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This study investigates the assessment of motor imagery (MI) ability in humans.

Commonly, MI ability is measured through two methodologies: a self-administered

questionnaire (MIQ-3) and the mental chronometry (MC), which measures the temporal

discrepancy between the actual and the imagined motor tasks. However, both measures

rely on subjects’ self-assessment and do not use physiological measures. In this study,

we propose a novel set of features extracted from the nonlinear dynamics of the eye

gaze signal to discriminate between good and bad imagers. To this aim, we designed an

experiment where twenty volunteers, categorized as good or bad imagers according

to MC, performed three tasks: a motor task (MT), a visual Imagery task (VI), and

a kinaesthetic Imagery task (KI). Throughout the experiment, the subjects’ eye gaze

was continuously monitored using an eye-tracking system. Eye gaze time series were

analyzed through recurrence quantification analysis of the reconstructed phase space

and compared between the two groups. Statistical results have shown how nonlinear

eye behavior can express an inner dynamics of imagery mental process and may be

used as a more objective and physiological-based measure of MI ability.

Keywords: motor imagery, eye-tracking, phase space, recurrence quantification analysis, mental chronometry

1. INTRODUCTION

Motor imagery (MI) is a cognitive process by which an individual rehearses or simulates a given
action (Choudhury et al., 2007). Many studies have provided evidence on the positive effects of
MI in both healthy subjects and patients (Dickstein and Deutsch, 2007; Tong et al., 2017). Indeed,
MI can improve basic motor skills and sport performance and can offer a beneficial, non-invasive
support to standard rehabilitation therapies (Decety and Ingvar, 1990; Driskell et al., 1994; Butler
and Page, 2006; Sharma et al., 2006; De Vries andMulder, 2007; Guillot and Collet, 2008; Di Rienzo
et al., 2014). Moreover, it has been successfully applied to treat chronic pain (i.e., complex regional
pain syndrome, phantom limb pain, and back pain (Bowering et al., 2013).

To date, MI ability is commonly measured through two main methodologies: self-administered
questionnaires and mental chronometry (MC) (Moran et al., 2012). A widely used questionnaire is
the Motor Imagery Questionnaire-3 (MIQ-3), which is a self-reported assessment of the ability
to recreate a mental motor representation (Williams et al., 2012). The MC is the measure of
the temporal discrepancy between the actual and the imagined motor tasks (Moran et al., 2012;
Williams et al., 2015). This approach grounds on the fact that executed and imagined tasks
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show overlapped neural patterns, comparable
psychophysiological profiles, and similar temporal duration
(Guillot et al., 2010a). Thus, MC provides semi-quantitative
information about the temporal congruence between executed
and imagined movements (Guillot et al., 2010b) and it is
considered an objective measure of MI ability (Collet et al., 2011),
even if the exact timing (onset and offset) of the imagination
process is, actually, self-reported. In the literature, MC has been
applied in several fields such as cognitive psychophysiology
(Heremans et al., 2008), cognitive neuroscience (Spruijt et al.,
2013), and behavioral neuroscience (Bakker et al., 2007).

Due to the dependency of both methods on the subjective
interpretation of the mental process none of them does
actually provide an objective measure of the inter-individual
physiological differences underlying MI abilities (Isaac, 1992;
Roure et al., 1999; Miller and Saygin, 2013; Sakurada et al., 2016;
Saruco et al., 2017). Hence, a reliable measure of MI ability would
be crucial to correctly assess these inter-individual differences.

A further variable to be considered in the MI field is
the sensory modality (kinaesthetic, visual) and the perspective
from which the imagery task is executed (first-person, third-
person) (Williams et al., 2012). In cognitive neuroscience, most
of the researchers consider motor imagery as a first-person
process, i.e., the mental representation of one’s self-performing
a motor action without any overt movement (Moran et al., 2012;
Filgueiras et al., 2017). Previous studies have investigated possible
relationships between the two metrics (i.e., MIQ-3 and MC)
for both kinaesthetic and visual imagery modalities. However,
no significant correlations have been reported so far (Lequerica
et al., 2002). In addition, they have noted that MIQ-3 scores
significantly differed between visual and kinaesthetic tasks, while
the MC did not. These findings have suggested that MIQ-3
and MC address different properties of imaginary ability and
they could be considered together as part of a comprehensive
assessment of MI (Collet et al., 2011; Moran et al., 2012; Williams
et al., 2015).

The aforementioned limitations have led recent studies to
propose physiologically-based methods for a more objective
assessment of MI ability. Particularly, they have mostly used
brain activity information to measure the real engagement of an
individual in a MI task as well as the goodness of the mental
representation (Popivanov et al., 2006; Soe and Nakagawa, 2008;
Andrade et al., 2014; Baravalle et al., 2018; Pavlov et al., 2018,
2019; Catrambone et al., 2019).

In this context, the eye-movement dynamics provides
interesting prospective. In fact, previous studies have investigated
eye-gaze dynamics as a reliable measure of MI in a variety of
motor tasks (Mast and Kosslyn, 2002; Gueugneau et al., 2008;
Heremans et al., 2008) and, more recently, the combination of
eye-gaze and brain dynamics have been used for new hybrid
brain computer interfaces (Meena et al., 2015; Wang et al.,
2015). These studies have shown that eye movements support
the process of image generation during visual imagery and that
this is not an epiphenomenon (Andrade et al., 1997, 2014; Lanata
et al., 2015). These findings have suggested that participants
use memories of eye movements to help recreating mental
images (Mast and Kosslyn, 2002). Particularly, Laeng et al.

(Laeng and Teodorescu, 2002) have demonstrated that not only
eye movements are constantly present during mental imagery
but, more specifically, they are functionally involved in mental
imagery processes. Indeed, they have found that during imagery
processes eye movements reflect the conditions in which the
participants have studied the stimulus to be imagined. In case the
participant maintains fixation while studying the stimulus, there
were almost no eye movements during the imagery phase. Vice-
versa, in case the subject visually explored the stimulus, he/she
also moved his/her eyes during the imagery phase. Furthermore,
the sequence of fixation during imagery and perception was very
similar. In fact, the more similar the imagery and perception
scan paths, the better the participants performed in a memory
task (Brandt and Stark, 1997; Laeng and Teodorescu, 2002). A
further step has been taken by de’Sperati (2003), when he has
demonstrated that eye movements could be used as markers of
the spatio-temporal evolution of mental imagery processes.

Therefore, assuming the eye-gaze as the output of a time-
variant dynamical system, the study of its time evolution, i.e.,
the eye movement dynamics, could provide an easy and robust
indication of the quality of cognitive process underlying the
motor imagery. Moreover, it is worthwhile noting that, as for
many physiological phenomenon, recently, a chaotic behavior
of eye movement dynamics has been shown in healthy humans
(Aştefănoaei et al., 2013). For example, relevant information has
been found on saccadic eye movements using a semi-quantitative
approach through indexes derived from chaos theory such as
fractal dimension and largest Lyapunov exponent (Poiroux et al.,
2015; Frank et al., 2016).

In sight of this, we conducted an experiment to demonstrate
whether nonlinear eye dynamics could be used to distinguish
between good and bad motor imagination performance. Among
the large number of nonlinearmethods, we do believe Recurrence
Quantification Analysis (RQA) is an effective way to extract
information from the eye movement dynamics. Indeed, RQA
has been previously applied to describe the temporal dynamics
of eye movements during picture presentation (Anderson et al.,
2013; Vaidyanathan et al., 2014; Farnand et al., 2016), and to
study the temporal organization of eye movements during the
mental imagery of previously observed pictures. Particularly,
high percentage of recurrent fixations and determinism values
have been reported during mental imagery. These findings
have been assumed to reflect the visuospatial working memory
processes by which mental images are generated and maintained
in mind (Gurtner et al., 2019). Moreover, the large inter-
individual differences found in RQA measures during mental
imagery has been related to the individual differences in working
memory ability (Gurtner et al., 2019). Based on these previous
studies, we have assumed that RQA could be used to find effective
markers of motor imagery ability as well as of motor imagery
modalities.

To this aim, we have investigated the temporal dynamics of
the eye movements, through RQA of the reconstructed phase
space, which allows identifying complex and nonlinear eye gaze
behavior (Eckmann et al., 1987; Casdagli, 1997; Marwan et al.,
2002, 2007). In this study we statistically compared RQA features
between subjects labeled as good and bad imager according to
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their MC in order to propose a more objective and physiological-
based measure of MI ability.

2. METHODS

2.1. Subjects Recruitment and Acquisition
Set-Up
The study was performed in accordance with the ethical
standards of the Declaration of Helsinki. We enrolled 20
volunteers (9 females; mean age= 25, range= 20–30) from a pool
of students of the University of Pisa. All involved participants
had no history of medical or neurological disorders and reported
normal/corrected-to-normal vision. The study was approved by
the Bioethics Committee of the University of Pisa. Before starting
the experimental procedure participants were asked to answer
some questionnaires to evaluate the handedness (Oldfield, 1971),
the ability to imagine motor actions (MIQ-3, Williams et al.,
2012), the level of subjectively perceived anxiety (STAI-Y, Julian,
2011), and the mood (PANAS, Watson et al., 1988). Participants
whose scores of PANAS and STAY were not within the normative
ranges [e.g., STAY-Y scores > 45, and PANAS: Negative affect
NA>30 (>95th percentile) e Positive affect PA<18 (< 5th
percentile)], thus indicating the possible presence of affective
disorders, were not included in the study.

All experiments were performed in the same room at the
University of Pisa, with controlled illumination and in the same
daytime interval (11:00–16:00). Each participant was asked to
sit on a comfortable chair in front of a desk, on which was
placed a tablet and the eye tracker system. Throughout the whole
experiment the eye-gaze was continuously monitored by means
of Eye Tribe remote eye-tracker system (ET, The EyeTribe 2014).
The experiment was App-guided, and the app was developed in
Visual Studio 2017 in C# language (see Figure 1).

After the experiment, participants have been clustered into
two groups according to the MC score distribution (see section
3): good imagers (GI) (MC < MedianMC) and bad imagers (BI)
(MC ≥MedianMC).

2.2. Experimental Protocol and Subject
Clustering
The experiment consisted of acting and imaging different
visuomotor tasks following the timeline showed in the Figure 2.

More specifically, each participant was asked to interact with
a software application, which guided the subjects to press or
imagine to press a sequence of “buttons” on a touch-screen of
a tablet and following a specific path indicated by the red arrows
(see Figure 3). Two variants of the protocol were proposed based
on the size of the buttons: an “easy” option (big buttons) and a
“difficult” option (small buttons) (see Figure 3). Each participant
performed both options in a randomized order. For each option,
the experiment timeline consisted of a Motor task (MT), a Visual
Imagery task (VI), and kinaesthetic Imagery task (KI), as follows
(see Figure 4):

• Motor task (MT): the subject performed the motor task by
pressing the buttons in the right sequence.

• Visual Imagery task (VI): the subject was asked to imagine
himself/herself while performing the motor task described
above observing the scene from an internal perspective, i.e.,
seeing his/her hand touching the screen.

• Kinaesthetic Imagery task (KI): the subject is asked to image
himself/herself while performing the motor task in “first
person”, i.e., paying attention to the information coming from
his/her body parts: the same sensations he/she would feel while
is performing a real motor task.

Participants were asked to say “START” and “STOP”,
respectively, at the beginning and the end of each imagery
task. The timing of each task was measured by an experimenter
with a chronometer. The two imagery tasks (i.e., VI and KI)
always came after the motor one, but the number of the VI and
KI tasks was counterbalanced among participants.

At the end of each imagery task, the imagery performance was
evaluated in two ways:

• By filling out a slightly revised version of the MIQ-
3 questionnaire, which consists of a 12-item self-report
inventory evaluating the individual ability to shape mental
images of motor actions. For each item the subject had to rate
the difficulty of the performed imagination task by using a 7-
point scale (from 1 = very hard to see/feel; 4 = neutral (not
easy/not hard); 7 = very easy to see/feel, and intermediate
levels). The final score is the average of the ratings obtained
in the four MI tasks.

• By computing the MC as the absolute difference between time
of execution of the motor tasks and the time of execution of

FIGURE 1 | Experimental Set-up: The picture on the left emphasizes the area in which the eye tracker can correctly acquire subject’s eyes. The picture on the right

shows the eye tracker position and computed gaze direction of subject while performing the imagery task.
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FIGURE 2 | Experimental protocol timeline for an i-th subject. Easy and Difficult options as well as Visual and kinaesthetic Imagery tasks were counterbalanced

among the subjects.

FIGURE 3 | Interactive interface used for motor imagery assessment. (Left)

The easy task; (Right) the difficult task.

the imagined tasks. Specifically, MC shows the discrepancy

between execution time as follows: MC =

∣

∣

∣

(

TA − TI)
∣

∣

∣
, where

TA and TI are the execution time of the motor and imaginary
task, respectively.

2.3. Signal Processing Method for
Eye-Tracking Feature Extraction
In the following sections, we describe the methodology applied
to eye gaze time series to characterize the eye gaze nonlinear
dynamics. Particularly, we explain the procedure to reconstruct
the dynamical system state space from which a set of parameters
are computed: the integration of the bi-dimensional information
of the gaze point; the reconstruction of the embedded phase space
and the extraction of the RQA nonlinear-complexity features;
and the calculation of the time standard eye-tracking measures,
such as fixation time and number of blinks.

2.3.1. Point-to-Point Instantaneous Gaze Direction
Point-to-Point Instantaneous Gaze Direction (PPIGD) (i.e., the
angle θi) was computed as the angle between the vector obtained
by two consecutive points of gaze and the horizontal axis. This
signal was the result of the integration of the bi-dimensional gaze
point into a mono-dimensional time series. More in detail, given
the ith gaze point GPi ≡

(x
y

)

, we can define the PPIGD as follows

FIGURE 4 | The Figure shows the three experimental sessions: (A) motor task

(MT); (B) visual imagery (VI); (C) kinaesthetic imagery (KI).

(Aks et al., 2002):

θi = arctan
1GPy,i

1GPx,i
(1)

where 1GPi
(x
y

)

= GPi+1

(x
y

)

− GPi
(x
y

)

, 1GPx,i = (GPx,i+1,GPx,i),

1GPy,i = (GPy,i+1,GPy,i).

2.3.2. Phase-Space (PS) and Phase Space

Reconstruction
The Phase space (PS) was reconstructed starting from the PPIGD
time series. PS allows the representation of dynamical system
through a time-evolution law. As a matter of fact, each element
of the PS represents a possible state of the system (Marwan
et al., 2007). Hence, knowing the time-evolution law, once a
present state is fixed, all of the future states are determined as
well (Lajish et al., 2012). This means that a point in PS specifies
the state of the system and vice versa. Therefore, we could
investigate the dynamics of the system by studying the dynamics
of the corresponding PS points (Piotrowski et al., 2004). Since
in many cases this dynamics is yet to be known, we can obtain
an equivalent dynamics reconstructing a PS by using the Takens’s
theorem (Takens, 1981). This guarantees that the PS geometrical
properties of a given nonlinear system can be reconstructed by
using copies of the times series measured, as the output of the
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original system. The reconstructed PS is representative of the
dynamics of the original system, moreover, it is a vector space
(Kantz and Schreiber, 2004) in which, by using a time delay
embedding method, we can describe the system dynamics by an
m− dimensionalmap. In the univariate case, it is represented by
the following embedding vector:

xn = (xn, xn−τ , ..., xn−(m−1)τ ) (2)

where {xn}
N
n=1, n = 1, ...,N, is the measured time series. m is the

embedding dimension, i.e., the number of components in xn, and
τ is the time delay.

Although in the literature, many approaches have been
proposed for the selection of m and τ (Fraser, 1986; Albano
et al., 1987; Kennel et al., 1992; Kaplan, 1993; Chun-Hua and
Xin-Bao, 2004), we computed embedding dimension, m, as the
first minimum of the false nearest neighbors function over the

possible dimensions from zero to ten. An embedding dimension
ofm = 4 was obtained (Stephen et al., 2009; Kraemer et al., 2018)

(see Figure 5 as en example of them computation). Furthermore,

Time delay τ was computed as the first minimum of the mutual

information profile, maximizing the independence among the
components of the embedding vector (see Figure 6 as an example

of the τ computation). Finally, the RQA was applied to the
reconstructed phase space in order to quantify the dynamic of
the eye evolution throughout the process.

2.3.3. Recurrence Quantification Analysis
The RQA is a method for quantifying the dynamic properties of a

system represented in the phase space (Webber and Zbilut, 1994;
Marwan et al., 2007). RQA is based on the recurrence plot (RP),

which visualizes recurrences of a state vector xi(i = 1, ...,N) in

the phase space. Specifically, RP is a graph showing those instants

during which a state of the dynamical system recurs, i.e., RP
reveals all the time points when the phase space trajectory visits

FIGURE 5 | Example of the computation of the Embedding dimension m.

roughly the same area in the phase space.

Ri,j = 2(ǫ − ||xi − xj||), i, j = 1, ...,N, (3)

where N is the number of measured points xi, ǫ is a threshold
distance, || ∗ || is a norm, e.g., the Euclidean norm, and 2(x) is
the Heaviside function.

A crucial issue of RP is the choice of the threshold ǫ.
Specifically, if we choose a too small ǫ, there may be almost
no recurrence points and we cannot learn anything about the
recurrence structure of the underlying system. On the other
hand, if we choose a too large ǫ, almost all the points are neighbor
of all the other points. To date no optimum values of ǫ are
currently in the scientific literature, and ǫ is chosen following
different rules of thumb (Mindlin andGilmore, 1992; Zbilut et al.,
2002). Here, we have customized the value of ǫ for each time
series as reported in Dabiré et al. (1998).

Recurrences are the building blocks from which all other
measures in RQA are constructed. To our aim, the following
features were calculated (Webber and Zbilut, 2005): Recurrence
rate (REC), Determinism (DET), Laminarity (LAM), and
Entropy (ENTR).

• The REC is defined as a measure of the density of recurrence
points in the RP. Specifically, considering xi the time series of
one variable, for m variables we have xi = (x1,i, ..., xm,i), with
i = 1, ...,N.We define the recurrencematrix,N×N, of element
Rij as follows:

Rij =

{

1, if d(xi, xj) < ǫ

0, otherwise
(4)

where d is the distance between xi and xj.
The recurrence exits when Rij = 1 with i 6= j, the total number
of recurrences is

FIGURE 6 | Example of the computation of the Time delay τ .
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R =
∑N−1

i=1

∑N
j=1+1 Rij.

REC, is defined by the equation:

REC =
100

N(N − 1)
2R (5)

REC corresponds to the correlation sum.
• The determinism (DET) is defined as the percentage of

recurrence points which form diagonal lines:

DET =

∑N
l=lDmin

lPD(l)
∑N

l=1 lPD(l)
, (6)

where D is defined as the set of diagonal lines; PD(l) as the
histograms corresponding to number of lines of D with length
l > lDmin. DET can be interpreted as the probability that
two closely evolving segments of the phase space trajectory
will remain close for the next time step. This measure
provides indications on the predictability of the dynamical
system. Of note, in deterministic systems, time series are
commonly characterized by repeated similar state evolution
(corresponding to local predictability) and exhibit very simple
regular structures, which, accordingly to the RP construction,
are reflected in many long diagonal lines. On the other hand,
chaotic systems can show a certain regularity, but with much
more complex and denser features, whereas unpredictable
random signals, such as the white noise, are characterized by
sparse points in the RP.

• The Laminarity (LAM) is defined as the percentage of
recurrence points which form vertical lines:

LAM =

∑N
l=lVmin

lPV (l)
∑N

l=1 lPV (l)
(7)

where V is defined as the set of vertical lines; PV (l) as the
histograms corresponding to number of lines of V with length
l > lVmin. LAM is a measure of the probability that a state will
not change at the next time step (i.e., it remains within a range
defined by ǫ). This measure estimates the amount of laminar
phases in the system, and can be considered an indirect
measure of the intermittency, i.e., the irregular alternation of
phases of apparently periodic and chaotic dynamics (Dutt-
Mazumder et al., 2018).

• The Entropy (ENTR) is defined as the Shannon entropy. Let’s
define p(l) as the probability that a diagonal line has exactly
length l = lmin. This can be estimated from the frequency
distribution of the probability distribution of the diagonal
line lengths:

p(l) =
PD(l)

∑D
l=lmin

PD(l)
(8)

Hence,

ENTR = −

N
∑

l=lmin

p(l) ln p(l) (9)

ENTR refers to the Shannon entropy of the probability p(l) of
finding a diagonal line of exactly length l in the RP. It reflects
the complexity of the RP with respect to the diagonal lines. It is
an indication of the complexity of the deterministic structure
in the system. However, this entropy depends sensitively on
the bin number and, thus, may differ for different realizations
of the same process.

2.3.4. Fixation Time and Blink Detection
In addition to the RQA estimated from the PPIGD series, we
calculated the fixation time and number of blinks for each
experimental session. Specifically, fixation time is the time
among saccade movements needed to correctly project a detail
into the fovea. Generally, this process lasts about hundreds of
milliseconds. However, when someone has to interpret details of
an image, the fixation time can vary over time due to the cognitive
process related to visual attention. In this study, we calculated
the fixation time as the number of consecutive video-frames in
which the Point-of-Gaze fell within the same specific area of the
screen (i.e., area of fixation) multiplied by the sampling time of
the camera tc. Here, we have chosen an area of fixation of about
3x3 pixel (Armato et al., 2013; Lanata et al., 2013).

Moreover, within each experimental session and for each
task, we calculated the total number of blinks. The number of
blinks was obtained considering the computed pupil area and the
module of the gaze vector. The gaze vector was composed by the
center of axes and the (x and y) coordinates of the gaze point. The
number of blinks was obtained as the number of times in which
the gaze vector module together with the pupil area were zero. Of
note, the eye tracker system gave an output (gaze point) of zero
when the gaze point went out of the borders of the calibration
plane, but since there could be artifacts, that took the eye gaze out
of the calibration plane, we considered the set of gaze vector and
pupil area. We thresholded these variables and only when both of
them went over the threshold, this was counted as a blink.

2.4. Statistical Analysis
As mentioned in section 2.2, each subjects’ performance has
been labeled as good (GI) or bad imagery (BI) according to
the MC value. More specifically, we have calculated the median
value of the distribution of the duration differences between the
imagery tasks and the motor tasks (see Figure 7). Accordingly,
each feature vector was associated with the GI group whether the
MC was under or equal to the median threshold, or with the BI
group in the other case.

Afterwards, the difference between these two groups have
been statistically evaluated in terms of eye-gaze dynamics
(fixation time, blink number, and RQA measures). Specifically,
we performed the following statistical comparisons:

• Comparison between BI and GI considering both easy and
difficult tasks together;

• Comparison between BI and GI considering only the easy task;
• Comparison between BI and GI considering only the difficult

task.

To this aim, we have used a non-parametric Mann–Whitney
U-test under the null hypothesis that the medians of the two
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groups were equal. Indeed, the Shapiro–Wilk test demonstrated
that most of the features showed a non-Gaussian distribution
(p < 0.05). All p-values were corrected following the Holm-
Bonferroni’s method. This addresses the problem of multiple
statistical testing, which leads to a higher probability of a Type
I error (probability of false positive). The Holm-Bonferroni
method controls the family-wise error rate by adjusting the
rejection criteria of each of the individual hypotheses. This
method is less conservative than the classical Bonferroni method,
reducing the related increase of type II error risk than this latter.
In practice, the p-values are first sorted and then the smallest
value is multiplied by N, where N is the number of comparisons.
The next value is then multiplied by N-1 etc. Accordingly,
the highest p-value remains unchanged (i.e., it is multiplied by
1). The corrected p-values are finally compared to the alpha
level of 0.05.

Furthermore, we have performed also a comparison between
the eye gaze features computed during the easy and the difficult
tasks and between the kinaesthetic and the visual tasks. In this
case, due to the paired nature of the data, we have adopted the
Wilcoxon signed-rank test, which is a non-parametric test for
paired data. Also in this case, the significance level has been set
to 0.05 (5%) and all p-values have been corrected following the
Holm-Bonferroni’s method.

3. RESULTS

In this section, we present the results of the statistical analyses
described in section 2.4. Figure 7 shows the distribution of the
MC values calculated for all tasks. The red line indicates the
median value used to associate each performance with the BI and
GI group. As expected, the histogram shows a skewed shape, with
the peak close to the zero, which indicates that all good imagery
performance obtained a similar, very small MC value.

In Tables 1–5, for all statistical comparisons, we report the p-
value and median values (± median absolute deviation) of the
RQA features, whereas blink number and fixation time are not
reported since they did not yield any significant results. Of note,
Tables show the p-value in bold when the difference between the
two group is statistically significant.

Surprisingly, easy and difficult tasks did not show significant
differences for all features (see Table 1). Instead, kinaesthetic and
visual modalities revealed significant differences in the nonlinear
domain features, i.e., REC, DET, and ENTR (Table 2). Table 3
shows the results of the statistical comparison between GI and
BI for each of the RQA features. The comparison included both

TABLE 1 | Statistical comparison between easy task (ET) and difficult tasks (DT).

Feature p-value ET DT

Median ± MAD Median ± MAD

REC 0.6001 0.2612 ± 0.0137 0.2658 ± 0.0139

DET 0.4762 0.4230 ± 0.0206 0.4285 ± 0.0172

LAM 0.8507 2.3655 ± 0.0503 2.3766 ± 0.0462

ENTR 0.8507 0.4889 ± 0.0310 0.4941 ± 0.0226

TABLE 2 | Statistical comparison between kinaesthetic task (KI) and visual

tasks (VI).

Feature p-value KI VI

Median ± MAD Median ± MAD

REC 0.0467 0.2699 ± 0.0152 0.2610 ± 0.0123

DET 0.0372 0.4359 ± 0.0199 0.4184 ± 0.0209

LAM 0.1127 2.3812 ± 0.0450 2.3608 ± 0.0456

ENTR 0.0257 0.5030 ± 0.0288 0.4814 ± 0.0295

FIGURE 7 | (Left) Histogram of the chronometry values; the dotted line indicates the threshold that split the good from bad imagers. (Right) Box-plot of the Good

and Bad imagery MC distributions (GI: median: 7,078 ms, interquartile range (IQR): 7,651 ms; BI median: 32,380 ms, IQR: 22,574 ms).
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TABLE 3 | Statistical comparison between BI and GI.

Feature p-value GI BI

Median ± MAD Median ± MAD

REC 0.0300 0.2596 ± 0.0103 0.2722 ± 0.0185

DET 0.0448 0.4197± 0.0169 0.4372 ± 0.0244

LAM 0.0106 2.3526 ± 0.0393 2.3881 ± 0.0546

ENTR 0.0339 0.4820 ± 0.0248 0.5040 ± 0.0318

TABLE 4 | Statistical comparison between BI and GI considering only the easy

task.

Feature p-value GI BI

Median ± MAD Median ± MAD

REC 0.4813 0.2642 ± 0.0121 0.2691 ± 0.0160

DET 0.6648 0.4295 ± 0.0188 0.4275± 0.0159

LAM 0.2786 2.3722 ± 0.0454 2.3822± 0.0490

ENTR 0.6648 0.4935 ± 0.0198 0.4950± 0.0249

TABLE 5 | Statistical comparison between BI and GI considering only the difficult

task.

Feature p-value GI BI

Median ± MAD Median ± MAD

REC 0.0655 0.2570 ± 0.0072 0.2734 ± 0.0186

DET 0.0450 0.4161 ± 0.0133 0.4440 ± 0.0281

LAM 0.0264 2.3457 ± 0.0358 2.4065 ± 0.0802

ENTR 0.0422 0.4767 ± 0.0212 0.5180 ± 0.0359

the values extracted from the difficult and the easy task together
(i.e., considering the easy and difficult tasks as two repetitions of
the same task). Each RQA feature showed a significant higher
values for the BI group compared to the GI one, i.e., a higher
complexity of the eye dynamics evaluated through the PPIGD
time series. Interestingly, when we considered only the easy
tasks, these statistical difference faded (Table 4), whereas they
were still significant analyzing the difficult tasks, except for the
REC (Table 5). Of note, dividing the feature-set according to
the difficulty level of tasks, we also reduced the sample size
and consequently, the p-values tended to be higher. This could
explain the loss of significance for the REC parameter for the
difficult tasks.

3.1. Neuropsychological Results
The scores obtained in the STAI-Y and PANAS questionnaires
before and after the experimental session were compared by
means of separate Repeated measures ANOVAs, with Groups
(GI, BI) as between subject factor and TASK (Pre, Post) as
within subject factor. No significant effects were found, thus
indicating that the two groups had similar anxiety levels and
mood. The experimental procedure did not induce any anxiety
or negative affect that could impair the performance, e.g., an
attention decrease.

3.2. Task Evaluation
The self-assessment (SA) scores (imagery easiness/difficulty)
assigned to each task by good and bad imagers were compared by
means ofMann–WhitneyU-tests. No significant differences were
found. Moreover, analysis of correlation (Spearmean) between
SA and chronometry scores did not reveal any significant
association between the two measures.

4. DISCUSSION

The importance of MI has been well-documented in several
domains such as medicine, education, training, or consumer
behavior theory (MacInnis and Price, 1987). In this study, we
propose a novel analysis for a more objective measurement
of the MI ability in humans. Specifically, we analyzed the eye
gaze dynamics to investigate the mental process underpinning
imagination tasks. Indeed, the eye behavior can provide a
valuable measure of an inner brain activity that cannot explicitly
be analyzed, but whose dynamics can be reconstructed starting
from its outcomes (i.e., the eye-gaze). Particularly, we have
described the evolution of the imagery process through a set of
complexity measures extracted from the phase space trajectory
recurrences (Marwan et al., 2002).

Statistical results emphasized how the computed recurrence
features, i.e., recurrence rate (REC), determinism (DET),
laminarity (LAM), and entropy (ENTR), were able to significantly
discriminate between GI and BI groups (see p-values in the
Table 3), showing also how the complexity of the mental process
changes between different levels of MI ability. Specifically, these
results seem to indicate that BIs show a more complex mental
process than the GIs, which instead shows amore predictable and
ordered activity. In fact, the median of all metrics, i.e., REC,DET,
LAM, and ENTR, was significantly higher in the BI group than
in the GI group, especially when the imagery tasks became more
difficult and a good imagery ability was increasingly necessary
(Table 5). Moreover, the current results also show that while
chronometric evaluation per se does not allow discriminating
between visual and kinaesthetic modalities (Collet et al., 2011;
Moran et al., 2012; Williams et al., 2015), the nonlinear dynamics
of eye movements revealed also differences between the two
imagery modalities.

Previous studies have described imagery as a processing mode
in which multi-sensory information is represented in a gestalt
form in working memory (MacInnis and Price, 1987), and have
demonstrated how the dimensional complexity of imagery was
consistently higher than perception (Schupp et al., 1994). Our
results underlined the relationship between imagery and its
generation components such as visual memories for recognition,
or waking visual imagery (Farah, 1984). In fact, starting from
the evidence that eye movements during visual imagery are
related to what has been seen (Brandt and Stark, 1997), we
showed that the nonlinear indexes of eye pattern significantly
change according to the quality of the imagery performance
and therefore this suggests that they contain information on
the process of imagery. The higher REC and DET found in
the BI group would likely reflect their bad working memory
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ability, which requires the recurrent fixation of the buttons on
the screen to mentally reproduce the motor sequence (Gurtner
et al., 2019). On the other hand, higher RQA parameters in
the kinaesthetic modality than in the visual one can indicate
facilitation for visual-motor imagery when visuospatial working
memory is required. In addition, we enriched previous findings
in the literature (Schupp et al., 1994), showing that complexity
analysis of the eye behavior could provide a robust and accurate
description of the imagery process. Indeed, it is worthwhile
noting that nonlinear eye-gaze information is more informative
than standard indexes such as time of fixation and pupil dilation,
which did not provide any significant results. Furthermore, the
accuracy and efficiency of the computed descriptors showed how
the difficult tasks reached more evident results probably due to
the required involved mental resources.

Of note, our non-linear indexes are statistically tested on
groups defined based on the CM values. Therefore, we used a
partially-subjective measure. This is a general limitation when
validating physiological markers to infer the psychophysiological
state. Indeed, a ground-truth and a comprehensive validity
assessment protocol for validation of physiological signals are not
possible to be performed.

In conclusion, imagery processing affects a multitude of
cognitive, physiological, and behavioral phenomena in many
domains such as learning, problem-solving, and consumer
experiences. Our work opens new windows for a better
understanding of how motor imagery performance can influence
these phenomena.

Future endeavors will be directed toward the comparison
of our non-linear indexes with results derived from the event-
related desynchronization/synchronization analyses in an EEG-
based brain-computer-interface scenario.
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