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ABSTRACT 9 

We compare two Monte Carlo inversions that aim to solve some of the main problems of dispersion 10 

curve inversion: deriving reliable uncertainty appraisals, determining the optimal model 11 

parameterization, and avoiding entrapment in local minima of the misfit function. The first method 12 

is a transdimensional Markov Chain Monte Carlo that considers as unknowns the number of model 13 

parameters, that is the locations of layer boundaries, together with the Vs and the Vp/Vs ratio of 14 

each layer. A reversible jump Markov Chain Monte Carlo (rjMCMC) algorithm is used to sample 15 

the variable-dimension model space, while the adoption of a parallel tempering strategy and of a 16 

delayed rejection updating scheme improves the efficiency of the probabilistic sampling. The 17 

second approach is a Hamiltonian Monte Carlo (HMC) inversion that considers the Vs, the Vp/Vs 18 

ratio and the thickness of each layer as unknowns, whereas the best model parameterization 19 

(number of layer) is determined by applying standard statistical tools to the outcomes of different 20 

inversions running with different model dimensionalities.  This work has a mainly didactic 21 

perspective and for this reason, we focus the attention to synthetic examples in which only the 22 

fundamental mode is inverted. We perform what we call semi-analytical and seismic inversion tests 23 

on 1D subsurface models. In the first case, the dispersion curves are directly computed from the 24 

considered model making use of the Haskell-Thompson method, while in the second case they are 25 

extracted from synthetic shot gathers. To validate the HMC and rjMCMC outcomes we analyse the 26 
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estimated posterior models and we also perform a sensitivity analysis in which we compute the 27 

model resolution matrices, posterior covariance matrices, and correlation matrices from the 28 

ensembles of sampled models. Our tests demonstrate that major benefit of the rjMCMC inversion is 29 

its capability of providing a parsimonious solution that automatically adjusts the model 30 

dimensionality. The downside of this approach is that many models must be sampled to guarantee 31 

accurate posterior uncertainty. Differently, less sampled models are required by HMC algorithm, 32 

but its limits are the computational effort related to the Jacobian computation, and the multiple 33 

inversion runs needed to determine the optimal model parameterization.  34 

 35 

INTRODUCTION 36 

Rayleigh wave measurements are highly sensitive to the S-wave velocity (Vs) and for this reason 37 

they are extensively used for geotechnical characterization or seismic site response studies (Socco 38 

and Strobbia 2004). Over the last years, the full-waveform inversion of surface waves is getting 39 

growing attention thanks to the increased computational power of modern parallel architectures 40 

(Gross et al. 2017; Xing and Mazzotti 2019). However, well-established methods still rely on 41 

dispersion curve inversion under the assumption of a 1D subsurface structure (Socco and Boiero 42 

2008; Maraschini and Foti 2010; Cercato, 2011; Foti et al. 2018; Di Giulio et al. 2019).  43 

The dispersion curve inversion is a highly non-linear and ill-conditioned problem. For this reason, it 44 

is crucial adopting inversion approaches that efficiently converge toward the global minimum, that 45 

allow for a straightforward introduction of a-priori model constrains, and that also provide reliable 46 

estimations of the uncertainties affecting the recovered solution (i.e. the estimation of the posterior 47 

probability density “PPD”). In this context, gradient-based inversion methods (i.e. Gauss-Newton, 48 

Steepest descent) exhibit fast convergence rates but limited capability to explore the parameter 49 

space, resulting in a final solution highly dependent on the initial model (Luke et al. 2003; Wathelet 50 

2005; Kritikakis et al. 2014). Metaheuristic search algorithms (i.e. genetic algorithms, particle 51 

swarm optimization) exhaustively explore the model space but they usually require many forward 52 



model evaluations and considerable computational effort to converge (Dal Moro et al. 2007; Picozzi 53 

and Albarello 2007; Sen and Stoffa 2013; Sajeva et al. 2014; Sajeva et al. 2017). In addition, both 54 

gradient-based and metaheuristic approaches do not satisfy the importance sampling principle and 55 

for this reason they hamper a reliable uncertainty appraisal (Tarantola, 2005). Markov Chain Monte 56 

Carlo (MCMC) algorithms exhibit global convergence capabilities and honour the importance 57 

sampling principle (Sen and Stoffa, 1996) but they usually require a higher computational effort 58 

with respect to linearized, gradient-based inversion algorithms.  59 

Markov Chain Monte Carlo methods convert the inversion into a sampling problem in which the 60 

sampling density is proportional to the posterior (Sambridge and Mosegaard, 2002). The first stage 61 

of the MCMC sampling is the burn-in period in which the chain moves from a random starting 62 

model to a high-probability region. The second stage is often called the sampling stage in which the 63 

small fluctuations of the misfit value indicate that the MCMC algorithm reaches the stationary 64 

regime. Usually the samples accepted during the burn-in period do not accurately represent the 65 

target density and for this reason they are disregarded in the computation of the PPD.  66 

Another issue of any geophysical inversion is determining the optimal model parameterization (i.e. 67 

number of layers) that guarantees a good compromise between model resolution and posterior 68 

uncertainty (Fernández-Martínez, 2015; Aleardi 2015; Menke 2018). A transdimensional MCMC 69 

inversion treats the number of model parameters as an unknown to be inferred from the data (Green 70 

1995; Malinverno 2000; Sambridge et al. 2006). In the past years, transdimensional MCMC 71 

algorithms have been successfully applied to solve inverse problems especially at the earthquake 72 

seismology scale (Bodin and Sambridge, 2009; Bodin et al. 2012), whereas over the last few years 73 

their applications have also been extended to exploration and applied geophysics (Dadi et al. 2016; 74 

Ray et al. 2017; Mandolesi et al. 2018; Xiang et al. 2018; Galletti and Curtis 2018; Zhu and Gibson, 75 

2018; Cho et al. 2018). In the context of surface waves inversion, it is known (e.g. Socco and 76 

Strobbia, 2004) that the chosen model parameterization (i.e. number of layers) heavily affects the 77 

outcomes of dispersion curve inversion. For this reason, it is desirable to use an inversion approach 78 



that automatically adapts the underlying model parametrization and that produces solutions with an 79 

appropriate level of complexity to fit the data to statistically meaningful levels. However, specific 80 

MCMC recipes targeted to the problem at hand must be implemented to maintain the computational 81 

effort of the Markov chain sampling affordable. More specifically, MCMC methods are primarily 82 

affected by low acceptance rates and show high correlations between successively sampled models.  83 

Hamiltonian Monte Carlo (HMC; Duane et al. 1987) algorithm was designed to circumvent these 84 

critical issues of MCMC algorithms. The main benefits of HMC with respect to standard MCMC 85 

algorithms are its rapid convergence toward the stationary regime, so that the burn-in phase is 86 

drastically reduced, and its ability to make long jumps in the model space, so that the independence 87 

of the sampled models is guaranteed. HMC exploits the derivative information of the target PPD to 88 

focus on the most promising regions of the model space, that is regions containing more plausible 89 

models. HMC was developed for problems in which the derivative of the target probability density 90 

with respect to the model parameters can be computed quickly (MacKay, 2003; Bishop 2006; Neal 91 

2011; Betancourt 2017). More in detail, HMC treats a model as the mechanical analogue of a 92 

particle that moves from its current position (current model) to a new position (proposed model) 93 

along a given trajectory (Muir and Tkalcic, 2015; Sen and Biswas 2017; Fichtner and Simuté, 2018; 94 

Fichtner et al. 2019). The geometry of the trajectory is controlled by the kinetic energy (K), by the 95 

mass of the particle, and by the potential energy (U) that is interpreted as the misfit function. Note 96 

that the kinetic energy and the mass matrix are artificially introduced as auxiliary quantities and 97 

allow for the inclusion of the derivative information of the misfit function into the sampling 98 

framework. In case of optimal tuning of the hyperparameters, the acceptance rate in standard 99 

MCMC sampling (such as for the random walk Metropolis) lies between 0.2-0.4 (Sambridge and 100 

Moseggard, 2002), while in case of optimal tuning the acceptance rate of HMC is very close to 0.6 101 

(Neal, 2011).  102 

In this work we compare the transdimensional MCMC and HMC algorithms for inverting Rayleigh 103 

wave dispersion curves and we discuss some of their main benefits and drawbacks.  The 104 



transdimensional MCMC has been already applied for inverting surface waves and some examples 105 

can be found in Bodin et al. (2012), Dettmer et al. (2012), and Galletti et al. (2016). Differently, this 106 

is the first application of HMC to dispersion curve inversion and to the best of our knowledge this is 107 

the first paper in which these two methods are extensively compared in solving this inverse 108 

problem. For this reason, we develop a mainly didactic perspective without including any 109 

methodological novelties to the rjMCMC and HMC approaches and by limiting the attention to 110 

synthetic data inversions in which only the fundamental mode is considered. 111 

We apply a birth-death reversible jump MCMC algorithm (rjMCMC; Geyer and Møller, 1994), in 112 

which the amplitude of the variation of the number of dimensions is one (i.e. only one layer can be 113 

added or deleted to the current model). Both algorithms invert for the shear wave velocity (Vs) and 114 

the compressional wave velocity over the shear wave velocity (Vp/Vs) ratio. The rjMCM also 115 

considers the number of layers and the depth location of the layer interfaces as additional unknowns 116 

to be inverted for, whereas the HMC uses a fixed model parameterization but considers the layer 117 

thickness as un unknown parameter. To avoid biased parameter estimations, we treat the Vp/Vs ratio 118 

as an unknown, although this parameter exerts a small influence on the observed dispersion curves. 119 

The density has an even smaller influence on the observed dispersion curve than the Vp/Vs ratio, 120 

and for this reason this parameter is not inverted but fixed to a previously determined value. 121 

We increase the efficiency of the implemented rjMCMC approach by applying a parallel tempering 122 

strategy (Sambridge, 2014) and a delayed rejection updating scheme (Bodin and Sambridge 2009). 123 

As previously mentioned, HMC requires the model parameterization (number of layers) as an input 124 

to the inversion. For this reason, we here estimate the most probable model dimensionality by 125 

making use of common statistical tools, such as the chi-squared (χ2) probability and the Bayesian 126 

information criterion “BIC”  (Schwartz 1978; Ando 2010; Sambridge et al. 2006), which are 127 

applied to models sampled in different inversion runs in which different model parameterizations 128 

are employed. 129 



For both the rjMCMC and HMC we perform what we call semi-analytical and seismic inversion 130 

tests on 1D reference models. In the first case the observed data (dispersion curves) are semi-131 

analytically derived from the true model, while in the seismic tests the dispersion curves are 132 

extracted from seismic shot gathers computed on the reference models by means of the reflectivity 133 

algorithm (Mallick and Fraser 1987). In all the following experiments we limit to consider the 134 

fundamental mode as the observed data, although it is known that higher modes are essentially to 135 

better constraints the solution in case of shear velocity inversions and/or high stiffness contrasts 136 

within the soil column (Feng et al. 2005; Luo et al. 2009;  Cercato, 2011; Farrugia et al. 2016; 137 

Sajeva and Menanno 2017; Qiu et al. 2019). We return to this aspect in more detail in the discussion 138 

section. The extraction of the dispersion curves is always a very delicate step especially when 139 

higher modes are more energetic than the fundamental one (Xia et al. 2003; Luo et al. 2009; Boiero 140 

et al. 2011). In this work concerning synthetic data, we simply extract the observed data by picking 141 

the maxima of the fundamental mode in the frequency-phase velocity spectra. In both the semi-142 

analytical and seismic inversions, the forward modelling is based on Haskell-Thompson (Haskell 143 

1953) method that considers a stack of horizontal, homogeneous, layers. This method is also used in 144 

the semi-analytical tests to compute the observed data from the reference models. 145 

For two inversion examples we quantitatively validate the rjMCMC and HMC outcomes by 146 

comparing the estimated marginal PPDs and by analysing some of the most popular sensitivity 147 

analysis tools such as the model resolution matrices, posterior model covariance matrices, and 148 

posterior correlation matrices (Menke, 2018), which are numerically computed from the ensemble 149 

of sampled models. In addition, we the relate these matrices and the estimated PPDs to the 150 

geometrical properties of the misfit function (L2 norm difference between observed and predicted 151 

dispersion curves). 152 

In the following we start with a theoretical description of the rjMCMC and HMC approaches. Only 153 

the main mathematical aspects of the methods are described, while the interested reader is referred 154 

to pertinent references for further details. Then, we discuss the outcomes of the semi-analytical and 155 



seismic inversion tests. Additional theoretical and practical insights into Monte Carlo inversion of 156 

geophysical data can be found in Mosegaard and Tarantola (1995), Sambridge and Mosegaard 157 

(2002), Mosegaard and Sambridge (2002), and Scalzo et al. (2019). 158 

METHODS 159 

Birth-death reversible jump Markov Chain Monte Carlo 160 

The Bayes theorem can be written as: 161 

 162 

or 163 

 164 

where equation 1 represents the Bayesian equation for inverse problems with a fixed number of 165 

unknowns, while equation 2 is the Bayesian formulation in case of parameterizations with different 166 

number of unknowns n. In both equations 1 and 2, d is the N-dimensional observed data vector, and 167 

m is the Q-dimensional model parameter vector, whereas the left-hand side terms represent the 168 

target PPD that could be numerically estimated from the ensemble of models sampled by the 169 

MCMC algorithm after the burn-in phase. In a transdimensional MCMC, the Metropolis-Hasting 170 

rule determines the acceptance probability α, which is the probability to move from a model m with 171 

dimension n to a model  with dimension at a given step of the chain: 172 

 173 

where  is the Jacobian of the transformation from  to  and is needed to account for the scale 174 

changes when the transformation involves a jump between models with different dimensions; q() is 175 

the proposal distribution that defines the new model  as a random deviate from a probability 176 



distribution  conditioned only on the current model . Note that the proposal ratio term in 177 

equation 3 vanishes if symmetric proposals (for example Gaussian proposals) are employed in a 178 

fixed-dimensional model space (i.e.  and  have the same dimensions).  In addition, for the 179 

birth-death rjMCMC algorithm the determinant of the Jacobian is equal to 1 and thus it can be 180 

conveniently ignored in computing the acceptance ratio (Bodin and Sambridge 2009).  181 

We consider a Dirichlet prior distribution for interface locations and bounded and independent 182 

uniform priors for Vs and Vp/Vs ratio. We also assume a Gaussian distributed, uncorrelated noise 183 

with data covariance matrix equal to , whereas the likelihood function is based on a L2 norm 184 

misfit between observed and predicted data.  185 

In particular, in the rjMCMC inversion the model vector  includes the Vs and Vp/Vs ratio (in the 186 

following equations often indicated with γ for notational convenience) of the  layers and the vector 187 

 expressing the location of the of the  interfaces;  . 188 

The prior for model dimension is independent of the prior of layer properties and layer partitioning 189 

(distribution of interfaces depths over the depth range of interest), so that the prior model can be 190 

written as:  191 

 192 

where is the prior on layer partitioning,  is the prior on the number of layers, whereas 193 

 represents the prior on Vs and γ. By assuming uncorrelated layer properties, equation 4 194 

becomes: 195 

 196 



The prior  is defined as a uniform distribution bounded in the interval [ ]: 197 

 198 

where . A uniform bounded prior for the interface depth within the partition is 199 

given by the Dirichlet distribution (Steininger et al. 2013):  200 

 201 

where  is the maximum allowed depth position of an interface.  202 

We define the prior for each layer property (Vs and γ) to be a bounded uniform distribution 203 

between [ ]: 204 

 205 

where  generically represents both Vs and γ with . 206 

The assumption of uncorrelated Vs and Vp/Vs ratio is an oversimplification that results in an 207 

augmented null-space of solutions and in an decreased convergence of the sampling. However, in 208 

the following applications the limited number of model parameters (always less than 12) guarantees 209 

the rapid convergence of the algorithm even though an oversimplified prior model is used.  210 

If we assume Gaussian distributed, uncorrelated noise with a covariance matrix , the likelihood 211 

function takes the following form: 212 



 213 

where L is the number of data points, whereas  is the weighted L2 214 

norm difference between observed and predicted data.  215 

To increase the computational efficiency of the algorithm, we employ a parallel tempering strategy 216 

(Dosso et al. 2012; Sambridge, 2014) in which multiple and interactive chains are simultaneously 217 

run at different temperature levels T=[T1,T2,…,Tmax]. High-temperature chains ensure a wide 218 

exploration of the model space, whereas low-temperature chains exploit the high-probability 219 

regions. According to stochastic criteria, swaps of models are allowed between chains at different 220 

temperatures, and in this context the high temperature chains ensure that low-temperature chains 221 

access all the high probability regions while maintaining an efficient exploitation capability. Only 222 

the models collected at T=1 are considered in the computation of the PPD because the models 223 

collected at T>1 sample a biased posterior probability density function. In this context the 224 

likelihood ratio of equation 3 becomes: 225 

 226 

In the approach to parallel tempering applied here, the two chains for a proposed swap are chosen at 227 

random from all chains at each iteration, and these chains are allowed to exchange their current 228 

models (or equivalently their current temperature levels). To derive the interchange probability let 229 

us consider two independent Markov chains with temperature  and  with current models  and 230 

, respectively. At a given Monte Carlo step the two chains exchange their models with a 231 

probability equal to: 232 



 233 

and if the swap is accepted: 234 

 235 

In the dispersion curve inversion, the spread of the PPD is influenced by the model parameter 236 

illumination that, for example, decreases as the depth of investigation increases. In other terms, the 237 

optimal variance of the proposal for a given model parameter (e.g. Vs and Vp/Vs) is expected to 238 

vary with depth. For this reason, we increase the efficiency of the implemented rjMCMC sampling 239 

by using a delayed rejection scheme: after a rejected perturbation, a second attempt is made with a 240 

different proposal that could be theoretically dependent or independent from the previously rejected 241 

model. If the second move is independent from  we can simply write (Bodin and Sambridge 242 

2009): 243 

 244 

In practice we derive  by perturbing  according to a second proposal distribution  245 

characterized by a reduced variance with respect to the first proposal . To make the computation 246 

of the  straightforward, the delayed rejection scheme is here applied only to the fixed-247 

dimension moves (see the following discussion). This strategy automatically adapts the 248 

characteristics of the proposal distribution to the spread of the PPD along different directions in the 249 

parameter space. 250 

For even iteration numbers, we apply the following perturbation scheme:  251 



• Property move: Randomly pick one layer and perturb its Vs and Vp/Vs values according to a 252 

Gaussian proposal distribution with a null mean value and a previously selected variance. 253 

For odd iteration numbers we select one of the following updating strategies with equal probability: 254 

• Interface move: Randomly pick one interface and slightly perturb its position using a 255 

Gaussian proposal with a zero mean and a previously selected variance. This move 256 

guarantees a small variation in the likelihood between the current and the candidate models. 257 

However, to prevent the creation of a too thin layer, if an interface is moved too close to 258 

another interface, the move is rejected.  259 

• Birth move: Add a new interface to the model at a given vertical location. Then, pick the Vs 260 

and Vp/Vs values for the newly created layer from the corresponding prior models. 261 

• Death move: choose at random one interface and remove it from the model. Then, randomly 262 

select the layer above or below the deleted interface and assign its properties to the whole 263 

vertical interval pertaining to the deleted layer. 264 

It can be demonstrated that the previously described MCMC recipe results in an acceptance ratio for 265 

all the moves equal to (see Dosso et al. 2014 and Xiang et al. 2018 for a complete mathematical 266 

derivation): 267 

 268 

In the following examples we consider a uniform prior for Vs defined over [50 m/s, 400 m/s], a 269 

uniform prior for Vp/Vs ratio defined over [1.8, 5.8], whereas the number of layers is bounded 270 

between [2, 5], for a maximum allowed depth position for an interface equal to 20 m. The variances 271 

of the proposals are properly set to have an acceptance probability between 0.2-0.4 for the chains 272 

running at . For each chain the starting models are randomly generated from the prior. In all 273 

the following experiments, we employ 20 tempered chains, with 10 chains at T=1 and the remainder 274 



with logarithmically distributed temperature values between 1 and 100. The highest temperature 275 

values are set to obtain an acceptance probability around 0.6-0.7 for the corresponding chain. The 276 

number of iterations is set to 3000 with a burn-in period of 300. Figure 1 represents the flow-chart 277 

of the rjMCMC algorithm. 278 

 279 

 280 

Figure 1: A schematic representation of the rjMCMC inversion. N iter, iter max, and Curr chain 281 

identify the current iteration number, the maximum number of iterations, and the considered chain, 282 

respectively. 283 

 284 

Hamiltonian Monte Carlo  285 

The Hamiltonian Monte Carlo is another method to numerically solve the Bayes theorem (equation 286 

1). HMC improves upon random walk Metropolis by proposing states that are distant from the 287 

current one, but nevertheless have a high probability of acceptance (Duane et al. 1987; Neal, 1996; 288 

Neal 2011; Betancourt 2017). These distant proposals are found by numerically simulating the 289 

Hamiltonian dynamics, in which a model is viewed as a moving particle with a physical state 290 

uniquely determined by the position and momentum vectors: These vectors define the phase space. 291 

HMC samples an auxiliary distribution defined over the 2Q-dimensional phase space, from which 292 



samples of the posterior can be obtained by ignoring the momentum space component. The particle 293 

trajectory in the phase space is determined by the potential energy (U), the kinetic energy (K) and 294 

the mass matrix (M). The potential energy is the negative natural logarithm of the posterior (see 295 

equation 1) or in other terms is the misfit function associated to the inverse problem. In this context 296 

more plausible models with large values of the posterior are associated to low potential energies. 297 

Generally speaking, the potential energy is given by: 298 

 299 

HMC determines the kinetic energy by introducing an auxiliary variable (momentum variable) p 300 

defined over a Q-dimensional space. It is usually assumed that the auxiliary momentum variable has 301 

a multivariate normal distribution with zero mean and a covariance matrix equal to the so-called 302 

mass matrix:  303 

 304 

where N represents the Gaussian distribution, and M is the Q×Q mass matrix that must be 305 

accurately set to ensure the convergence of the HMC algorithm (see Fichtner et al. 2019).  The 306 

vectors p and  define the 2Q-dimensional phase space, whereas the Hamiltonian  is the 307 

total energy of the particle: 308 

      309 

After defining the kinetic and potential energies, the Hamiltonian dynamics can be simulated. In 310 

this context, the model  moves through the 2Q-phase space according to Hamilton’s equations:  311 

 312 

where t indicates the artificially introduced time variable. Note that the rightmost term of equation 313 

18 contains the partial derivative of the potential energy (i.e. the misfit function) with respect to the 314 



considered model . This makes it possible introducing information about the gradient of the misfit 315 

function into the Monte Carlo sampling framework.  316 

For each current model , and for each iteration, HMC executes the following steps:  317 

1. Randomly draw the Q momenta  from the normal distribution ; 318 

2. Derive the proposed model and the new momenta by solving Hamilton’s 319 

equations (18) for a given propagation time . In this work we use the leap-frog method as 320 

the numerical integration method (Betancourt, 2017);  321 

3. Accept the proposed model with probability : 322 

 323 

If accepted, the proposed point constitutes the starting model for the next trajectory 324 

( ). Otherwise, the current model m is again used as the starting point in the 325 

following iteration; 326 

4. Return to step 1.  327 

 328 

Note that standard MCMC algorithms explore model space only slowly compared to HMC, because 329 

in HMC all model parameters are updated at each iteration, so that long distances in phase space 330 

can be traversed with a single move. This promotes a high level of acceptance and independence of 331 

the sampled models. Differently, in standard MCMC only subsets of parameters are updated in each 332 

iteration. This maintains a relatively high level of acceptance but at the expense of a high degree of 333 

correlation between successively sampled models. For a more detailed comparison of MCMC and 334 

HMC see, for example, Fichtner et al. (2019). 335 

The model vector in the implemented HMC approach includes the Vs, the Vp/Vs ratio and the layer 336 

thicknesses  of each layer: . We use equation 16 to define the momentum 337 



distribution. Since it is known that standard HMC exhibits poor performance in sampling 338 

multimodal target densities (see the discussion section), we simply employ a Gaussian prior model. 339 

In this context the prior model can be compactly written as follows: 340 

 341 

where  and  are the a-priori mean vector and model covariance matrix that can be derived, 342 

for example, from previous knowledge about the investigated area. In the following inversion 343 

examples, we assume an uncorrelated and depth independent prior model (i.e.  is diagonal).  344 

In this work the potential energy is defined as: 345 

 346 

The partial derivative of equation 21 with respect to the model parameter vector is equal to: 347 

 348 

In equations 21 and 22, G is the non-linear forward modelling that computes the dispersion curves 349 

from the current model (i.e. the Haskell-Thompson method),  is the data covariance matrix that 350 

expresses the error affecting the observed dispersion curve (under the assumption of a Gaussian 351 

distribution).  is the Jacobian matrix (also called Fréchet derivative matrix) that we compute with a 352 

central finite difference (FD) approach (Aster et al. 2018). We use the FD approach for its 353 

straightforward implementation but if needed other more sophisticated and more efficient methods 354 

can be used (Sen and Roy, 2003).  355 



A proper setting of the mass matrix ( ) is of crucial importance in any HMC sampling (see for 356 

example Fichtner et al. 2019) because it serves as a tuning parameter to adjust the speed with which 357 

the phase space is traversed, or in other words it is used to decorrelate the target distribution 358 

(Betancourt, 2017). In practice, a proper setting of this matrix maximizes the independency of the 359 

sampled models, while preventing the exploration of similar model space regions. The optimal 360 

setting of the mass matrix is strongly case dependent, but typical applications use a diagonal  361 

defined as a scalar multiple of the identity matrix. However, this strategy often hampers an efficient 362 

sampling of the parameter space.  In this work, the mass matrix is computed as a local 363 

approximation (around the considered model) of the inverse of the posterior covariance matrix (see 364 

Fichtner et al. 2019):  365 

 366 

In the leapfrog method, we update the momentum and position variables sequentially. First, we 367 

simulate the momentum dynamics (changing momentum) by δ∕2 time units, then simulating the 368 

position dynamics (moving in model space) for full δ time units, then again completing the 369 

momentum simulation for the remaining half-time units, δ∕2, so that the momentum and model 370 

perturbations can be at the same time of δ time units. This process is repeated for a total of L times 371 

after which the algorithm reaches a new state. The leapfrog method integration is described by the 372 

following equations: 373 

 374 

 375 

 376 



where t is the time variable. Although, many other integrator methods exist (see for example Blanes 377 

et al. 2014), here we use the leapfrog method for its easy implementation. 378 

 In addition to the mass matrix, also the choice of L and δ plays an important role in the efficiency 379 

of the sampling and for this reason these parameters need to be tuned properly to get the desired 380 

acceptance rate. In particular, they determine the sampling trajectory in the augmented model space. 381 

A too short trajectory generates proposal models very close to the current position, thus slowing 382 

down the exploration of the model space. In contrast, if the trajectory is too long the algorithms 383 

revisits points in model space that have been already sampled, thereby wasting computing time. To 384 

avoid locking in periodic trajectories we follow the strategy discussed in Mackenze (1989) and in 385 

each HMC iteration we draw the L parameter randomly from a previously defined uniform 386 

distribution (see the discussion section for more details). More theoretical details about HMC 387 

inversion can be found in Neal (2011) and Betancourt (2017).  388 

Differently from the rjMCMC, the model dimensionality (layer number) is fixed in an HMC 389 

inversion run. For this reason, we propose to determine the most probable number of layers by 390 

performing different HMC inversions with different parameterizations. Then, standard statistical 391 

tools, such as the χ2 probability and the BIC, can be used to determine the most probable model 392 

dimensionality. In the following examples we use a single HMC chain running for 3000 iterations, 393 

for a burn-in period of 30 samples. Similarly to the rjMCMC, the starting points for the HMC 394 

inversions are randomly generated from the prior distribution. Figure 2 shows the schematic flow-395 

chart of the implemented HMC inversion.  396 

 397 



 398 

Figure 2: The schematic workflow of the HMC inversion. N iter and iter max identify the current 399 

iteration number and the maximum number of iterations, respectively. 400 

SEMI-ANALYTICAL INVERSIONS 401 

We represent in Figure 3 the prior models for the rjMCMC and HMC algorithms. Note that these 402 

priors are depth independent and different for the two inversion approaches: uniform for rjMCMC 403 

and Gaussian for HMC.  404 

 405 

Figure 3: a) Prior distributions of Vs, Vp/Vs ratio, interface depth, and number of layers for the 406 

rjMCMc algorithm. b) Prior distributions for the HMC algorithm projected onto the Vs, Vp/Vs, and 407 

layer thickness axes. 408 



The use of uniform and Gaussian priors highly simplifies the derivation of the acceptance ratio in 409 

the rjMCMC and of the posterior model in the HMC inversions, respectively. From a theoretical 410 

point of view the use of different priors complicates a direct comparison of the posterior models 411 

provided by the two inversion algorithms. Indeed, the posterior tends to the prior as the likelihood 412 

function becomes less informative. Despite this difference, we will see that the two methods 413 

provide PPD estimations congruent with the likelihood function and with the considered prior 414 

models. In particular, they yield similar posterior estimations for the model parameters better 415 

constrained by the data. For detailed investigation of the influence played by the prior model in a 416 

Bayesian inversion we refer the reader to Malinverno and Briggs (2004), and Theune et al. (2010). 417 

 418 

Transdimensional Markov Chain Monte Carlo inversions  419 

In this section we consider two schematic subsurface models with 2 and 4 layers, respectively. The 420 

frequency range of the data lies in the interval [4-30 Hz], whereas the noise standard deviation is 421 

assumed known and fixed to a value of 5 for all the frequencies.  422 

 423 

Figure 4: Semi-analytical inversion results provided by the rjMCMC algorithm for the 2-layer 424 

model. a) True Vs model (green line) and marginal PPD for Vs (colour scale). b) True Vp/Vs model 425 

(green line) and marginal PPD for Vp/Vs ratio (colour scale). c) Marginal PPD for interface 426 

location. d) Prior and posterior probability density functions for the number of layers. e) 427 



Comparison between the observed noisy data (black line), the data generated on the starting 428 

models (green lines) and the data generated on the last sampled models (red line). The black bars 429 

represent the noise standard deviation. f) Example of evolution of the L2 norm misfit for 10 chains 430 

out of 20. 431 

 432 

Figure 5: Semi-analytical inversion results provided by the rjMCMC algorithm for the 4-layer 433 

model. a) True Vs model (green line) and marginal PPD for Vs (colour scale). b) Marginal PPD for 434 

interface location. c) Prior and posterior probability density functions for the number of layers. d) 435 

Comparison between the observed noisy data (black line), the data generated on the starting 436 

models (green lines) and the data generated on the last sampled models (red line). The black bars 437 

represent the noise standard deviation. e) Example of evolution of the L2 norm misfit for 10 chains 438 

out of 20.  439 

We start from a very schematic model constituted by two layers separated by an interface located at 440 

8 m depth. The marginal PPDs of Vs and interface location show that the inversion recovers the 441 

interface positions, the Vs of the first layer and that of the half-space (Figure 4). Conversely, as 442 

expected, the estimated Vp/Vs ratio is affected by much greater ambiguity. For this reason, in many 443 

of the following examples the estimated Vp/Vs ratio is not discussed. The algorithm has reliably 444 

sampled the PPD for the number of layers and yields a maximum-a-posteriori (MAP) solution that 445 



matches the correct value of 2. The data comparison in Figure 5d demonstrates that the algorithm 446 

successfully converges toward the so-called equivalence region of solutions. Finally, Figure 4f 447 

proves that the rjMCMC reaches the stationary regime after 200 iterations approximately, when the 448 

L2 errors of the different chains start to oscillate around stable values.  449 

The second example considers a 4-layer model (Figure 5). As expected, we observe an increase of 450 

uncertainties with respect to the previous test, related to the increased ill-conditioning of the 451 

inversion procedure. The Vs of the shallowest layer and the position of the shallowest interface are 452 

recovered with high accuracy, while the uncertainties on the estimated Vs and on the interface 453 

positions increase for the deepest layers and deepest interfaces. The uncertainties affecting the 454 

model parameterization (Figure 5c) increase with respect to the previous example. In this case both 455 

the 3-layer and the 4-layer parameterizations exhibit similar posterior probability values, although 456 

the MAP solution erroneously indicates that 3 is the most probable number layers, thus 457 

underestimating the correct number of layers (4).  This proves that in cases of more than 3 layers 458 

and if we consider the fundamental mode only, the estimation of the number of layers becomes a 459 

severely ill-conditioned problem. Differently, the inversion still provides satisfactory shear wave 460 

velocity predictions. Figure 5d proves that the models sampled by the rjMCMC algorithm 461 

successfully predict the observed data, whereas the evolution of the L2 norm data misfit (Figure 5e) 462 

shows that the stationary regime is reached after 300 iterations, approximately. 463 

 464 

Hamiltonian Monte Carlo inversion  465 

In this section we again consider the 2- and 4-layer models already used in the rjMCMC inversion. 466 

In the 2-layer model example our aim is to compare the uncertainties affecting the final solution 467 

when the dispersion curves lie in different frequency bands. In the first test the dispersion curve 468 

extends over [3-30 Hz], whereas in the second case the observed data lie in the interval [6-30 Hz]. 469 

Both examples consider a correct number of layers equal to 2. In Figure 6 we represent the results 470 



for the 3-30 Hz example. The marginal PPDs of Vs and interface location show that the inversion 471 

correctly and accurately estimates the true model. Differently the Vp/Vs ratio is not recovered, as 472 

demonstrated by a posterior distribution still very similar to the prior with a depth-independent 473 

MAP value equal to 4 (see Figure 6b). Note the fast convergence rate and that less than 20 iterations 474 

are needed to reach the stationary regime. The data comparison in Figure 6e demonstrates that the 475 

algorithm successfully predicts the observed data.  Figure 7 shows the results for the 6-30 Hz 476 

example. We observe that the Vs of the first layer has been recovered with the same accuracy of the 477 

previous example. Differently, the position of the interface and particularly the velocity of the 478 

deepest layer are now estimated with higher uncertainties. This is mainly related to the lack of low 479 

frequencies in the observed data that are crucial to constraint the Vs of the deepest layer (Socco and 480 

Strobbia, 2004).  481 

 482 

 483 

Figure 6: Semi-analytical inversion results for the 2-layer model provided by the HMC algorithm in 484 

the frequency range [3-30] Hz. a) True Vs model (green line) and marginal Vs PPD (colour scale).  485 

b) True Vp/Vs model (green line) and marginal Vp/Vs PPD (colour scale). c) Marginal PPD for 486 

interface location. d) Evolution of the L2 norm misfit. e) Comparison between the observed noisy 487 



data (black line), the data generated on the starting model (green line) and the data generated on 488 

the last sampled model (red line). The black bars represent the noise standard deviation. 489 

 490 

Figure 7: Semi-analytical inversion results for the 2-layer model provided by the HMC algorithm in 491 

the frequency range [6-30] Hz. a) True Vs model (green line) and marginal Vs PPD (colour scale).  492 

b) Marginal PPD for interface location. c) Evolution of the L2 norm misfit. d) Comparison between 493 

the observed noisy data (black line), the data generated on the starting model (green line) and the 494 

data generated on the last sampled model (red line). The black bars represent the noise standard 495 

deviation. 496 

We now perform different inversion runs with different model parameterizations (i.e. different 497 

number of layers) and considering a frequency band between 4 and 30 Hz. We compute the 498 

observed data on the 4-layer model already considered in the rjMCMC inversion (Figure 5), and we 499 

invert by considering a 4- and a 3-layer parameterization. Figure 8 shows that if the correct 500 

parameterization is employed, the inversion is still able to accurately predict the Vs of the two 501 

shallowest layers and to correctly locate the shallowest layer boundary. As expected, the shear wave 502 



velocities of the intermediate layers and the position of the deepest interface are recovered with 503 

high uncertainties. If we consider the 3-layer parameterization, we are still able to accurately predict 504 

the velocity of the two shallowest layers and to correctly locate the positions of the two shallowest 505 

interfaces but the position of the deepest interface and the Vs of the third layer are not recovered.  506 

 p(χ2) BIC 

2-layer parameterization 0.0003 38.93 

3-layer parameterization 0.0386 21.93 

4-layer parameterization 0.0199 32.30 

Table 1: p(χ2) and BIC values for the semi-analytical test resulting from different model 507 

parameterizations.  508 

 509 

Figure 8: Semi-analytical inversion results for the 4-layer model provided by the HMC algorithm 510 

for a 4-layer parameterization. a) True Vs model (green line) and marginal Vs PPD (colour scale).  511 

b) Marginal PPD for interface location. c) Evolution of the L2 norm misfit. d) Comparison between 512 

the observed noisy data (black line), the data generated on the starting model (green line) and the 513 



data generated on the last sampled model (red line). The black bars represent the noise standard 514 

deviation. 515 

 516 

 517 

Figure 9: As in Figure 8 but for a 3-layer parameterization. 518 

Table 1 shows the p(χ2) and BIC values obtained in this semi-analytical test when different model 519 

parameterizations are employed. The higher p(χ2) and lower BIC values for the 3-layer 520 

parameterization indicate that this is the most appropriate in this case. This result still proves that 521 

estimating the correct number of layers for a 4-layer model from the fundamental model only is a 522 

hopelessly ill-conditioned problem. Despite this limitation the Vs profile is still retrieved with 523 

reasonable accuracy. Finally, in both Figures 8c and 9c note the fast convergence of the HMC 524 

algorithm toward the stationary regime that is reached just after 20 iterations.  525 

 526 

Sensitivity analysis of the inversion results 527 



In this section we discuss in more detail the statistical properties of the ensemble of models sampled 528 

by the HMC and rjMCMC algorithms. For brevity we limit to a single semi-analytical test running 529 

on the previously considered 2-layer model and employing observed data lying in the same 530 

frequency range (6-30 Hz). All the algorithm hyperparameters are the same previously used in the 531 

2-layer examples. First, we compute the misfit function of the inversion procedure that is the L2 532 

norm difference between observed and predicted dispersion curves. We remind that this misfit 533 

function is directly related to the likelihood function of the Bayesian inversion through equation 9. 534 

Figure 10 shows some examples of 2D projections of the misfit function, in which the elongated 535 

valleys of minimum represent directions in the model space, and then model parameter 536 

combinations, that weakly affect the observed data. In other terms the elongated valleys are aligned 537 

with the eigenvectors in model space associated with the smallest singular values of the inversion 538 

kernel (Fernandez Martinez et al. 2012).  539 

 540 

Figure 10: Some projections of the L2 norm misfit function onto different 2D sections. The 541 

subscripts 1 and 2 refer to the first (shallowest) and second (deepest) layer, respectively, whereas h 542 

indicates the layer thickness. The black arrows in d) indicate two local minima.  543 

 544 

As expected, the contours lines of the misfit function are very different from elliptic cylinders or 545 

ellipses as it would be in a linear inverse problem (Fernandez Martinez et al. 2012). From the 546 

inspection of Figure 10 we note that the dispersion curve is mostly influenced by the Vs of the 547 

shallowest layer (Vs1) , followed by the Vs of the deepest layer (Vs2), and by the thickness of the 548 

first layer (h1), while the Vp/Vs ratio plays a negligible role in determining the measured data. From 549 

the analysis of the orientation of the misfit function we can claim that the shear wave velocities of 550 



the two layers independently influence the data since the axes of the global minimum valley are 551 

almost parallel to the model parameter axes (Figure 10a). In Figure 10b if we focus the attention to 552 

the neighbourhood of the global minimum, we see that the Vs and the thickness of the first layer are 553 

positively correlated. The orientation of minimum valley in Figure 10c indicates a strong positive 554 

correlation between the Vs of the second layer and the thickness of the first one. In other terms, to 555 

keep the data unchanged, an increase of the thickness of the first layer must be compensated by an 556 

increase of the shear wave velocity of the underlying layer. In any case all these 3 parameters (Vs1, 557 

Vs2 and h1 in Figure 10) are informed by the data and none of them lies in the null space of 558 

solutions. This means that the posterior model for these parameters will be mainly influenced by the 559 

likelihood function instead by the a-priori assumptions. For this reason, in case of an accurate 560 

sampling we expect that the geometrical characteristics of the misfit function influence the 561 

statistical properties of the estimated PPDs. On the contrary. we observe in Figure 10d that the 562 

Vp/Vs ratio is not illuminated by the data as the misfit function shows a very elongated valley with 563 

two minima: one local minimum for a Vp/Vs ratio equal to 2.4, and the global minimum 564 

corresponding to Vp/Vs ratio of the reference model equal to 4. In this case the two axes of the 565 

minimum valley are aligned with the two considered model parameters and this means that the Vs 566 

and the Vp/Vs of the first layer independently influence the observed dispersion curve. Similar 567 

conclusions could have been drawn about the resolvability of the Vp/Vs ratio of the second layer 568 

(not shown here for brevity). For this reason, we conclude that the Vp/Vs ratio lies in the null space 569 

of solutions and for this reason we expect that the associated PPDs will be mainly determined by 570 

the a-priori assumptions in case of an informative prior model  (i.e. the Gaussian prior used by the 571 

HMC algorithm), or by the likelihood function for an uninformative prior (i.e. the uniform prior 572 

used by rjMCMC).  573 



 574 

Figure 11: 2D Marginal PPDs estimated by the rjMCMC (a) and by the HMC (b) algorithms.  575 

Figure 11 shows 2D marginal PPDs projected onto the same sections previously considered in 576 

Figure 10. Both the posterior models estimated by the rjMCMC and HMC algorithms confirm that 577 

the Vs of the first layer is the parameter mostly illuminated by the data, followed by the Vs of the 578 

second layer and the thickness of the first layer. As expected, the posterior estimations of these 579 

parameters are mainly driven by the likelihood function and for this reason both HMC and 580 

rjMCMC provide similar PPD predictions, although the informative, Gaussian prior adopted by 581 

HMC often gives narrower posterior estimations with respect to rjMCMC. Differently the estimated 582 

PPDs for the Vp/Vs ratio of the first layer are substantially different, because mainly influenced by 583 

the prior model. Indeed, the HMC provides a Gaussian posterior centred on the prior mean value of 584 

4, while the uninformative prior used by the rjMCMC results in a posterior model very similar to 585 

the likelihood. In this case, note that two local maxima of the posterior model (Figure 11a rightmost 586 

plot) correspond to the two local minima of the misfit function (Figure 10d). The model parameter 587 

correlation can also be correctly inferred from the sampled models. Indeed Figure 11 clearly shows 588 

the independence of the Vs of the two layers, the weak positive correlation between the Vs and the 589 

thickness of the first layer, the independence of the Vs and the Vp/Vs ratio of the firs layer, and the 590 

strong positive correlation between the Vs of the second layer and the thickness of the underlying 591 

layer.  592 



 593 

Figure 12: From left to right we represent: non-dimensional model resolution matrix, posterior 594 

model covariance matrix, and posterior model correlation matrix. a) and b) represent the results 595 

for the rjMCMC and HMC algorithms, respectively.  596 

For a further quantitative quantification of the results provided by the two sampling methods we use 597 

the ensemble of sampled models to compute some of the most popular sensitivity analysis tools 598 

such as the model resolution matrix and the posterior model covariance matrix. Since the inversion 599 

considers different parameter types (seismic velocity and thickness) the off-diagonal elements of the 600 

model resolution matrix and of the posterior covariance matrix become dimensionally dependent, 601 

thus complicating their visual inspection. For this reason, we resort to scale these matrices with 602 

respect to the prior and posterior standard deviation of the model parameters, thus deriving the non-603 

dimensional model resolution matrix and posterior correlation matrix (see Sambridge, 1999). For 604 

example, the values corresponding to the i-th row and j-th column of the non-dimensional model 605 

resolution matrix is derived as: 606 

 607 



where and  are the a-priori standard deviations of the i-th and j-th model parameter 608 

respectively, whereas  and  are the standard and non-dimensional model resolution matrices, 609 

respectively. The posterior correlation matrix  can be computed as follows:   610 

 611 

where  is the posterior model covariance matrix. Figure 12 demonstrates that the rjMCMC and 612 

HMC provide similar non-dimensional model resolution matrices, posterior covariance matrices 613 

and posterior model correlation matrices especially for the parameters better illuminated by the data 614 

(Vs and layer thickness). We observe an almost perfect resolution on the Vs of the two layers and a 615 

slightly lower resolution for the layer thickness, while the Vp/Vs ratios are not resolved. Due to the 616 

different parameter dimensionality the analysis of the posterior covariance matrix only reveals that 617 

the Vs of the first layer is more accurately estimated than that of the second layer. The posterior 618 

model correlation matrices show the almost null correlation among the shear wave velocities of the 619 

two layers, the weak positive correlation between the Vs and the thickness of the first layer, the null 620 

correlation between the Vp/Vs ratio and the Vs of the first layer, and the strong positive correlation 621 

between the Vs of the second layer and the thickness of the first one.  622 

For the sake of clarity, we point out that for the HMC algorithm the matrices shown in Figure 12 623 

have been derived from the ensemble of models sampled after the burn-in period. Differently, not 624 

all the models sampled by rjMCMC have the same dimensionality and for this reason the matrices 625 

shown in Figure 12 have been computed from the sampled models with two layers, that corresponds 626 

to the estimated MAP solution for the layer number. 627 

Finally, this analysis confirms that although the rjMCMC and HMC algorithms use different model 628 

parameterizations and prior models, they not only achieve comparable and congruent estimates of 629 



Vs, and interface positions but also provide the same insight into the model parameter correlation 630 

and resolution, at least for the parameters better constrained by the data. Indeed, for these 631 

parameters the posterior sampling is mainly driven by the likelihood function instead of by the a-632 

priori constraints.  633 

 634 

SEISMIC INVERSIONS 635 

In the following experiments the observed dispersion curves have been picked on the frequency-636 

phase velocity spectra derived from synthetic shot gathers. For the sake of conciseness, we limit the 637 

attention to two examples pertaining to two different 3-layer reference models. The first example 638 

concerns a subsurface model with a steady increase of Vs with depth. The second example is more 639 

challenging because it considers a model in which the Vs of the second layer is lower than that of 640 

the first layer. This velocity inversion complicates the picking of the fundamental mode because 641 

higher modes become more energetic than the fundamental mode at high frequencies. In both cases 642 

we employ the reflectivity algorithm as the forward modelling, where the source signature is a 15-643 

Hz Ricker wavelet with a sampling interval of 2 ms. We simulate an off-end acquisition geometry 644 

with a minimum offset of 10 m and 48 receivers equally spaced of 5 m, resulting in a maximum 645 

offset of 245 m. Before the picking procedure we add to the synthetic seismic data, Gaussian 646 

random noise with a standard deviation equal to the 100 % of the standard deviation of the noise-647 

free seismic dataset. As a result, differently from the previous inversion tests, the noise standard 648 

deviation contaminating the observed dispersion pattern is not constant over the frequency range 649 

but decreases as the frequency increases. For this reason, the diagonal entries of the data covariance 650 

matrix are now related to the ambiguity affecting the picking of the dispersion curve. The prior 651 

distributions are the same previously used in the semi-analytical tests. 652 

 653 



 654 

Figure 13: Data associated to the first 3-layer reference model used in the seismic tests. a) Noise 655 

contaminated shot gather. b) Close-up of a). c) Fourier amplitude spectra of a). d) Phase velocity 656 

spectra derived on a). In d) blue and red colors code low and high amplitude values, respectively. 657 



 658 

Figure 14: Data associated to the second 3-layer reference model. a) Noise-contaminated shot 659 

gather. b) Close-up of a). c) Fourier amplitude spectra of a). d) Phase velocity spectra derived on 660 

a). In d) blue and red colors code low and high amplitude values, respectively.  661 

Figures 13 and 14 show the shot gathers, their Fourier amplitude spectra and the frequency-phase 662 

velocity spectra. In Figure 13 note that the steady Vs increase with depth makes it possible an 663 

accurate identification of the fundamental mode over the entire frequency range [5-30 Hz], but 664 

especially at high frequencies. Differently in Figure 14, the velocity inversion generates higher 665 

modes that become dominant for frequencies higher than 20 Hz. For this reason, in this case the 666 

rjMCMC and HMC inversions run in a narrower frequency band ranging from 5 to 20 Hz.   667 

 668 

Transdimensional Markov Chain Monte Carlo inversion 669 

Figure 15 shows the rjMCMC inversion results for the first 3-layer model. The Vs of the shallowest 670 

layer and the position of the first interface are well resolved. As expected, the uncertainties rapidly 671 

increase with depth. The overall loss of accuracy on the Vs and interface position with respect to the 672 

semi-analytical inversions is obviously produced by the loss of low frequencies (frequency lower 673 



than 5 Hz) and by the higher uncertainties contaminating the picked dispersion curve at low 674 

frequencies. Figures 15c and 15d prove that the algorithm, even in this not favourable scenario, 675 

correctly identifies the correct number of layers and produces final dispersion curves that match the 676 

observed data. The evolution of the L2 norm error shows that the stationary regime is reached after 677 

200 iterations, approximately. 678 

 679 

Figure 15: Seismic inversion results for the first 3-layer model. a) True Vs model (green line) and 680 

marginal PPD for Vs (colour scale). b) Marginal PPD for interface location. c) Prior and posterior 681 

probability density functions for the number of layers. d) Comparison between the picked 682 

dispersion curve (black line), the data generated on the starting models (green line), and the data 683 

generated on the last sampled models (red line). The black bars represent the noise standard 684 

deviation. e) Example of evolution of the L2 norm misfit for 10 chains out of 20. 685 

 686 

Figure 16 displays the results for the second 3-layer model. We note that in spite of the more 687 

complex dispersion pattern generated by the shear-wave velocity inversion, the algorithm correctly 688 

estimates the velocity of the first two shallowest layers, and the velocity inversion occurring at 6 m 689 

depth, while the uncertainties significantly increase for the Vs of the deepest layer.  The layer 690 

interfaces are still accurately located, and the number of layers is correctly determined. The 691 



comparison of the picked and finally sampled dispersion curves confirms the convergence of the 692 

algorithm to the stationary regime that is attained after 200 iterations, approximately.  693 

 694 

Figure 16: As in Figure 15 but for the second 3-layer model. 695 

 696 

Hamiltonian Monte Carlo inversion  697 

We now discuss the results obtained by the HMC algorithm on the data generated from the two 698 

considered 3-layer models. Figure 17 represents the outcomes of the first example without the 699 

velocity inversion. If we adopt a 3-layer parameterization we accurately predict the Vs of the 700 

shallowest layer and the position of the first interface. The accuracy of the results rapidly decreases 701 

as the depth increases, although the shear velocity of the second layer is still predicted with 702 

acceptable accuracy, while the Vs of the third layer and the position of the second interface are 703 

slightly underpredicted. This is obviously related to the lack of low frequencies in the data and to 704 

the severe noise contamination at low frequencies that produces high uncertainties in the picking 705 

phase (see Figure 14). However, the overall Vs trend and the positions of the layer interfaces are 706 

still recovered with reasonable accuracy. The evolution of the data misfit shows the rapid 707 

convergence of the HMC algorithm toward the stationary regime, that is attained in less than 30 708 

iterations. Again, the final predicted data shows a good match with the picked dispersion curve.     709 



 710 

Figure 17: Seismic inversion results for the first 3-layer model and considering a 3-layer 711 

parameterization. a) True Vs model (green line) and marginal Vs PPD (colour scale).  b) Marginal 712 

PPD for interface location. c) Evolution of the L2 norm misfit. d) Comparison between the picked 713 

dispersion curve (black line), the data generated on the starting model (green line) and the data 714 

generated on the last sampled model (red line). The black bars represent the noise standard 715 

deviation. 716 

Similarly to the semi-analytical inversion tests, we now rerun the HMC inversion on the same data 717 

but employing a 4-layer parameterization. The results are shown in Figure 18. The Vs of the 718 

shallowest layer and the position of the first interface are accurately predicted and also the Vs of the 719 

second layer is well recovered, while high uncertainties affect the estimated positions of the deepest 720 

interfaces and the Vs of the deepest layer. Spurious interfaces are predicted by the algorithm below 721 

15 m depth. Similarly to the previous example, less than 30 iterations are enough to converge 722 

toward the stationary regime in which the predicted data closely match the dispersion curve 723 

extracted from the seismic shot gather.  724 



Table 2 demonstrates that our inversion workflow correctly identifies the correct number of layers 725 

in this first seismic inversion and proves that the statistical tools we use (p(χ2) and BIC) could 726 

constitute a valid help to select the optimal model parameterization. 727 

 p(χ2) BIC 

2-layer parameterization 0.0092 38.93 

3-layer parameterization 0.0342 25.20 

4-layer parameterization 0.0105 31.30 

Table 2: p(χ2) and BIC values for the first seismic inversion resulting from different model 728 

parameterizations. 729 

 730 

Figure 18: As in Figure 17 but for a 4-layer parameterization. 731 

If we compare Figure 17 with Figure 15, we note that HMC provides more accurate predictions 732 

(affected by lower uncertainties) with respect to the rjMCMC algorithm, especially for the Vs of the 733 

two deepest layers and the position of the deepest interface. Probably, conversely to the 734 

uninformative (i.e. uniform) priors used by the rjMCMC, the Gaussian prior employed by the HMC 735 



method efficiently contributes to reduce the ensemble of possible solutions. In this case the a-priori 736 

constraints play a crucial role in determining the posterior model due to the ill-conditioning of the 737 

inverse problem that is mainly related to the narrow frequency band and to the noise contamination 738 

at low frequency.  739 

Figure 19 displays the results for the second model and for a 3-layer parameterization. The Vs of the 740 

two shallowest layers are well resolved, and despite the velocity inversion the algorithm accurately 741 

predicts a low velocity layer located between 6 m and 11 m depth. The uncertainties in the 742 

estimated Vs rapidly increase as the depth increases and the velocity of the deepest layer is not well 743 

recovered with a MAP solution that significantly underestimates the actual velocity value. Figure 744 

19b demonstrates that the HMC algorithm correctly identifies the position of the interfaces, whereas 745 

Figure 19c shows that in 30 iterations the algorithm converges toward the stationary regime, after 746 

which the observed data is fairly reproduced by the sampled models (Figure 19d). 747 

 p(χ2) BIC 

2-layer parameterization 8×10-7 48.92 

3-layer parameterization 0.076 36.61 

4-layer parameterization 0.021 41.42 

Table 3: p(χ2) and BIC values for the second synthetic test resulting from different model 748 

parameterizations. 749 

Figure 20 illustrates the results obtained on the same dataset but with a 2-layer parameterization. 750 

The velocity of the shallowest layer is still accurately retrieved, but the Vs of the deepest layers and 751 

the interface locations are not correctly estimated and show MAP solutions affected by significant 752 

biases. The evolution of the L2 norm error value demonstrates that in this case more iterations are 753 

needed to converge (for this reason we adopt only for this test a burn-in period of 150 samples), 754 

whereas the data generated on the final sampled model show some discrepancies with respect to the 755 

picked dispersion curve especially at low and high frequencies. Again, the p(χ2) and BIC values 756 



listed in Table 3 confirm that the proposed HMC workflow correctly estimates the actual number of 757 

layers. 758 

 759 

 760 

Figure 19: Seismic inversion results for the second 3-layer model and considering a 3-layer 761 

parameterization. a) True Vs model (green line) and marginal Vs PPD (colour scale). b) Marginal 762 

PPD for interface location. c) Evolution of the L2 norm misfit. d) Comparison between the picked 763 

dispersion curve (black line), the data generated on the starting model (green line) and the data 764 

generated on the last sampled model (red line). The black bars represent the noise standard 765 

deviation. 766 



 767 

Figure 20: As in Figure 19 but for a 2-layer parameterization. 768 

If we compare Figure 16 and Figure 19, we note that the rjMCMC and HMC algorithms provide 769 

congruent and comparable PPDs for the shear wave velocity and interface locations. This means 770 

that the posterior model for these parameters is mainly influenced by the observed data than by the 771 

a-priori constraints infused into the inversion framework. This aspect is deepened in the following 772 

section. 773 

 774 

Sensitivity analysis of the inversion results 775 

We now discuss the results of the sensitivity analysis for the second 3-layer model. Differently from 776 

the semi-analytical examples, we limit our discussion to the model parameters that can be inferred 777 

from the data (i.e. the Vp/Vs ratio is not discussed). Figure 21 shows some 2D projections of the L2 778 

norm misfit function. We observe that the shear wave velocities of the first two layers (Vs1 and Vs2) 779 

are the parameters that mostly influence the dispersion curve, followed by the layer thicknesses (h1 780 

and h2) and by the Vs of the deepest layers (Vs3). Between the considered parameters, the velocity 781 

of the third layer is the one that plays the minor role in determining the dispersion pattern. 782 



From the orientation of the global minimum valleys we observe positive correlations between the 783 

Vs and the thickness of the second layer and between the Vs of the third layer and the thickness of 784 

the second one (Figures 21b and 21c), while the shear wave velocities and the thicknesses of the 785 

first two shallowest layers are negatively correlated (Figures 21a and 21d).   786 

 787 

Figure 21: Some projections of the L2 norm misfit function onto different 2D sections. The 788 

subscripts 1 and 2 refer to the first (shallowest) and second (deepest) layer, respectively, whereas h 789 

indicates the layer thickness.  790 

 791 

Figure 22 shows 2D marginal PPDs estimated by the HMC and rjMCMC algorithms and projected 792 

onto the same sections previously considered in Figure 21. For both the rjMCMC and HMC 793 

inversions emerges that the velocities and the thicknesses of the first and second layer are well 794 

recovered, while higher uncertainties affect the estimated Vs of the deepest layer. We also observe a 795 

positive correlation between Vs2 and h2, and between Vs3 and h2, while negative correlations 796 

characterize the marginal PPDs projected onto the Vs1-Vs2 and h1-h2 planes.  797 

The non-dimensional model resolution matrices (left hand side of Figure 23) confirm that the Vs of 798 

the two shallowest layers are the best resolved model parameters, while lower resolutions 799 

characterize the Vs of the third layer and the layer thicknesses. The mutual parameter correlations 800 

expressed by the 2D projections of the marginal PPDs can be also inferred from the inspection of 801 

the posterior correlation matrices (right hand side of Figure 23).  The marginal PPDs displayed in 802 

Figure 22 and the non-dimensional model resolution matrices and posterior model correlation 803 

matrices of Figure 23 are in good agreement with the geometrical characteristics of the misfit 804 



function (Figure 21). This proves that both the implemented algorithms accurately estimate the 805 

uncertainties affecting the model parameters and their mutual correlations. 806 

 807 

Figure 22: 2D Marginal PPDs estimated by (a) the rjMCMC and by (b) the HMC algorithms.  808 

 809 

Figure 23: From left to right we represent: non-dimensional model resolution matrices, and 810 

posterior correlation matrices provided by the rjMCMC (a) and HMC(b) algorithms.  811 

 812 

DISCUSSION 813 

The main advantage of the rjMCMC algorithm is the possibility to provide stable and reliable 814 

predictions with a minimum of a-priori constraints infused into the inversion kernel. Indeed, it does 815 

not require any statistical test to choose the adequate model parameterization and do not include any 816 

regularization operator to force the model to honour some external constraints. Instead, it 817 

automatically adjusts the underlying model parametrization to produce solutions with appropriate 818 



level of complexity to fit the data to statistically meaningful levels. The downside of rjMCMC is 819 

that a specific recipe for the problem at hand is usually needed to speed up to convergence of the 820 

sampling toward the stationary regime. To mitigate this issue, in this work we employed a parallel 821 

tempering strategy and a delayed rejection perturbation scheme: the former ensures optimal 822 

exploitation and exploration capabilities, while the latter locally adapts the proposal to the shape of 823 

the posterior. In particular, the convergence speed of the algorithm critically depends on the choice 824 

of the statistical characteristics of such proposal distribution: a suboptimal proposal distribution 825 

causes a persistent rejection of models, thus significantly reducing the exploitation of the algorithm. 826 

Note that the updating of the different chains in the rjMCMC inversion can be done in parallel with 827 

the different chains distributed across different processors. Such parallelizability and the 20 828 

available CPUs make it possible the application of the parallel tempering and the delayed rejection 829 

strategies with a limited extra computational cost. Indeed, in the parallel tempering the models 830 

sampled at T>1 must be disaggregated when computing the PPD and this fact implies that many 831 

chains (each one involving a forward modelling run per iteration) are needed to converge to a stable 832 

posterior. On the other hand, the delayed rejection implies the computation of an additional forward 833 

solution in a single iteration when the first proposed model is rejected. For this reason, the 834 

application of these two strategies must be carefully evaluated. In our inversion tests we found that 835 

they are effective in speeding up the converge of the chains toward the stationary regime, in 836 

promoting the exploration of the parameter space, and in increasing the acceptance rate of the 837 

rjMCMC. Thanks to the limited number of unknown parameters (i.e. limited number of layers in the 838 

inverted models) in our tests we found that an uncorrelated Gaussian proposal constitutes a good 839 

compromise between acceptance rate and convergence of the sampling. If needed more 840 

sophisticated strategies based on SVD decomposition and orthogonal projections could be used to 841 

include a covariance model into the model perturbation scheme (Dosso et al. 2014). Another limit 842 

of the rjMCMC is that the successively sampled models are usually highly correlated. For this 843 

reason, to avoid biased PPD estimations (MacKay, 2003) not all the models sampled after the burn-844 



in phase have been used to numerically compute the PPD, but several iterations of the algorithm are 845 

allowed to elapse in between successive samples. In all the previous examples only 1 model every 5 846 

is considered in the computation of the posterior model.  847 

The main advantage of HMC is that it guarantees an efficient sampling with a rapid convergence 848 

toward the stationary regime.  This ability rests on the exploitation of the derivative information that 849 

other Monte Carlo methods, such the well-known random walk Metropolis (that is the basis of the 850 

rjMCMC algorithm), do not consider. In particular, the HMC provides highly independent samples 851 

and for this reason a lower number of iterations are needed for a reliable estimation of the posterior 852 

model with respect to MCMC algorithms. Indeed, differently from the rjMCMC inversion, the high 853 

independence of successively sampled models granted by the HMC framework, allows us to exploit 854 

all the models collected after the burn-in phase in computing the PPD. In this work, the HMC 855 

algorithm has been implemented for a Gaussian prior model, but another outstanding benefit of 856 

HMC is the possibility to consider either parametric or non-parametric priors. However, making the 857 

HMC sampling still efficient in highly multimodal distributions is an active research field nowadays 858 

(Girolami and Calderhead, 2011; Nishimura and Dunson, 2016; Graham and Storkey, 2017). 859 

Differently from rjMCMC, one limit of HMC is that the model parameterization is an input to the 860 

inversion. In this study we propose to solve this issue by performing different inversions with 861 

different parameterizations and then using the sampled models and standard statistical tools to 862 

determine the most probable number of layers. Another limit is that the HMC algorithm can be 863 

applied to problems where the derivative of the posterior model can be rapidly computed and where 864 

this derivative is continuous. For example, such derivative becomes discontinuous if multiple 865 

dispersion modes are considered. For this reason, in this work we have limited the attention the 866 

fundamental mode only. Currently, we are investigating this issue in order to possibly extend the 867 

HMC to the inversion of multiple modes. For the sake of consistency, in this work also the 868 

rjMCMC inversion has been limited to the fundamental model. However, the rjMCMC algorithm 869 

does not exploit any derivative information and for this reason the current implementation can be 870 



directly used for inverting higher modes. Another critical element of HMC is the choice of a 871 

suitable mass matrix. In the examples discussed here we found that setting this matrix equal to the 872 

inverse of the locally approximated posterior covariance guaranteed stable posterior estimations. 873 

Other choices of the mass matrix, for examples a diagonal matrix (e.g. a scalar multiple of the 874 

identity matrix) resulted in very slow convergence and unreliable posterior assessments (see 875 

Fichtner et al. 2019). Another critical aspect of HMC is the choice of the length of the trajectory in 876 

the phase space.  We overcome this issue by drawing the L parameter (which controls the number of 877 

time integration steps and the trajectory length) from a previously defined uniform distribution in 878 

each iteration. However, the trajectory length can be adaptively set, for example by adopting the so 879 

called no U-turns sampling method (Gelman et al. 2013; Hoffman and Gelman et al. 2014) that 880 

terminates the integration when the trajectory begins to return towards its starting point. In any case, 881 

in the examples discussed here we found that 3–6 time steps per trajectory are usually optimal. 882 

Using fewer time steps, leads to very high acceptance rates but at the expense of a limited model 883 

space exploration and slow convergence. Otherwise, a larger number of time steps resulted in low 884 

acceptance rates and in a decreased accuracy of the numerical integration.  885 

To get the benefits of both the rjMCMC and HMC algorithms, we are also investigating the 886 

possibility to hybridize these two methods and to implement a transdimensional Hamiltonian 887 

algorithm for surface wave inversions, that is an inversion approach that infers the most appropriate 888 

model parameterizations from the data and that is also characterized by an extremely efficient 889 

sampling of the parameter space. An example of this approach applied to reflection seismic data can 890 

be found in Sen and Biswas (2017).  891 

We ran all our experiments on two deca-core intel E5-2630 @2.2 GHz (128 Gb RAM) and 892 

employing parallel Matlab inversion codes. Table 4 lists some more quantitative details about the 893 

HMC and rjMCMC seismic inversions on the second subsurface model (the Vs model with the 894 

velocity inversion). The total computational time was 11 and 19 minutes for rjMCMC and HMC, 895 

respectively. We point out that in our current implementations the rjMCMC algorithm is more 896 



scalable than HMC, although the HMC requires a lower number of sampled models to provide a 897 

stable posterior. In particular, note that the total number of forward modelling runs in the HMC is 898 

higher than that associated to the rjMCMC.  Indeed, for a single chain and for a single iteration, the 899 

rjMCMC algorithm requires just one forward modelling run, while in the HMC several forward 900 

evaluations are needed to compute the Jacobian matrix associated to each considered model. This 901 

number of forward evaluations depends on the number of unknown parameters, on the length of the 902 

trajectory in the phase space (value of the L parameter), and on the adopted FD scheme. For a Q-903 

dimensional model space, the number of forward evaluations per iteration is given by (Q×2+1)×L if 904 

a central FD scheme is adopted. This number reduces to (Q+1)×L if a forward FD is employed. For 905 

this reason, a computationally efficient derivation of the Jacobian matrix would be crucial to 906 

drastically reduce the computational time of each iteration. Although we employ a computationally 907 

intensive numerical approach to derive the Jacobian, we reduce the computational effort of the 908 

HMC by computing each column of this matrix in parallel. Indeed, the columns of the Jacobian are 909 

independent to each other and their computation can be distributed across different processors. This 910 

fact, together with the limited computational cost of the forward solver, did not hamper the 911 

application of this method to the considered examples. Possible strategies to drastically reduce the 912 

number of forward evaluations could be the adoption of a less computationally expensive FD 913 

scheme (e.g. forward finite difference) and/or the adoption of a more parsimonious parameterization 914 

of the model space. From the one hand, additional experiments we carried out (not shown here for 915 

brevity) demonstrated that the application of the forward difference approach does not sensibly 916 

affect the sampling efficiency of the method. On the other hand, since the number of columns on 917 

the Jacobian is equal to the number of unknowns, we can reduce the number of forward modelling 918 

runs by reducing the number of model parameters, for example by inverting for the Vs and layer 919 

thickness and not for the Vp/Vs ratio that is known to be not constrained by the data. To put this in 920 

perspective, if we consider a forward FD scheme and we remove the Vp/Vs ratio from the model 921 

vector, the number of forward evaluations on the seismic inversion on the second subsurface model 922 



is reduced from 229500 to 81000 (see Table 4). Note that this value is lower than the number of 923 

forward evaluations ran by the rjMCMC inversion on the same example (103200).  Machine 924 

learning approaches could also be useful to reduce the computational cost of MCMC inversion 925 

(Hansen and Cordua 2017). In our specific case, machine learning algorithm can be trained to predict 926 

a local approximation of the Jacobian matrix around a considered model. 927 

 928 

  rjMCMC HMC 

Average computational time 

for a single forward modelling 

evaluation 

 0.063 s 

Number of iterations (per 

chain) 

3000 3000 

Number of chains 20 1 

Total number of forward 

modelling evaluations 

103200 

(this number takes into 

account also the forward 

modellings related to the 

delayed rejection) 

229500 

(this number takes into 

account the forward modelling 

runs needed to compute the 

Jacobian with the central finite 

difference approach) 

Total number of sampled 

models 

60000 3000 

Number of models used to 

compute the posterior 

5600 2970 

Average computational time of 

a single iteration 

0.21 s 

(considering all the 20 chains 

0.38 s 

(This number varies for 



running in parallel) different iterations because is 

dependent on the drawn L 

value) 

Average computational time 

for the Jacobian computation 

in a single iteration 

Not applicable 0.32 s 

(This number varies for 

different iterations because is 

dependent on the drawn L 

value) 

Table 4: Some details of the rjMCMC and HMC inversions for the last seismic inversion. 929 

 930 

CONCLUSIONS 931 

We implemented a Hamiltonian Monte Carlo (HMC) algorithm and a reversible jump Marko chain 932 

Monte Carlo (rjMCMC) algorithm for Rayleigh wave dispersion curve inversion. This inverse 933 

problem is highly non-linear and highly ill-conditioned. For this reason, the ultimate goal of this 934 

study was to compare two inversion approaches that guarantee reliable uncertainty quantifications, 935 

that estimate the most probable model parameterization (i.e. number of layers in the subsurface), 936 

and that yield stable predictions not affected by the choice of the starting model. We limited the 937 

attention to synthetic tests to maintain the discussion at a didactic level and to draw essential 938 

conclusions about the main benefits and drawbacks of the two implemented approaches in the 939 

context of dispersion curve inversion. Our experiments demonstrated that HMC and rjMCMC are 940 

very promising approaches for dispersion curve inversion as they provide reliable assessment of the 941 

posterior uncertainties also for this highly non-linear and severely ill-conditioned inverse problem. 942 

In particular, the HMC and rjMCMC algorithms yielded uncertainty quantifications and model 943 

predictions in accordance with the expected model parameter illuminations and model parameter 944 

correlations. For example, the uncertainty increases passing from Vs to Vp/Vs ratio and increases as 945 



the depth of investigation increases or when the noise in the observed data increases. 946 

Notwithstanding the two algorithms use different model parameterizations and prior assumptions, 947 

they estimate congruent and comparable posterior uncertainties and model parameter correlations 948 

especially for the parameters better illuminated by the data, that is for those parameters for which 949 

the PPD is mainly influenced by the likelihood function instead of by the a-priori constraints. The 950 

transdimensional inversion approach and the combined used of HMC and statistical tools (such as 951 

BIC and p(χ2)) demonstrated to be two valid strategies to determine the model parameterization (i.e. 952 

number of layers), at least for subsurface models with a limited number of layers (less than 4 if only 953 

the fundamental model is considered). 954 

For both approaches an efficient parallel code is essential to decrease the computational time of the 955 

inversion procedure related to the many forward modelling runs needed by the HMC to numerically 956 

compute the Jacobian matrix, and by the rjMCMC to make evolve the different chains in a single 957 

iteration. 958 
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