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ABSTRACT. In this paper we study properties of Toeplitz operators on wei-
ghted Bergman spaces of bounded strongly pseudoconvex domains. We prove
that a Toeplitz operator built using a weighted Bergman kernel of weight β
and integrating against a measure µ maps continuously a weighted Bergman
space Ap1

α1 (D) into Ap2
α2 (D) if and only if µ is a (λ, γ)-skew Carleson measure,

where λ = 1 + 1
p1
− 1

p2
and γ = 1

λ

(
β + α1

p1
− α2

p2

)
. This generalizes results

obtained by Pau and Zhao on the unit ball, and by Abate, Raissy and Saracco
on a smaller class of Toeplitz operators on strongly pseudoconvex domains.
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1. INTRODUCTION

Carleson measures are a powerful tool and an interesting object to study,
introduced by Carleson [7] in his celebrated solution of the corona problem. Let A
be a (usually) Banach space of holomorphic functions on a domain D ⊂ Cn; given
p > 0, a finite positive Borel measure µ on D is a Carleson measure for A and p if
there is a continuous inclusion A ↪→ Lp(µ), that is, if there exists a constant C > 0
such that

∀ f ∈ A
∫

D
| f |p dµ ≤ C‖ f ‖p

A .

We shall also say that µ is a vanishing Carleson measure for A and p if the inclusion
A ↪→ Lp(µ) is compact.

In this paper we are interested in Carleson measures for weighted Bergman
spaces Ap

β(D), that is spaces of holomorphic functions on a domain D b Cn

which are p-integrable with respect to the measure δβν, where ν is the Lebesgue
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measure, δ is the Euclidean distance from the boundary of D and β ∈ R; we shall
denote by Ap(D) the (unweighted) Bergman space Ap

0 (D).
Carleson measures for (possibly weighted) Bergman spaces have been stud-

ied by several authors, including Hastings [14], Oleinik and Pavlov [27], Oleinik
[26] and Luecking [25] for the unit disk ∆ ⊂ C; Cima and Wogen [9], Duren and
Weir [12], Zhu [32] and Kaptanoğlu [19] for the unit ball Bn ⊂ Cn; Zhu [31] for
bounded symmetric domains; Cima and Mercer [8], Abate and Saracco [3], Abate,
Raissy and Saracco [4], Hu, Lv and Zhu [17] and Abate and Raissy [5] for strongly
pseudoconvex domains.

One of the reasons of the interest for Carleson measures is that they can be
characterized in several different ways, even without any reference to function
spaces. A particularly important characterization relies on the intrinsic Kobayashi
geometry of the domain D b Cn. Given z0 ∈ D and r ∈ (0, 1), let BD(z, r) denote
the Kobayashi ball of D with center z0 and radius 1

2 log 1+r
1−r . If µ is a finite positive

Borel measure on D, for any r ∈ (0, 1) and θ ∈ R we can compare the µ-measure
and the Lebesgue measure of the Kobayashi balls by using the functions

µ̂r,θ(z) =
µ
(

BD(z, r)
)

ν
(

BD(z, r)
)θ

.

It turns out that the behaviour of µ̂r,θ can be used to decide whether µ is Carleson
for a given weighted Bergman space. Indeed we have the following statement:

THEOREM 1.1 (Abate-Raissy-Saracco [4], Hu-Lv-Zhu [17]). Let D b Cn be a
bounded strongly pseudoconvex smooth domain and µ a finite positive Borel measure on
D. Choose 0 < p, q < +∞ and α > −1, and denote by δ : D → R+ the Euclidean
distance from the boundary of D. Then:

(i) if p ≤ q, then µ is a Carleson measure for Ap
α(D) and q if and only if µ̂r,q/pδ

− αq
p

belongs to L∞(D) for some (and hence any) r ∈ (0, 1);

(ii) if p > q, then µ is a Carleson measure for Ap
α(D) and q if and only if µ̂r,1δ

− αq
p

belongs to L
p

p−q (D) for some (and hence any) r ∈ (0, 1).

In view of this theorem it is natural to say that a measure µ is a (λ, α)-skew
Carleson measure if λ ≥ 1 and µ̂r,λδ−αλ ∈ L∞(D), or if λ < 1 and µ̂r,1δ−αλ ∈
L

1
1−λ (D). When λ = 1 (i.e., p = q) we shall say that µ is a α-Carleson measure.

Other characterizations can be given in terms of r-lattices and of the Berezin
transform of the measure µ (see Section 2 of this paper for details); but here we
are interested in a different kind of characterization, an application of Carleson
measures to mapping properties of Toeplitz operators.

Roughly speaking, a Toeplitz operator is the composition of a projection
and a multiplication. More precisely, if X is a Banach algebra, Y ⊂ X a Banach
subspace, P : X → Y a linear projection and f ∈ X, then the Toeplitz operator Tf of
symbol f is given by Tf (g) = P( f g).
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In complex analysis, the most important projection is the Bergman projec-
tion B, which is the orthogonal projection of the space L2(D) onto the (unwei-
ghted) Bergman space A2(D), where D b Cn is a bounded domain. The Bergman
projection is an integral operator of the form

B f (z) =
∫

D
K(z, w) f (w) dν(w) ,

where K : D × D → C is the Bergman kernel of D. It turns out that the Bergman
projection can be extended to Lp(D) for all p > 0 and maps Lp(D) into Ap(D).
Čučković and McNeal [10] suggested to study the mapping properties of Toeplitz
operators, associated to the Bergman projection, of the form

Tδβ f (z) =
∫

D
K(z, w) f (w)δ(w)β dν(w) ;

in particular they were interested in determining for which values of β ∈ R the
operator Tδβ would map a Bergman space Ap(D) into a Bergman space Aq(D).
In the paper [4] we realized that to properly address Čučković and McNeal’s
questions it is useful to consider the larger class of Toeplitz operators associated
to measures. If µ is a finite positive Borel measure on D then the Toeplitz operator
of symbol µ is given by

Tµ f (z) =
∫

D
K(z, w) f (w) dµ(w) ;

clearly, the Toeplitz operator Tδβ considered by Čučković and McNeal is the Toe-
plitz operator of symbol the measure δβν. Toeplitz operators with a measure as
symbol have been studied, for instance, by Kaptanoğlu [6] on the unit ball of
Cn, by Li [22] and Li and Lueckling [23] in strongly pseudoconvex domains, and
by Schuster and Varolin [30] in the setting of weighted Bargmann-Fock spaces
on Cn; they already noticed relationships between their mapping properties and
Carleson properties of µ.

In [4] we performed a detailed study of how Carleson properties of µ were
related to mapping properties of Tµ, proving results like the following:

THEOREM 1.2 (Abate-Raissy-Saracco [4]). Let D b Cn be a bounded strongly
pseudoconvex smooth domain, µ a finite positive Borel measure on D and take 1 < p <
q < +∞. Then the following assertions are equivalent:

(i) Tµ : Ap(D)→ Aq(D) continuously;

(ii) µ is a
(

1 + 1
p −

1
q , 0
)

-skew Carleson measure.

In proving this theorem we realized that the natural setting to study the
mapping properties of Toeplitz operators of this kind is given by weighted Ber-
gman spaces, and we obtained several results showing that if Tµ maps a weighted
Bergman space into another weighted Bergman space then µ is (λ, α)-skew Car-
leson for suitable λ and α, and conversely that if µ is (λ, α)-skew Carleson then Tµ

maps a suitable weighted Bergman space into another suitable weighted Bergman
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space. Unfortunately, we got only a few clean “if and only if" statements; more-
over, we were mainly interested in mapping spaces Ap

α(D) in spaces Aq
β(D) with

q ≥ p, and we did not discuss the case p > q.

This paper is devoted to prove instead a neat and general “if and only if"
statement, following ideas introduced by Pau and Zhao [28] in the unit ball. To
do so we proceed by further enlarging the class of Toeplitz operators we are con-
sidering. Given β > −1, the orthogonal projection Pβ : L2(δβν) → A2

β(D) is still
represented by an integral operator of the form

Pβ f (z) =
∫

D
Kβ(z, w) f (w)δ(w)β dν(w) ,

where the weighted Bergman kernel Kβ : D×D → C has properties similar to those

of the usual Bergman kernel (see Section 2). The Toeplitz operator Tβ
µ of symbol µ

and exponent β is given by

Tβ
µ f (z) =

∫
D

Kβ(z, w) f (w) dµ(w) .

Then the main result of this paper is the following:

THEOREM 1.3. Let D b Cn be a bounded strongly pseudoconvex smooth domain.
Let 0 < p1, p2 < +∞ and −1 < α1, α2 < +∞. Suppose that β ∈ R satisfies

n + 1 + β > n max

{
1,

1
pj

}
+

1 + αj

pj

for j = 1, 2. Put

λ = 1 +
1
p1
− 1

p2

and, if λ 6= 0, put

γ =
1
λ

(
β +

α1

p1
− α2

p2

)
.

Then, for any finite positive Borel measure µ on D, the following statements are equiva-
lent:

(i) Tβ
µ : Ap1

α1 (D)→ Ap2
α2 (D) continuously;

(ii) the measure µ is a (λ, γ)-skew Carleson measure.

In particular, Theorem 1.2 is now obtained as a consequence of Theorem 1.3
by taking α1 = α2 = β = 0 and 1 < p1 < p2 < +∞.

The paper is structured as follows. In Section 2 we collect a number of
preliminary results, on the Kobayashi geometry of strongly pseudoconvex do-
mains, on the weighted Bergman kernels, and on the known characterizations
of skew Carleson measures. Section 3 is devoted to the proof of Theorem 1.3,
while in Section 4 we prove a version of Theorem 1.3 for vanishing skew Car-
leson measures, showing that (under the same hypotheses on the parameters)
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Tβ
µ : Ap1

α1 (D) → Ap2
α2 (D) is compact if and only if the measure µ is a vanishing

(λ, γ)-skew Carleson measure.

2. PRELIMINARY RESULTS

In this section we collect definitions and preliminary results that we shall
use in the rest of the paper.

From now on, D b Cn will be a bounded strongly pseudoconvex domain in
Cn with smooth C∞ boundary. Furthermore, we shall use the following notations:

• δ : D → R+ will denote the Euclidean distance from the boundary of D,
that is δ(z) = d(z, ∂D);
• given two non-negative functions f , g : D → R+ we shall write f � g to

say that there is C > 0 such that f (z) ≤ Cg(z) for all z ∈ D (the constant
C is independent of z ∈ D, but it might depend on other parameters,
such as r, θ, etc.);
• given two strictly positive functions f , g : D → R+ we shall write f ≈ g

if f � g and g � f , that is if there is C > 0 such that C−1g(z) ≤ f (z) ≤
Cg(z) for all z ∈ D;
• ν will be the Lebesgue measure;
• O(D) will denote the space of holomorphic functions on D, endowed

with the topology of uniform convergence on compact subsets;
• given 0 < p < +∞, the Bergman space Ap(D) is the (Banach if p ≥ 1)

space Lp(D) ∩O(D), endowed with the Lp-norm;
• more generally, if µ is a positive finite Borel measure on D and 0 < p <

+∞ we shall denote by Lp(µ) the set of complex-valued µ-measurable
functions f : D → C such that

‖ f ‖p,µ :=
[∫

D
| f (z)|p dµ(z)

]1/p
< +∞ ;

• if α > −1 we shall write να = δαν, we shall denote by Ap
α(D) the weighted

Bergman space

Ap
α(D) = Lp(δαν) ∩O(D) ,

and we shall write ‖ · ‖p,α instead of ‖ · ‖p,δαν;
• K : D× D → C will be the Bergman kernel of D, and for each z0 ∈ D we

shall denote by kz0 : D → C the normalized Bergman kernel defined by

kz0(z) =
K(z, z0)√
K(z0, z0)

=
K(z, z0)

‖K(·, z0)‖2
;

• given r ∈ (0, 1) and z0 ∈ D, we shall denote by BD(z0, r) the Kobayashi
ball of center z0 and radius 1

2 log 1+r
1−r .
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We refer to, e.g., [1, 2, 18, 20], for definitions, basic properties and applications
to geometric function theory of the Kobayashi distance; and to [16, 15, 21, 29] for
definitions and basic properties of the Bergman kernel.

Let us now recall a few results we shall need on the Kobayashi geometry of
strongly pseudoconvex domains.

LEMMA 2.1 ([3, Lemma 2.2]). Let D b Cn be a bounded strongly pseudoconvex
domain. Then there is C > 0 such that

1− r
C

δ(z0) ≤ δ(z) ≤ C
1− r

δ(z0)

for all r ∈ (0, 1), z0 ∈ D and z ∈ BD(z0, r).

LEMMA 2.2. Let D b Cn be a bounded strongly pseudoconvex domain, β ∈ R
and r ∈ (0, 1). Then

νβ

(
BD(·, r)

)
≈ δn+1+β ,

where the constant depends on r.

Proof. For β = 0 the result can be found in [22, Corollary 7] and [3, Lemma
2.1]. If β 6= 0 Lemma 2.1 yields

νβ

(
BD(z0, r)

)
=
∫

BD(z0,r)
δ(z)β dν(z) ≈ δ(z0)

βν
(

BD(z0, r)
)

and we are done.

We shall also need the existence of suitable coverings by Kobayashi balls.
Recall that for a bounded domain D b Cn, given r > 0, a r-lattice in D is a
sequence {ak} ⊂ D such that D =

⋃
k BD(ak, r) and there exists m > 0 such

that any point in D belongs to at most m balls of the form BD(ak, R), where R =
1
2 (1 + r).

The existence of r-lattices in bounded strongly pseudoconvex domains is
ensured by the following result:

LEMMA 2.3 ([3, Lemma 2.5]). Let D b Cn be a bounded strongly pseudoconvex
domain. Then for every r ∈ (0, 1) there exists an r-lattice in D.

We shall use a submean estimate for nonnegative plurisubharmonic func-
tions on Kobayashi balls:

LEMMA 2.4 ([3, Corollaries 2.7 and 2.8]). Let D b Cn be a bounded strongly
pseudoconvex domain. Given r ∈ (0, 1), set R = 1

2 (1 + r) ∈ (0, 1). Then there exists a
constant Kr > 0 depending on r such that

∀z0 ∈ D χ(z0) ≤
Kr

ν (BD(z0, r))

∫
BD(z0,r)

χ dν

and
∀z0 ∈ D ∀z ∈ BD(z0, r) χ(z) ≤ Kr

ν (BD(z0, r))

∫
BD(z0,R)

χ dν
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for every nonnegative plurisubharmonic function χ : D → R+.

Now we collect a few results on the weighted Bergman kernels. Given β >
−1, the weighted Bergman projection is the orthogonal projection Pβ : L2(νβ) →
A2

β(D), where νβ = δβν. It is known (see, e.g., [13]), that there exists a function
Kβ : D× D → C such that

Pβ f (z) =
∫

D
Kβ(z, w) f (w)δ(w)βdν(w)

for all f ∈ L2(νβ). Moreover, Kβ(z, w) is holomorphic in z, we have Kβ(w, z) =

Kβ(z, w) and

f (z) =
∫

D
Kβ(z, w) f (w)δ(w)βdν(w)

for all f ∈ A2
β(D). The function Kβ is called the weighted Bergman kernel of D. For

a ∈ D, the normalized weighted Bergman kernel of D is

kβ,a(z) =
Kβ(z, a)√

Kβ(a, a)
.

When β = 0 we recover the usual Bergman kernel, and we shall write K, respec-
tively ka, instead of K0, respectively k0,a.

We shall need a few estimates on the behaviour of the weighted Bergman
kernel. They are analogous to the classical estimates for the Bergman kernel and
follow from the results obtained by Engliš [13] on the asymptotic behaviour of
the weighted Bergman kernel. The first one is the following.

LEMMA 2.5. Let D b Cn be a bounded strongly pseudoconvex domain and let
β > −1. Then

‖Kβ(·, z0)‖2,β =
√

Kβ(z0, z0) ≈ δ(z0)
−(n+1+β)/2 and ‖kβ,z0‖2,β ≡ 1

for all z0 ∈ D.

Proof. The first equality, and hence the result for kβ,z0 , is well-known, as well
as the whole statement for β = 0 (see, e.g., [15]).

If β 6= 0, then thanks to the results in [13], the weighted Bergman kernel is
smooth outside the boundary diagonal; so, in particular, if z0 ∈ D′ b D the norm
‖Kβ(·, z0)‖p,β is bounded by a constant depending only on D′, p and β.

Therefore, we only have to estimate the boundary behaviour. Let q ∈ ∂D
and let U be a neighbourhood of q with coordinates (z′, zn) = (z1, . . . , zn) cen-
tered in q such that

D ∩U = {(z′, zn) ∈ U : Re(zn) > ψ(z′)}

where −ψ is strongly plurisubharmonic with ∇ψ 6= 0. Set r(z) = Re(zn)− ψ(z′).
We consider an almost-sesquianalitic extension of r(z) on U ×U, i.e., a function,
which we denote again by r, such that:



8 MARCO ABATE, SAMUELE MONGODI AND JASMIN RAISSY

• r(z, w) = r(w, z),
• the first derivatives of r with respect to z̄ and w vanish at infinite order

along z = w,
• r(z, z) = r(z).

It easily follows from these properties that

∂

∂zj
r(O) =

∂

∂zj
r(O, O) ,

and similarly for the other derivatives. Therefore we have

|2r(z, w)− r(z)− r(w)| = c1|zn − wn|+
n−1

∑
j=1

cj
2|zj − wj|2 + O(‖z− w‖3).

Moreover |2r(z, w)− r(z)− r(w)| is positive outside z = w, and so c1 > 0. There-
fore in a neighbourhood of (O, O) we have that

|r(z, w)| ≈
(

r(z) + r(w) + |zn − wn|+
n−1

∑
j=1
|zj − wj|2

)
.

The results in [13] imply that Kβ(z, w) is asymptotic to c(z, w)r(z, w)−n−1−β

for a suitable function c ∈ C∞(D× D). Therefore on U we have

|Kβ(z, w)| ≈
(

r(z) + r(w) + |zn − wn|+
n−1

∑
j=1
|zj − wj|2

)−n−1−β

.

Thus, following the same proof as in the classical case, we obtain the assertion.

A similar estimate, but with uniform constants on Kobayashi balls, is the
following.

LEMMA 2.6. Let D b Cn be a bounded strongly pseudoconvex domain and let
β > −1. Then for every r ∈ (0, 1) there exist cr > 0 and δr > 0 such that if z0 ∈ D
satisfies δ(z0) < δr then

cr

δ(z0)n+1+β
≤ |Kβ(z, z0)| ≤

1
crδ(z0)n+1+β

and
cr

δ(z0)n+1+β
≤ |kβ,z0(z)|

2 ≤ 1
crδ(z0)n+1+β

for all z ∈ BD(z0, r).

Proof. If β = 0 then this is proven in [22, Theorem 12] and [3, Lemma 3.2
and Corollary 3.3]. If β 6= 0, then thanks to the results in [13], we have that

(2.1) Kβ(z, z0) ≈ c(z, z0)

(
r(z) + r(z0) + |zn − z0,n|+

n−1

∑
j=1
|zj − z0,j|2

)−(n+1+β)
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in suitable local coordinates around a point of the boundary diagonal, i.e., if
d(z0, ∂D), d(z, ∂D) and ‖z − z0‖ are small enough. By the completeness of the
Kobayashi metric, there exists δr > 0 such that every z ∈ BD(z0, r) satisfies such
condition if δ(z0) < δr. The assertion then follows by arguing as in [22, Theo-
rem 12] or as in [3, Lemma 3.2 and Corollary 3.3].

REMARK 2.7. Note that in the previous lemma the estimates from above
hold even when δ(z0) ≥ δr, possibly with a different constant cr. Indeed, when
δ(z0) ≥ δr and z ∈ BD(z0, r) by Lemma 2.1 there is δ̃r > 0 such that δ(z) ≥ δ̃r; as a
consequence we can find Mr > 0 such that |Kβ(z, z0)| ≤ Mr as soon as δ(z0) ≥ δr
and z ∈ BD(z0, r), and the assertion follows from the fact that D is a bounded
domain.

A very useful integral estimate generalizing the analogous ones for the un-
weighted Bergman kernel (see [22, Corollary 11, Theorem 13] or [4, Theorem 2.7])
is the following:

THEOREM 2.8. Let D b Cn be a bounded strongly pseudoconvex domain, z0 ∈ D
and α, β > −1. Then for 0 < p < +∞ and α− β < (n + β + 1)(p− 1) we have∫

D
|Kβ(ζ, z0)|pδ(ζ)αdν(ζ) � δ(z0)

α−β−(n+β+1)(p−1) .

In particular,

‖K(·, z0)‖p,α � δ(z0)
n+1+α

p −(n+1+β) .

Proof. If β = 0 then this is proven in [22, Corollary 11, Theorem 13] and [4,
Theorem 2.7]. If β 6= 0, then it suffices to use (2.1) and follow the same proof as
in the unweighted case.

Finally, the normalized Bergman kernel can be used to build functions be-
longing to suitable weighted Bergman spaces:

LEMMA 2.9. Let D b Cn be a bounded strongly pseudoconvex domain, and β >
−1. Given 0 < p < +∞ and −1 < α < min{(n + β + 1)p− np− 1, (n + β + 1)p−
n− 1}, set

τ =
n + 1 + β

2
− n + 1 + α

p
.

For each a ∈ D set fa = δ(a)τkβ,a. Let {ak} be an r-lattice and c = {ck} ∈ `p, and put

f =
∞

∑
k=0

ck fak .

Then f ∈ Ap
α(D) with ‖ f ‖p,α � ‖c‖p.

Proof. If β = 0 then this is a consequence of [17, Lemma 2.6]. If β 6= 0, then
it suffices to use the estimates given by Theorem 2.8 and follow the same proof as
in the unweighted case.
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We also need to recall a few definitions and results about Carleson mea-
sures.

DEFINITION 2.10. Let 0 < p, q < +∞ and α > −1. A (p, q; α)-skew Carleson
measure is a finite positive Borel measure µ such that∫

D
| f (z)|q dµ(z) � ‖ f ‖q

p,α

for all f ∈ Ap
α(D). In other words, µ is (p, q; α)-skew Carleson if Ap

α(D) ↪→ Lq(µ)
continuously. In this case we shall denote by ‖µ‖p,q;α the operator norm of the
inclusion Ap

α(D) ↪→ Lq(µ). Furthermore, a (p, q; α)-skew Carleson measure is
vanishing if

lim
j→+∞

∫
D
| f j(z)|q dµ(z) = 0

for any bounded sequence { f j}j∈N ⊂ Ap
α(D) converging to 0 uniformly on any

compact subset of D. For p ≥ 1, µ is a vanishing (p, q; α)-skew Carleson if and
only if Ap

α(D) ↪→ Lq(µ) compactly (see, e.g., [4, Lemma 4.5]).

REMARK 2.11. When p = q we recover the usual (non-skew) notion of Car-
leson measure for Ap

α(D).

DEFINITION 2.12. Let θ ∈ R, and let µ be a finite positive Borel measure
on D. Given r ∈ (0, 1), let µ̂r,θ : D → R be defined by

µ̂r,θ(z) =
µ
(

BD(z, r)
)

ν
(

BD(z, r)
)θ

;

we shall write µ̂r for µ̂r,1.
We say that µ is a geometric θ-Carleson measure if µ̂r,θ ∈ L∞(D) for all r ∈

(0, 1), that is if for every r > 0 we have

µ
(

BD(z, r)
)
� ν

(
BD(z, r)

)θ

for all z ∈ D, where the constant depends only on r.
Furthermore, we shall say that µ is a geometric vanishing θ-Carleson measure

if
lim

z→∂D
µ̂r,θ(z) = 0

for all r ∈ (0, 1).

Notice that Lemma 2.2 yields

(2.2) µ̂r,θ ≈ δ−(n+1)(θ−1)µ̂r .

In [4], Saracco, the first and the third author proved (among other things)
that, if p ≥ 1, a measure µ is (p, p; α)-skew Carleson if and only if it is geometric
θ-Carleson, where θ = 1 + α

n+1 . Hu, Lv and Zhu in [17] have given a similar
geometric characterization of (p, q; α)-skew Carleson measures for all values of p
and q; to recall their results we need another definition.
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DEFINITION 2.13. Let µ be a finite positive Borel measure on D, and s > 0.
The Berezin transform of level s of µ is the function Bsµ : D → R+ ∪ {+∞} given
by

Bsµ(z) =
∫

D
|kz(w)|s dµ(w) .

The geometric characterization of (p, q; α)-skew Carleson measures is dif-
ferent according to whether p ≤ q or p > q. We first recall the characterization
for the case p ≤ q.

THEOREM 2.14 ([17, Theorem 3.1], [5, Theorem 2.15]). Let D b Cn be a
bounded strongly pseudoconvex domain. Let 0 < p ≤ q < +∞ and α > −1; set
θ = 1 + α

n+1 . Then the following assertions are equivalent:

(i) µ is a (p, q; α)-skew Carleson measure;
(ii) µ is a geometric q

p θ-Carleson measure;
(iii) there exists r0 ∈ (0, 1) such that µ̂r0, q

p θ ∈ L∞(D);

(iv) for some (and hence any) r ∈ (0, 1) we have µ̂r, q
p
δ
−α

q
p ∈ L∞(D);

(v) for some (and hence any) r ∈ (0, 1) and some (and hence any) r-lattice {ak} in
D we have

∀k ∈ N µ
(

BD(ak, r)
)
� ν

(
BD(ak, r)

) q
p θ ;

(vi) for some (and hence all) s > θ
q
p we have

Bsµ � δ
(n+1)

(
θ

q
p−

s
2

)
;

Moreover we have

(2.3) ‖µ‖p,q;α ≈ ‖µ̂r, q
p θ‖∞ ≈ ‖µ̂r, q

p
δ
−α

q
p ‖∞ ≈ ‖δ

(n+1)
(

s
2−θ

q
p

)
Bsµ‖∞ .

The geometric characterization of (p, q; α)-skew Carleson measures when
p > q has a slightly different flavor.

THEOREM 2.15 ([17, Theorem 3.3], [5, Theorem 2.16]). Let D b Cn be a
bounded strongly pseudoconvex domain. Let 0 < q < p < +∞ and α > −1; put
θ = 1 + α

n+1 . Then the following assertions are equivalent:

(i) µ is a (p, q; α)-skew Carleson measure;
(ii) µ is a vanishing (p, q, α)-skew Carleson measure;

(iii) µ̂rδ
−α

q
p ∈ L

p
p−q (D) for some (and hence any) r ∈ (0, 1);

(iv) for some (and hence any) r ∈ (0, 1) and for some (and hence any) r-lattice {ak}
in D we have {µ̂r,θ q

p
(ak)} ∈ `

p
p−q ;

(v) for some (and hence all) s > θ
q
p + n

n+1

(
1− q

p

)
we have

δ
−(n+1)

(
θ

q
p−

s
2+

p−q
p

)
Bsµ ∈ L

p
p−q (D) ;
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Moreover we have

(2.4) ‖µ‖p,q;α ≈ ‖µ̂rδ
−α

q
p ‖ p

p−q
≈ ‖µ̂r,θ q

p
(ak)‖ p

p−q
≈ ‖δ−(n+1)(θ q

p−
s
2+

p−q
p )Bsµ‖ p

p−q
.

We also have a geometric characterization of vanishing (p, q; α)-skew Car-
leson measures when p ≤ q:

THEOREM 2.16 ([17, Theorem 3.1], [4, Theorem 4.10]). Let D b Cn be a
bounded strongly pseudoconvex domain. Let 0 < p ≤ q < +∞ and α > −1; set
θ = 1 + α

n+1 . Then the following assertions are equivalent:
(i) µ is a vanishing (p, q; α)-skew Carleson measure;

(ii) µ is a geometric vanishing q
p θ-Carleson measure;

(iii) there exists r0 ∈ (0, 1) such that lim
z→∂D

µ̂r0, q
p θ(z) = 0;

(iv) for some (and hence any) r ∈ (0, 1) we have lim
z→∂D

µ̂r, q
p
(z)δ(z)−α

q
p = 0;

(v) for some (and hence any) r ∈ (0, 1) and some (and hence any) r-lattice {ak} in
D we have

lim
k→+∞

µ̂r0, q
p θ(ak) = lim

k→+∞
µ̂r, q

p
(ak)δ(ak)

−α
q
p = 0 ;

(vi) for some (and hence all) s > θ
q
p we have

lim
z→∂D

δ(z)(n+1)
(

s
2−θ

q
p

)
Bsµ(z) = 0 .

A consequence of these theorems is that the property of being (p, q; α)-skew
Carleson actually depends only on the quotient q/p and on α. We shall then
introduce the following definition:

DEFINITION 2.17. Take λ, α ∈ R. A finite positive Borel measure µ on D is
a (λ, α)-skew Carleson measure if

– λ ≥ 1 and µ̂r,λδ−αλ ∈ L∞(D) for some (and hence any) r ∈ (0, 1), and
we shall put ‖µ‖λ,α = ‖µ̂r,λδ−αλ‖∞; or,

– λ < 1 and µ̂rδ−αλ ∈ L
1

1−λ (D) for some (and hence any) r ∈ (0, 1), and
we shall put ‖µ‖λ,α = ‖µ̂rδ−αλ‖ 1

1−λ
.

Notice that by [17, Lemma 2.3] different r’s yield equivalent norms.
Furthermore we say that µ is a vanishing (λ, α)-skew Carleson measure if

– λ ≥ 1 and lim
z→∂D

µ̂r,λ(z)δ(z)−αλ = 0 for some (and hence any) r ∈ (0, 1);
or,

– λ < 1 and µ is a (λ, α)-skew Carleson measure.
So a measure is (vanishing) (p, q; α)-skew Carleson if and only if it is (vanishing)
(q/p, α)-skew Carleson. Notice that the definition of (0, α)-skew Carleson does
not depend on α.

This definition has the following easy (but useful) consequence.
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LEMMA 2.18 ([5, Lemma 2.18]). Let D b Cn be a bounded strongly pseu-
doconvex domain, λ > 0 and α > −1. Let µ be a (λ, α)-skew Carleson measure,
and β > −λ(α + 1). Then µβ = δβµ is a (λ, α + β

λ )-skew Carleson measure with
‖µβ‖λ,α+ β

λ

≈ ‖µ‖λ,α.

We end this section by recalling the main result in [5], which gives a charac-
terisation of (λ, γ)-skew Carleson measures on bounded strongly pseudoconvex
domain through products of functions in weighted Bergman spaces.

THEOREM 2.19 ([5, Theorem 1.1]). Let D b Cn be a bounded strongly pseudo-
convex domain, and let µ be a positive finite Borel measure on D. Fix an integer k ≥ 1,
and let 0 < pj, qj < +∞ and −1 < αj < +∞ be given for j = 1, . . . , k. Set

λ =
k

∑
j=1

qj

pj
and γ =

1
λ

k

∑
j=1

αjqj

pj
.

Then µ is a (λ, γ)-skew Carleson measure if and only if there exists C > 0 such that

(2.5)
∫

D

k

∏
j=1
| f j(z)|qj dµ(z) ≤ C

k

∏
j=1
‖ f j‖

qj
pj ,αj

for any f j ∈ A
pj
αj (D).

3. TOEPLITZ OPERATORS AND SKEW CARLESON MEASURES ON WEIGHTED BERGMAN SPA-
CES

This section is devoted to the proof of our main Theorem 1.3. We shall need
the following preliminary result:

LEMMA 3.1. Let D b Cn be a bounded strongly pseudoconvex domain. Let 1 <
p < +∞, −1 < α, α′ < +∞ and put

β =
α

p
+

α′

p′
,

where p′ is the conjugate exponent of p. Then the functional

( f , g)β =
∫

D
f (z)g(z)dνβ(z)

is a duality pairing between Ap
α(D) and Ap′

α′ (D), where νβ = δβν.

Proof. The continuous dual of Ap
α(D) is Ap′

α (D), with the usual pairing

〈 f , h〉 =
∫

D
f (z)h(z)dνα(z) .
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Therefore

( f , g)β =
∫

D
f (z)g(z)dνβ(z) =

∫
D

f (z)g(z)δ(z)β−αdνα(z) = 〈 f , gδβ−α〉

is a duality pairing between Ap
α(D) and Ap′

α′ (D) as soon as h = gδβ−α ∈ Ap′
α (D),

i.e., as soon as ∫
D
|g(z)|p′δ(z)(β−α)p′dνα(z) < +∞

which is true because the choice of β yields (β− α)p′ + α = α′.

Now we can prove Theorem 1.3:

THEOREM 3.2. Let D b Cn be a bounded strongly pseudoconvex domain. Let
0 < p1, p2 < +∞ and −1 < α1, α2 < +∞. Suppose that β ∈ R satisfies

(3.1) n + 1 + β > n max

{
1,

1
pj

}
+

1 + αj

pj

for j = 1, 2. Put

λ = 1 +
1
p1
− 1

p2

and, if λ 6= 0, put

γ =
1
λ

(
β +

α1

p1
− α2

p2

)
.

Then for any positive Borel measure µ on D the following statements are equivalent:

(i) Tβ
µ : Ap1

α1 (D)→ Ap2
α2 (D) continuously;

(ii) µ is a (λ, γ)-skew Carleson measure.
Moreover, one has

‖Tβ
µ ‖A

p1
α1 (D)→Ap2

α2 (D)
≈ ‖µ‖λ,γ .

Proof. The proof is divided into several cases.

(i)⇒(ii) We consider two cases: λ ≥ 1 and λ < 1.
Case 1. Assume λ ≥ 1. Let a ∈ D and consider fa = Kβ(·, a). By (3.1)

with j = 1, we get (n + 1 + β)p1 > n + 1 + α1, which is equivalent to α1 − β <
(n + β + 1)(p1 − 1), so, by Theorem 2.8, for a ∈ D we have that

(3.2) ‖Kβ(·, a)‖p1
p1,α1 � δ(a)n+1+α1−(n+1+β)p1 ;

in particular, fa ∈ Ap1
α1 (D). We can then apply the Toeplitz operator to fa and

consider the value of the resulting function for z = a:

(3.3)

Tβ
µ fa(a) =

∫
D

Kβ(a, w) fa(w)dµ(w) =
∫

D
|Kβ(a, w)|2dµ(w)

≥
∫

BD(a,r)
|Kβ(a, w)|2dµ(w) � µ(BD(a, r))

δ(a)2(n+β+1)
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as soon as a is close enough to ∂D, where, in the last inequality, we used Lemma
2.6.

Moreover, by Lemma 2.4

(3.4)

Tβ
µ fa(a)=

[
|Tβ

µ fa(a)|p2
] 1

p2 � 1

ν
(

BD(a, r)
)1/p2

[∫
BD(a,r)

|Tβ
µ fa(ζ)|p2 dν(ζ)

] 1
p2

� δ(a)−α2/p2

ν
(

BD(a, r)
)1/p2

[∫
BD(a,r)

|Tβ
µ fa(ζ)|p2 δ(ζ)α2 dν(ζ)

]1/p2

�δ(a)−(n+1+α2)/p2‖Tβ
µ fa‖p2,α2 � ‖T

β
µ ‖δ(a)−(n+1+α2)/p2‖ fa‖p1,α1 ,

where we used Lemma 2.2 and Lemma 2.1.
Combining (3.2), (3.3) and (3.4) we conclude that

(3.5)
µ(BD(a, r)) � ‖Tβ

µ ‖δ(a)(n+1+β)+
n+1+α1

p1
− n+1+α2

p2 = ‖Tβ
µ ‖δ(a)(n+1+γ)λ

≈ ‖Tβ
µ ‖ν

(
BD(a, r)

)(n+1+γ)λ/(n+1) .

This means that µ is a geometric λ
(
1 + γ

n+1
)
-Carleson measure, which, by Theo-

rem 2.14, is equivalent to µ being a (λ, γ)-skew Carleson measure. Moreover,

‖µ‖λ,γ � ‖T
β
µ ‖ .

Case 2. Assume λ < 1, that is p2 < p1. In this case, we can adapt the proof
of [5, Proposition 3.4]. We present here the full proof for the sake of completeness.

Let {ak} be an r-lattice in D, and {rk} a sequence of Rademacher functions
(see [11, Appendix A]). Set

τ =
n + 1 + β

2
− n + 1 + α1

p1
,

and, for every a ∈ D, put fa = δ(a)τkβ,a. Then Lemma 2.9 implies that

ft =
∞

∑
k=0

ckrk(t) fak

belongs to Ap1
α1 (D) for all c = {ck} ∈ `p1 , and ‖ ft‖p1,α1 � ‖c‖p1 .

Since, by assumption, Tβ
µ is bounded from Ap1

α1 to Ap2
α2 we have

‖Tβ
µ ft‖p2

p2,α2 =
∫

D

∣∣∣∣∣ ∞

∑
k=0

ckrk(t)T
β
µ fak (z)

∣∣∣∣∣
p2

dνα2(z)

≤ ‖Tβ
µ ‖p2‖ ft‖p2

p1,α1 � ‖T
β
µ ‖p2‖c‖p2

p1 .

Integrating both sides on [0, 1] with respect to t and using Khinchine’s inequality
(see, e.g., [25]) we obtain∫

D

(
∞

∑
k=0
|ck|2|T

β
µ fak (z)|

2

)p2/2

dνα2(z) � ‖T
β
µ ‖p2‖c‖p2

p1 .
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Set Bk = BD(ak, r). We consider two cases: p2 ≥ 2 and 0 < p2 < 2.
If p2 ≥ 2, using the fact that ‖a‖p2/2 ≤ ‖a‖1 for every a ∈ `1 we get

∞

∑
k=0
|ck|p2

∫
Bk

|Tβ
µ fak (z)|

p2 dνα2(z)

≤
∫

D

(
∞

∑
k=0
|ck|2|T

β
µ fak (z)|

2χBk (z)

)p2/2

dνα2(z)

≤
∫

D

(
∞

∑
k=0
|ck|2|T

β
µ fak (z)|

2

)p2/2

dνα2(z) .

If instead 0 < p2 < 2, using Hölder’s inequality, we obtain
∞

∑
k=0
|ck|p2

∫
Bk

|Tβ
µ fak (z)|

p2 dνα2(z)

≤
∫

D

(
∞

∑
k=0
|ck|2|T

β
µ fak (z)|

2

) p2
2
(

∞

∑
k=0

χBk (z)

)1− p2
2

dνα2(z)

�
∫

D

(
∞

∑
k=0
|ck|2|T

β
µ fak (z)|

2

)p2/2

dνα2(z) ,

where we used the fact that each z ∈ D belongs to no more than m of the Bk.
Summing up, for any p2 > 0 we have

∞

∑
k=0
|ck|p2

∫
Bk

|Tβ
µ fak (z)|

p2 dνα2(z) � ‖T
β
µ ‖p2‖c‖p2

p1 .

Now Lemmas 2.2, 2.1 and 2.4 yield

|Tβ
µ fak (ak)|p2 � δ(ak)

−(n+1+α2)
∫

Bk

|Tβ
µ fak (z)|

p2 dνα2(z) ,

and so we have
∞

∑
k=0
|ck|p2 δ(ak)

n+1+α2 |Tβ
µ fak (ak)|p2 � ‖Tβ

µ ‖p2‖c‖p2
p1 .

On the other hand, using Lemmas 2.5 and 2.6, we obtain

Tβ
µ fak (ak) = δ(ak)

τ
∫

D
Kβ(ak, w)kβ,ak (w) dµ(w)

� δ(ak)
τ+

n+1+β
2

∫
D
|Kβ(ak, w)|2 dµ(w)

≥ δ(ak)
n+1+β− n+1+α1

p1

∫
BD(ak ,r)

|Kβ(ak, w)|2 dµ(w)

� δ(ak)
n+1+β− n+1+α1

p1
µ
(

BD(ak, r)
)

δ(ak)
2(n+1+β)

=
µ
(

BD(ak, r)
)

δ(ak)
n+1+β+

n+1+α1
p1

.
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Putting all together we get

∞

∑
k=0
|ck|p2

(
µ
(

BD(ak, r)
)

δ(ak)(n+1+γ)λ

)p2

� ‖Tβ
µ ‖p2‖c‖p2

p1 ,

since

n + 1 + β +
n + 1 + α1

p1
− n + 1 + α2

p2
= (n + 1 + γ)λ .

Now, set d = {dk}, where

dk =
µ
(

BD(ak, r)
)

δ(ak)(n+1+γ)λ
.

Then by duality we get {dp2
k } ∈ `p1/(p1−p2) with ‖{dp2

k }‖p1/(p1−p2)
� ‖Tβ

µ ‖p2 ,
because p1/(p1 − p2) is the conjugate exponent of p1/p2 > 1. This means that
d ∈ `p1 p2/(p1−p2) = `1/(1−λ) with

‖d‖ 1
1−λ
� ‖Tβ

µ ‖ ,

and the assertion then follows from Theorem 2.15 (notice that the proof in [17]

that {µ̂r,λθ(ak)} ∈ `
1

1−λ implies µ̂rδ−λγ ∈ L
1

1−λ (D), where θ = 1+ γ
n+1 , holds also

for λ ≤ 0).

(ii)⇒(i) We consider three cases: p2 > 1, p2 = 1 and 0 < p2 < 1.
Case 1. If p2 > 1, let p′2 > 1 be the conjugate exponent of p2, and choose

α′2 ∈ R so that

(3.6) β =
α2

p2
+

α′2
p′2

.

An easy computation shows that α′2 = α2 + (β− α2)p′2, and then α′2 > −1 follows
from (3.1) for j = 2.

Take f ∈ Ap1
α1 (D) and h ∈ Ap′2

α′2
(D). Then

(3.7)
(Tβ

µ f , h)β =
∫

D
h(z)

∫
D

Kβ(z, w) f (w)dµ(w)dνβ(z)

=
∫

D

∫
D

Kβ(w, z)h(z)dνβ(z) f (w)dµ(w) =
∫

D
h(w) f (w)dµ(w) .

Therefore, as µ is (λ, γ)-skew Carleson, by Theorem 2.19, we have

|(Tβ
µ f , h)β)| � ‖µ‖λ,γ‖ f ‖p1,α1‖h‖p′2,α′2

because, by our hypotheses,

λ =
1
p1

+
1
p′2

and γ =
1
λ

(
α1

p1
+

α′2
p′2

)
.
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As this holds for every h ∈ Ap′2
α′2
(D), that is, by Lemma 3.1, for every continuous

functional on Ap2
α2 (D), we conclude that

‖Tβ
µ f ‖p2,α2 � ‖µ‖λ,γ‖ f ‖p1,α1 ,

that is Tβ
µ is bounded from Ap1

α1 (D) to Ap2
α2 (D) and ‖Tβ

µ ‖ � ‖µ‖λ,γ.

Case 2. If p2 = 1, that is λ = 1
p1

, condition (3.1) for j = 2 implies β− α2 > 0.

Take f ∈ Ap1
α1 (D). Then

‖Tβ
µ f ‖1,α2≤

∫
D

∫
D
|Kβ(z, w)|| f (w)|dµ(w)dνα2(z)

=
∫

D
| f (w)|

∫
D
|Kβ(z, w)|δ(z)α2−βdνβ(z)dµ(w)�

∫
D
| f (w)|δ(w)α2−βdµ(w)

by Theorem 2.8.
Now, as µ is (λ, γ)-skew Carleson, Lemma 2.18 implies that δα2−βµ is a(

1
p1

, α1

)
-skew Carleson measure, with ‖δα2−βµ‖1/p1,α1 ≈ ‖µ‖λ,γ. Theorems 2.14

and 2.15 then imply that δα2−βµ is (p1, 1; α1)-skew Carleson, and so we obtain

‖Tβ
µ f ‖1,α2 � ‖µ‖λ,γ‖ f ‖p1,α1 ,

as desired.

Case 3. If 0 < p2 < 1, thanks to Lemma 2.3 we can find a r-lattice {ak}
and m ∈ N such that for every z ∈ D there exist at most m values of k such that
z ∈ BD(ak, R), where R = 1

2 (1 + r). Put Bk = BD(ak, r) and B̃k = BD(ak, R).
By Lemmas 2.2, 2.1 and 2.4 for w ∈ Bk we have

| f (w)|p1 � 1
να1(Bk)

∫
B̃k

| f (ζ)|p1 dνα1(ζ)

and

|Kβ(z, w)|p2 � 1
να2(Bk)

∫
B̃k

|Kβ(z, ζ)|p2 dνα2(ζ) .

Therefore, integrating on Bk we get∫
Bk

|Kβ(z, w)|| f (w)|dµ(w)

� µ(Bk)

να1(Bk)
1/p1 να2(Bk)

1/p2

(∫
B̃k

| f (ζ)|p1 dνα1(ζ)

) 1
p1
(∫

B̃k

|Kβ(z, ζ)|p2 dνα2(ζ)

) 1
p2

.

Since p2 < 1, summing over k we get

|Tβ
µ f (z)|p2�

∞

∑
k=1

µ(Bk)
p2

να1(Bk)
p2/p1 να2(Bk)

(∫
B̃k

| f (ζ)|p1 dνα1(ζ)

)p2
p1
∫

B̃k

|Kβ(z, ζ)|p2 dνα2(ζ).
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Integrating in z over D with respect to να2 we obtain

(3.8) ‖Tβ
µ f ‖p2

p2,α2 �
∞

∑
k=1

µ(Bk)
p2

δ(ak)
(n+1+γ)λp2

(∫
B̃k

| f (ζ)|p1 dνα1(ζ)

) p2
p1

,

thanks to Lemma 2.2, Lemma 2.1 and Theorem 2.8, that we can apply because of
(3.1) for j = 2.

Now, if λ ≥ 1 we have that

µ (Bk) � ‖µ‖λ,γδ(ak)
(n+1+γ)λ ,

and so (3.8) yields

‖Tβ
µ f ‖p2

p2,α2 � ‖µ‖
p2
λ,γ

∞

∑
k=1

(∫
B̃k

| f (ζ)|p1 dνα1(ζ)

) p2
p1 � ‖µ‖p2

λ,γ‖ f ‖p2
p1,α1 .

On the other hand, if λ < 1 (that is p1/p2 > 1), by Hölder inequality we
have

∞

∑
k=1

µ(Bk)
p2

δ(ak)
(n+1+γ)λp2

(∫
B̃k

| f (ζ)|p1 dνα1(ζ)

) p2
p1

≤
(

∞

∑
k=1

(
µ(Bk)

δ(ak)(n+1+γ)λ

) p1 p2
p1−p2

)p1−p2
p1
(

∞

∑
k=1

∫
B̃k

| f (ζ)|p1 dνα1(ζ)

)p2
p1

.

Now, the proof of the implication (b)⇒(c) in [17, Lemma 2.5] applied with s =
−γλ and p = p1 p2/(p1 − p2) yields{

µ(Bk)

δ(ak)(n+1+γ)λ

}
k≥1
∈ `

p1 p2
p1−p2

and ∥∥∥∥∥
{

µ(Bk)

δ(ak)(n+1+γ)λ

}
k≥1

∥∥∥∥∥
`

p1 p2
p1−p2

≈ ‖µ‖λ,γ .

So
‖Tβ

µ f ‖p2
p2,α2 � ‖µ‖

p2
λ,γ‖ f ‖p2

p1,α1 ,

and we are done in this case too.

4. COMPACT TOEPLITZ OPERATORS AND VANISHING SKEW CARLESON MEASURES

In this section we shall prove a version of Theorem 3.2 concerning compact
Toeplitz operators and vanishing skew-Carleson measures. The only interesting
case is λ ≥ 1, because for λ < 1 (that is p2 < p1) all (λ, γ)-skew Carleson mea-
sures are vanishing (Theorem 2.15) and all continuous operators from Ap1

α1 (D) to
Ap2

α2 (D) are compact (see, e.g., [24, Proposition 2.c.3]).
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To deal with the case λ ≥ 1 we shall need the following version of Theo-
rem 2.19, whose proof is analogous to the proof of [28, Theorem 4.1]:

THEOREM 4.1. Let D b Cn be a bounded strongly pseudoconvex domain, and let
µ be a positive finite Borel measure on D. Fix an integer k ≥ 1, and let 0 < pj, qj < +∞
and −1 < αj < +∞ be given for j = 1, . . . , k. Set

λ =
k

∑
j=1

qj

pj
and γ =

1
λ

k

∑
j=1

αjqj

pj
.

Assume that λ ≥ 1. Then the following statements are equivalent:

(i) µ is a vanishing (λ, γ)-skew Carleson measure.
(ii) For any sequence { f1,`}` in the unit ball of Ap1

α1 (D) converging to 0 uniformly
on compact sets in D we have

lim
`→∞

F(`) = 0 ,

where

F(`) = sup

{∫
D
| f1,`(z)|q1

k

∏
j=2
| f j(z)|qj dµ(z)

∣∣∣∣ ‖ f j‖pj ,αj ≤ 1, j = 2, . . . , k

}
.

(iii) For any k sequences { f1,`}, . . . , { fk,`} in the unit balls of Ap1
α1 (D), . . . , Apk

αk (D),
respectively, which are all convergent to 0 uniformly on compact sets in D, we
have

lim
`→∞

∫
D
| f1,`(z)|q1 · · · | fk,`(z)|qk dµ(z) = 0 .

Proof. Assume (i) is satisfied, that is µ is a vanishing (λ, γ)-skew Carleson
measure. Let { f1,`}`∈N be a sequence in the unit ball of Ap1

α1 (D) which converges
to 0 uniformly on compact subsets of D, and for j = 2, . . . , k let f j be an arbitrary

function in the unit ball of A
pj
αj (D). Given r > 0, let us set Dr = {z ∈ D | δ(z) <

r}. Then µr = µ|Dr is a (λ, γ)-skew Carleson measure, and

lim
r→0
‖µr‖λ,γ = 0

because µ is vanishing. Fix ε > 0. Then if r > 0 is small enough Theorem 2.19
yields

(4.1)

∫
Dr
| f1,`(z)|q1| f2(z)|q2 · · ·| fk(z)|qk dµ(z)

=
∫

D
| f1,`(z)|q1| f2(z)|q2 · · · | fk(z)|qk dµr(z) � ε.

On the other hand, thanks to the uniform convergence of f1,` to 0 on compact
subsets of D, we can find M ∈ N such that for any ` > M we have | f1,`(z)| < ε
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for all z ∈ D \ Dr. Therefore applying again Theorem 2.19 we have

(4.2)

∫
D\Dr
| f1,`(z)|q1| f2(z)|q2 · · ·| fk(z)|qk dµ(z)≤ ε

∫
D
| f2(z)|q2 · · ·| fk(z)|qk dµ(z)

= ε
∫

D
|1|q1| f2(z)|q2 · · · | fk(z)|qk dµ(z)� ε.

These last two estimates together imply (ii).
It is evident that (ii) implies (iii). To prove that (iii) implies (i) we follow the

same construction as in the proof of Theorem 2.19. Choose σ1, . . . , σk ∈ N∗ such
that

pjσj > max
{

1, 1 +
αj

n + 1

}
for all j = 1, . . . , k, and

k

∑
j=1

qjσj > λγ ,

and set

rj =
(n + 1)σj

2
−

n + 1 + αj

pj
.

For any a ∈ D and j = 1, . . . , k, consider

f j,a(z) = δ(a)rj ka(z)σj .

Then, since αj < (n + 1)(pjσj − 1) by the choice of σj we know (Theorem 2.8) that
‖ f j,a‖pj ,αj � 1 for all j = 1, . . . , k; moreover it is easy to see that

lim
a→∂D

| f j,a(z)| = 0

uniformly on any compact subset of D. Therefore (iii) yields

(4.3) lim
a→∂D

∫
D

k

∏
j=1
| f j,a(z)|qj dµ(z) = 0 .

Now, we have∫
D

k

∏
j=1
| f j,a(z)|qj dµ(z) =

∫
D
|ka(z)|∑j qjσj δ(a)∑j qjrj dµ(z),

and
k

∑
j=1

qjrj = (n + 1)
k

∑
j=1

[
qjσj

2
− θj

qj

pj

]
=

n + 1
2

k

∑
j=1

qjσj − (n + 1)λγ .

Therefore, setting s = ∑j σjqj > λγ, (4.3) becomes

lim
a→∂D

δ(a)(n+1)( s
2−λγ)

∫
D
|ka(z)|s dµ(z) = lim

a→∂D
δ(a)(n+1)( s

2−λγ)Bsµ(a) = 0,

where Bsµ is the Berezin transform of level s of µ, and so µ is a vanishing (λ, γ)-
skew Carleson measure thanks to Theorem 2.16.
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We can now prove the following result:

THEOREM 4.2. Let D b Cn be a bounded strongly pseudoconvex domain. Let
0 < p1 ≤ p2 < +∞ and −1 < α1, α2 < +∞. Suppose that β ∈ R satisfies

(4.4) n + 1 + β > n max

{
1,

1
pj

}
+

1 + αj

pj

for j = 1, 2. Put

λ = 1 +
1
p1
− 1

p2

and

γ =
1
λ

(
β +

α1

p1
− α2

p2

)
.

Then for any positive Borel measure µ on D the following statements are equivalent:

(i) Tβ
µ : Ap1

α1 (D)→ Ap2
α2 (D) compactly;

(ii) µ is a vanishing (λ, γ)-skew Carleson measure.

Proof. Assume that (i) holds. Since Tβ
µ is compact, it maps every bounded

sequence in Ap1
α1 (D) converging uniformly to 0 on compact subsets of D to a se-

quence strongly converging to 0 in Ap2
α2 (D).

We consider a sequence {ak} ∈ D such that lim
k→+∞

δ(ak) = 0 and we set

fk(z) = δ(ak)
(n+1+β)−(n+1+α1)/p1 Kβ(z, ak) .

Thanks to Theorem 2.8, we have that

‖ fk‖
p1
p1,α1 � 1 .

Moreover, for any L b D there exists a constant C1 > 0 such that |Kβ| is bounded
from above by C1 on L× D. Therefore for every z ∈ L we have that

| fk(z)| ≤ C1δ(ak)
n+1+β−(n+1+α1)/p1

and so, since since our hypotheses give us that (n+ 1+ β)− (n+ 1+ α1)/p1 > 0,
we get

lim
k→+∞

sup
z∈L
| fk(z)| ≤ lim

k→+∞
C1δ(ak)

n+1+β−(n+1+α1)/p1 = 0 .

Hence the compactness of Tβ
µ implies

(4.5) lim
k→+∞

‖Tβ
µ fk‖p2,α2 = 0 .

Now, the same computations as in the proof of the implication (i)=⇒(ii) of Theo-
rem 3.2 yield

µ(BD(ak, r))
δ(ak)

(n+1+β)+(n+1+α1)/p1
� Tβ

µ fk(ak)

and
Tβ

µ fk(ak) � δ(ak)
−(n+1+α2)/p2‖Tβ

µ fk‖p2,α2 .
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Therefore
µ(BD(ak, r))

δ(ak)(n+1+γ)λ
� ‖Tβ

µ fk‖p2,α2 ,

which, together with (4.5) and Theorem 2.16, implies that µ is a vanishing (λ, γ)-
skew Carleson measure.

Conversely, assume that µ is a vanishing (λ, γ)-skew Carleson measure
with λ ≥ 1, and let {gk}k∈N be a bounded sequence in Ap1

α1 (D) converging uni-
formly to 0 on compact subsets of D. We want to prove that the bounded se-
quence {Tβ

µ gk}k∈N ⊂ Ap2
α2 (D) converges strongly to 0 in Ap2

α2 (D). We consider
two cases: p2 > 1 and 0 < p2 ≤ 1.

If p2 > 1 then, as in the proof of Theorem 3.2, thanks to Lemma 3.1, denoting
by p′2 the conjugate exponent of p2 and by α′2 the number defined in (3.6), using
(3.7) we have

‖Tβ
µ gk‖p2,α2 ≈ sup

‖h‖p′2,α′2
≤1
|〈h, Tβ

µ gk〉β| ≤ sup
‖h‖p′2,α′2

≤1

∫
D
|h(z)||gk(z)|dµ(z) ,

and Theorem 4.1 yields that the last integral converges to 0 as k tends to +∞.
If 0 < p2 ≤ 1, for any r-lattice {aj} we consider the associated balls {Bj =

BD(aj, r)} and {B̃j = BD(aj, R)}, where R = (1 + r)/2, as usual. Using (3.8) we
obtain that

(4.6) ‖Tβ
µ gk‖

p2
p2,α2 �

∞

∑
j=1

µ
(

Bj
)p2

δ(aj)(n+1+γ)λp2

(∫
B̃j

|gk(ζ)|p1 dνα1(ζ)

)p2/p1

.

Let ε > 0. Since µ is a vanishing (λ, γ)-skew Carleson measure by Theorem 2.16
there exists j0 > 0 such that

µ(Bj)

δ(aj)(n+1+γ)λ
< ε

for all j > j0. Choose δ0 > 0 such that B̃j ⊂ L = {z ∈ D | δ(z) ≥ δ0} b D for
all j ≤ j0. We can then split the sum in the right-hand-side of (4.6) into two parts.
For the first part we have

j0

∑
j=1

µ
(

Bj
)p2

δ(aj)(n+1+γ)λp2

(∫
B̃j

|gk(ζ)|p1 dνα1(ζ)

)p2
p1

�
(

sup
L
|gk|p1

)p2
p1 j0

∑
j=1

µ
(

Bj
)p2 να1(Bj)

p2
p1

δ(aj)(n+1+γ)λp2

and clearly the right-hand-side converges to 0 as k tends to +∞.
On the other hand we have

∞

∑
j=j0+1

µ
(

Bj
)p2

δ(aj)(n+1+γ)λp2

(∫
B̃j

|gk(ζ)|p1 dνα1(ζ)

)p2
p1

< εp2
∞

∑
j=j0+1

(∫
B̃j

|gk(ζ)|p1 dνα1(ζ)

)p2
p1

� εp2‖gk‖
p2
p1,α1 � εp2
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because the sequence {gk} is norm-bounded. Therefore lim
k→+∞

‖Tβ
µ gk‖p2,α2 = 0,

and this concludes the proof.
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