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Abstract. In this paper we consider the time evolutionary p-Stokes problem in a smooth
and bounded domain. This system models the unsteady motion or certain non-Newtonian
incompressible fluids in the regime of slow motions, when the convective term is negligible.
We prove results of space/time regularity, showing that first-order time-derivatives and
second-order space-derivatives of the velocity and first-order space-derivatives of the pressure
belong to rather natural Lebesgue spaces.
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1. INTRODUCTION

We consider the time-dependent p-Stokes system

∂u
∂t
− div S(Du) +∇π = f in I × Ω,

div u = 0 in I × Ω,
u = 0 on I × ∂Ω,

u(0, ·) = u0 in Ω,

(1.1)

in a bounded domain Ω ⊂ R3 with a smooth boundary ∂Ω and I := [0, T ], for
some T > 0. The unknowns are the velocity u : I × Ω → R3 and the pressure
π : I × Ω → R. The stress tensor S has (p, δ)-structure, for 1 < p ≤ 2 and some
δ ≥ 0, see Assumption 2.1 for the precise definition. The system (1.1) can be used to
model certain non-Newtonian fluids in the case in which the velocity is small enough
such that the convective term can be disregarded. For the system (1.1), since the
principal part is nonlinear (and in the equations there is not a term corresponding
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to the linear elliptic part, that is a term as −ν div Du), the proofs of the various
results cannot be obtained as a perturbation of the ones known for the linear Stokes
system. Nevertheless, the presence of a nonlinear convective term can be handled in
a rather standard way by means of a linearization argument, once the regularity for the
p-Stokes has been established and once the range of p has been adequately restricted.

The analysis of this problem has a long history and several results are concerned
with interior regularity or with the space-periodic setting. We also observe that many
results focus on the presence of the convective term, which enforces some limitations
to both the technique (passage to the limit) to be used to construct weak solutions
as well as to the range of allowed exponents. We refer to [4] for the analysis in the
space-periodic case, but also the interior case can be treated similarly.

The analysis in a bounded domain with Dirichlet conditions requires a more
technical local argument, as that employed for p ≥ 2 in [15], taking into account of
the divergence free constraint. Here, we follow the same approach and we adapt the
techniques used for the steady problem and 1 < p < 2 in [5].

We also wish to mention that the 2D case can be handled with different techniques
as in Kaplický, Málek, and Stará [14] and also that the shear thinning case p > 2
requires a different treatment, see also [2].

We also wish to mention the results of Bothe and Prüss [7], where local existence
and uniqueness results of rather smooth solutions is proved under the condition δ > 0.
Here we are considering the case in which the data are not so regular and also include
in our treatment the degenerate case δ = 0 (for which some of our results are valid).

We wish also to mention that a similar approach has been also recently used by
the same authors in [6] to prove optimal regularity for solutions of the (technically
simpler by the absence of the pressure) initial boundary value problem for a parabolic
system

∂u
∂t
− div S(Du) = f in I × Ω,

u = 0 on I × ∂Ω,
u(0, ·) = u0 in Ω,

(1.2)

with a tensor S satisfying Assumption 2.1. The technical novelty here is the derivation
of the appropriate estimates for π.

Our results are expressed in terms of the quantity

F(A) :=
(
δ + |Asym|

) p−2
2 Asym , (1.3)

since its space and time derivatives represent the natural quantity to be controlled.
Bounds on ∂tF(Du),∇F(Du) (as the quasi-norm in Barrett and Liu [1]) allow to
prove error estimates for the numerical discretization; the results imply also certain
regularity for the usual partial derivatives. We will study in a forthcoming paper the
bounds on the numerical error and the dependence on the regularity of the continuous
solution.

In a future work we will consider the numerical analysis of the problem also with
convective term, for which existence of weak solutions is known for p > 6

5 (at least in
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the periodic case strong solutions are known to exists locally in time for p > 7
5 ). Thus,

from now on we suppose
p ≥ 6

5 ,
even if we consider the problem without convection. Another technical reasons is
that p = 6

5 is also the critical exponent in R3 to have an evolution triple, in order to
properly formulate the variational problem. This choice avoids the use of more technical
definitions of weak solutions, as done in [13]. In particular in the case 1 < p < 6

5 the
natural spaces W 1,p

0,σ (Ω), L2
σ(Ω), and (W 1,p

0,σ (Ω))∗ cannot be used to define a Gelfand
evolution triple (in three space dimensions). Another reason for this restriction is
a critical result for the regularity of the pressure, cf. Theorem 2.10.

The main result we prove is the following.
Theorem 1.1. Let Ω ⊂ R3 be a bounded domain with boundary ∂Ω of class C2,1. Let
the stress tensor S be with (p, δ)-structure, for 6

5 ≤ p ≤ 2 and some δ > 0. Let be given
u0 ∈ L2(Ω)∩W 1,p

0,σ (Ω) such that div S(Du0) ∈ L2(Ω) and let the external force satisfy
f ∈ W 1,2(I;L2(Ω)) ∩ Lp′(I;Lp′(Ω)). Then, there exists a unique u solution of (1.1)
such that

u ∈W 1,∞(I;L2(Ω)),
S(Du) ∈ Lp′(I;Lp

′
(Ω)),

∇F(Du) ∈ Lp(I × Ω),
F(Du) ∈W 1,2(I;L2(Ω))
π ∈ Lp′(I × Ω).

In addition, we have the following interior estimates
∇u ∈ L∞(I;L2

loc(Ω)),
F(Du) ∈ L2(I;W 1,2

loc (Ω)),
∇π ∈ L∞(I;L2

loc(Ω)),
and the following estimates valid up to the boundary

ξ∂τu ∈ L∞(I;L2(Ω)),
ξ∂τF(Du) ∈ L2(I;L2(Ω)),
ξ∂τπ ∈ L∞(I;L2(Ω)),

where the localization function and the notion of tangential derivative ∂τ are defined
in detail in Section 2.3.

2. PRELIMINARIES AND FUNCTION SPACES

Let us collect some preliminary notation and definitions, together with the proof of
the regularity with respect to the time variable, which can be obtained directly by
the energy method. These results will allow us to prove the regularity for the pressure
needed in the Section 3 for the treatment of the regularity with respect to the spatial
variables.
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2.1. FUNCTION SPACES

We use c, C to denote generic constants, which may change from line to line, but are
not depending on the crucial quantities. Moreover we write f ∼ g if and only if there
exist constants c, C > 0 such that c f ≤ g ≤ C f .

We will use the customary Lebesgue spaces (Lp(Ω), ‖ · ‖p) and Sobolev spaces
(W k,p(Ω), ‖ · ‖k,p), k ∈ N. We do not distinguish between scalar, vector-valued or
tensor-valued function spaces in the notation, if there is no danger of confusion.
However, we denote scalar functions by roman letters, vector-valued functions by small
boldfaced letters, and tensor-valued functions by capital boldfaced letters. We equip
W 1,p

0 (Ω) (based on the Poincaré Lemma) with the gradient norm ‖∇ . ‖p. We denote
by |M | the n-dimensional Lebesgue measure of a measurable M ⊂ R3. Since we
consider divergence-free solutions, we denote by Lpσ(Ω) ⊂ Lp(Ω) the closed subspace
of divergence-free vector fields, tangential to the boundary, while W 1,p

0,σ (Ω) ⊂W 1,p
0 (Ω)

is the counterpart in W 1,p
0 (Ω) and observe that if the domain is smooth these spaces

coincide with the closure of smooth and compactly supported divergence-free functions
with respect to the norm of Lp(Ω) and of W 1,p(Ω), respectively.

2.2. BASIC PROPERTIES OF THE ELLIPTIC OPERATOR

For a tensor P ∈ R3×3 we denote its symmetric part by

Psym := 1
2(P + P>) ∈ R3×3

sym := {A ∈ R3×3 |P = P>}.

The scalar product between two tensors P,Q is denoted by P ·Q, and we use the
notation |P|2 = P ·P. We assume that the extra stress tensor S has (p, δ)-structure,
which will be defined now. A detailed discussion and full proofs of the following results
can be found in [8, 16]
Assumption 2.1. We assume that S : R3×3 → R3×3

sym belongs to C0(R3×3,R3×3
sym) ∩

C1(R3×3 \ {0},R3×3
sym), satisfies S(P) = S

(
Psym), and S(0) = 0. Moreover, we assume

that S has (p, δ)-structure, i.e., there exist p ∈ (1,∞), δ ∈ [0,∞), and constants
C0, C1 > 0 such that

∑3

i,j,k,l=1
∂klSij(P)QijQkl ≥ C0

(
δ + |Psym|

)p−2|Qsym|2, (2.1a)
∣∣∂klSij(P)

∣∣ ≤ C1
(
δ + |Psym|

)p−2
, (2.1b)

are satisfied for all P,Q ∈ R3×3 with Psym 6= 0 and all i, j, k, l = 1, . . . , 3. The con-
stants C0, C1, and p are called the characteristics of S.
Remark 2.2. We would like to emphasize that, if not otherwise stated, the constants
in the paper depend only on the characteristics of S, but are independent of δ ≥ 0.

Defining for t ≥ 0 a special N-function ϕ by

ϕ(t) :=
t∫

0

ϕ′(s) ds with ϕ′(t) := (δ + t)p−2t , (2.2)
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we can replace Ci
(
δ + |Psym|

)p−2 in the right-hand side of (2.1) by C̃i ϕ′′
(
|Psym|

)
,

i = 0, 1. Next, the shifted functions are defined for t ≥ 0 by

ϕa(t) :=
t∫

0

ϕ′a(s) ds with ϕ′a(t) := ϕ′(a+ t) t

a+ t
.

In the following lemma we recall several useful results, which will be frequently used
in the paper. The proofs of these results and more details can be found in [3, 8, 9, 16].

Proposition 2.3. Let S satisfy Assumption 2.1, let ϕ be defined in (2.2), and let F
be defined in (1.3).

(i) For all P,Q ∈ R3×3

(
S(P)− S(Q)

)
·
(
P−Q

)
∼
∣∣F(P)− F(Q)

∣∣2

∼ ϕ|Psym|(|Psym −Qsym|)
∼ ϕ′′

(
|Psym|+ |Qsym|

)
|Psym −Qsym|2,

S(Q) ·Q ∼ |F(Q)|2 ∼ ϕ(|Qsym|),
|S(P)− S(Q)| ∼ ϕ′|Psym|

(
|Psym −Qsym|

)
.

The constants depend only on the characteristics of S.
(ii) For all ε > 0, there exist a constant cε > 0 (depending only on ε > 0 and on the

characteristics of S) such that for all u,v,w ∈W 1,p(Ω)
(
S(Du)− S(Dv),Dw−Dv

)
≤ ε ‖F(Du)− F(Dv)‖22 + cε ‖F(Dw)− F(Dv)‖22 ,

and for all P,Q ∈ R3×3
sym, t ≥ 0

ϕ|Q|(t) ≤ cε ϕ|P|(t) + ε |F(Q)− F(P)|2,
(ϕ|Q|)∗(t) ≤ cε (ϕ|P|)∗(t) + ε |F(Q)− F(P)|2 .

where the constants depend only on p.

2.3. DESCRIPTION AND PROPERTIES OF THE BOUNDARY

We assume that the boundary ∂Ω is of class C2,1, that is for each point P ∈ ∂Ω
there are local coordinates such that in these coordinates we have P = 0 and ∂Ω is
locally described by a C2,1-function, i.e., there exist RP , R′P ∈ (0,∞), rP ∈ (0, 1) and
a C2,1-function aP : B2

RP
(0)→ B1

R′
P

(0) such that

(b1) x ∈ ∂Ω ∩ (B2
RP

(0)×B1
R′
P

(0)) ⇐⇒ x3 = aP (x1, x2),
(b2) ΩP := {(x, x3)

∣∣x = (x1, x2)> ∈ B2
RP

(0), aP (x) < x3 < aP (x) +R′P } ⊂ Ω,
(b3) ∇aP (0) = 0, and ∀x = (x1, x2)> ∈ B2

RP
(0) |∇aP (x)| < rP ,
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where Bkr (0) denotes the k-dimensional open ball with center 0 and radius r > 0. Note
that rP can be made arbitrarily small if we make RP small enough. In the sequel we
will also use, for 0 < λ < 1, the following scaled open sets, λΩP ⊂ ΩP defined as
follows

λΩP := {(x, x3)
∣∣x = (x1, x2)> ∈ B2

λRP (0), aP (x) < x3 < aP (x) + λR′P }. (2.3)

To localize near to ∂Ω ∩ ∂ΩP , for P ∈ ∂Ω, we fix smooth functions ξP : R3 → R such
that
(`1) χ 1

2 ΩP (x) ≤ ξP (x) ≤ χ 3
4 ΩP (x),

where χA(x) is the indicator function of the measurable set A. For the remaining
interior estimate we localize by a smooth function 0 ≤ ξ00 ≤ 1 with spt ξ00 ⊂ Ω00,
where Ω00 ⊂ Ω is an open set such that dist(∂Ω00, ∂Ω) > 0. Since the boundary ∂Ω
is compact, we can use an appropriate finite sub-covering which, together with the
interior estimate, yields the global estimate.

In particular, in the interior we will use the well-known results linking difference
quotients and derivatives. If E ⊂ Rn, we denote

E ± hek :=
{

x ∈ Rn
∣∣∃y ∈ E : x = y± hek

}
,

Eh :=
{

x ∈ E
∣∣ dist(x, ∂E) > h

}
.

Let G : Rn → Rn×n be a measurable tensor field (or a vector field or a real-valued
function) and h > 0. Then we define the difference quotients of G as follows:

d±h,kG(x) := G(x± hek)−G(x)
h

, x ∈ Rn.

We will also use the notation ∆±h,kG(x) := h d±h,kG(x). It is well-known (cf. [11,
Sec. 5.8]) that for G ∈W 1,1(Rn) one has

lim
h→0+

d±h,kG(x) = ∂kG(x) for a.e. x ∈ Rn,

and

∇d±h,kG(x) = d±h,k∇G(x) for a.e. x ∈ Rn.

Moreover, if d±h,kG ∈ Lp(Eh0) for all h0 > 0 and for all 0 < h < h0 it holds
∫

Eh0

|d±h,kG(x)|p dx ≤ c1, (2.4)

then ∂kG exists in the sense of distributions and satisfies
∫

E

|∂kG(x)|p dx ≤ c1. (2.5)
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Let us introduce now the tangential derivatives near the boundary. To simplify
the notation we fix P ∈ ∂Ω, h ∈ (0, RP16 ), and simply write ξ := ξP , a := aP . We
use the standard notation x = (x′, x3)> and denote by ei, i = 1, 2, 3 the canonical
orthonormal basis in R3. In the following lower-case Greek letters take values 1, 2. For
a function g with spt g ⊂ spt ξ we define for α = 1, 2

gτ (x′, x3) = gτα(x′, x3) := g
(
x′ + h eα, x3 + a(x′ + h eα)− a(x′)

)
,

and if ∆+g := gτ − g, we define tangential divided differences by d+g := h−1∆+g.
It holds that, if g ∈W 1,1(Ω), then we have for α = 1, 2

d+g → ∂τg = ∂ταg := ∂αg + ∂αa ∂3g as h→ 0, (2.6)

almost everywhere in spt ξ, (cf. [15, Sec. 3]). In addition, uniform Lq-bounds for d+g
imply that ∂τg belongs to Lq(spt ξ). More precisely, if we define, for 0 < h < RP

ΩP,h :=
{

x ∈ ΩP : x ∈ B2
RP−h(0)

}
,

and if f ∈W 1,q
loc (R3), then

∫

ΩP,h

|d+f |q dx ≤ c
∫

ΩP

|∂τf |q dx.

Moreover, if d+f ∈ Lq(ΩP,h0), for all 0 < h0 < RP and if it holds

∃ c1 > 0 :
∫

ΩP,h0

|d+f |q dx ≤ c1 ∀h0 ∈ (0, RP ) and ∀h ∈ (0, h0), (2.7)

then ∂τf ∈ Lq(ΩP ) and ∫

ΩP,

|∂τf |q dx ≤ c1. (2.8)

We recall some auxiliary lemmas related to these objects, see [5]. For simplicity
we denote ∇a := (∂1a, ∂2a, 0)> and use the operations (·)τ , (·)−τ , ∆+(·), ∆+(·),
d+(·) and d−(·) also for vector-valued and tensor-valued functions, intended as acting
component-wise.

Lemma 2.4. Let v ∈W 1,1(Ω) such that spt v ⊂ spt ξ. Then, for small enough h > 0

∇d±v = d±∇v + (∂3v)τ ⊗ d±∇a,

Dd±v = d±Dv + (∂3v)τ
s
⊗ d±∇a,

div d±v = d±divv + (∂3v)±τd
±∇a,

∇v±τ = (∇v)±τ + (∂3v)±τd
±∇a,

where
s
⊗ is the symmetric tensor product.
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The following variant of integration per parts will be often used.

Lemma 2.5. Let spt g ∪ spt f ⊂ spt ξ and h small enough. Then
∫

Ω

fg−τ dx =
∫

Ω

fτg dx.

Consequently,
∫

Ω fd
+g dx =

∫
Ω(d−f)g dx. Moreover, if in addition f and g are smooth

enough and at least one vanishes on ∂Ω, then
∫

Ω

f∂τg dx = −
∫

Ω

(∂τf)g dx.

2.4. EXISTENCE OF WEAK SOLUTIONS

The existence of weak solutions to the boundary value problem (1.1) is easily proved
by simplifying (thanks the lack of the convective term) the approach in [10]. The
following theorem holds true.

Theorem 2.6. Let p ≥ 6/5 and let be given u0 ∈ L2
σ(Ω) and f = divF with

F ∈ Lp′(I × Ω). Then, there exists a unique weak solution

u ∈ L∞(I;L2
σ(Ω)) ∩ Lp(I;W 1,p

0,σ (Ω)),

such that
d

dt

∫

Ω

u ·ϕ dx +
∫

Ω

S(Du) ·Dϕ dx = −
∫

Ω

F · ∇ϕ dx ∀ϕ ∈W 1,p
0,σ (Ω). (2.9)

Proof. The result can be obtained by a Galerkin approximation and an appropriate
limit on the approximate solutions. Since the argument is rather standard we just write
the a priori estimates. Consider the Galerkin approximation un : [0, T ]→ Vn (with
Vn ⊆ Lpσ(Ω), such that dim Vn = n) which satisfies the system of ordinary differential
equations

d

dt

∫

Ω

un ·ϕn dx +
∫

Ω

S(Dun) ·Dϕn dx = −
∫

Ω

F · ∇ϕn dx ∀ϕn ∈ Vn. (2.10)

Testing with un ∈ Vn we obtain

1
2
d

dt
‖un‖22 +

∫

Ω

ϕ(|Dun|) dx ≤ C‖F‖p′p′ .

This implies that, if u0 ∈ L2(Ω), then

un ∈ L∞(I;L2(Ω)) and ϕ(|Dun|) ∈ L1(I × Ω).
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Then, Korn’s inequality and the definition of F imply also that

∇un ∈ Lp′(I × Ω) and F(Dun) ∈ L2(I × Ω),

and all estimates are with bounds independent of n ∈ N. The estimates are then
inherited by the limit. By comparison, we also get the following information on the
time derivative of the weak solution

∂u
∂t
∈ Lp′(I; (W 1,p

0,σ (Ω))∗).

In particular this implies that one can take the difference of two solutions starting
from the same data, and use the difference as test function to show that they coincide,
due to the assumption (2.1a) on the stress tensor and using Gronwall’s lemma.

The above result concerns only the velocity u, but it is possible to reconstruct
a pressure. The pressure can be introduced exactly as in Wolf [17, Thm 2.6] to show
the following result.
Theorem 2.7. Let u be a weak solution to (1.1). Then, since S(Du) ∈ Lp′(I;Lp′(Ω))
and the solution is at least such that u ∈ Cw(I;L2(Ω)), there exist unique (if the zero
mean value is imposed) scalar functions p0, p̃h with

p0 ∈ Lp
′
(I;Ap

′
) ⊂ Lp′(I;Lp

′
(Ω)),

p̃h ∈ Cw(I;Bp
′
) ⊂ Cw(I;Lp

′
(Ω)),

where Ap′ is the closure in Lp′(Ω) of ∆ϕ for ϕ ∈ C∞0 (Ω), while Bp′ is the subspace of
Lp
′(Ω) made of harmonic functions, such that for all ϕ ∈ C∞0 ([0, T )× Ω) holds

−
T∫

0

∫

Ω

u · ∂ϕ
∂t

+ S(Du) ·Dϕ dxdt =
T∫

0

∫

Ω

p0 divϕ− p̃h
∂ divϕ
∂t

dxdt

+
∫

Ω

u0 ·ϕ(0) dx−
T∫

0

∫

Ω

F · ∇ψ dxdt.

With the result from Theorem 2.7 we have already identified a pressure field, as
sum of a “regular” part and one which is represented by a time derivative. We will
show later that the pressure is indeed more regular, especially the part with p̃h. This
can be obtained, with a similar argument, once we have a better knowledge of the
time derivative (cf. (2.12)). The relevant fact is that the regularity of the pressure
(at least that π is in Lp′(I × Ω)) is needed to infer the regularity of the second-order
space-derivatives.

2.5. EXISTENCE OF TIME REGULAR SOLUTIONS

We first prove an existence result for time regular solutions. For such solutions the
time derivative belongs to some Lebesgue space and it is not just a distribution, and
thus the solution satisfies the equations in the sense explained in (2.11).
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Theorem 2.8. Let be given u0 ∈W 1,2
0,σ (Ω) such that div S(Du0) ∈ L2(Ω). Let p ≥ 6

5
and assume δ ∈ [0, δ0] (in this theorem also the degenerate case can be considered).
Let also f ∈W 1,2(I;L2(Ω)). Then, there exists a unique solution u of (1.1) such that

u ∈W 1,∞(I;L2(Ω)),
F(Du) ∈W 1,2(I;L2(Ω)),

and for all ϕ ∈ Lp(I;W 1,p
0,σ (Ω)) it holds

T∫

0

∫

Ω

∂u
∂t
·ϕ dxdt+

T∫

0

∫

Ω

S(Du) ·Dϕ dxdt =
T∫

0

∫

Ω

f ·ϕ dxdt. (2.11)

By interpolation u, F(Du) ∈ C(I;L2(Ω)), hence initial datum is attained strongly
in L2(Ω)

Proof. Following the same argument used to prove existence of weak solutions, we
reason on the Galerkin approximations. We differentiate the approximate system (2.10)
with respect to time and multiply by ∂un

∂t to get, thanks to Assumption (2.1a),

d

dt

∥∥∥∂un
∂t

∥∥∥
2

2
+
∥∥∥∂F(Dun)

∂t

∥∥∥
2

2
≤ c

(∥∥∥∂f
∂t

∥∥∥
2

2
+
∥∥∥∂un
∂t

∥∥∥
2

2

)
,

hence it follows that if div S(Du0) ∈ L2(Ω) then, uniformly w.r.t. n ∈ N,

∂un
∂t
∈ L∞(I;L2(Ω)) and ∂F(Dun)

∂t
∈ L2(I;L2(Ω)). (2.12)

Passing to the limit as n → +∞, it follows that there exists a unique solution u,
which inherits the regularity of the approximations and thus is a time regular solution
(clearly it is also a weak solution).

Remark 2.9. In the case in which the stress tensor is derived from a potential Φ one
can also test with ∂un

∂t to get (as intermediate step)
∥∥∥∂un
∂t

∥∥∥
2

2
+ d

dt
Φ(un) ≤ c‖f‖22,

hence it follows that if ∇u0 ∈ Lp(Ω) then, uniformly w.r.t. n ∈ N,

∂un
∂t
∈ L2(I;L2(Ω)), ∇un ∈ L∞(I;Lp(Ω)), F ∈ L∞(I;L2(Ω)).

Next, by using the improved regularity of the time regular solution, we can deduce
some further regularity of the pressure. To this end we use the regularity of the steady
Stokes system.
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Theorem 2.10. Under the assumptions of Theorem 2.8, and if in addition f ∈
Lp
′(I×Ω), there exists a unique (if zero mean value is assumed) pressure π ∈ Lp′(I×Ω),

such that for all ϕ ∈ Lp(I;W 1,p
0 (Ω))

T∫

0

∫

Ω

∂u
∂t
·ϕ+ S(Du) ·Dϕ dxdt =

T∫

0

∫

Ω

π divϕ+ f ·ϕ dxdt. (2.13)

Proof. As in [17] one can show that there exists p̃ such that

p̃ ∈ Cw(I;Lp
′
(Ω)) ,

and satisfying, for all ψ ∈W 1,p
0 (Ω),

∫

Ω

(u(t)− u0) ·ψ +
( t∫

0

S(Du(τ)) dτ
)
·Dψ dx

=
t∫

0

∫

Ω

p̃ divψ dxdτ −
t∫

0

∫

Ω

F : ∇ψ dxdτ.

(2.14)

Now we proceed as in [10, Thm. 2.2] and consider the steady Stokes problem

−∆V1(t) +∇π1(t) =
t∫

0

f(τ) dτ − div
t∫

0

S(Du(τ)) dτ in Ω,

div V1(t) = 0 in Ω,
V1(t) = 0 on ∂Ω,

where t ∈ I is treated as a parameter.
Standard Lq-results of regularity for the steady linear Stokes problem (see for

instance Galdi [12]) imply that there exists a unique strong solution (V1(t), π1(t))t∈I ,
with π1(t) such that

∫
Ω π1(t) dx = 0 for all t ∈ I and moreover

π1 ∈W 1,p′(I;Lp
′
(Ω)).

Next, let V2(t) ∈ W 2,2(Ω) ∩W 1,2
0,σ (Ω) and π2(t) ∈ W 1,2(Ω) ∩ L2

0(Ω) be the unique
strong solution of

−∆V2(t) +∇π2(t) = −u(t) + u0 in Ω,
div V2(t) = 0 in Ω,

V2(t) = 0 on ∂Ω,

where t ∈ I is treated again as a parameter.
Using the standard L2-regularity results for the Stokes problem it follows that

‖π2(t)‖1,2 ≤ ‖u(t)− u0‖L2 t ∈ I.
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Then, by considering time-increments t + h, with h > 0 small enough such that
t + h < T , we can consider that same system with t replaced by t + h. Taking the
difference between the two systems we get

−∆(V2(t+ h)−V2(t)) +∇(π2(t+ h)− π2(t)) = −u(t+ h) + u(t) in Ω,
div(V2(t+ h)−V2(t)) = 0 in Ω,

V2(t+ h)−V2(t) = 0 on ∂Ω.

It follows that, after division by h > 0,
∥∥∥π2(t+ h)− π2(t)

h

∥∥∥
1,2
≤
∥∥∥u(t+ h)− u(t)

h

∥∥∥
2
≤
∥∥∥∥
∂u(t)
∂t

∥∥∥∥
2

∀ t ∈ I,

hence, by using the argument as in (2.4)–(2.5) but applied to finite differences with
respect to the time variable, we have that ∇π2 ∈ W 1,∞(I;L2). Observe that this is
implied by the fact that u is a solution such that the time derivative ∂u

∂t belongs to
L∞(I;L2(Ω)). The latter estimates on the pressure π2 implies, by the usual Sobolev
embedding valid in three-space dimensions W 1,2(Ω) ⊂ L6(Ω), that

∥∥∥π2(t+ h)− π2(t)
h

∥∥∥
6
≤
∥∥∥∥
∂u(t)
∂t

∥∥∥∥
2
≤
∥∥∥∥
∂u
∂t

∥∥∥∥
L∞(I;L2)

∀ t ∈ I,

hence, by using (2.4)-(2.5), that

π2 ∈W 1,∞(I;L6(Ω)) ⊂W 1,p′(I;Lp
′
(Ω)), since p ≥ 6

5 .

Finally, observe that

−∆(V1(t) + V2(t)) +∇(π1(t) + π2(t)− p̃) = 0 in Ω,
div(V1(t) + V2(t)) = 0 in Ω,

V1(t) + V2(t) = 0 on ∂Ω,

which implies that p̃ = π1(t) + π2(t), hence plugging into the system (2.14)
ψ(t) = ∂tϕ(t) and integrating by parts in time as in [10], we find that u and

π := ∂π1
∂t

+ ∂π2
∂t
∈ Lp′(I × Ω)

satisfy (2.13).

3. PROOF OF THE MAIN RESULT

The proof of Theorem 1.1 essentially consists of a proper localization and the usage
of difference quotients, which yields the stated regularity, if the constants of the
various inequalities are uniform in the increment. This applies to tangential derivatives,
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by using (2.7)–(2.8), and all derivatives in the interior situation. Next, the usage of
the equations point-wise allows us to prove also the regularity in the normal direction.

Our approach, which is an adaption to the unsteady problem of that one in [5],
requires a proper characterization of the boundary. Results are a technical improvement
of those in [6] for the parabolic system (1.2), due to divergence-free constraint.

We first prove a result concerning the regularity of tangential spatial derivatives
near the boundary and the interior regularity.
Proposition 3.1. Let the tensor field S in (1.1) have (p, δ)-structure for some
p ∈ (1, 2], and δ ∈ (0,∞), and let F be the associated tensor field to S. Let Ω ⊂ R3

be a bounded domain with C2,1 boundary and let u0 ∈ W 1,2
0,σ (Ω) and f ∈ Lp′(I × Ω).

Then, the unique time-regular solution u of the problem (1.1) satisfies for all t ∈ I

‖ξ2
0∇u(t)‖22 +

t∫

0

∫

Ω

ξ2
0 |∇F(Du)|2 + ξ2

0 |∇π|2 dxds

≤ c(‖u0‖1,2, ‖div S(Du0)‖2, ‖f‖Lp′ (I×Ω), ‖ξ0‖2,∞, δ−1) ,

‖ξ2
P∂τu(t)‖22 +

t∫

0

∫

Ω

ξ2
P |∂τF(Du)|2 dxds

≤ c(‖u0‖1,2, ‖div S(Du0)‖2, ‖f‖Lp′ (I×Ω), ‖ξP ‖2,∞, ‖aP ‖C2,1 , δ) .

(3.1)

provided that in the local description of the boundary there holds rP < C1 in (b3),
where ξP (x) is a cut-off function with support in ΩP and for arbitrary P ∈ ∂Ω the
tangential derivative is defined locally in ΩP by (2.6). In addition ξ0(x) is a cut-off
function with support in the interior of Ω.

Moreover, the pressure satisfies
T∫

0

∫

Ω

ξ2
00
∣∣∇π

∣∣2 dxds

≤ c(δp−2, ‖ξ00‖2,∞)
(
‖u0‖21,2+‖div S(Du0)‖22+

T∫

0

‖f‖p
′

p′ds
)
,

T∫

0

∫

Ω

ξ2
P

∣∣∂τπ
∣∣2 dxds

≤ c(δp−2, ‖ξP ‖2,∞, ‖aP ‖C2,1)
(
‖div S(Du0)‖22 + ‖u0‖21,2 +

T∫

0

‖f(s)‖p
′

p′ ds
)
,

(3.2)

Remark 3.2. We warn the reader that c(δ) only indicates that the constant c depends
on δ and it is such that c(δ) ≤ c(δ0) for all δ ≤ δ0.
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Remark 3.3. In this section special care has to be taken to distinguish the partial
time-derivative ∂u

∂t , from the tangential space-derivative ∂τu.

Proof of Proposition 3.1. As usual in the study of boundary regularity we need to
localize and to use appropriate test functions. Consequently, let us fix P ∈ ∂Ω and
in ΩP use ξ := ξP , a := aP , while h ∈ (0, RP16 ), as in Section 2.3. Since we deal with
time regular solutions, we can multiply (1.1) by v

v = d−(ξψ),

(more precisely ξ is extended by zero for x ∈ Ω\ΩP , in order to have a global function
over Ω) with ψ ∈ W 1,2

0 (Ω) and integrate by parts over Ω. We get, with the help of
Lemma 2.4 and Lemma 2.5, the following equality for a.e t ∈ I

∫

Ω

d+ ∂u
∂t
· (ξψ) + d+S(Du) ·D(ξψ) + S(Du) ·

(
(∂3(ξψ))−τ

s
⊗ d−∇a

)

−
∫

Ω

π div d−(ξψ) dx

=
∫

Ω

f · d−(ξψ) dx .

(3.3)

Due to the fact that u ∈W 1,2
0,div(Ω) we can set

ψ = ξ d+(u|Ω̃P )

in ΩP (and zero outside), hence as a test function we use the following vector field

v = d−(ξ2d+(u|Ω̃P )),

where

Ω̃P := 1
2ΩP ,

for the definition recall (2.3). Since ψ has zero trace on ∂ΩP , we get that (for small
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enough h > 0) the vector v(t) belongs to W 1,p
0 (ΩP ), for a.e. t ∈ I. Using Lemma 2.4

and Lemma 2.5 we thus get the following identity
∫

Ω

ξ2d+ ∂u
∂t
· d+u + ξ2d+S(Du) · d+Du dx

=−
∫

Ω

S(Du) ·
(
ξ2d+∂3u− (ξ−τd−ξ + ξd−ξ)∂3u

) s
⊗ d−∇a dx

−
∫

Ω

S(Du) · ξ2(∂3u)τ
s
⊗ d−d+∇a− S(Du) · d−

(
2ξ∇ξ

s
⊗ d+u

)
dx

+
∫

Ω

S((Du)τ ) ·
(
2ξ∂3ξd

+u + ξ2d+∂3u
) s
⊗ d+∇a dx

−
∫

Ω

π
(
ξ2d−d+∇a− (ξ−τd−ξ + ξd−ξ)d−∇a

)
· ∂3u dx

−
∫

Ω

π
(
d−(2ξ∇ξ · d+u)− ξ2d+∂3u · d+∇a

)
dx

+
∫

Ω

πτ
(
2ξ∂3ξd

+u + ξ2d+∂3u
)
· d+∇a dx

+
∫

Ω

f · d−(ξ2d+u) dx =:
15∑

j=1
Ij .

(3.4)

The integrals Ij with j = 1, . . . , 7 can be estimated exactly as in [5, (4.8)–(4.13)] by
using the growth properties (2.1b) of the stress tensor S and it follows that

7∑

j=1
|Ij | ≤c (ε−1, ‖a‖C2,1 , ‖ξ‖2,∞)

∫

Ω∩spt ξ

ϕ(|Du|) + ϕ(|∇u|) dx

+ 4ε ‖ξ‖1,∞
∫

Ω

ϕ(ξ|d+∇u|) + ϕ(ξ|∇d+u|) dx.

The integrals involving the pressure Ij , with j = 8, . . . , 14 can be estimated as
in [5, (4.14)–(4.19)] and it follows that

14∑

j=8
|Ij | ≤c (ε−1, ‖a‖C2,1 , ‖ξ‖2,∞)

∫

Ω∩spt ξ

ϕ∗(|π|) + ϕ(|∇u|) dx

+ 4ε(1 + ‖ξ‖1,∞)
∫

Ω

ϕ(ξ|d+∇u|) + ϕ(ξ|∇d+u|) dx,
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while
∣∣I15

∣∣ ≤ c(ε−1, ‖ξ‖1,∞)
∫

Ω∩spt ξ

ϕ∗(|f |) + ϕ(|∇u|) dx + ε

∫

Ω∩spt ξ

ϕ(ξ|∇d+u|) dx .

Then, we use the inequality
∫

Ω

ϕ
(
ξ|∇d+u|

)
+ ϕ

(
ξ|d+∇u|

)
dx ≤ c

∫

Ω

ξ2∣∣d+F(Du)
∣∣2 dx

+ c(‖ξ‖1,∞, ‖a‖C1,1)
∫

Ω∩spt ξ

ϕ
(
|∇u|

)
dx ,

proved in [5, Lemma 3.11]. It follows from (3.4), by collecting the estimates for Ij ,
j = 1, . . . , 15 and finally by choosing ε > 0 small enough (in order to absorb terms in
the left-hand side) that

d

dt

1
2

∫

Ω

ξ2|d+u(t)|2 +
∫

Ω

ξ2∣∣d+F(Du(t))
∣∣2+ϕ(ξ|d+∇u(t)|) + ϕ(ξ|∇d+u(t)|) dx

≤ c (ε−1, ‖a‖C2,1 , ‖ξ‖2,∞)
∫

Ω∩spt ξ

ϕ∗(|f |) + ϕ(|∇u|) + ϕ∗(|π|) dx ,

for a.e. t ∈ I, where we also used also that d+ ∂u
∂t = ∂d+u

∂t .
Integration over [0, t], the a priori estimates from Theorem 2.8, and the result on

the summability of π proved in Theorem 2.10 finally show that for t ∈ I

1
2

∫

Ω

ξ2|d+u(t)|2 dx +
t∫

0

∫

Ω

ξ2∣∣d+F(Du(s))
∣∣2+ϕ(ξ|d+∇u(s)|) + ϕ(ξ|∇d+u(s)|) dxds

≤ 1
2‖u0‖21,2 + c(‖ξ‖2,∞, ‖a‖C2,1 , δ)

(
‖div S(Du0)‖22 +

T∫

0

‖f(s)‖p
′

p′ ds
)
,

from which (3.1)2 follows by standard arguments, since the estimate is independent of
h > 0.

To prove estimate (3.2) for ∂τπ, we adapt the approach in [5, Sec. 3] and start
with the following inequality obtained adding and subtracting the mean value

∫

Ω

ξ2|d+π|2 dx ≤ 2
∫

Ω

|ξ d+π − 〈ξd+π〉Ω|2 dx + 2
|Ω|
∣∣∣
∫

Ω

ξ d+π dx
∣∣∣
2
, (3.5)

in order to take advantage of the Poincaré inequality. The second term on the right-hand
side is treated as follows

2
|Ω|
∣∣∣
∫

Ω

ξ d+π dx
∣∣∣
2

= 2
|Ω|
∣∣∣
∫

Ω∩spt ξ

π d−ξ dx
∣∣∣
2
≤ 2 ‖ξ‖21,∞

∫

Ω∩spt ξ

|π|2 dx ,
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where we used Lemma 2.5. The first term on the right-hand side of (3.5) is treated
with the help of (cf. [3, Lemma 4.3])

‖q‖L2
0(G) ≤ c sup

‖v‖
W

1,2
0 (G)≤1

〈q,div v〉.

We re-write (3.3), using Lemma 2.4 and Lemma 2.5 to get for all ψ ∈W 1,2
0 (Ω)

∫

Ω

ξ d+π divψ dx

=
∫

Ω

ξ d+S(Du) ·Dψ + S(Du) · d−(∇ξ
s
⊗ψ)− S((Du)τ ) ·

(
∂3(ξψ)

s
⊗ d+∇a

)
dx

+
∫

Ω

πτ ∂3(ξψ) · d+∇a− π d−(∇ξ ·ψ)− f · d−(ξψ) + ∂u
∂t
· d−(ξψ) dx

=:
7∑

k=1
Jk .

We follow exactly the same approach as in [5, p. 857-858] to control Jk with k = 1, . . . , 6,
while J7 is simply estimated by Schwarz inequality. This proves that

∫

Ω

ξ2∣∣d+π
∣∣2 dx ≤ c(δp−2, ‖ξ‖2,∞, ‖a‖C1,1)

∫

Ω∩spt ξ

|f |2 + |π|2 + ϕ(|∇u|) +
∣∣∣∂u
∂t

∣∣∣
2
dx.

By using the Young inequality and being p < 2, this shows that

∫

Ω

ξ2∣∣d+π
∣∣2 dx ≤ c(δp−2, ‖ξ‖2,∞, ‖a‖C1,1)


(1+δp)|Ω|+

∫

Ω∩spt ξ

|f |p
′
+|π|p

′
+
∣∣∣∣
∂u
∂t

∣∣∣∣
2
dx


,

for a.e. t ∈ I. Hence, integration over I, using the a-priori estimates for u and ∂u
∂t , and

π already proved, yields

T∫

0

∫

Ω

ξ2∣∣d+π
∣∣2 dxds ≤ c(δp−2, ‖ξ‖2,∞, ‖a‖C1,1 , T, |Ω|)


‖u0‖21,2+

T∫

0

‖f(s)‖p
′

p′ds


 ,

which is the second estimate in (3.2). The same procedure, with many simplifications,
can be used in the interior of Ω for difference quotients in all directions ei, i = 1, 2, 3.
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In fact, by choosing h ∈
(

0, 1
2 dist(spt ξ00, ∂Ω)

)
and mainly with the same steps as

before, this leads to
T∫

0

∫

Ω

ξ2
00
∣∣∇F(Du)

∣∣2+ϕ(ξ00|∇2u|) dxds

≤ c(‖ξ00‖2,∞)
(
‖u0‖21,2 + ‖div S(Du0)‖22+

T∫

0

‖f‖p
′

p′ ds
)
,

and
T∫

0

∫

Ω

ξ2
00
∣∣∇π

∣∣2 dxds

≤ c(δp−2, ‖ξ00‖2,∞)
(
‖u0‖21,2+‖div S(Du0)‖22+

T∫

0

‖f‖p
′

p′ds
)
,

where ξ00 is any cut-off function with compact support contained in Ω. This proves
the first estimates in (3.1) and (3.2).

Moreover, from (3.1) and (3.2) we can infer the following result which will be
used to study the regularity of the derivatives in the x3 (locally the normal direction)
variable.
Corollary 3.4. Under the assumptions of Proposition 3.1 we obtain that F(D) ∈
L2(I;W 1,2

loc (Ω)), u ∈ Lp(I;W 2,p
loc (Ω)), and π ∈ L2(I;W 1,2

loc (Ω)). This implies, in partic-
ular, that the system (1.1) holds almost everywhere in I × Ω.

3.1. REGULARITY IN THE NORMAL DIRECTION

By following the same approach as in [5, Sec. 3.2], since we already proved that the
equations can be rigorously treated in the point-wise sense, we consider the first two
equations of the system (1.1) written as follows in I × Ω

− ∂γ3Sα3∂3Dγ3 − ∂3γSα3∂3D3γ

= fα −
∂uα
∂t

+ ∂απ + ∂33Sα3∂3D33 + ∂γσSα3∂3Dγσ + ∂klSαβ∂βDkl =: fα .
(3.6)

We multiply (3.6) point-wise by −bα := ∂3Dα3 to obtain

2κ0(p)ϕ′′(|Du|)|b|2 ≤ 2Aαγbγbα ≤ |f| |b| a.e. in I × Ω.

By using the same argument as in the cited reference (mainly the growth properties
of S from (2.1b)) the right-hand side f of (3.6) can be bounded as follows in I × ΩP :

|f| ≤ c
(
|f |+

∣∣∣∣
∂u
∂t

∣∣∣∣+ |∂τπ|+ ‖∇a‖∞|∂3π|+ ϕ′′(|Du|)
(
|∂τ∇u|+ ‖∇a‖∞|∇2u|

))
,



On the regularity of solution to the time-dependent p-Stokes system 67

where the constant c depends only on the characteristics of S. To estimate the
partial derivative ∂3π we use again the equations, to write point-wise in I × Ω that
∂3π = −f3 + ∂u3

∂t − ∂jS3j and to obtain

|∂3π| ≤ |f |+
∣∣∣∣
∂u
∂t

∣∣∣∣+ c ϕ′′(|Du|)|∇2u| a.e. in I × Ω .

Hence, there exists a constant C1, depending only on the characteristics of S, such
that a.e. in I × ΩP it holds

ϕ′′(|Du|)|∇2u|

≤ C1

(
(1+‖∇a‖∞)

(
|f |+

∣∣∂u
∂t

∣∣
)

+|∂τπ|+ϕ′′(|Du|)
(
|∂τ∇u|+‖∇a‖∞|∇2u|

))
.
(3.7)

Next, we choose the open sets ΩP small enough (that is we choose the radii RP small
enough) in such a way that

‖∇aP (x)‖L∞(ΩP ) ≤ rP ≤
1

2C1
=: C2 .

Thus, we can absorb the last term from the right-hand-side of (3.7) in the left-hand
side, which yields a.e. in I × ΩP

ϕ′′(|Du|)|∇2u| ≤ c
(
|f |+

∣∣∣∣
∂u
∂t

∣∣∣∣+ |∂τπ|+ ϕ′′(|Du|)|∂τ∇u|
)
. (3.8)

We next recall that for smooth enough u
√
ϕ′′(|Du|)|∇2u| ∼ |∇F(Du)| .

Thus, after multiplying both sides of (3.8) by ξ
√
ϕ′′(|Du|) and raising both sides to

the p-th power, we get a.e. in I × ΩP

ξp|∇F(Du)|p ≤ c ξpϕ′′(|Du|)− p2 (|f |p+
∣∣∣∣
∂u
∂t

∣∣∣∣
p

+|∂τπ|p)+c ξpϕ′′(|Du|) p2 |∂τ∇u|p .

Furthermore, the integral
T∫

0

∫

Ω

ξpϕ′′(|Du|)− p2 (|f |p+
∣∣∣∣
∂u
∂t

∣∣∣∣
p

+|∂τπ|p) dxds ,

is finite, due to the assumptions on f and on the square integrability in I × ΩP of ∂u
∂t

and of ξP∂τπ, already proved in Theorem 2.8 and Proposition 3.1. Next, by observing
that

T∫

0

∫

Ω

ξpϕ′′(|Du|) p2 |∂τ∇u|p dxds ≤ c δ (p−2)p
2

T∫

0

∫

Ω

[
ϕ(|ξ ∂τ∇u|) + δp

]
dxds,
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with Proposition 3.1 imply that also the second term in the last inequality is integrable.
Hence, we proved that

T∫

0

∫

Ω

ξp|∇F(Du)|p dxds ≤ c,

that is ∇F(Du) ∈ Lp(I × ΩP ), which proves the missing local estimate.
Finally, the properties of the finite covering and the results of the previous section

imply that
∇F(Du) ∈ Lp(I × Ω) ∩ L2

loc(I × Ω).

Thus, all assertions of Theorem 1.1 are proved.
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