label is associated with the instance x, yi=0 otherwise. We use b(x)=y to denote
the decision y predicted by b, and b(X)=Y as a shorthand for {b(x) | x ∈ X}=Y .

An instance x consists of a set of m attribute-value pairs (ai, vi), where ai is a fea-
ture (or attribute) and vi is a value from the domain of ai. The domain of a feature can
be continuous or categorical. A predictor can be a machine learning model, a domain-
expert rule-based system, or any combination of algorithmic and human knowledge
processing. We assume that a classifier can be queried at will. We denote by b a black
box classifier, whose internals are either unknown to the observer or they are uninter-
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Fig. 1. (1st) dataset sample, the arrow points out the instance to explain, Mixed neighborhood gen-
eration: (2nd) real instances close to x w.r.t. the feature space; (3rd) real instances close to x w.r.t.
the target space; (4th) merge of the previous sets of instances. Unified core real neighborhood:
(5th) real instances close to x w.r.t. feature and target spaces, i.e., the real core neighborhood.

pretable by humans. Examples include neural networks, SVMs, ensemble classifiers,
etc. Instead, we denote with c an interpretable classifier, whose internal processing
yielding a decision c(x)=y has a symbolic interpretation understandable by a human.
Examples include rule-based classifiers, decision trees, decision sets, etc.

4 Multi-label black box Outcome Explanation

Given a black box classifier b and an instance x, the outcome explanation problem,
introduced in [11], consists in providing for the decision b(x) = y an explanation e
belonging to a human interpretable domain E.

We address this problem in the specific case in which the black box is a multi-
label classifier. Our approach is based on the idea, proposed in [10], of learning an
interpretable classifier c that reproduces and accurately mimes the local behavior of the
black box. An explanation for the decision is then derived from c. By local, we mean
focusing on the behavior of the black box in the neighborhood of the specific instance
x, without aiming at providing an overall description of the logic of the black box for all
possible instances. The neighborhood of x has to be generated as part of the explanation
process. We assume that some knowledge is available about the the feature space X (m),
like the ranges of admissible values for the domains of the features and, like in this
work, the (empirical) distribution of the features. Nothing is instead assumed about
the process of constructing the black box b. Let us formalize the problem of outcome
explanation through interpretable models.

Definition 1 (Explanation Through Interpretable Models). Let c = ζ(b, x) be an
interpretable classifier derived from the black box b and the instance x using some
process ζ(·, ·). An explanation e∈E is obtained through c, if e=ε(c, x) for some expla-
nation logic ε(·, ·) which reasons over c and x.

In the next section we will describe the process ζ(·, ·) we propose for obtaining
an interpretable classifier c. As a consequence, like in [10], we adopt as explanation a
decision rule (simply, a rule) r of the form p→ y describing the reason for the decision
value y = c(x). The decision y is the consequence of the rule, while the premise p is a
boolean condition on feature values.

Definition 2 (Local Explanation). Let x be an instance, and c(x)=y be the decision
of an interpretable multi-label classifier c. A local explanation e is a a decision rule
r=(p→ y) consistent with c and satisfied by x.
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Let us consider as an example the following explanation for the diagnoses prediction
of a patient: e = {60 < age ≤ 70,BMI>36.2, hyperglycemia=Y es, insulin=Up,
systolicpressure=150/100mmHg}→[Diabetes,Hypertension,Hypothyroidism].

The meaning of this explanation is that the diagnoses of diabetes, hypertension and
hypothyroidism are predicted by the black box because the patient is obese (BMI¿36.2),
his systolic pressure is high, his age is in the [60, 70) range and his blood test results
show high levels of sugar (hyperglycemia) and insulin. For the sake of clarity, we only
show the diseases that have been predicted by the black box, which correspond to non-
zero elements of the binary label vector y ∈ Y(l) = {0, 1}l.

We assume that p is the conjunction of split conditions sc of the form a ∈ [v1, v2],
where a is a feature and v1, v2 are values in the domain of a extended with ±∞. An in-
stance x satisfies r, or r covers x, if the boolean condition p evaluates to true for x, i.e., if
sc(x) is true for every sc ∈ p. For example, the rule r = {60<age≤70,BMI>36.2,
hyperglycemia=Yes} → [Diabetes,Hypertension,Hypothyroidism] is satisfied by
x0={age=63,BMI=36.5, hyperglycemia=Yes} and not satisfied by x1={age=65,
BMI=35, hyperglycemia=No}.

We say that r is consistent with c, if c(x)=y for every instance x that satisfies r.
Consistency means that the rule specifies some conditions for which the classifier makes
a specific decision. When the instance x for which we have to explain the decision sat-
isfies p, the rule p→ y represents a motivation for taking a decision value, i.e., p locally
explains why b returned y. Therefore, a solution to the problem will consists of: (i) com-
puting an interpretable predictor c for a black box b and an instance x, i.e., designing
function ζ(·, ·) according to Definition 1; (ii) deriving a local explanation e from c and
x, i.e., defining the explanation logic ε(·, ·) according to Definition 2.

5 Multi-label Explainer

We propose MARLENA (Multi-label Rule-based ExplaNAtions, as a solution to the
multi-label black box outcome explanation problem. An interpretable decision tree clas-
sifier c is built for a given multi-label black box b and instance x by first generating a
set of neighbor instances of x through the approach presented in the following, and then
extracting from such a set a decision tree c. A local explanation, consisting of a single
rule r, is then derived from the structure of c.

5.1 Neighborhood Generation

The goal of this phase is to identify a set of synthetic instances Z, with feature and/or
label values close to the ones of x, in order to reproduce the local decision behavior of
the multi-label black box b. Since the objective is to learn a classifier, the neighborhood
should be flexible enough to include instances with both decisions equal to b(x), i.e.
b(z)=b(x) and decisions different from b(x), i.e, b(z) 6=b(x). For the generation of Z
we propose two approaches which first construct a core real neighborhood of x, useful
for deriving the empirical distributions of features of x, and then, randomly generate
the set of synthetic neighbors Z according to these distributions. In order to derive the
core real neighbors X∗ these approaches assume as input a set of known instances



6 C. Panigutti et al.

X̂∈X (m) that may be a set of instances of the training set, a set of instances to be
explained or in general, a set of instances belonging to the same domain of x. Given X̂
the neighborhood X∗ is built by identifying the instances of X̂ which satisfy specific
criteria. In our experiments, we setup X̂ as the instances to explain in the test set.

Mixed Neighborhood. This method selects from the given instances X̂ a core of k
real neighbors X∗ = Xf ∪Xl, where k = kf + kl, kf=αk and kl=(1−α)k. Figure 1
(2-4) shows a graphical representation of mixed neighborhood generation starting from
a sample dataset with three different labels (left most plot). The arrow points out the
instance to explain. The set Xf is composed of the kf instances x̂ ∈ X̂ closest to x
with respect to the feature space X (m), according to a distance function df (x, x̂); while
the set Xl comprises the kl instances x̂ ∈ X̂ closest to x with respect to the target
space Y(l), i.e., the black box decision, according to a distance function dl(b(x), b(x̂)).
In Figure 1, the set Xf is showed in the (2nd) plot, the set Xl is represented in the
(3rd) plot and, the (4th) plot reports the core real neighborhood. The parameter α is
fundamental for the selection of the instances. Indeed, we underline that instances in
Xl which are close to x with respect to the decision are not necessarily close to x in
the feature space. Therefore, low values of α could bring to the generation of a sparse
real core neighborhood in the feature space. This aspect is evident looking at Figure 1
where instances in (3) are sparser than the instances in (4).

Unified Neighborhood. This method selects from X̂ a core of k real neighbors X∗

as the k instances x̂ ∈ X̂ closest to x with respect to both the feature space X (m)and
the target space Y(l), according to a distance function du(x, x̂, b) which combines df
and dl: du(x, x̂, b) = m

m+l · df (x, x̂) +
l

m+l · dl(b(x), b(x̂)). Figure 1 (5th) plot.
Both approaches are parametric with respect to the distance functions df (·, ·) and

dl(·, ·). Since we have binary vectors with length l, in the target space we use the Ham-
ming distance as dl(·, ·). On the other hand, in the feature space we account for the
presence of mixed types of features by a weighted sum of the Hamming distance [22]
for categorical features, and of the normalized Euclidean distance4 for continuous fea-
tures. Thus, assuming s categorical features and m− s continuous ones, we use:
df (x, x̂) =

s
m ·Hamming(x, x̂) + m−s

m · nEuclidean(x, x̂)
In the following, we name MARLENA-m the MARLENA algorithm using the

mixed neighborhood distance function, MARLENA-u the MARLENA algorithm using
the unified neighborhood distance function.

5.2 Rule-based Explanation

Given the synthetic neighborhood Z of x, the second step is to build an interpretable
classifier c trained on the instances z ∈ Z labeled with the black box decision b(z).
Such a classifier is intended to mimic the behavior of b locally in the Z neighborhood.
MARLENA adopts multi-label decision tree as interpretable classifier c as it makes
easy the explanation extraction. Indeed, given the multi-label decision tree c, we derive
the decision rule representing the explanation as a root-leaf path in the tree, i.e., the
decision rule r = (p → y) is formed by including in p the split conditions on the path

4 http://reference.wolfram.com/language/ref/
NormalizedSquaredEuclideanDistance.html
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Dataset instances features labels avg. labels RF SVM MLP
yeast 2,417 117 14 4.24 .62 .62 .64

women 14,644 44 14 3.53 .71 .72 .71
medical 978 1449 45 1.25 .37 .79 .77

Table 1. Real health-related dataset information and black box performance (F1-measure).

from the root to the leaf node that is satisfied by the instance x, and setting y = c(x).
By construction, the rule r is consistent with c and satisfied by x.

6 Experiments

In this section, we describe the experiments we carried out to evaluate the performance
of MARLENA. We first present the experimental setup and then we show the results of
our analyses which prove that the proposed multi-label local approach is more effective
than a global one. We study the effect of the neighborhood generation parameter α on
MARLENA-m performance, and we provide a qualitative and quantitative evaluation
of the multi-label explanations5. MARLENA was developed in Python6, we used the
sklearn implementation of the multi-label decision tree as interpretable classifier.

6.1 Experimental Setup

Datasets. We ran experiments on three real-world mulit-label tabular datasets: yeast [8],
woman7 and medical [17]. The yeast dataset is a collection of yeast microarray expres-
sions and phylogenetic profiles which can be used to learn the yeast gene functional
categories. One row of this dataset represents a gene, and the labels are its associ-
ated functional classes. Each gene might belong to more than one functional class. The
woman dataset contains survey data about women health-care requirements gathered
by a US non-profit organization. One row of this dataset contains the questionnaire
replies of one woman concerning her demographics, pregnancies, family planning, use
of health care services, and medical insurance. The labels of this dataset are the health-
care requirements. The medical dataset contains a corpus of fully anonymized clinical
text. Each document in the corpus is associated with a set of ICD-9 codes which repre-
sents the diagnosis associated with the clinical report. To each report might be assigned
several ICD-9 codes. The woman dataset includes both categorical and continuous fea-
tures, the yeast only continuous features and the medical dataset contains only binary
features that represent the presence or absence of each word in each document.

Details of the datasets after missing values correction 8 and black box performance
are reported in Table 1. To train the black boxes, we randomly split the yeast and woman

5 For both neighborhood generation approaches mixed and union, the size of the synthetic neigh-
borhood is 1000, and the size of the core real neighborhood X∗ is k = 0.5|X̂|1/2

6 Source code, datasets, and the scripts for reproducing experiments are publicly available at
https://github.com/riccotti/ExplainMultilabelClassifiers

7
https://tinyurl.com/y9maxnxr, https://tinyurl.com/yaz2lyrc

8 We replace the missing values with the mean for continuous variables and with the mode for
categorical ones. We remove the features with more than 40% of missing values.
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Fig. 2. Hit and r-fidelity varying α for yeast and woman, upper and lower figure respectively.

dataset into a training and a test set containing respectively 70% and 30% of the in-
stances. For the medical dataset we use the partitioning described in [17]. After the
training phase we used the black boxes to classify the instances in the test set, denoted
by X , and we used the MARLENA approach to explain such decisions. We denote by
Ŷ the decisions provided by the black box b on X , and with Y the decisions provided
by the explainer c. We underline that the black box performance is not the focus of our
work: we forget about the real label and we use the black box labels as target labels.

Black Box Classifiers. We experiment the following predictors as black boxes: Ran-
dom Forests (RF), Support Vector Machines (SVM), and Multi-Layer Perceptron (MLP)9.
For each black box, we perform hyper-parameters tuning using a five-fold cross-validation
and a randomized search over a grid of parameters on the training set10.

Evaluation Measures. We adopt the following metrics to evaluate MARLENA’s per-
formance. Aggregated values11 are reported in the experiments by averaging them.

– fidelity(Y, Ŷ )∈[0, 1]. It compares the decisions of the interpretable classifier c to
those of the black box b on the setX . The s-fidelity measures the performance on the
synthetic neighborhood,X=Z. The r-fidelity measures the performance on the core
real neighborhood, X=X̂ . It answers the question:“how good is c at mimicking b
in a neighborhood of x?”. We measure it using the F1-measure [22].

– hit(y, ŷ)∈[0, 1]. It compares the prediction of c and b on the instance x under anal-
ysis. We use the simple match similarity to evaluate it, i.e., 1 − hamming(y, ŷ).
hit(y, ŷ) = 1 means that c correctly identifies all the labels returned by b, a value
between 0 and 1 means that some labels are misclassifed.

9 Implementations are those of scikit-learn library.
10 Details available at https://github.com/riccotti/ExplainMultilabelClassifiers.
11 The performance reported consider only instances for which an explanation is returned. In-

deed, for some instances of the medical dataset using the RF black box an explanation is not
returned. We leave the investigation of this specific case fur future studies.
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s-fidelity r-fidelity
Black Box mixed unified mixed unified

RF .94 ± .02 .90 ± .05 .89 ± .09 .87 ± .11
SVM .91 ± .05 .87 ± .07 .65 ± .20 .68 ± .21
MLP .93 ± .07 .91 ± .11 .68 ± .22 .68 ± .21

Table 2. Fidelity (mean ± stddev) of MARLENA-m and MARLENA-u on all datasets.

Dataset yeast woman medical
Black Box mixed union mixed union mixed union

RF .93 ± .03 .92 ± .04 .94 ± .02 .90 ± .05 .93 ± .06 .90 ± .12
SVM .84 ± .07 .84 ± .08 .92 ± .03 .88 ± .05 .95 ± .05 .86 ± .14
MLP .90 ± .05 .90 ± .06 .95 ± .02 .94 ± .04 .80 ± .12 .72 ± .20

Table 3. s-fidelity (mean ± stddev) of MARLENA mixed and union for each dataset.

Dataset yeast woman medical
Black Box mixed union mixed union mixed union

RF .89 ± .06 .90 ± .06 .89 ± .09 .87 ± .12 .94 ± .09 .97 ± .06
SVM .86 ± .08 .86 ± .08 .57 ± .16 .60 ± .18 .92 ± .12 .97 ± .06
MLP .89 ± .06 .89 ± .07 .62 ± .21 .61 ± .19 .81 ± .20 .89 ± .14

Table 4. r-fidelity (mean ± stddev) of MARLENA mixed and union for each dataset.

6.2 Results

We perform several experiments to assess how MARLENA-m performance are im-
pacted by the neighborhood generation parameter α. We measure r-fidelity and hit for
different values of α, the results are show in figure 2. We observe that the value of α
does not have a noticeable impact on the MARLENA-m performance. Therefore, we
can safely set α=0.7 for the following analyses, this guarantees the locality in the fea-
ture space of the core of real instances selected to generate the synthetic neighborhood.
We recall that high values of α favorite neighbors close to x in the feature space.

To understand if one of the two approaches of neighborhood generation performs
significantly better than the other, we compare them in terms of their s-fidelity and
r-fidelity on the woman and yeast datasets. The results are reported in Tables 2. We ob-
serve that the two approaches have comparable performance, but the mixed approach
performs slightly better on the synthetic neighborhood. We can also see how the ag-
gregated performance on all datasets show lower values of r-fidelity when our methods
are used to explain SVM and MLP decisions. Looking at r-fidelity values in Table 2, we
observe that this behaviour is due to weak performance on the woman dataset. This gap
of performance among the different datasets is due to the different levels of cohesion of
the data points selected in the core real neighborhood in the feature space.

In order to quantitatively measure the level of cohesion of each neighborhood, we
compute the SSE (Sum of Squared Errors [22]) employing distance function df defined
in section 5.1. In Figure 3 we report the distribution of SSE values, i.e., the mean val-
ues of distances among the data points in the core real neighborhoods for each dataset.
We observe how the data points in the woman dataset are more distant from the cen-
ter of their neighborhood, compared to those of the other two datasets. This impacts
the performance of the methods because selecting data points scattered in the feature
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Fig. 3. Distributions of mean mixed distance among core real neighborhood points.

space for the core real neighborhood generates a synthetic neighborhood which does
not preserve the locality around the instance to be explained. The relationship between
MARLENA performance and data points scatteredness in the core real neighborhood
requires a detailed study and is left for future work.

For measuring the ability of MARLENA to mimic the black box behavior, we com-
pare its hit-performance against those of a Global Decision Tree (GDT) learned on the
set of instances to be explained with target labels given by the black box. The results for
both the mixed and unified approaches are shown in Table 5 and Table 6, respectively.
We underline how the comparison with such a global approach is not trivial, since the
hit performance of the global decision tree (GDT) are high, all above 0.93. Our ap-
proaches outperform the global one in mimicking the SVM and the MLP black box
on the yeast dataset. However, although MARLENA in some cases performs worse in
terms of hit, it always greatly outperforms the GDT in terms of rule interpretability. In-
deed, as shown in Tables 7 and 8, MARLENA always produces explanations (decision
rules) with considerable lower number of conditions in the rule premise. The reduction
of rule length is really important especially on woman dataset.

We now make a qualitative comparison of the explanations provided by MARLENA-
m and the GDT. We consider explanations for black box behavior on the medical dataset
since its features are easily comprehensible also by non-experts. What follows is an ex-
ample of an explanation for the SVM black box where both MARLENA-m (eM ) and
the GDT (eG ) predict the same labels as the black box. In the medical dataset the clas-
sification task is to map words coming from clinical notes to one or more diagnosis.
The following explanations highlights which are the words that influenced more the
black box decision with their presence or absence. We highlight words common to both
explanations as they probably are the most important for the decision.

eM = {duplication=0, reflux=0, hydronephrosis=1,normal=1, pyelectasis=1,mild=1}
→ [Urinaryincontinence,Hydronephrosis]

eG = {cough=0, reflux=0, tract=0,neurogenic=0, hydronephrosis=1, hydroureter=0,
evaluate=0, pyelectasis=1, follow=1}
→ [Urinaryincontinence,Hydronephrosis]

GDT’s explanation is longer and more confusing as it contains words falling outside the
context of kidney problems, like cough, and generic words like evaluate and follow.

7 Conclusion

We have proposed MARLENA a model agnostic approach to address the multi-label
black box outcome explanation problem. Our approach learns a local classifier on a syn-
thetic neighborhood generated by a strategy suitable for multi-label decisions. Then, it
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Dataset yeast woman medical
Black Box MARLENA-m GDT MARLENA-m GDT MARLENA-m GDT

RF .97 ± .05 .98 ± .04 .95 ± .06 .99 ± .04 1.00 ± .01 1.00 ± .01
SVM .95 ± .06 .93 ± .07 .87 ± .09 .99 ± .03 1.00 ± .01 .99 ± .01
MLP .97 ± .05 .94 ± .07 .82 ± .13 .99 ± .03 .99 ± .01 .99 ± .01

Table 5. Hit performance comparison (mean and standard deviation).

Dataset yeast woman medical
Black Box MARLENA-u GDT MARLENA-u GDT MARLENA-u GDT

RF .97 ± .05 .98 ± .04 .94 ± .07 .99 ± .04 1.00 ± .00 1.00 ± .01
SVM .95 ± .06 .93 ± .07 .87 ± .09 .99 ± .03 1.00 ± .01 .99 ± .01
MLP .96 ± .05 .94 ± .07 .81 ± .12 .99 ± .03 1.00 ± .01 .99 ± .01

Table 6. Hit performance comparison (mean and standard deviation).

derives from the interpretable local prediction a meaningful explanation represented by
a decision rule, explaining the reasons of the decision. We have proposed two strate-
gies for the synthetic neighborhood generation that take into consideration the particu-
lar structure of the multi-label decision. Our experimentation shows that MARLENA
presents acceptable performance in terms of accuracy in mimicking the black box and
is able to produce explanations represented by compact rules.

A number of extensions and additional experiments can be considered for future
works. An interesting future research direction is to design new approaches for the
neighborhood generation for example methods based on the genetic programming. Sec-
ond, another study might be focused on the possibility to generate a global explainer by
composing the local explanations produced by MARLENA. Moreover, results in this
paper show that it is necessary to extend the experiments by considering more datasets
(even synthetic) characterized by different levels of density and to understand how this
impact to the quality of neighborhood generation. Finally, it would be interesting to let
domain experts evaluate and compare MARLENA explanations to the global ones.
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