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Abstract Due to the growing availability of Internet ser-

vices in the last decade, the interactions between people

became more and more easy to establish. For example, we

can have an intercontinental job interview, or we can send

real-time multimedia content to any friend of us just

owning a smartphone. All this kind of human activities

generates digital footprints, that describe a complex,

rapidly evolving, network structures. In such dynamic

scenario, one of the most challenging tasks involves the

prediction of future interactions between couples of actors

(i.e., users in online social networks, researchers in col-

laboration networks). In this paper, we approach such

problem by leveraging networks dynamics: to this extent,

we propose a supervised learning approach which exploits

features computed by time-aware forecasts of topological

measures calculated between node pairs. Moreover, since

real social networks are generally composed by weakly

connected modules, we instantiate the interaction predic-

tion problem in two disjoint applicative scenarios: intra-

community and inter-community link prediction.

Experimental results on real time-stamped networks show

how our approach is able to reach high accuracy. Fur-

thermore, we analyze the performances of our methodol-

ogy when varying the typologies of features, community

discovery algorithms and forecast methods.

Keywords Link prediction � Community discovery � Time

series

1 Introduction

Complex networks are nowadays used to describe a wide

range of real-world phenomena: social and biological

interactions, economic systems as well as optimization

problems are examples of how broad is becoming the range

of topics which are studied using network science

approaches. This breadth of applicative scenarios is one of

the main reasons for the renewed interest in network

analysis that, in recent years, is emerged in the scientific

community. Indeed, a wide class of network problems have

been analyzed and applied to several branches of research:

community discovery, link prediction, node ranking and

classification are only few of the several tasks extensively

investigated. Among all those tasks, the most challenging

and interesting ones aim to describe how networks evolve

through time.

Networks are rarely used to model static entities: i.e., in

social contexts we can observe that as time goes by users

appear and disappear, new interactions take place, and

existing ones fell apart disrupting existing paths. Under-

standing these dynamics is the first step to obtain insights

into the real nature of the phenomenon modeled by the

observed network. Moreover, almost all the network

problems can be reformulated in order to take into account
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the temporal dimension: communities can be tracked

through all their life cycle to unveil their history; incre-

mental ranking can be computed in order to optimize

execution costs; links can be predicted using information

obtained by the analysis of topology changes in the local

surroundings of nodes. Networks taking into account the

temporal dimension are called dynamic. The topology of

these networks evolves over time as new links and nodes

may appear or disappear according to the interactions

among their users.

In order to analyze dynamic networks in a reliable way,

the social features affecting their structure and behavior

must be considered. Indeed, temporal changes are some-

times independent from the network topology itself and

result from external factors. The problem of predicting the

existence of hidden links or the creation of new ones in

social networks is commonly referred to as the link pre-

diction problem. In this work, we propose an analytic

process which, exploiting well-known state-of-the-art

techniques, is able to tackle this challenging task in

dynamic networks.

In order to capture how topological features evolve—

knowledge needed to perform prediction in dynamic con-

texts—we made use of time series. Specifically, consider-

ing a dynamic social network, we built a time series for

each social feature of each couple of nodes, that is a

sequence of measures at successive points in time, spaced

at uniform time intervals. In our approach, we used such

structure to forecast future values of each feature: time

series forecasts are then used to solve the link prediction

problem.

Several works highlight that, when addressing link

prediction through supervised learning, it does not appear

to exist a set of features or a similarity index that is out-

performing in all settings: depending on the network ana-

lyzed, various measures could be particularly promising or

not (Liben-Nowell and Kleinberg 2007). This suggests that

the predictors which work best for a given network may be

related to the structure within the network rather than a

universal best set of predictors. Topological similarity

indexes encode information about the relative overlap

between nodes’ neighborhoods. We expect that the more

similar two nodes’ neighborhoods are (e.g., the more

overlap in shared friends), the more likely they may be to

exhibit a future link. Moreover, we exploit well-known

social network characteristics such as power law degree

distribution (Barabási and Albert 1999), the small-world

phenomenon (Watts and Strogatz 1998), and community

structure (Girvan and Newman 2002).

In this study, a valuable topological information that we

leverage regards the modular structure of social networks:

indeed, social networks can be partitioned into densely and

internally connected vertex sets and it has been extensively

observed that such topologies provide bounds to the

sociality of the users within them. Furthermore, in a

dynamic scenario, more than in a static one, the evolution

of such boundaries describes changes in people’ social

behaviors. Starting from such observation, we decided to

divide the original problem into two disjoint tasks:

• intra-community interaction prediction;

• inter-community interaction prediction.

Following the hypothesis that friends of friends are more

likely to become friends than individuals who have no

friends in common (Granovetter 1973; Rapoport 1963),

in the former task we restrict our attention to the pre-

diction of new links at time t þ 1 which occur between

individuals who are in the same community at least once

in [0, t]. This strategy has the computationally not neg-

ligible advantage of calculating only the features among

nodes belonging to the same community. The latter task,

on the other hand, focuses on the forecast of future

bridges across network modules: such interactions rep-

resent the weak ties that keep together the overall net-

work structure.

In this paper, we propose a data mining process able to

provide a solution to both tasks: moreover, we formalize

the link prediction problem for dynamic networks, the In-

teraction Prediction. Our approach predicts future inter-

actions by combining dynamic social networks analysis,

time series forecast, feature selection and network com-

munity structure.

The rest of this paper is organized as follows. In Sect. 2

is reported the formal definition of the link prediction

problem studied. Section 3 illustrates the detail of the

proposed approach as a workflow. In Sect. 4 are reported

the experimental results, for both intra-community and

inter-community interaction prediction tasks, obtained

using real-world datasets. Section 5 introduces the related

works for the link prediction problem. Finally, in Sect. 6

conclusions and future works are summarized.

2 Interaction prediction problem

The classic formulation of link prediction involves the use

of the observed network status to predict new edges that are

likely to appear in the future or to unveil hidden connec-

tions among existing nodes. To satisfy this definition, a

wide set of approaches were proposed and tested on several

different domains both in supervised and in unsupervised

fashion. Graph structures are often used to describe rapid-

scale human dynamics: social interactions, call graphs,

buyer–seller scenarios and scientific collaborations are

only few examples. This is exactly the reason why link

prediction has become the principal instrument used to
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address the need of dealing with networks that evolve

through time.

In this work, our aim is to exploit the temporal infor-

mation carried by the appearance and disappearance of

edges in a fully dynamic context: doing so, we plan to

overcome the limitations imposed by the analysis of a static

scenario when making predictions. To model rapid-scale

dynamics, we will adopt the interaction network model:

Definition 1 (Interaction Network) An interaction net-

work G ¼ ðV;E; TÞ, is defined by a set of nodes V and a set

of time-stamped edges E � V � V � T describing the

interactions among them. An edge e 2 E is thus described

by the triple (u, v, t) where u; v 2 V and t 2 T . Each edge

e represents an interaction between nodes u and v that took

place at time t.

To easily analyze an interaction network G, we dis-

cretize it into s consecutive snapshots of the same duration,

thus obtaining a set of graphs G ¼ fG0. . .;Gsg. We assume

that the interactions belonging to Gt are only the ones that

appear in the interval ðt; t þ 1Þ. Such modeling choice

allows us to make predictions not only for interactions that

will take place among previously unconnected nodes, but

also for predicting edges that have already appeared in the

past. This decision is made in order to better simulate the

dynamics that real interaction networks exhibit allowing

nodes and edges both to rise and to fall. In real interaction

networks, this model is a good proxy for structural

dynamics since it allows to implicitly assign a time to leave

to links (i.e., in a call graph, it enables to weight more

recent interactions w.r.t. older ones when predicting future

contacts among a pair of nodes). Due to the adoption of this

more complex graph model, hereafter we will refer to this

peculiar formulation of the LP problem as Interaction

Prediction problem:

Definition 2 (Interaction Prediction) Given a set G ¼
fG0; . . .Gt; . . .Gsg of ordered network observations, with

t 2 T ¼ f0. . .sg, the interaction prediction problem aims

to predict new interactions that will took place at time

sþ 1 thus composing Gsþ1.

In the following section, we introduce our analytical

workflow, built upon a supervised learning strategy,

designed to solve the Interaction Prediction problem.

3 Proposed approach

The Interaction Prediction problem introduces new chal-

lenges to an already complex task. Due to the evolutionary

behavior of the networks subject of our investigation, a

particular effort is needed in order to find a reasonable way

to take care of structural dynamics during the prediction

phase. To this extent, we make use of time-stamped net-

work observations and community knowledge besides

classical features in order to learn a robust machine

learning model able to forecast new interactions. We

design our approach to follow four steps (graphically rep-

resented in Fig. 1):

Step 1 Given an interaction network G as input, for each

temporal snapshot t 2 T we compute a partition

Ct ¼ fCt;0; . . .;Ct;kg of Gt using a community

discovery algorithm. Then we define, for each t

and C, GCt
¼ ðVt;C;Et;CÞ as the subgraph induced

on Gt by the nodes in Ct, such that Vt;C � Vt and

Et;C � Et.

Step 2 For each t 2 T , we consider the interaction

communities Ct of Gt and compute a set of

measures F for each pair of nodes pair ðu; vÞ 2
Wt;C such that Wt;C ¼ fðu; vÞ : u; v 2 Vt;C^
Ct 2 Ctg, that is (u, v) belong to the same

community at time t. Thus, we obtain values

f
u;v
t describing structural features, topological

features and community features of the node pairs

(u, v) at time t.

Step 3 With these values, for each couple of nodes

ðu; vÞ 2 Wt;C and feature f 2 F we build a time

series S
u;v
f using the sequence of measures

f
u;v
0 ; f u;v1 ; . . .; f u;vs . Then, we apply well-known

forecasting techniques in order to obtain its

future expected value f
u;v
sþ1.

Step 4 Finally, we use the set of expected values f
u;v
sþ1 for

each feature f 2 F to build a classifier that will be

able to predict future intra-community

interactions.

In the following, we discuss each step by itself,

proposing solutions that can be used to instantiate the

described analytical process making use of well-known

methodologies.

3.1 Step 1: community discovery

Partitioning a network into communities is a complex task:

for this reason, several approaches were introduced during

the last decade, each one of them tailored to extract com-

munities carrying specific traits. Due to the absence of an

universally shared community definition, in order to eval-

uate the impact of community structure on the predictive

power of the proposed supervised learning strategy, we

tested three different CD algorithms, namely Louvain, In-

fohiermap and DEMON. Here we provide a short

description of their major characteristics, while in the

experimental section we will discuss how they affect the

predictive power of the described analytical process. We
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remind that we adopted community discovery algorithms

to split interaction networks into communities, and then we

used these communities to calculate the features that will

be illustrated in the following and to perform the predic-

tions of new interactions.

Louvain is an heuristic method based on modularity

optimization (Blondel et al. 2008). It is fast and scalable on

very large networks and reaches high accuracy on ad hoc

modular networks. The optimization is performed in two

steps. First, it looks for ‘‘small’’ communities by optimiz-

ing modularity locally. Second, it aggregates nodes

belonging to the same community and builds a new net-

work whose nodes are the communities. These steps are

repeated iteratively until a maximum of modularity is

attained and a hierarchy of communities is produced.

Louvain produces a complete non-overlapping partitioning

of the graph. As most of the approaches based on modu-

larity optimization, it suffers from a ‘‘scale’’ problem that

causes the extraction of few big communities and a high

number of very small ones.

Infohiermap is one of the most accurate and best per-

forming hierarchical non-overlapping clustering algorithms

for community discovery (Rosvall and Bergstrom 2011)

studied to optimize community conductance. The graph

structure is explored with a number of random walks of a

given length and with a given probability of jumping into a

random node. Intuitively, the random walkers are trapped

in a community and exit from it very rarely. Each walk is

described as a sequence of steps inside a community fol-

lowed by a jump. By using unique names for communities

and reusing a short code for nodes inside the community,

the walk description can be highly compressed, in the same

way as reusing street names (nodes) inside different cities

(communities). The renaming is done by assigning a

Huffman coding to the nodes of the network. The best

network partition will result in the shortest description for

all the walks.

DEMON is an incremental and limited time complexity

algorithm for community discovery (Coscia et al. 2012). It

extracts ego networks, i.e., the set of nodes connected to an

ego node u, and identifies the real communities by adopting

a democratic bottom-up merging approach of such struc-

tures. Following this approach, each node, through its ego

network (i.e., the induced graph on his one-hop neighbor-

hood), gives the perspective of the communities sur-

rounding it: all the different nodes perspectives are then

merged together leading to an overlapping partition. To

each ego network is applied a label propagation algorithm

which ignores the presence of the ego itself in order to

identify local micro-communities, and then, with equity,

such individual micro-level is combined with the ones

obtained by the rest of the nodes ego networks. The result

of this combination is a set of overlapping modules, the

guess of the real communities in the global system, made

not by an external observer, but by the actors of the net-

work itself.

We chose to use the aforementioned algorithms since,

due to their formulations, they cover three different kinds

of community definitions: modularity-, conductance- and

density-based ones. Since in our test we vary the structural

properties of the communities used to extract the classifi-

cation features, in the experimental analysis we will be able

to discuss which network partitioning approach is able to

provide more useful insights into future interactions.

Fig. 1 Proposed approach

workflow. The interaction

network is split into network

snapshots and each snapshot is

partitioned using a community

discovery algorithm (Step 1).

Then for each community, a

large set of features describing

nodes and links are calculated

(Step 2). Using these values,

different time series are built

and a forecast of their future

values is provided for the time

of the prediction (Step 3).

Finally, these expected values

are used to train a classifier able

to predict new interactions (Step

4)
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3.2 Step 2: features design

In order to efficiently approach the Interaction Prediction

task using a supervised learning strategy, it is crucial to

identify and calculate a valuable set of features to train the

classifier. When dealing with large-scale graphs that may

include millions of vertices and links, one of the challenges

is the computationally intensive extraction of such features.

Several studies related to link prediction such as Feng et al.

(2012), Fire et al. (2013), Jahanbakhsh et al. (2012),

Lichtnwalter and Chawla (2012), Xu and Rockmore (2012)

have tried to suggest which are the optimal topological

structure of a network and the best features to be used.

Moving from the results of such analysis, we decided to use

information belonging to three different families: pairwise

structural features, global topological features and com-

munity features. We recall that all the features were com-

puted before the community extraction phase on node pairs

sharing the same social context.

3.2.1 Pairwise structural features

In this class fall all themeasures used in the literature to score

the likelihood of new links in unsupervised scenarios.

Starting from the measures proposed in Liben-Nowell and

Kleinberg (2007), we restricted our set to the one in Table 1.

Given a graph G, we will use the following notation:

CðuÞ identifies the set of neighbors of a node u in G; j � j
represents the cardinality of the set �.

• Common Neighbor (CN) assigns as likelihood score of

a new link the number of neighbors shared by endpoints

(Newman 2001).

• Jaccard Coefficient (JC) measures the likelihood of two

nodes to establish a new connection as the ratio among

their shared neighbors and the total number of their

distinct neighbors (Salton and McGill 1983).

• Adamic Adar (AA) refines CN by increasing the

importance of nodes which possess less connections

(Adamic and Adar 2003).

• Preferential Attachment (PA) assumes that the proba-

bility of a future link between two nodes is proportional

to their degree (Barabási and Albert 1999).

As a direct consequence to their formulation, CN, JC and

AA share the same result set composed by all the pair of

nodes at most two-hops in G. However, the values obtained

by the three measures for the same edge do not correlate

(i.e., having a high CN does not imply having high JC or

AA). Conversely, PA generates scores for all the possible

node pairs: we restrict its computation to nodes at most at

distance two to uniform its result set to the ones of the

other measures. We remind that in our calculus of the

features G corresponds to GCt
, that is the subgraphs

induced on Gt for each time stamp t.

3.2.2 Global topological features

The features discussed so far look at the nodes immediate

surroundings. However, also the position of a node within

the network carries valuable information that can be

exploited in order to predict which kind of nodes are

attracted by it.

In the literature, a wide set of measures were proposed

to estimate the centrality of nodes and edges as well as

their rank within a network. These scores are, often,

computationally expensive to calculate: for this reason we

have decided to make use only of two of them whose

definition is reported in Table 2 and calculated on GCt
.

• Degree Centrality (DC) relates the centrality of a node

to its degree.

• PageRank (PR) is a link analysis algorithm introduced

by Page et al. (1999) and used by the Google Web

search engine. It assigns a numerical score to each

element of a hyperlinked set of documents with the

purpose of measuring its relative importance within the

set.

DC and PR scores were computed for both the endpoints of

possible edges pairs: the underlying idea is to understand if

there is some correlation among the centrality of two nodes

and the likelihood of the appearance of a new interaction

between them. This choice can be seen as a way to gen-

eralize the PA measure where the operator defining the

combination of the individual scores is not fixed. For PR,

Table 1 Pairwise structural

features
Measure Description

Common Neighbors (Newman 2001) CNðu; vÞ ¼ jCðuÞ \ CðvÞj
Jaccard Coefficient (Salton and McGill 1983) JCðu; vÞ ¼ jCðuÞ\CðvÞj

jCðuÞ[CðvÞj

Adamic Adar (Adamic and Adar 2003) AAðu; vÞ ¼
P

w2CðuÞ\CðvÞ
1

log jCðwÞj

Preferential Attachment (Barabási and Albert 1999) PAðu; vÞ ¼ jCðuÞj � jCðvÞj

This kind of features, generally used in unsupervised link prediction, captures the likelihood that a new

interaction will happen between a couple of nodes u and v based on their neighbors
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we use as dumping factor (d in the formula) its default

value (0.85).

3.2.3 Community features

One of the most pressing issues related to LP regards the

reduction of false-positive forecasts. To this extent, as

briefly mentioned before, we exploit community discovery

as a way to reduce the number of predictions provided by

the chosen pairwise structural features.

Communities group together nodes that are tightly

connected within each other than with the rest of the net-

work. Making predictions only between nodes belonging to

the same community allows the predictive process to focus

on connections that are more likely to appear, thus dis-

carding the ones connecting different graph substructures.

However, following the general intuition behind the idea of

community, we can take advantage of more specifically

designed measures. Indeed, all the information we can

gather from the topological analysis of the communities

can be used as features describing the extended surround-

ings of nodes. With this aim, we introduce the set of fea-

tures summarized in Table 3.

• Community Size (CS) number of nodes belonging to the

community C.

• CommunityEdges (CE) number of edgeswithin nodes inC.

• Shared Communities (SC) identifies the number of

communities shared by a couple of nodes. When

dealing with network partitions, SC takes value in

f0; 1g, while in case of overlapping communities its

domain is [0, jCj].
• Community Density (D) ratio of edges belonging to the

community over the number of possible edges among

all the nodes within it.

• Transitivity (T) identifies the ratio of triangles with

respect to open ‘‘triads’’ (two edgeswith a shared vertex).

• Max Degree (MD) identifies the degree (w.r.t. the

community subgraph) of the principal hub for the

community.

• Average Degree (AD) identifies the average degree

(w.r.t. the community subgraph) of the nodes within the

community.

3.3 Step 3: forecasting models

The third step of our approach involves the adoption of

time series forecasting models to obtain, given subsequent

observation of the same feature for the same pair of nodes,

an estimation of its future value. Since the behavior of the

observed time series is not known in advance, we adopt

several forecasting models based on different underlying

assumptions. This choice allows us to identify which one

best describes the evolution of the network analyzed later

on. Since the time series we are analyzing are not large, we

have decided to not employ complex models that are

known to be very efficient on extended observation peri-

ods. In fact, we tested four computationally efficient

models that have shown to achieve good performances on

short time series.

In Table 4, we summarize the forecasting approaches

tested: in our definitions we identify with Zt ¼ ðt ¼ 1. . .sÞ
a time series with s observations and with Ht its forecast at

time t.

• Last Value (Lv) considers as forecast the last observed

value of the time series.

• Average (Av) is the average of all the observations in Zt.

• Moving Average (Ma) predicts the next value by taking

the mean of the n most recent observed values of a

Table 2 Global topological features

Measure Description

Degree Centrality DCðuÞ ¼ jCðuÞj
Page Rank (Page et al. 1999) PRðuÞ ¼ 1�d

N
þ d

P
ðu;vÞ2E

PRðvÞ
jCðvÞj

This set of features model the probability of jumping into a particular

node. PRðuÞ is the page rank score of node u, N is the total number of

nodes, and d is the damping factor. In our experimentation, we used

the default value for d (0.85)

Table 3 Community features

Measure Description

Community Size CEðGCÞ ¼ jEC j
Community Edges CEðGCÞ ¼ jEC j
Shared Communities CSðu; v; CÞ ¼ jfCju 2 VC ^ v 2 VC 8C 2 Cgj
Community Density DðCÞ ¼ jEC j

jVC j�ðjVC j�1Þ

Transitivity T ¼ 3
jtrianglesðGCÞj
jtriadsðGCÞj

Max Degree MDðCÞ ¼ maxfjCðuÞj : u 2 VCg
Average Degree

ADðCÞ ¼
P

u2VC
jCðuÞj

jVC j

These features, which are one of the novel contribution of this work,

express the relevance of a node in a community

Table 4 Time series forecasting approaches

Measure Description

Last Value (Lv) Ht ¼ Zt�1

Average (Av)
Ht ¼

PT

i¼1
Zi

s

Moving Average (Ma)
Ht ¼

Ps

i¼s�n
Zi

n

Linear Regression (LR) Htþh ¼ at þ hbt

These simple methods which are very effective on short time series

forecast the future value of a sequence
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series Zt. In our experiments, we have ranged n in the

interval ½1; s�.
• Linear Regression (LR) fits the time series to a straight

line. The level a and the trend b parameter (used to

estimate the slope of the line) were defined by

minimizing the sum of squared errors between the

observed values of the series and the expected ones

estimated by the model.

3.4 Step 4: classifier models

Predicting correctly new interactions is not an easy task.

The complexity is mainly due to the highly unbalanced

class distribution that characterizes the solution space: real-

world networks are generally sparse; thus, the number of

new interactions over the total possible ones tends to be

small. We have discussed how it is possible, at least to

some extent, to mitigate this problem by restricting the

prediction set (i.e., predicting only new edges among nodes

that, during the network history, were involved at least in a

common community).

However, even adopting such precautions we can expect

a substantial unevenness between the positive and the

negative classes. This translates into a very high, hard-to-

improve, threshold for the baseline model (i.e., in case of a

network having density 0.1, which identifies the presence

of ‘‘only’’ 1 / 10 of the possible edges, the majority clas-

sifier is capable of reaching more than 0.9 of accuracy by

simply predicting the absence of new interactions) even

though no interactions will be actually predicted since

every possible future links will be marked as not present).

In order to better characterize our approach, we instan-

tiated it in two different scenarios (both for inter- and for

intra-community predictions):

• Balanced class distribution we adopted class balancing

through downsampling [as performed in previous

works (Lichtenwalter et al. 2010)], thus obtaining

balanced classes and a baseline model having 0.5

accuracy.

• Unbalanced class distribution in order to provide an

estimate of the real predictive power expressed by our

methodology, we tested it against the unbalanced class

distribution as expressed by the original data.

Moreover, since the main focus of this work is to describe a

data mining approach that can be used to solve the Inter-

action Prediction problem and not to discuss a specific

classification model, we evaluated our strategy indepen-

dently from a hosted classifier: for this reason, in the fol-

lowing section we will discuss results achieved by an

ensemble of classifiers showing the scores only for the best

performing ones. In detail, our supervised learning model

set is composed by: decision tree (C4.5, C&R, CHAID,

QUEST, random forest), neural network, SVM and logistic

regression.

4 Experiments and results

In this section, we report the results obtained by applying

our approach to two real-world interaction networks. In

Sect. 4.1, the datasets used to perform the experiments are

briefly introduced. In Sect. 4.2 are discussed the results

obtained focusing the prediction on intra-community

interactions: in such context both balanced and unbalanced

class scenarios are proposed and used to evaluate our

approach. Finally, in Sect. 4.3 the same approach is applied

to the forecast of inter-community interactions, the weak

links that keep together the modular structure composing

complex networks.

4.1 Datasets

We tested our approach on two networks: an interaction

network obtained from a Facebook-like1 Social network

and a co-authorship graph extracted from DBLP2. These

datasets allow us to test our procedure on two different

grounds: a ‘‘virtual’’ context, in which people share

thoughts and opinions via a social media platform, and a

‘‘professional’’ one. The general statistics of the datasets

are shown in Table 5, while a brief resume is in the

following:

Social The Facebook-like social network originates

from an online community for students at University of

California, Irvine. The dataset includes the users that sent

or received at least one message during 6 months. We

discretize the network in 6 monthly snapshot and use the

first 5 to compute the features needed to predict the edges

present in the last one.

DBLP We extract author–author relationships if two

authors collaborated at least in one paper. The co-author-

ship relations fall in temporal window of 10 years

(2001–2010). The network is discretized on yearly basis:

we use the first 9 years to compute the features and set as

target for the prediction the edges belonging to the last one.

In Table 5 we can observe the low average density lD of

the studied networks across the various snapshots. We

notice immediately how the low standard deviation rD and

rCC guarantee the good approximation of the average

density and clustering coefficient as statistic.

For this reason, it is remarkable the fact that Social is

more dense than DBLP even though its clustering

1 http://toreopsahl.com/datasets/.
2 http://dblp.org.
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coefficient is considerably lower than DBLP. This means

that, due to its nature, when a new interaction appears in

DBLP, more than a couple of users is involved, creating

automatically a complete clique, while, in Social, a new

interaction just expresses the exchange of a direct message

between the two users.

4.2 Intra-community interaction prediction

The Interaction Prediction problem is computationally

expensive to address since, in theory, a prediction should

be outputted for each pair of nodes in the network ana-

lyzed. However, social network are known to be sparse and

easily to be partitioned in internally dense substructures.

Leveraging this observation, our approach is designed to

reduce the node pairs for which compute a prediction to the

ones whose endpoints share at least one community

membership. Operating this choice, we focus on analyzing

strong ties—the links inter-communities—and discard the

bridges that connects different communities.

4.2.1 Balanced scenario

It happens frequently, in the LP problem, that the two

classes to be predicted, i.e., there will be a link or not, are

highly unbalanced. In our case, we have highly unbalanced

dataset with a proportion of unlinked–linked of 95.95–

4.055 % for Social, and of 98.13–1.87 for DBLP. Unfor-

tunately, the classifiers used in our experiments need a

balanced test set in order to build the predictive model in

the proper way. Following what is generally done in the

literature, we balanced every snapshot Gt for Social and

DBLP.

To evaluate the performances of the classifiers, we used

the accuracy and AUC which are defined in terms of the

confusion matrix of a binary classifier (see Table 6):

• Accuracy, defined as ACC ¼ TPþTN

TPþFNþTNþFP, mea-

sures the ratio of correct prediction over the total;

• AUC identifies the area under the receiver operating

characteristic (ROC). It illustrates the performances of

binary classifiers relating the true-positive rate TPR ¼
TP

TPþFN to the false-positive rate FPR ¼ FP

FPþTN and

providing a visual interpretation useful to compare

different models.

To better highlight how the proposed approach performs on

real-world networks, we need to compare the outcome of

its instantiations varying the combination of community

discovery algorithms and time series forecast models used.

We carried out a preliminary study aimed at identifying

the optimal window size n for the moving average (Ma)

forecast having fixed the community discovery algorithm.

By definition, the Lv and Av are special cases of the more

general Ma: particularly, the former is equivalent to Ma

when n ¼ 1, while the latter when n ¼ s. In Fig. 2 is

shown, for the three community discovery algorithms, how

the classification accuracy behaves varying the observation

window n. We can observe different trends for Social and

DBLP networks. In the former, the AUC is maximized by

the classifier built upon DEMON communities, while in the

latter the same approach is the one with worst perfor-

mances. This is probably due to the particular definition of

ego-network-based overlapping communities provided by

this approach which is tailored explicitly for social con-

texts. Furthermore, by observing these plots we can con-

clude that, in order to obtain higher performances using

Ma, two strategies are consistent: (1) minimize n using as

forecast the last value (Lv) in order to make inference

approximating the future with the actual network status, or

(2) use n ’ s in order to have a better estimation of the

whole historical trends. Hereafter, we make use of the best

scoring classifiers in Fig. 2 to detail our analysis. We will

refer to them as the Ma models for each specific network

and community definition.

As second step, we compare the outcomes of the clas-

sifiers built using the LR forecast models with the Ma ones.

In Fig. 3 are shown the ROC curves for both Social and

Table 5 Networks statistics: average density lD, average clustering coefficient lCC and their standard deviations, rD and rCC reported as

representative aggregate among the various snapshot

Network Nodes Interactions #Snapshots lCC rCC lD rD

DBLP 747,700 5,319,654 10 (years) 0.665 0.018 3.113e-05 9.602e-06

Social 1899 113,145 6 (months) 0.105 0.015 8.600e-03 1.400e-03

We can observe how DBLP is more ‘‘partitioning prone’’ due to the high clustering coefficient. On the other hand, Social has denser snapshots

Table 6 Confusion matrix of a binary classifier

Predicted

Class 0 Class 1

Actual

Class 0 TN (true neg.) FP (false pos.)

Class 1 FN (false neg.) TP (true pos.)
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DBLP datasets. In the former network, we can observe how

LR and Ma provide very similar results even if the moving

average is always capable of obtaining slightly better per-

formances. DBLP shows the same trend with a small gap

between the two approaches (for this reason, we omit the

LR curve). We report in Table 7 the AUC and the ACC for

all the comparisons.

Once identified the two best performers for Social

(DEMON Ma and Infohiermap Ma) and for DBLP

(Louvain Ma and Infohiermap Ma) w.r.t. AUC and ACC,

we investigated which are the key features that contribute

to their performances. We report in Fig. 4 the relative

importance of the features used by the classifiers for each

method. We can see how in Social the classifier built upon

DEMON (a), as well as the one using Infohiermap com-

munities (c), gives high importance to degree centrality

and community measures (in particular to density, size

and average degree) and tends to make less discriminating

decision using pairwise structural features (with the

exception of PA). Conversely, in DBLP (b, d, e) the

community features set seems to show small predictive

power for both the analyzed algorithms. This discrepancy

is probably due to the different nature of the studied

networks: Social naturally models real social interactions

in a short period, while DBLP is inferred from connec-

tions (working collaborations) that are developed through

years.

In order to understand the boost provided to the classi-

fier by the adoption of the right community discovery

algorithm, we designed two different baselines: Structural

Forecast (SF) and Filtered Structural Forecast (FSF). The

SF model trains the classifier using only the forecasts for

the pairwise structural features (CN, AA, PA and JC)

computed on all the couple of nodes at distance at most 3

hops present in the whole network, not taking into account

the presence/absence of shared communities among them.

On the other hand, the FSF model restricts the computation

to the pair of nodes belonging to the same community as

the proposed approach does. As case study we report in

Fig. 2 Balanced scenario.

Accuracy AUC behavior

varying the observation window

n 2 ½0; s� using the Moving

Average Ma. Dots highlight

highest values

Fig. 3 Balanced scenario. ROC

curves of the various proposed

workflow executed with

different community discovery

algorithms and forecasting

methods. In Social the best

performer is DEMON with

Moving Average, while in

DBLP there is not a

combination considerably better

than the others

Table 7 Balanced scenario

Network DBLP Social

Algorithm AUC ACC (%) AUC ACC (%)

DEMON Ma 0.907 85.58 0.981 93.55

DEMON LR 0.901 84.35 0.970 91.87

Louvain Ma 0.930 87.72 0.880 80.27

Louvain LR 0.926 87.48 0.883 81.37

Infohiermap Ma 0.920 86.69 0.890 81.34

Infohiermap LR 0.917 86.18 0.886 80.89

Compared performances varying community discovery and fore-

casting methods. In bold are the best performers. We can observe how

the prediction is more method independent in DBLP than in Social
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Table 8 AUC and ACC of the best Ma and LR baselines for

the Social dataset.

Since in Social our best performing approach is the one

built upon DEMON communities, the structural features

for the FSF baseline were computed using such partition of

the network. The obtained results show that, using features

extracted from the communities, we are able to gain 0.025

in AUC and 3.45 % in ACC with respect to the FSF Ma

baseline, and 0.08 in AUC and 10:67% in ACC with

respect to the FS Ma one. These results highlight the

importance of communities for the interaction prediction

task, not only in providing features for pair of nodes, but

also in filtering the dataset in order to determine a more

accurate selection of nodes for the prediction. Without loss

of generality, in the rest of this section, in order to reduce

the number of comparisons, we will report a full analysis

only for the Social dataset. Furthermore, the results

obtained for the DBLP scenario do not differ significantly

from the ones discussed with the exception, as seen pre-

viously, of the best community discovery algorithm

(Louvain instead of DEMON). This divergence is due to

the different nature and topology of the networks analyzed.

Feature Class Prevalence Since our models are built

upon three different classes of features (structural, topo-

logical and community related), it is mandatory to test their

results against the classifiers using them separately.

Fig. 4 Balanced scenario.

Features importance: the

classifiers built for Social (in

particular a and c) give high

importance to community

average degree DC, density D

and size SC. On the other hand,

for DBLP the most important

features are the Adamic Adar

AA and preferential attachment

PA
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Such analysis allows us to assess the predictive power of

each class of features, giving an idea of their overall

importance for the complete model. We built a classifier

for each community discovery algorithm and each feature

class by using together all the forecasted versions of the

features belonging to it. As shown in Table 9, regardless of

the community discovery algorithm used, the most pre-

dictive features are the ones belonging to the topology

class, followed by structural and community ones. How-

ever, we can observe how the AUC and ACC are always

higher for the model based on the DEMON approach: this

trend suggests that this algorithm is the one that better

bounds, at least for this network, the nodes that are more

likely to establish future interactions.

Complete Classifier We investigated if the performances

of the analyzed classifiers can be improved by combining

all the features obtained at the end of the forecasting stage

(i.e., all the time series forecasts computed with Ma and

LR). As we can see in Table 10, the performance boost is

negligible with respect to DEMON Ma; in fact, we are able

to gain only 0:35% in ACC maintaining the same AUC

w.r.t. the results shown in Table 7. This means that the

feature set used by our best classifier is ‘‘stable’’: its

extension does not produce advantages that justify an

increase of model complexity. Conversely, for Louvain and

Infohiermap the gain in AUC and ACC is more evident:

this is due to the different degree of approximation intro-

duced for each feature in the forecasting stage.

Features forecast correlation As a consequence to the

minor deviations in performances for different forecasting

methods, we investigated which are the correlations among

the forecasted values calculated by LR and Ma with

n 2 ½0; s�. We analyzed each feature separately observing

the correlation average, median and variance. In Table 11,

we report the average of the variances of these values

aggregated for different classes of features. From this

table emerges that, regarding structural features, Louvain

has the lowest average of variances of correlations, while,

for topological and community related features, it is

DEMON with the lowest correlations.

As a result, we can say that, if we use Infohiermap (that

has the highest average of the variances) to extract the

communities from the interaction network, we should focus

on the choice of the different forecasting methods applied.

On the other hand, if we calculate the communities with

DEMON, it does not matter very much which kind of

forecast technique (LR or Ma) we use to calculate the

expected values. This statement holds less strongly for

Louvain which has a low correlation variance only for

structural features.

Table 8 Balanced scenario

(social)
Algorithm AUC ACC (%)

SF Ma 0.901 82.88

SF LR 0.895 82.18

FSF Ma 0.956 90.10

FSF LR 0.937 88.09

Baselines on structural features

using only Structural Forecast

(SF) features calculated in the

whole network and Filtered

Structural Forecast (FSF) cal-

culated following the proposed

approach

In bold the AUC of the best

performing approach

Table 9 Balances scenario (social)

Algorithm AUC ACC (%)

DEMON Structural 0.957 90.59

DEMON Topology 0.962 91.44

DEMON Community 0.903 83.53

Louvain Structural 0.850 78.63

Louvain Topology 0.875 79.38

Louvain Community 0.724 66.64

Infohiermap Structural 0.876 79.85

Infohiermap Topology 0.887 80.81

Infohiermap Community 0.667 62.11

Compared classifier performances for different classes of features.

We can notice how independently from the community discovery

algorithm the topological features always provide the highest

performances

Table 10 Balanced scenario (social)

Algorithm AUC ACC (%)

DEMON All 0.981 93.90

Louvain All 0.901 83.05

Infohiermap All 0.894 81.91

FS All 0.959 90.44

Compared classifier performances using all the features. DEMON

reaches the highest performances in terms of accuracy and area under

the curve

In bold the AUC of the best performing approach

Table 11 Balanced scenario (social)

Algorithm Structural Topology Community

DEMON 0.023 0.001 0.003

Louvain 0.009 0.017 0.018

Infohiermap 0.042 0.015 0.081

Mean of the variance of the correlations among the values forecasted

with LR and Mv. The higher this value the most careful must be the

choice in selecting the forecasting method
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Features forecast deviation We estimated how good is the

proposed approach by analyzing the deviation of the values

calculated with the forecasting methods with the real val-

ues of the features at sþ 1. The models built using the real

features at sþ 1 reach good performances (see Table 12).

This indicates that a good approximation of the real

values is important to build a reliable classifier. As a

consequence of these good performances, an analysis of the

deviation of the expected values obtained with time series

forecast with the real values is needed to understand which

measures can be predicted better than others with a certain

community discovery algorithm or a certain forecasting

technique. Thus, we analyzed the deviations ðf u;vsþ1 � f̂
u;v
sþ1Þ

2

of the expected values of the different forecasting methods

with the real ones.

We analyzed the sum of squared error (SSE) for each

forecasting method of each feature in Fig. 5, and we

observed that: (1) DEMON and Infohiermap perform better

with Ma, (2) Louvain is generally worse than the others for

every feature, (3) Infohiermap works better for structural

and topological (4), and DEMON minimizes the error for

the community features. However, independently from the

community discovery algorithm or the forecasting method,

the deviation is always very low justifying the good per-

formances previously exposed.

In particular, we found that, with respect to the other

combinations, Infohiermap with LR has the highest SSE

for each attribute. On the other hand, the best approxima-

tions are achieved by Infohiermap and DEMON with Ma

with n 2 f3; 4g. Indeed, with the exception of AA, Louvain
never has the lowest SSE among the features used. At the

same time, by ranking the SSE among the different com-

munity discovery algorithms and forecasting techniques, it

emerges that with Louvain the lowest SSE belongs to AA

while the highest to SC. On the contrary, with DEMON the

lowest SSE belongs to SC, while the highest changes with

respect to the forecasting method. Finally, as far as Info-

hiermap is concerned, we cannot derive nothing interest-

ing. Thus, probably, due to its nature related to ego

networks, DEMON gives better results than the other

community discovery algorithms for community features,

while AA works really well with the communities extrac-

ted by Louvain.

Table 12 Balanced scenario (social)

Algorithm AUC ACC (%)

DEMON 0.987 95.76

Louvain 0.888 81.16

Infohiermap 0.846 75.95

The high performances reached by the classifiers built using the real

values at time sþ 1 indicate that a good approximation of forecasting

methods to these values is fundamental to build reliable classifiers

Fig. 5 Balanced scenario

(Social). The boxplots of

squared errors per feature show

how independently from the

community discovery algorithm

or the forecasting method the

deviation is always very low

especially for the most

important features a Social

Louvain Ma, b Social Louvain

LR, c Social DEMON Ma,

d Social Infohiermap Ma
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4.2.2 Unbalanced scenario

We have shown how the described analytic workflow is

able to obtain good results when dealing with datasets

having a balanced class distribution. Unfortunately, this

scenario is not common when addressing the Interaction

Prediction problem. Furthermore, making predictions on

new interactions that will appear in a network involves,

potentially, computing scores for all the jV j � ðjV j � 1Þ
pair of nodes of a network. Social networks are generally

sparse, and this led to a high rate of false-positive predic-

tions (in case of unsupervised approaches) or to models

that maintain high accuracy just predicting the absence of

new links (the majority classifier in case of supervised

learning). Indeed, predicting every object as belonging to

the most frequent class guarantee high performances, but in

general it leads to useless classification results. For this

reason, evaluating the performances of classifiers in highly

unbalanced scenarios is not an easy task, but is definitely a

very important one.

Since we want to predict correctly new links, our pri-

mary purpose is to reach high precision avoiding the gen-

eration of false-positive predictions. This is the reason why

in the unbalanced scenario we will discuss, besides AUC

and ACC, the Lift Chart and precision of the tested

classifiers.

Precision is defined as PPV ¼ TP
TPþFP

. It represents the

ratio of correct predictions for a specific class (in our case

the one representing the presence of the edge in the test set)

with respect to the total predictions provided.

Lift Chart graphically represents the improvement that a

mining model provides when compared against a random

guess, and measures the change in terms of lift score. By

comparing the lift scores for various portions of a dataset

and for different models, it is possible to determine which

model is the best and which percentage of the cases in the

dataset would benefit from applying the model’s

predictions.

We report the precision instead of the accuracy because,

unlike the balanced scenario (where starting from a ratio of

50–50 the accuracy has a strong significance), in the

unbalanced one it is very easy to get a high, but mean-

ingless, accuracy. This is due to the fact that, as a conse-

quence to the sparsity of the interaction network, the

majority classifier can predict always ‘‘no edge’’ with no

effort reaching very high performances. Besides this we

report the Lift Chart because, conversely from AUC and

PPV (with which shares, describing isomorphic spaces, the

conveyed information), it is able, even in unbalanced sce-

narios, to graphically emphasize the improvements pro-

vided by the tested classifier against a baseline model.

We preserved the original ratio between the node pairs

with and without a future interaction in Social and DBLP

datasets. For both networks, we used the DEMON algo-

rithm to extract communities. This choice is due to the

following reasons: (1) Social DEMON reaches the best

performances in the balanced scenario; thus, we expect that

it will behave well even in unbalanced scenario; (2) DBLP

using Louvain (i.e., the best performer in the balanced

scenario) in the unbalanced scenario, all the classification

models output the majority classifier.

In Social, the ratio of negative class to the total amount

of possible pairs is 95:947%, that means that a majority

classifiers predicting no edge for all the pairs would have

an accuracy of almost 96%. As output from the classifi-

cation phase with Ma, we have a model which reaches an

AUC of 0.966 with a prediction accuracy of 98:75% and a

precision w.r.t. the positive class of 95:61%. These two are

very significant results: on the one hand, we have an

accuracy improvement of 2:803% in an ideal window of

4:053% (100–95.947 %) with respect to the majority

classifier while, on the other, we have a very high precision

on the positive class, considering that a classifier predicting

always an edge would have a precision of 4:053%. In

addition to the Ma model, we also built three classifiers

each one of them considering all the forecasts for a single

category of features: topological, structural and

community.

In Fig. 6-left, we show the Lift Chart of the four models

for Social. From the chart emerges that after the Ma model,

Fig. 6 Unbalanced scenario.

The lift charts of the compared

methods show how in both

networks DEMON with Moving

Average is the combination able

to reach the best performances
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the most promising is the one built upon the topological

features followed by structural and community ones.

Also in this unbalanced scenario, we want to ‘‘measure’’

how much the community approach provides efficiency

just filtering in the ‘‘promising pairs.’’ By building the

dataset with all possible pairs without leveraging commu-

nity information, we get a majority class, i.e., the absence

of a link, with a ratio of 98:96% over the total number of

entries. In order to better compare the two cases, we filter

out randomly some pairs with no edge, bringing the

accuracy of the majority classifier at 95:947% (like in the

case with community discovery). Again we compare the

performances for the SF and FSF, which are reported in

Table 13, but now considering the precision instead of the

accuracy. We can see that we gain almost a 10% of pre-

cision just filtering out, in any time slot, all the pairs not

belonging to the same community. These results are very

significant. On the one hand, we have an accuracy

improvement of 2:803% in an ideal window of 4:053%

(100–95.947 %) with respect to the majority classifier. On

the other hand, we have a very high precision on the pos-

itive class, considering that a classifier predicting always an

edge would have a precision of 4:053%. In addition to the

Ma model, we try to build also classifiers considering all

the forecast methods but grouped for ‘‘kind of measure’’:

topological, structural and community. It emerges that after

the Ma model, the most promising is the one built upon the

topological features followed by structural and community

ones.

In DBLP case study, the resulting classifier has an AUC

of 0.86, an ACC of 98:135% and a precision with respect

to the positive class of 44:78%. The majority class (no

link) has a ratio of 98:13% over all the instances of the

dataset. A possible reason for the lower performances

obtained on DBLP w.r.t. Social is that in the latter an

interaction represents a real social action between two

different actors, while in DBLP an interaction models a

relation of co-authorship in a paper, and the co-authorship

is not, in our opinion, a strong representative of social

interaction. However, we can notice that the performances

are not completely bad: we have a precision of 44:78%,

starting from a ratio of positive class of 1:865%

(100–98.135 %), that is 24 times better than predicting for

any pair the presence of the edge. Finally, we can observe

from the Lift Chart in Fig. 6-right how, differently from the

Social case, the most predictive set of features are the

community ones, over the structural and topological.

4.3 Inter-community interaction prediction

So far, we have focused our attention on the task of pre-

dicting interaction within a community. We have shown

that our approach is able to achieve good performances in

case of both balanced and unbalanced class distributions

and discussed the features that better predict the presence

(or absence) of a new interaction. Here we address the

complementary problem: prediction of inter-community

interactions. Since the direct prediction of the network

weak ties is a very complex problem prevalently due to the

low stability of such links through time, we shift our

interest to a related problem. We do not want to predict the

specific endpoint of the interaction (i.e., user u of com-

munity Cj and user v of community Cz), but the presence of

at least one interaction among users of two different

communities, say Cj and Cz. To do so, we slightly modified

our method:

• instead of using the original interaction network, we

preprocess our data and build, for each snapshot, an

induced graph using the previously extracted commu-

nities. In particular, for each snapshot graph Gi and

related set of communities Ci we perform the transfor-

mation described by Algorithm 1;

• we compute the structural and topological features on

the community-node pairs of each new induced graph;

• we apply the time series forecast and, on the forecasted

feature values, we build the prediction model.

The main difference w.r.t. the original approach lies in the

use of the communities as network nodes and not as filters

(i.e., no community features are used to build the final

model).

Table 13 Unbalanced scenario

(Social)
Algorithm AUC PPV (%)

SF Ma 0.897 64.06

SF LR 0.893 62.62

FSF Ma 0.918 74.71

FSF LR 0.932 72.45

Baselines on structural features

using only Structural Forecast

(SF) features calculated in the

whole network and Filtered

Structural Forecast (FSF) cal-

culated following the proposed

approach

In bold the AUC and PPV of the

best performing approaches
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A crucial aspect is the process used to build each

community-graph. As shown in Algorithm 1, for each

community are identified the core nodes (lines 3-6): then, a

new edge is created in the induced graph among the

community Cj and Cz if there exists at least one edge in the

original graph connecting two of their core nodes (lines

7-15). There are several ways to implement the IDENTI-

FYCOMMUNITYCORES function: in our experiments,

we use the top-k% high-degree nodes within each com-

munity (we fixed k to 5). After the construction of the

community-network, we apply a reconciliation phase

across consecutive snapshots in order to align the com-

munity ids. To build the evolutive chain of each commu-

nity (i.e., to find the correspondence of a given community

across time), we employed a well-established set matching

procedure often used by dynamic community discovery

approaches (Hartmann et al. 2014), namely the Jaccard

matching:

JaccardðCt;Ctþ1Þ ¼
j
T
ðCt;Ctþ1Þj

j
S
ðCt;Ctþ1Þj

ð1Þ

Given a community C at time t (Ct in the equation), we

identify as its future expression in t þ 1 the community

which maximizes the Jaccard function upon their node sets.

We decided to evaluate the introduced methodology on a

very specific case study: inter-community interaction pre-

diction on the DBLP community-graph built upon the

Infohiermap partition. The reasons behind such choice are

the following:

• Among the previously analyzed datasets, DBLP is the

bigger one and it is always decomposed in a higher

number of communities (ensuring community-graphs

of meaningful size);

• DEMON generates overlapping communities; thus, the

community-graph extraction loses some effectiveness

(shared nodes generate a densely connected graph);

• Louvain as all modularity-based approaches suffers

from the scale problem: this causes very sparse star-like

community-graphs composed by few focal nodes (i.e.,

the bigger communities) linked to many satellites (i.e.,

very small communities that are rarely connected by

interactions).

4.3.1 Balanced scenario

In the intra-community scenario, w.r.t. the DBLP dataset

and Infohiermap communities, we were able to produce

predictions for, approximately, the 91% of the interactions

actually present in the test set. The filter produced by the

application of Infohiermap was then able to discriminate

weak ties across different network partitions and guarantee

high AUC and Accuracy. Due to the community-graph

construction defined in Algorithm 1 we now group together

the remaining 9% of the interactions in meta-links con-

necting different Infohiermap communities. Obviously, due

to the IDENTIFYCOMMUNITYCORES strategy, we will

not able to make prediction for all the weak ties: however,

the filtering introduced groups together 97% of them

producing a very reliable sample.

Following the method designed for inter-community

interaction prediction, we tested all the different time series

forecasting strategies discussed in Table 4 and defined as

Ma the one having high score (as shown in Fig. 7 for both

the balanced and unbalanced scenarios). On the balanced

class scenario, we obtained the results reported in Table 14.

Our results are, as expected, not as good as the one

obtained for the intra-community interaction problem. Here

the best predictive power is expressed by the Ma time

series forecast able to reach 66% of accuracy w.r.t. the

50% of the majority classifier. In order to better understand

the impact of the time variable on such very volatile net-

work structure, we also trained a classifier on the same

Algorithm 1 BuildInducedGraph(Gi, Ci)
Require: Gi: network snapshot, Ci: community set.
1: CoreNodes = {}
2: IG =
3: for c ∈ Ci do
4: ccores = (Ci)
5: CoreNodes[c] = ccores
6: end for
7: for cj ∈ Ci do
8: for cz ∈ Ci do
9: if cj �= cz then
10: if ∃(u, v) ∈ Gi, u ∈ CoreNodes[cj ], v ∈ CoreNodes[cz ] then
11: IG. (cj , cz)
12: end if
13: end if
14: end for
15: end for
16: return IG
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feature set computed on the flattened community-graph

(i.e., the graph built by keeping together nodes and edges

of all the temporal snapshots). The obtained results suggest

us that conversely from the intra-community settings here

the adoption of time series does not play a crucial role even

though it allows with Ma and Avg forecasting to slightly

increase the prediction accuracy.

4.3.2 Unbalanced scenario

To complete our analysis, we evaluated the effectiveness of

our approach even in the unbalanced inter-communities

setting. This scenario represents the most complex one we

can design: we are targeting weak ties (i.e., the 9% of the

interactions not covered by the intra-community predic-

tions) when the majority class—no interaction—is

approximately 98%.

The results in Table 15 show a relatively high precision

w.r.t. the minority class: while the baseline (the minority

classifier) reaches 4:01% precision, our approach is able to

reach PPV ¼ 50% (even though the recall on the minority

class drops from 100% to ‘‘only’’ 65%). Even in this

scenario, the Ma time series forecast strategy is the one that

offers higher quality models. Conversely from the balanced

scenario, we can observe how the classifier built upon the

flattened community-graph does not produce interesting

results: even though it guarantees higher precision

(PPV ¼ 57:2%) the overall model quality is lower (Flat

graph AUC ¼ :316 vs. Ma AUC ¼ :647). The predictions

made on the flattened networks are more precise, but the

recall is low (� 9%). In an unbalanced scenario, the low

stability of inter-community interactions amplifies the

complexity of the predictive task: flattening the temporal

dimension causes an increase of the false-negative pre-

dictions, which leads to performance degradation.

5 Related works

In the literature, there is a wide study of the link prediction

problem. The methods used to solve LP apply supervised

and/or unsupervised approaches (Lü and Zhou 2011). In

particular, link prediction strategies may be broadly cate-

gorized into four groups: (q) similarity-based strategies, (2)

maximum likelihood algorithms, (3) probabilistic models

and (4) supervised learning algorithms (Lü and Zhou 2011).

Fig. 7 Inter-community

prediction: left balanced and

right unbalanced scenarios.

AUC values varying n 2 ½0; s�
using the Moving Average Ma.

Dots highlight highest values. In

both scenarios, the optimal

window size is 8

Table 14 Balance scenario

(DBLP)
Algorithm AUC ACC (%)

Lv 0.580 56.01

Avg 0.650 65.10

Ma 0.660 66.00

LR 0.581 58.10

Flat Graph 0.610 59.12

Baseline 0.500 50.00

Infohiermap performances for

the inter-community prediction.

The Moving Average Ma fore-

casted features allow for the

best classification models

In bold the AUC of the best

performing approach

Table 15 Unbalanced scenario

(DBLP)
Algorithm AUC PPV (%)

Lv 0.594 33.33

Avg 0.632 07.02

Ma 0.647 50.00

LR 0.596 50.00

Flat Graph 0.316 57.20

Baseline 0.504 4.01

Infohiermap performances for

the inter-community prediction.

Like in the balanced scenario,

the Moving Average Ma fore-

casted features allow for the

best classification models

In bold the AUC of the best

performing approach
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The first group defines measures of similarity as a score

between each pair of nodes. All non-observed links are

ranked according to their scores, and the links connecting

more similar nodes are supposed to be of higher existence

likelihoods. Despite its simplicity, the definition of node

similarity is a non-trivial challenge. A similarity index can

be very simple or very complicated, and it may work well

for some networks while fail for some others. For example,

in Dong et al. (2012) the authors introduce a unsupervised

method based on ranking factors using the assumption that

people make friends in different networks following simi-

lar principles.

The second set of methods is based on maximum like-

lihood estimation. Empirical studies suggest that many

real-world networks exhibit hierarchical organization.

These algorithms presuppose some organizing principles of

the network structure, with the detailed rules and specific

parameters obtained by maximizing the likelihood of the

observed structure. From the viewpoint of practical appli-

cations, an obvious drawback of the maximum likelihood

methods is that it is very time-consuming. In addition, the

maximum likelihood methods are probably not among the

most accurate ones. Huang et al. (2012) use continuous-

time stochastic process for predicting aggregate social

activities, that is different activities between users in the

same social network.

The third group of algorithms is based on probabilistic

Bayesian estimation. Probabilistic models aim at abstracting

the underlying structure from the observed network, and then

predicting the missing links by using the learned model.

Given a target network, the probabilisticmodelwill optimize

a built target function to establish a model based on a group

of parameters, which can best fit the observed data of the

target network. Then the probability that a nonexistent link

will appear is estimated by the conditional probability. In

Zhu (2012) is proposed a way to develop nonparametric

latent feature relational models to minimize an objective

function for a normalized link likelihood model.

The proposed approach belongs to the category of

methods which employ supervised machine learning tech-

niques. LP through supervised learning algorithms was

introduced in Liben-Nowell and Kleinberg (2007). The

authors studied the usefulness of graph topological features

by testing them on co-authorship networks. A classifier is

trained according to the knowledge that a link will be

present or not in future. Then the classifier is used to pre-

dict new links. After Liben-Nowell and Kleinberg (2007), a

wide range of models exploiting several different strategies

have been proposed. Indeed, there has been proved that

supervised methods reach better performances than unsu-

pervised ones, in terms of both AUC and precision.

In order to build an efficient classifier, many works

focused on finding an efficient set of features. In

Jahanbakhsh et al. (2012) is shown that only a small set of

features are essential for predicting new edges and that

contacts between nodes with high centrality are more

predictable than nodes with low centrality. Following these

principles, in Bao et al. (2013) principal component anal-

ysis is used to determine the weights of the features.

According to these weights is reduced the number of fea-

tures taken in input by the regression algorithm used for

prediction. A rank aggregation approach is proposed in

Pujari and Kanawati (2012). The authors rank the list of

unlinked nodes according to some topological measures,

then at the new instant time each measure is weighted

according to its performance in predicting new links. The

learned weights are used in a reinforcing way for the final

prediction. Finally, in Spiegel et al. (2011) tensor factor-

ization is used to select the more predictive attributes,

while in Lichtenwalter et al. (2010) important features for

link prediction are examined and it is provided a general,

high-performance framework for the prediction task.

Like we did with community features, many works

reinforce the classifier with other kind of knowledge. The

authors of Shibata et al. (2012) used textual features

besides the topological ones and applied SVM as super-

vised learning method. In Wang et al. (2011), spatial and

mobility information are used to help the classifier.

Despite the good performances achieved, all the works

reported until now do not solve the interaction prediction

problem. Some works which consider dynamic networks

are Bringmann et al. (2010) and Bliss et al. (2013). In

Bringmann et al. (2010), association rules and frequent-

pattern mining are used to search for typical patterns of

structural changes in dynamic networks. The authors

developed the Graph Evolution Rule Miner to extract such

rules and applied these rules to predict future network

evolution. In Bliss et al. (2013), the prediction is optimized

through weights which are used in a linear combination of

sixteen neighborhoods and node similarity features by

applying the covariance matrix adaptation evolution strat-

egy. However, in this second work the authors tried to

predict only new interactions and not re-occurring ones.

Finally, other works like da Silva Soares and Prudencio

(2012), Sarkar et al. (2012) show how an approach based

on time series modeling the evolution of continue uni-

variate features describing node characteristics substan-

tially helps in solving the link prediction task.

As shown in Lü and Zhou (2011), despite the high

precision, supervised approaches can be prohibitively time-

consuming for a large networks having over 10, 000 nodes.

Moreover, supervised methods are proved to reach better

performances in terms of both accuracy and precision than

unsupervised methods. Thus, given our interest in large,

sparse networks, and given that all the works cited high-

light the importance of using features outside the links’

Soc. Netw. Anal. Min. (2016) 6:86 Page 17 of 20 86

123



dimension, our focus on local information gathered from

communities and time series features to train the classifier

is justified. In order to reduce the computational com-

plexity, several approaches such as Soundarajan and

Hopcroft (2012) make use of clustering and community

information. These analyses suggest that clustering infor-

mation, no matter the algorithm used, improves link pre-

diction accuracy.

In order to build an efficient classifier for link predic-

tion, it is crucial to define and calculate a set of graph

structural features. As stated by the papers mentioned

previously, when dealing with large-scale graphs that may

include millions of vertexes and links, one of the chal-

lenges is the computationally intensive extraction of such

features. Using our approach, we dramatically reduce the

features computation because the calculus is performed

considering separately the links present in network’s

communities. Several studies related to link prediction such

as Feng et al. (2012), Fire et al. (2013), Jahanbakhsh et al.

(2012), Lichtnwalter and Chawla (2012), Xu and Rock-

more (2012) try to suggest which are optimal topological

structures of a network and the best features to be used

with. For example, in Feng et al. (2012) it is analyzed the

relation between network structure and the performance of

link prediction algorithm, while in Jahanbakhsh et al.

(2012) it is shown that only a small set of features are

essential for predicting new edges and that contacts

between nodes with high centrality are more pre-

dictable than nodes with low centrality. The authors finally

claim that on networks with low clustering coefficient, link

prediction methods perform poorly, while, as the clustering

coefficient grows, the accuracy is drastically improved.

Fire et al. (2013) investigate the effectiveness of link pre-

diction by gradually reducing the number of visible links in

the studied networks. They demonstrate that classification

quality degrades with the number of visible links and that a

small fraction of visible links helps in solving the problem

with chances significantly higher than random. The authors

of Xu and Rockmore (2012) propose a feature selection

framework based on ranking, weighting, correlation and

redundancy. In particular, they focus on preserving the

maximum accuracy by finding the minimum redundancy in

the feature space by using a greedy scheme.

We proved that a specific community discovery algo-

rithm can improve the performances depending on the type

of dataset. Moreover, the main difference between our

approach and those of the works reported is that our pre-

diction is based not only on the observed structural, topo-

logical and community features, but also on the forecast of

the future features. In other words, it improves the state of

the art by combining the use of community and time series

for solving interaction prediction.

Finally, in the literature there are only few works

treating the problem of weak ties in link prediction that we

analyzed in the last section. Some studies show how and

why weak ties can be useful in link prediction. In particular

in Lü and Zhou (2009) is shown how the accuracy in link

prediction can be improved by exploiting the contribution

of weak ties. The Weak Ties Theory (Granovetter 1973)

states that people usually obtain useful information or

opportunities through the acquaintances often not the close

friends, i.e., the weak links in their friendship network play

a significant role. Recently, the authors of Onnela et al.

(2007) demonstrated that the weak ties mainly maintain the

connectivity in mobile communication networks, and in

Csermely (2004) is explained how weak ties maintain the

stability of biological systems. In Xiang et al. (2010) is

developed an unsupervised model to estimate relationship

strength from interaction activity and user similarity, while

in Gilbert and Karahalios (2009) is presented a predictive

model that maps social media data to tie strength. These

approaches were not exploited nor used in our workflow on

weak ties because of (1) the dynamic nature of our dataset,

(2) the higher abstraction level selected (i.e., we consider

weak ties as the ties among communities and we loose the

original source and destination node), (3) we wanted to

replicated the workflow adopted for link prediction of

strong ties.

6 Conclusions

In this work, we have tackled the Link Prediction problem

in a dynamic network scenario. Since networks often

model highly evolving realities that cannot easily be

‘‘frozen’’ in time without loss of information, a time-aware

approach to link prediction is mandatory to achieve valu-

able results. Moreover, due to the intrinsic high computa-

tional cost of the approaches that solve this problem, it is

important to reduce the list of possible candidates for

which to compute a prediction (preferably avoiding the

generation of false positives). To this extent, we have

exploited the community structure of social networks to

both bound the result set and design features whose anal-

ysis through time have allowed the description of a high-

performance supervised learning strategy. Anyhow, using

network partitions as filters make the proposed approach

focus only on the prediction of intra-community interac-

tions: to overcome this issue, we propose an experimental

setting specifically designed to address inter-community

interaction prediction. Using community-induced graphs,

we show that the proposed analytical workflow can be

applied to this complex problem and discuss the quality of

the obtained results.
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The results obtained with the proposed methodology

open the way to several future lines of analysis. Indeed,

more accurate time series forecast techniques can be

evaluated in order to reduce the forecast error and evolu-

tionary community discovery approaches can be used in

order to incorporate communities life cycle features within

the predictive process. Moreover, with respect to the type

of dataset used, it could be possible to consider other types

of features such as mobility knowledge and spatial co-lo-

cation. All these improvements will lead to more narrow

and sophisticated classifiers that, taking into account more

and more aspects, will be able to better predict future

human interactions.
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