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ABSTRACT 8 

Geophysical inversions estimate subsurface physical parameters from the acquired data and because 9 

of the large number of model unknowns, it is common practice reparametrizing the parameter space 10 

to reduce the dimension of the problem. This strategy could be particularly useful to decrease the 11 

computational complexity of non-linear inverse problems solved through an iterative sampling 12 

procedure. However, part of the information in the original parameter space is lost in the reduced 13 

space and for this reason the model parameterization must always constitute a compromise between 14 

model resolution and model uncertainty. In this work, we use the Discrete Cosine Transform (DCT) 15 

to reparametrize linear and non-linear elastic amplitude versus angle (AVA) inversions cast into a 16 

Bayesian setting. In this framework the unknown parameters become the series of coefficients 17 

associated to the DCT base functions. We first run linear AVA inversions to exactly quantify the 18 

trade-off between model resolution and posterior uncertainties with and without the model reduction. 19 

Then, we employ the DCT to reparametrize non-linear AVA inversions numerically solved through 20 

the Differential Evolution Markov Chain and the Hamiltonian Monte Carlo algorithm. To draw 21 

general conclusions about the benefits provided by the DCT reparameterization of AVA inversion, 22 

we focus the attention on synthetic data examples in which the true models have been derived from 23 

actual well log data. The linear inversions demonstrate that the same level of model accuracy, model 24 

resolution, and data fitting can be achieved by employing a number of DCT coefficients much lower 25 

than the number of model parameters spanning the unreduced space. The non-linear inversions 26 
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illustrate that an optimal model compression (a compression that guarantees optimal resolution and 27 

accurate uncertainty estimations) guarantees faster convergences toward a stable posterior 28 

distribution and reduces the burn-in period and the computational cost of the sampling procedure. 29 

 30 

INTRODUCTION 31 

From a mathematical point of view, the estimation of subsurface parameters from the acquired 32 

geophysical data is an inverse problem (Zhdanov, 2002; Tarantola, 2005; Menke 2018; Aster et al. 33 

2018). One challenge posed by geophysical inversions is the estimation of several (hundreds, or even 34 

thousand) subsurface parameters from noisy, low-resolution, measurements. This lack of information 35 

usually results in an ill-conditioned inverse problem in which many models equally fit the observed 36 

data. For this reason, it is of crucial importance to quantify the uncertainty affecting the final 37 

predictions, and this task is usually accomplished by casting the inverse problem into a Bayesian 38 

framework. Some applications of this approach to solve geophysical problems can be found, for 39 

example, in Sen and Stoffa (1996), Malinverno (2000), Buland and Omre (2003), Malinverno and 40 

Briggs (2004), Bosch et al. (2007), Bodin et al. (2012), Dosso et al. (2012), Rimstad et al. (2012), 41 

Zunino et al. (2014), Grana (2016), Sajeva et al. (2017), Ray et al. (2017), Piana Agostinetti and 42 

Bodin (2018), Pejic et al. (2018), de Figueiredo et al. (2018), Aleardi and Salusti (2019). The final 43 

solution of a Bayesian inversion is the so-called posterior probability distribution (PPD) in the model 44 

space, that can be, however, analytically computed only for linear forward modeling operators and 45 

under Gaussian assumptions about the model, data, and error distributions. Similarly, an analytical 46 

and mathematically exact derivation of the so-called sensitivity analysis tools (e.g. model and data 47 

resolution matrices) is only possible for linear inversions.   48 

In case of non-linear problems or/and non-Gaussian assumptions, the analytical solution is not 49 

available in a closed form and for this reason it must be numerically assessed using Markov Chain 50 

Monte Carlo methods (MCMC; Sambridge and Mosegaard, 2002). These algorithms transform the 51 

inverse problem into a sampling problem in which the sampling density is proportional to the PPD. 52 
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The first stage of the MCMC sampling is the burn-in period in which the chain moves from a random 53 

starting model to a high-probability region. The second stage is often called the sampling stage in 54 

which the small fluctuations of the misfit value indicate that the MCMC algorithm has reached the 55 

stationary regime.  56 

Although the increasing computational power provided by modern parallel architectures has 57 

considerably encouraged the applications of MCMC methods to solve geophysical problems, it is 58 

always crucial adopting a specific recipe to guarantee an accurate and computationally efficient 59 

sampling of the PPD. For example many MCMC algorithms (e.g. the popular random walk 60 

Metropolis) are known to mix slowly between the modes if the target distribution is multimodal with 61 

modes separated by low probability regions (Holmes et al. 2017; Scalzo et al. 2019). A simple 62 

approach to mitigate this issue makes use of multiple MCMC chains to sample the PPD. This strategy 63 

usually offers robust protection against premature convergence because the chains use different 64 

trajectories to explore the parameter space. However, this strategy is inefficient in highly dimensional 65 

problems where the curse-of-dimensionality makes the target distribution highly localized within 66 

each model space dimension. This issue usually increases the probability for the MCMC chains to 67 

get trapped in local maxima of the PPD and for this reason a considerable number of sampled models 68 

is needed to achieve accurate posterior estimations.  There have been many attempts to improve the 69 

convergence of MCMC algorithms in case of high-dimensional problems. For examples hybridizing 70 

MCMC algorithms with global search methods (e.g. Differential evolution Markov Chain “DEMC”, 71 

or Differential evolution adaptive Metropolis; Turner and Sederberg 2012; Vrugt 2016; Aleardi and 72 

Mazzotti 2017) or exploiting the Hamiltonian mechanic to include the derivative information of the 73 

PPD into the sampling framework (Sen and Biswas, 2017; Fichtner and Simutè, 2018; Fichtner and 74 

Zunino, 2019).  75 

The curse of dimensionality can be also mitigated by specific model reparameterizations that reduce 76 

the dimensionality of the inverse problem and its computational complexity. Several methods have 77 

been proposed using different base functions (e.g. principal component analysis, Chebyshev 78 
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polynomials, wavelet transforms, Legendre polynomials, Discrete Cosine Transform, machine 79 

learning methods). After such reparameterization the unknown parameters become the numerical 80 

coefficients that multiply the base functions. Some examples of applications of these methods to 81 

geophysical problems can be found in Fernández Martínez et al. (2011), Dejtrakulwong et al. (2012), 82 

Lochbühler et al. (2014), Satija and Caers (2015), Azevedo et al. (2016), Fernández Martínez et al. 83 

(2017), Aleardi (2019), Szabó and Dobróka (2019), Qin et al. (2019), Grana et al. (2019), Nunes et 84 

al. (2019), Azevedo and Demyanov  (2019). In the context of Hamiltonian Monte Carlo (HMC) 85 

inversions these parameter reduction methods are not only useful to additionally mitigate the curse 86 

of dimensionality but also to drastically reduce the computational cost related to the numerical 87 

computation of the Jacobian matrix that is needed to estimate the local gradient of the PPD. However, 88 

it is well known that the parameterization of an inverse problem must always constitute a compromise 89 

between model resolution and model uncertainty (Malinverno, 2000; Menke, 2018). This means that 90 

both the model uncertainty and the model resolution decrease as the number of inverted parameters 91 

decreases. In other words, the loss of information due to the parameter space reduction leads to 92 

underfit the observed data, underestimation of the uncertainty in the final solution, and in a decrease 93 

of the model resolution.  94 

In this work, we use the Discrete Cosine Transform (DCT) to reparametrize the amplitude versus 95 

angle (AVA) inversion in which the elastic properties of P-, S-wave velocities (Vp, Vs, respectively) 96 

and density (ρ) are retrieved from partial angle-stacked seismic data. The AVA inversion can be 97 

formulated either as a linear or non-linear problem depending on the forward operator employed: the 98 

full, non-linear Zoeppritz equations or its linear approximations. The DCT is a linear transformation 99 

that projects an N-length signal (vector of model parameters) to an N-length vector containing the 100 

coefficients of N different cosine (base) functions. This approach concentrates most of the 101 

information of the original signal into the lower-order DCT-coefficient so that only q<N coefficients 102 

can be used to accurately approximate the input signal. In the context of geophysical inversion, this 103 

means that the numerical values of these q DCT coefficients become the unknowns to be inferred 104 
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from the data. Estimating the retained DCT-coefficients reduces the parameter dimensionality and 105 

can significantly improve the computational efficiency of the inversion procedure, especially in case 106 

of non-linear problems solved through a sampling approach. We use the DCT because its energy 107 

compaction efficiency (the ability to concentrate most of the input’s signal energy to few DCT 108 

coefficients) is greater than any other transformation and it is to date the most widely used transform 109 

in image and video compression standards (Wallace, 1991; Le Gall, 1991).  110 

To draw general conclusions about the benefits provided by the DCT reparameterization of AVA 111 

inversion, we consider several synthetic inversion tests in which the observed data has been derived 112 

from actual borehole logs. First, the effect of this reparameterization on the model resolution and 113 

model uncertainty are investigated using analytical AVA inversions for which the sensitivity kernels 114 

and the posterior uncertainty can be exactly determined. Then, the DCT is used to reparametrize the 115 

DEMC and HMC inversions. In all cases, we compare the outcomes provided by the DCT 116 

reformulation and the standard model parameterization. To the best of our knowledge this paper 117 

investigates for the first time a DCT reparameterization of linear and non-linear AVA inversions and 118 

runs for the first time an HMC inversion in a DCT-reduced space.  119 

 120 

METHODS 121 

In this section we present the mathematical framework of the DCT and the reformulation of the 122 

Bayesian linear AVA inversion in a DCT-reduced model space. Then, we give a brief overview of 123 

the DEMC and HMC algorithms. 124 

 125 

Bayesian linearized AVA inversion in the DCT domain 126 

In this work, we use the DCT parameterization because this approach exhibits superior compression 127 

power over other compression methods (see Lochbühler et al. 2014). Several variants of DCT exist 128 

with slightly modified definitions, but here we employ the so-called DCT-2 formulation that is the 129 

most common. Hereafter we simply refer to the DCT-2 transformation as the DCT. The DCT is a 130 
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Fourier-related transform that uses only real numbers to express a finite signal in terms of the sum of 131 

cosine functions oscillating at different frequencies. The DCT transformation of a 1-D signal x of 132 

length N can be written as follows: 133 

𝑦(𝑘) = √
2

𝑁
∑ 𝑥(𝑛)

𝑁

𝑛=1

1

√1 + 𝛿𝑘1

cos (
𝜋

2𝑁
(2𝑛 − 1)(𝑘 − 1)) ,      (1) 134 

where 𝛿𝑘1 represents the Kronecker delta, y are the N coefficients of the transformation that fully 135 

describe the original signal x in the transformed DCT space, and k represents the order of each DCT 136 

coefficient. In matrix form, equation 1 becomes: 137 

𝐲 = 𝐁𝐱 ,     (2) 138 

where the vectors x and y represent the original and the transformed signal, respectively, and B is an 139 

N-by-N matrix that contains the cosine functions (base functions) spanning the DCT space. Some 140 

examples of DCT base functions of different orders k are represented in Figure 1. The DCT is a linear 141 

transformation expressed by the orthonormal matrix B (so that 𝐁𝐁𝑇 = 𝐈, where 𝐈 is the identity 142 

matrix) that concentrates most of the energy of the original signal x in the low order DCT coefficients. 143 

This means that an approximation of the signal 𝐱 can be obtained by considering only the first q DCT 144 

base functions:  145 

𝐱̃ = 𝐁𝑞
𝑇𝐲𝑞 ,     (3) 146 

where 𝐱̃ is the approximated signal, 𝐁𝑞
𝑇 is a partition of the matrix 𝐁, with N rows and q columns 147 

representing the first q DCT base functions, whereas the vector 𝐲𝑞 contains the first q coefficients 148 

that multiply the base functions. These coefficients become the unknown parameters to be determined 149 

in a DCT reparameterization of the inverse problem. Note that the approximated signal 𝐱̃ tends toward 150 

the original signal 𝐱 as the number of considered coefficients q tends to N. If q=N the reconstructed 151 

signal 𝐱̃ equals the original signal 𝐱.  152 
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 153 

Figure 1: Some examples of DCT base functions of different orders k. 154 

For the Bayesian linear AVA inversion, we employ the method proposed by Buland and Omre (2003). 155 

In this case, the model vector of 𝑁 × 3 rows and 1 column, represents the natural logarithm of P-156 

wave velocity (Vp), S-wave velocity (Vs) and density (ρ) along a 1D vertical profile: 157 

𝐦 = ln[𝑉𝑝1, 𝑉𝑝2, … , 𝑉𝑝𝑁, 𝑉𝑠1, 𝑉𝑠2, … , 𝑉𝑠𝑁 , 𝜌1, 𝜌2, … , 𝜌𝑁]𝑇 .    (4) 158 

The forward modeling of the linear AVA inversion is given by the time-interval extension of the 159 

single-interface Aki and Richards equation (Aki and Richards,1980): 160 

𝑅𝑝𝑝(𝑡, 𝜃) =
1

2
(1 + 𝑡𝑎𝑛2(𝜃) )

𝜕

𝜕𝑡
ln 𝑉𝑝(t) + 4

𝑉𝑠̅̅ ̅2(𝑡)

𝑉𝑝̅̅̅̅ 2(𝑡)
𝑠𝑖𝑛2(𝜃)

𝜕

𝜕𝑡
ln 𝑉𝑠(𝑡)161 

+
1

2
(1 − 4

𝑉𝑠̅̅ ̅2(𝑡)

𝑉𝑝̅̅̅̅ 2(𝑡)
𝑠𝑖𝑛2(𝜃))

𝜕

𝜕𝑡
ln 𝜌(𝑡)162 

= 𝛼𝑉𝑝

𝜕

𝜕𝑡
ln 𝑉𝑝(𝑡) + 𝛼𝑉𝑠

𝜕

𝜕𝑡
ln 𝑉𝑠(𝑡) + 𝛼𝜌

𝜕

𝜕𝑡
ln 𝜌(𝑡),     (5) 163 

 where t is the time, 𝜃 is the incidence angle, 𝑅𝑝𝑝 is the P-wave reflection coefficient, whereas 
𝑉𝑠̅̅̅̅ 2

𝑉𝑝̅̅ ̅̅ 2
 164 

indicates the average Vs/Vp ratio at the reflecting interfaces that can be derived, for example, from 165 

the so-called low-frequency (LF) elastic back-ground model usually estimated from well log data 166 

interpolation. If we consider the convolutional modeling and we adopt the matrix formalism, the 167 

seismic gather 𝐝 can be computed as: 168 

𝐝 = 𝐒𝐀𝐃𝐦 = 𝐆𝐦 + 𝐧,       (6) 169 
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where S is the wavelet matrix, 𝐧 is the noise vector, A contains the numerical coefficients 𝛼𝑉𝑝, 𝛼𝑉𝑠 170 

and 𝛼𝜌 of equation 5, D is the first order numerical derivative operator, and G is a 𝑀 × (𝑁 × 3) 171 

forward operator matrix, where M indicates the number of data points.  In this context, an 172 

approximation of the elastic model can be obtained as: 173 

𝐦 ≈ 𝛍𝐦 + 𝐊𝑞
𝑇𝐫 ,    (7) 174 

 where 𝛍𝐦 is the mean elastic model (e.g. the elastic LF model), and 𝐊𝑞 is a block diagonal matrix 175 

with 𝑁 × 3 columns and 𝑞 × 3 rows given by:  176 

𝐊𝑞 = [

𝐁𝑞
 0 0

0 𝐁𝑞
 0

0 0 𝐁𝑞
 

]

 

,    (8) 177 

and again 𝐁𝑞
 contains the first q DCT base functions, whereas the parameter vector in the reduced 178 

(𝑞 × 3)-D space is represented by the vector 𝐫 in which the first q elements are the coefficients that 179 

pertain to Vp, the second q elements are associated to Vs, and the last q elements pertain to the density.  180 

In geophysical inversions this means that the DCT allows for a reduction of the (𝑁 × 3)-D full, elastic 181 

space to a (𝑞 × 3)-D space with q<N.  182 

In all the following examples we simply consider a Gaussian elastic prior model 𝑝(𝐦), with mean 183 

vector 𝛍𝐦 and a-priori covariance matrix 𝐂𝐦: 184 

𝑝(𝐦) =  𝒩(𝐦; 𝛍𝐦, 𝐂𝐦),   (9) 185 

where 𝒩 represents the Gaussian distribution defined over the elastic model space 𝐦. Note that to 186 

mitigate the ill-conditioning of AVA inversion, the prior covariance matrix 𝐂𝐦 expresses both the 187 

covariance of the elastic properties and their vertical variogram (see Buland and Omre, 2003). Since 188 

the DCT is a linear transformation, the prior model in the DCT space is still Gaussian: 189 

𝑝(𝐫) =  𝒩(𝐫; 𝛍𝐫, 𝐂𝐫),   (10) 190 

with mean vector and covariance matrix equal to:  191 

𝛍𝐫 = 𝟎,      (11) 192 

𝐂𝐫 = 𝐊𝑞
 𝐂𝐦𝐊𝑞

𝑇.    (12) 193 
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According to equation 7, note that a null a-priori mean model in the DCT space corresponds to an 194 

elastic prior model equal to 𝛍𝐦.  By combining equation 6 with equation 7 we derive the linear 195 

forward modeling in the DCT space: 196 

𝐝 = 𝐆(𝐊𝑞
𝑇𝐫 + 𝛍𝐦) + 𝐧 = 𝐏𝐫 + 𝐆𝛍𝐦 + 𝐧,     (13) 197 

in which the matrix 𝐏 is a 𝑀 × (𝑞 × 3) matrix, computed considering only the first q DCT 198 

coefficients for each elastic property, and 𝐧 is again the noise vector. As an example, Figure 2 199 

compares the forward modeling matrices G and P, associated with the elastic and the DCT space.  200 

 201 

Figure 2: a) Example of forward modeling matrix in the elastic space for 630 data points and 202 

273 model parameters. b) The projection onto the DCT space of the forward modeling matrix 203 

shown in a) if only the first 40 DCT coefficients per elastic property are considered (q=40).  204 

If the forward operator is linear, the posterior model 𝑝(𝐫|𝐝) in the DCT space is still Gaussian with 205 

posterior mean and covariance given by: 206 

𝛍𝐫|𝐝 = 𝛍𝐫 + (𝐏𝑇𝐂𝐝
−1𝐏 + 𝐂𝐫

−1)−1𝐏𝑇𝐂𝐝
−1(𝐝 − 𝐏𝛍𝐫), (14)   207 

𝐂𝐫|𝐝 = (𝐏𝑇𝐂𝐝
−1𝐏 + 𝐂𝐫

−1)−1.  (15) 208 

In equation 14 note that we directly invert for the reflectivity contrasts because the low-frequency 209 

elastic model is simply added when we project the results back onto the elastic space. Indeed, to be 210 

of practical utility, the final solution of the AVA-DCT inversion must express the posterior 211 

distribution of elastic properties 𝐦 conditioned upon the observed data 𝐝 and the reduced model 𝐫: 212 

𝑝(𝐦|𝐝, 𝐫) = 𝒩(𝐦; 𝛍𝐦|𝐝,𝐫, 𝐂𝐦|𝐝,𝐫). For a linear inversion, the statistical properties of such posterior 213 
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model can be computed by projecting the mean and covariance of the 𝑝(𝐫|𝐝) distribution onto the 214 

elastic space:  215 

𝛍𝐦|𝐝,𝐫 = 𝛍𝐦 + 𝐊𝑞
𝑇𝛍𝐫|𝐝, (16) 216 

 𝐂𝐦|𝐝,𝐫 = 𝐊𝑞
𝑇𝐂𝐫|𝐝𝐊𝑞 .    (17) 217 

For what concerns the sensitivity analysis kernels, the model resolution matrix in the DCT space is 218 

defined as (Menke 2018): 219 

𝐑𝐫 = (𝐏𝑇𝐂𝐝
−1𝐏 + 𝐂𝐫

−1)−1𝐏𝑇𝐂𝐝
−1𝐏.   (18) 220 

The corresponding model resolution matrix in the elastic space given the reduced model 𝐫, can be 221 

obtained by a projection of the 𝐑𝐫 matrix (Menke, 2018): 222 

𝐑𝐦|𝐫 = 𝐊𝑞
𝑇𝐑𝐫𝐊𝑞.  (19) 223 

 224 

The DEMC and HMC inversions 225 

For the sake of coherency, the numerical inversions consider the same Gaussian prior model (i.e. log 226 

Gaussian distributed elastic properties) used by the linear inversion. However, one outstanding 227 

benefit of Monte Carlo methods is that they can also manage non-parametric prior models. Both the 228 

DEMC and HMC inversion employ a convolutional forward modeling based on the exact Zoeppritz 229 

equations. These two approaches make use of the well-known Metropolis-Hasting rule to define the 230 

probability of moving from the current state of the chain 𝐞 to the proposed state 𝐞′. For example, in 231 

the implemented DEMC this rule can be written as follows:   232 

α = 𝑝(𝐞′|𝐞) =  min [1,
𝑝(𝐞′)

𝑝(𝐞)
×

𝑝(𝐝|𝐞′)

𝑝(𝐝|𝐞)
],     (20) 237 

where 
𝑝(𝐞′)

𝑝(𝐞)
 and 

𝑝(𝐝|𝐞′)

𝑝(𝐝|𝐞)
 are the so-called prior and proposal ratios, respectively, whereas in the standard 233 

inversion approach 𝐞 represents the elastic model 𝐦, while in the DCT inversion 𝐞 represents the 234 

vector 𝐫. In both the DEMC and HMC inversions the ensemble of models sampled after the burn-in 235 

period is used to numerically compute the statistical properties (e.g. mean, mode, standard deviations, 236 
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marginal densities) of the PPD.  For the inversions running in the DCT space, the a-priori mean vector 238 

and covariance matrix are analytically derived from the statistical properties of the elastic prior model 239 

through equations 11 and 12. For these inversions, the sampled models are projected back onto the 240 

elastic space (see equation 7) just before the forward modeling phase (see equation 13) that gives the 241 

predicted data needed to compute the likelihood value. The elastic posterior model can be numerically 242 

derived from the ensemble of DCT models collected during the sampling stage, after projection onto 243 

the Vp-Vs-density space.  244 

The DEMC is an advanced MCMC algorithm that uses a population of different chains that are 245 

evolved using differential evolution principles (Ter Braak, 2006). In more detail, such differential 246 

evolution principles are used to generate multivariate proposals for each DEMC chain: let the d-vector 247 

𝐬 represent the state of a single chain, then at each iteration t-1, the 𝑄 chains define a population 𝐒 =248 

{𝐬𝑡−1
1 , 𝐬𝑡−1

2 , … , 𝐬𝑡−1
𝑄 }  which corresponds to an 𝑄 × 𝑑 matrix. Multivariate proposals 𝐬𝑝 are defined 249 

as: 250 

𝐬𝑝
𝑖 = 𝐬𝑡−1

𝑖 + 𝛾(𝐬𝑡−1
𝑎 − 𝐬𝑡−1

𝑏 ) + 𝜖,     𝑎 ≠ 𝑏 ≠ 𝑖     (21) 251 

where i is the index of the current chain, 𝛾 denotes the jump rate, a and b are integer values drawn 252 

without replacement from {1,…,i-1,i+1,…, Q}, and 𝜖 represents a small random perturbation drawn 253 

from a normal distribution with a small standard deviation 𝜎 tailored to the problem at hand: 𝜖 =254 

𝒩(0, 𝜎). Each proposal is accepted with Metropolis probability (see equation 20). If the proposal is 255 

accepted 𝐬𝑡
𝑖 = 𝐬𝑝

𝑖 , otherwise 𝐬𝑡
𝑖 = 𝐬𝑡−1

𝑖 . The optimal 𝛾 parameter depends on the model 256 

dimensionality and is usually set to 𝛾 = 2.38/2d. Besides, with a 10% probability the value of 𝛾 =257 

1 allows for mode-jumping which is a significant strength of DEMC compared with more 258 

conventional MCMC methods (i.e. random walk Metropolis or adaptive Metropolis). Additional and 259 

more detailed theoretical insights into the DEMC, together with a Matlab implementation can be 260 

found in Vrugt (2016). 261 
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Finally, HMC considers a model as a particle that moves from its current position to a new position 262 

along a given trajectory that is uniquely determined by the mass matrix (M), the kinetic energy (K), 263 

and the potential energy (U). In particular, the potential energy is equal to the negative natural 264 

logarithm of the posterior distribution and is interpreted as the misfit function. For a d-dimensional 265 

parameter space, HMC determines the kinetic energy by introducing an auxiliary variable 266 

(momentum variable) p that is defined over a d-dimensional space:  267 

𝐾(𝐩) =
1

2
 𝐩𝑇 𝐌−1𝐩.   (22) 268 

After defining the kinetic and potential energies, the model e moves across the 2×d-phase space 269 

according to Hamilton’s equations:  270 

𝑑𝐞𝑖

𝑑𝜏
=

𝜕𝐾

𝑑𝐩𝑖
, with 𝑖 = 1, 2, … , 𝑑,   (23) 271 

         
𝑑𝐩𝑖

𝑑𝜏
= −

𝜕𝑈

𝑑𝐞𝑖
,    with 𝑖 = 1, 2, … , 𝑑,     (24) 272 

where 𝜏 indicates the artificially introduced time variable, whereas the vectors e and p define the so-273 

called phase space. Note that the kinetic energy and the mass matrix are artificially introduced as 274 

auxiliary quantities and allow for the inclusion of the derivative information of the misfit function 275 

into the sampling framework. Indeed, the right term of equation 24 contains the partial derivative of 276 

the potential energy (i.e. the misfit function) with respect to the considered model e. For each HMC 277 

iteration, the momentum vector is drawn from the normal distribution 𝑝(𝐩) =  𝒩(𝐩; 0, 𝐌 ), then the 278 

proposed model is found by numerically solving the Hamilton’s equations starting from the current 279 

state of the chain.  280 

In this work the potential energy is defined as (Fichtner et al. 2019): 281 

𝑈(𝐞) =
1

2
(𝐝 − 𝐺(𝐞))

𝑇
𝐂𝑑

−1(𝐝 − 𝐺(𝐞)) +
1

2
(𝐞 − 𝐞𝑝𝑟𝑖𝑜𝑟)

𝑇
𝐂e

−1(𝐞 − 𝐞𝑝𝑟𝑖𝑜𝑟),    (25) 282 

where G represents the non-linear, exact Zoeppritz equations, 𝐂𝑑
  is the data covariance matrix, d is 283 

the observed data (partial angle stacks at different incidence angles), 𝐞𝑝𝑟𝑖𝑜𝑟 is the prior model (either 284 
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in the elastic or in the DCT space) with prior covariance matrix given by 𝐂e
 . Note that the potential 285 

energy 𝑈(𝐞) in equation 25 equals the negative natural logarithm of the posterior probability of 286 

Bayesian inversions (Tarantola, 2005).  The mass matrix and the number of time integration steps (L) 287 

in the phase space are two crucial hyperparameters that must be accurately set to ensure the 288 

convergence of the HMC algorithm. For setting the L parameter we follow the approach of Mackenze 289 

(1989) that in each iteration randomly draws the number of time integration steps from a previously 290 

defined uniform distribution, that in our case is 𝑈(5,10). On the other hand, following Fichtner et al. 291 

(2019) we compute the mass matrix as a local approximation (around the currently evaluated model) 292 

of the inverse of the posterior covariance matrix:  293 

𝐌 = 𝐉𝑇𝐂𝑑
−1𝐉 + 𝐂e

−1,     (26) 294 

where 𝐉 is the numerically computed Jacobian matrix that expresses the partial derivative of the data 295 

with respect to model parameters. We use a forward finite difference scheme to compute the Jacobian 296 

and in this context the model reparameterization provided by the DCT is particularly useful to reduce 297 

the number of forward evaluations needed for the Jacobian computation. Indeed, the HMC algorithm 298 

was developed for problems in which the derivative of the target probability density can be computed 299 

quickly. For example, if L is the number of integration steps for solving the Hamilton’s equations and 300 

for a d-dimensional model space, the number of forward evaluations per iteration needed to 301 

numerically compute the Jacobian with a forward finite difference scheme is equal to (d+1)×L. In this 302 

context, the computational cost of the HMC sampling exponentially increases with the number of 303 

unknowns.  304 

Additional theoretical details about the HMC method can be found in Neal (2011) and Betancourt 305 

(2017), while Sen and Biswas (2017), Fichtner et al. (2019), Fichtner and Zunino (2019), Aleardi and 306 

Salusti al. (2020), and Aleardi et al. (2020) presented some applications of this method to solve 307 

geophysical inverse problems. 308 

 309 
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APPLICATIONS AND RESULTS 310 

Linear AVA inversions 311 

We now discuss the results provided by linear Bayesian AVA inversions running in the full and the 312 

reduced DCT space. We consider two different examples in which the true models have been derived 313 

from logged elastic properties recorded along different wells (hereafter called well A and well B) 314 

drilled in the same area and through similar geological formations. The covariance of the elastic prior 315 

model is the same in all the following examples and has been derived from borehole information 316 

extracted from three other wells drilled in the same zone. The variance of the DCT prior model has 317 

been analytically computed by projecting the prior variance in the elastic space onto the DCT space 318 

(see equation 12). The prior covariance is assumed to be stationary along the entire inverted vertical 319 

profile. The a-priori mean model in the elastic space is equal to a heavily low-pass filtered version of 320 

the true model. This prior corresponds to a null mean vector in the DCT space (see equation 11). The 321 

observed data are computed through equation 6 and considering a sampling interval of 1 ms and a 322 

55-Hz Ricker wavelet as the source signature. The observed data vector is contaminated with random 323 

Gaussian noise with a standard deviation of 0.03.  324 

For well A the true model is formed by 91 time samples of Vp, Vs, and density for a total number of 325 

91 × 3 = 273 elastic parameters to be determined. For well B the true model includes 140 time 326 

samples of Vp, Vs and density, thus resulting in 140 × 3 = 420 elastic parameters. Figure 3 shows 327 

the explained variability of the logged Vp, Vs, and density values along well A and well B as the 328 

number of the considered DCT coefficients increases. For both wells, we note that only 25 329 

coefficients per elastic property (q=25) explain more than the 90% of the variability and that the 95%, 330 

approximately, of the total variability, is explained by only 50 coefficients. Therefore, the same 331 

number of DCT base functions can conveniently be used to compress signals with different lengths, 332 

but with similar statistical properties (i.e. vertical variability, variance).  333 

 334 
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 335 

Figure 3: Explained variability of the true Vp, Vs, and, density profiles along well A (a), and B 336 

(b) as the number of considered DCT coefficients increases.   337 

We start by describing the inversion tests on well A. Figure 4 shows the results in the DCT space if 338 

20 and 40 coefficients are considered. In both cases the inversion reliably predicts the coefficient 339 

values associated with the true elastic model. Moreover, for the low-order coefficients, which 340 

describe a major part of the original variability of the elastic profile, the true model usually lies in the 341 

95% posterior confidence intervals. In Figure 4b we observe that the match between predicted and 342 

actual coefficients decreases as the coefficient order increases, and that the predictions of the high-343 

order coefficients (i.e. higher than 27) are primarily guided by the prior information (i.e. the prior and 344 

posterior mean and variance are very similar). Indeed, high order coefficients explain minimal, high-345 

frequency variations of the elastic profile that are not constrained by the seismic data. In other terms, 346 

these parameters are associated with the lowest singular values of the inversion kernel and span the 347 

null-space of solutions. We can also observe that the posterior uncertainties (evidenced by the 95% 348 

confidence intervals) increase as we move from the inversion with q=20 to the inversion with q=40 349 

(Figure 4c).  350 
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 351 

Figure 4: Comparison of the true model, prior model, and posterior model for linear AVA 352 

inversions in the DCT domain. a) 20 DCT coefficients per elastic property are considered 353 

(q=20). b) 40 DCT coefficients per elastic property are considered (q=40). c) Comparison 354 

between the confidence intervals estimated by the inversions shown in a) and b). 355 

Figure 5 compares the outcomes of a standard Bayesian (SB) inversion (Buland and Omre, 2003) and 356 

of two DCT inversions in which 15 and 40 coefficients per elastic property are considered. In these 357 

cases, we are reducing the full 273-D elastic space to a 45-D and a 120-D parameter space, 358 

respectively. For q=15 the AVA inversion is not able to reliably reproduce the actual elastic property 359 

contrasts and for this reason the observed data is not properly matched. Differently, 40 coefficients 360 

per elastic property provide final estimates (in terms of posterior mean and variance) close to the 361 

actual elastic property profiles, and congruent with the predictions of the SB inversion running in the 362 

full, elastic space. Figure 6 highlights that the DCT inversion with q=15 underestimates the posterior 363 

uncertainties, while the inversion with q=40 yields confidence intervals equal to those provided by 364 

the AVA inversion running in the unreduced space.  365 
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 366 

Figure 5: a) DCT inversion results projected onto the elastic space for q=15. b) As in a) but for 367 

40 coefficients per elastic property. c) SB inversion results in the full, elastic space. The 368 

predicted data correspond to the seismic gathers computed on the a-posteriori mean models. 369 

The amplitude scale is the same for the seismic gathers and the data differences. 370 
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 371 

Figure 6: Comparison between the 95% confidence intervals for the DCT inversions running 372 

with q=15 and q=40, and for the AVA inversion running in the unreduced elastic space. 373 

For a more quantitative assessment of the influence played by the number of considered DCT base 374 

functions in the posterior model resolution and covariance, we perform a sensitivity analysis of the 375 

inversion kernel and we also compute the coverage ratio of the inversion results for different q values. 376 

Figure 7a shows the ratio between the posterior variances provided by the SB and DCT inversions as 377 

the number of DCT coefficients per elastic property (q) increases. For the DCT inversion, as expected, 378 

we observe that for q<38 the posterior variance in the reduced space underestimates the posterior 379 

variance of the full model problem, while for q>38 the posterior variance of the reduced problem 380 

equals the posterior variance of the full model problem. The 0.95 coverage ratios (i.e. the probability 381 

that the 95 confidence interval contains the true model parameter values)  provided by the SB and 382 

DCT inversion confirm that 40 coefficients are more than enough to guarantee the same level of 383 

accuracy of a standard inversion running in the full space (Figure 7b). Finally, Figure 7c compares 384 

the diagonal entries of the model resolution matrices for the SB and DCT inversions. Again, we note 385 

that 40 DCT coefficients per elastic property guarantee the same resolution of a linear AVA inversion 386 

running in the unreduced, elastic space. As expected, the model resolution decreases moving from 387 

the Vp to Vs and to density. Indeed, the Vp is the parameter that mostly influences the observed 388 

seismic amplitudes, while the density is the parameter that exerts the minor influence on the P-wave 389 
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reflection coefficients. These results confirm that for well A, only 40 DCT coefficients for each elastic 390 

property allow for a substantial reduction of the model dimensionality (from the unreduced 237-D 391 

elastic space to a 120-D DCT space), while still guaranteeing model resolution and uncertainty 392 

estimations similar to those estimated in the full model space.  393 

We now briefly discuss the results we obtain on well B. Figure 8 compares the outcomes of an SB 394 

inversion with those yielded by DCT inversions with different compressions of the elastic parameter 395 

space. For 15 DCT coefficients we obtain underpredicted posterior uncertainties, a poor match 396 

between the true and the predicted properties, and underfit between predicted and observed data. On 397 

the contrary, the SB and the DCT inversion running with q=40 provide similar estimates of the 398 

posterior mean and posterior variance. In Figure 9 the ratio between the posterior variances estimated 399 

in the DCT and in the full space, the 95% coverage ratio, and the model resolution, confirm the 400 

conclusions drawn in the previous example on well A: 40 coefficients can successfully recover the 401 

vertical variability of the true Vp, Vs and density profiles and ensure final accuracy and resolution 402 

similar to the SB inversion.   403 

Finally, the two examples on wells A and B show that the optimal number of DCT coefficients is 404 

independent of the number of samples forming the true elastic property profiles but depends on the 405 

actual vertical variability (or in other terms the variance) of the true model. This means that elastic 406 

model vectors with different lengths but with similar vertical variability can be conveniently 407 

approximated by the same number of DCT coefficients. Therefore, in a DCT inversion the same 408 

number of unknowns can be used to infer the elastic property values along vertical intervals of 409 

different lengths.  410 

 411 

 412 

 413 
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 414 

Figure 7: a) Ratio between the posterior variances estimated by DCT inversions for different 415 

numbers of base functions and the posterior variance estimated by the SB inversion. b) 416 

Comparison of the 0.95 coverage ratios for the DCT and SB inversions. c) Diagonal elements 417 

of the model resolution matrices for the SB inversion and DCT inversions with different number 418 

of base functions. The acronyms DCTI and SB stand for DCT inversion and standard Bayesian 419 

inversion, respectively. 420 

 421 
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 422 

Figure 6: As in Figure 5 but for well B. 423 

 424 

Figure 7: As in Figure 7 but for well B. 425 
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DEMC inversion 426 

In all the examples discussed in this section we use the exact, non-linear, Zoeppritz equations as the 427 

forward modeling operator for computing both the observed data and the data predicted on each 428 

sampled model. To this end, we consider a 55-Hz Ricker wavelet and an angle range between 0-40 429 

degrees. Gaussian random noise with a standard deviation of 0.03 contaminates the observed 430 

amplitudes values. The prior models for the SB and DCT inversions are the same previously used in 431 

the linear examples. The starting models for each DEMC chain are randomly generated according to 432 

the Gaussian prior model. 433 

We start by describing the results on well A. In this case the DEMC inversion employs 20 chains 434 

running for 30000 iterations and with a burn-in period of 10000. If only 20 coefficients per elastic 435 

property are used (Figure 10a), we get a PPD that underestimates the posterior uncertainty, and a 436 

posterior mean with low vertical resolution. Differently, 40 coefficients (Figure 10b) ensure model 437 

resolution and uncertainty assessment comparable to that yielded by the DEMC running in the 438 

unreduced space (Figure 10c). Figure 11 shows the evolution of the negative log-likelihood values in 439 

the first 10000 iterations for the examples depicted in Figure 10. The MCMC chains running in the 440 

DCT space always show faster convergence toward the stationary regime than the DEMC inversion 441 

running in the full space. In more detail the DEMC-DCT with q=20 shows the fastest convergence 442 

rate, although the underparameterization of the model generates underfitting with the observed data 443 

(i.e. the chains converge to higher negative log-likelihood values). If q=40 the DEMC-DCT algorithm 444 

attains the stationary regime within 2000 iterations approximately, while more than 5000 iterations 445 

are needed by the standard DEMC. Note that the DEMC-DCT with q=40 guarantees the same level 446 

of data fitting of the standard DEMC, as demonstrated by the same negative log-likelihood values 447 

reached by the two inversions. These results show that 40 DCT coefficients constitutes a good 448 

compromise between model resolution, data prediction, and accuracy of the final solution. 449 
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 450 

Figure 8: Inversion results on well A. a)-b) DEMC-DCT inversions running with 20 and 40 451 

coefficients for each elastic property, respectively. c) Standard DEMC inversion results. The 452 

black, blue, and green lines represent the true, prior, and posterior mean models, respectively, 453 

while the colormap codes the posterior probability values. The predicted data correspond to the 454 

seismic gathers computed on the a-posteriori mean models. The amplitude scale is the same for 455 

the seismic gathers and the data differences. In a) note the underestimation of the posterior 456 

uncertainty that is evidenced by the darker colors of the PPD. 457 

 458 
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 459 

Figure 11: Examples of evolutions of the negative log-likelihood within the first 10000 460 

iterations for the standard DEMC sampling (red lines) and for the DEMC-DCT running with 461 

q=20 and q=40. 462 

For a more quantitative demonstration of the faster convergence achieved in the DCT space, we 463 

compare for some elastic parameters the evolutions of the potential scale reduction factor (PSRF) 464 

computed on the elastic models sampled by the DEMC running with q=40 and by the DEMC running 465 

in the full elastic space. We remind that the PSRF quantifies for each model parameter the difference 466 

between the “within-walk” and “between-walk” estimated variances (Gelman et al. 1995). The PSRF 467 

decreases to 1 as the number of drawn samples tends to infinite. A high PSRF value indicates that for 468 

the considered model parameter the variance within the walks is small compared to that between the 469 

walks and that additional iterations are needed to converge to a stable distribution. Usually, a PSRF 470 

lower than 1.2 for a given unknown proves that convergence has been achieved for that model 471 

parameter. Figure 12 shows that the DEMC-DCT algorithm is characterized by faster convergence 472 

toward a stable posterior than the standard DEMC. Note that for the considered parameters the 473 

standard DEMC never reaches reliable PPD estimations within the first 20000 iterations. Conversely, 474 

the DEMC-DCT always converges to a stable posterior model. In practical terms, this means that the 475 

DEMC-DCT needs a much lower number of forward modeling evaluations to attain stable posterior 476 

estimations than the standard DEMC.  477 
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 478 

Figure 12: Close-up over the first 20000 iterations that shows examples of PSRF evolution for 479 

some model parameters. Top, central, and bottom rows refer to five Vp, Vs, and density 480 

parameters, respectively, evenly extracted along the inverted time interval. The red dashed lines 481 

at 1.2 indicate the threshold of convergence.   482 

 483 

We now briefly discuss the results on well B. In this case to better highlight the benefit provided by 484 

the DCT transformation we decrease the number of MCMC iterations to 20000. The higher 485 

dimensionality of the elastic space (now comprising 420 parameters to be estimated) increases the 486 

differences between the rates of convergence of the different inversion approaches. The standard 487 

DEMC is severely affected by the curse of dimensionality and reaches the stationary regime well 488 

beyond the 15000 iterations (Figure 13). Conversely, only 5000 iterations are needed by the DEMC-489 

DCT to reach the stationarity. This means that the algorithm running in the unreduced model space 490 

requires a much higher number of sampled models to attain a stable posterior distribution than the 491 

algorithm running in the reduced DCT space. In other terms, the standard DEMC required a much 492 
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higher number of forward evaluations (and then a much higher computational effort) than the DEMC-493 

DCT. The scattering in the final PPD estimated by the standard DEMC (Figure 14) is a direct 494 

consequence of the lack of convergence of the algorithm toward the stationary regime and a stable 495 

PPD.  In Figure 14b the similarity between the prior and the posterior mean models (especially for 496 

the density parameter) further demonstrates that the standard DEMC needs more iterations to 497 

accurately sample the posterior model. On the contrary, the DEMC-DCT provides accurate posterior 498 

assessments and reliable predictions also within the limited number of iterations we employ. 499 

 500 

 501 

Figure 13: Evolution of the negative log-likelihood values for the different chains in the 502 

example on well B. 503 
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 504 

Figure 14: Inversion results on well B. a) DEMC-DCT inversion running with 40 coefficients 505 

for each elastic property. b) Standard DEMC inversion results. The black, blue, and green lines 506 

depict the true, prior, and posterior mean models, respectively, while the colormap codes the 507 

posterior probability values.  508 

 509 

HMC inversion 510 

For the sake of brevity here we limit the attention to the well A, but similar conclusions would have 511 

been drawn for the well B. Similarly to the previous DEMC experiments, the observed data have been 512 

computed from the true model and applying the Zoeppritz equations within an angle range of 0-40 513 

degrees and with a 55-Hz Ricker as the source wavelet. Gaussian random noise with a standard 514 

deviation of 0.03 has been added to the synthetic, noise-free, observed seismic gather. In all the 515 

inversions that follow we use a single HMC chain running for 10000 iterations with a burn-in of 100. 516 

The prior models for the standard and DCT inversions are the same used in the linear examples. The 517 

starting points of the HMC sampling correspond to the a-priori mean models. 518 
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We start by comparing the predicted elastic models provided by a standard HMC inversion running 519 

in the full space with those yielded by HMC-DCT inversions running with different q values (Figure 520 

15). We note that for q=20 (corresponding to a 60-D parameter space) the inversion satisfactory 521 

captures the vertical variability of the elastic properties, but the major elastic contrasts are slightly 522 

underestimated as are the uncertainty affecting the recovered model (compare Figure 15a with Figures 523 

15b-c). As expected, the underprediction of the elastic contrasts generates underfitting with the 524 

observed seismic data. Differently, if we employ 40 DCT coefficients (q=40, thus corresponding to 525 

a 120-D parameter space) the HMC-DCT and the standard HMC inversion provide congruent results 526 

with similar posterior mean models, posterior uncertainties, and similar matches between observed 527 

and predicted seismic amplitudes.  528 

For the HMC inversion with q=40 we represent the results in the DCT space (Figure 16). For the low-529 

order coefficients, which are the parameters better constrained by the data, we observe that the true 530 

model usually lies in the posterior 95% confidence interval. Differently, the accuracy of the results 531 

decreases as the coefficient order increases, and also moving from the coefficients pertaining to Vp, 532 

to Vs, and to density. The latter characteristic is related to the different influences played by the elastic 533 

properties in determining the seismic amplitudes, while the former indicates that the high-order 534 

coefficients are not informed by the data. This is also confirmed by Figure 17 that compares the true, 535 

prior, and posterior models for 12 DCT coefficients out of 120. We note that the posterior model 536 

tends to the prior as the order of the considered DCT coefficient increases. This proves that the 537 

estimation of these parameters from the data is a hopelessly ill-conditioned problem, and for this 538 

reason the prediction is mainly driven by the a-priori information infused into the inversion. 539 

 540 
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 541 

Figure 15: a)-b) HMC-DCT inversions running with 20 and 40 coefficients for each elastic 542 

property, respectively. c) Standard HMC inversion results. The black, blue, and green lines 543 

represent the true, prior, and posterior mean models, respectively, while the colormap codes the 544 

posterior probability values. In a) note the underestimation of the posterior uncertainty 545 

evidenced by the darker colors of the PPD. 546 

 547 
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 548 

Figure 16: Comparison in the DCT space, between the true model (dashed red lines), the prior 549 

mean (green line) and the posterior mean (blue line) estimated by an HMC-DCT inversion 550 

running with q=40. a) The 40 DCT coefficients associated with Vp. b) The 40 DCT coefficients 551 

associated with Vs. c) The 40 DCT coefficients associated with the density parameter. The blue 552 

bars represent the a-posteriori 95% confidence interval.  553 
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 554 

Figure 179: Comparison in the DCT space, between the true model (dashed red lines), the 555 

marginal prior (green curves) and the marginal posterior distributions (blue bars) for different 556 

DCT coefficients estimated by the HMC-DCT inversion running with q=40.  557 

The evolution of the negative log-likelihood values shows that the length of the burn-in period slightly 558 

decreases as the number of considered DCT coefficients decreases (Figure 18). However, if only 20 559 

coefficients are employed, the inversion underfits the observed data, while just 40 coefficients ensure 560 

final negative log-likelihood value equal to that achieved by an HMC inversion running in the full 561 

space. Note that the reduction of the burn-in period less significant in the DCT-HMC inversion than 562 

in the DCT-DEMC. Indeed, the inclusion of the derivative information into the sampling framework 563 

allows for a rapid convergence toward the stationary regime also in high-dimensional model spaces. 564 

This is a crucial strength of the HMC sampling in comparison with standard MCMC algorithms. 565 

Therefore, the major benefit provided by the DCT in the HMC inversion concerns the reduction of 566 

the computational cost. In Figure 18b we compare the percentage difference of the computational 567 

costs of a standard HMC inversion and HMC-DCT inversions running with different q values. If we 568 

consider only 10 DCT coefficients per elastic property, we move from the original 273-D elastic 569 

space to a reduced 30-D parameter space. This huge dimensionality reduction saves the 90 % of the 570 

total computational cost with respect to a standard inversion, but, as previously discussed, the final 571 
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results would be characterized by low resolution and underestimated posterior uncertainties.  On the 572 

other hand, 40 base functions per elastic property guarantee a substantial decrease of the 573 

computational cost with respect to a standard HMC inversion (equal to the 58% in our example), but 574 

still ensure reliable PPD estimations (see Figure 15). 575 

 576 

 577 

Figure 18: a) Close-up of the evolution of the negative log likelihood values for the three 578 

inversions shown in Figure 15. b) Percentage difference between the computational cost of an 579 

HMC inversion running in the full space, and HMC-DCT inversions running with different q 580 

values. 581 

 582 

CONCLUSIONS 583 

We used the DCT to reparametrize linear and non-linear 1D Bayesian AVA inversions, the latter 584 

solved using both the DEMC and the HMC algorithms. With this parameterization a signal (i.e. 585 

expressing the subsurface model vector) is expanded into series of cosine functions oscillating at 586 

different frequencies. Usually, most of the variability of the original signal is expressed by the first 587 

DCT coefficients (low-order coefficients) and for this reason this mathematical transformation can 588 

be used for model compression, which is accomplished by setting the coefficients of the base function 589 

terms beyond a certain threshold equal to zero. In this context, the unknown parameters become the 590 

numerical values of the retained, non-zero coefficients.  The choice of this threshold level constitutes 591 

a compromise between the desired resolution, the accuracy of the estimated PPD, and the 592 
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dimensionality reduction of the parameter space. Indeed, the analytical solutions of linear inversions 593 

clearly showed the trade-off between resolution and uncertainty, that is a too strong compression of 594 

the parameter space leads to an underestimated posterior variance, decreased model resolution, and 595 

underfitting with the observed data. However, our examples showed that for the considered case 40 596 

DCT base functions per elastic property ensured posterior assessments, data predictions, and model 597 

resolutions similar to those achieved by Bayesian inversions running in the full, elastic space. This 598 

means that the DCT reparameterization allowed for a substantial reduction of the dimensionality and 599 

the computational complexity of the AVA inversion. For example, in the inversion experiments on 600 

well B, the 420-D elastic model space was conveniently reduced to a 120-D DCT space.  601 

The DEMC examples showed that the length of the burn-in period and the number of iterations needed 602 

to attain stable PPD estimations significantly decrease in the reduced space. The DCT compression 603 

slightly reduced the length of the burn-in phase of the HMC inversion, but in this context the major 604 

benefit provided by this reparameterization was the significant reduction of the computational effort 605 

related to the numerical derivation of the Jacobian matrix.  606 

In case of field data applications, the number of DCT coefficients (or in other terms the optimal 607 

compromise between the model compression and the accuracy and resolution of the results) can be 608 

determined by a DCT decomposition of actual well log data or of elastic property profiles simulated 609 

in accordance to the prior model. For example, these simulations can be used to determine the fraction 610 

of the entire model variability expressed by different numbers of base functions. Noteworthy, the 611 

optimal number of DCT coefficients is independent of the number of model parameters to be 612 

estimated and is only related to the variance of the subsurface model. Indeed, the examples on wells 613 

A and B showed that model vectors with different dimensionalities but with similar statistical 614 

properties (e.g. vertical variability) can be compressed using the same number of DCT coefficients.  615 

The approach presented here can be extended to other model reduction strategies (i.e. using Legendre 616 

polynomials, or wavelet transform approaches) and to other geophysical inverse problems. For 617 

example, the DCT transformation is also extendible to 2D signals (i.e. images) and for this reason it 618 
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could be used to reparametrize 2D geophysical inversions (e.g. 2D seismic or electrical resistivity 619 

tomography).  620 

 621 

Data availability  622 

Data associated with this research are available and can be obtained by contacting the corresponding 623 

author   624 
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