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A B S T R A C T

This study deals with the substructuring method that is adopted for treating complex structures, such as the ITER
Tokamak, as an assembly of different components or substructures. This method uses basic mass and stiffness
matrices combined with conditions representative of the geometrical compatibility along the substructure
boundaries. This approach makes it possible to simulate the dynamic behaviour of the (complex) ITER Vacuum
Vessel (VV), subjected to dynamic loading (e.g. seismic), by means of a simplified model (finite element dis-
cretization) with little loss of accuracy. In this framework, a simplified model of the ITER VV for use in global
seismic analyses has been developed and implemented. In order to minimize the wavefront (and hence com-
putational time), the simplified model is made of multiple superelements, each representing a part of the VV.
Moreover, in order to reduce the number of Degrees of Freedom (DoFs) needed along the boundaries of the
different substructures, a new approach has also been developed for the breakdown of the benchmark model.

1. Introduction

Understanding of the dynamic response of the Tokamak machine
and its components due to a seismic event is important to ensure that its
design is compliant with safety requirements for seismic loads.

From a dynamic point of view, the ITER machine sits inside a
building that is horizontally isolated from the ground (Fig. 1). The
vertical modes of the two main components of the machine (the VV and
the magnet system) interact dynamically with each other and with the
building. To capture such interaction, without introducing excessive
conservatism, it is useful to represent all the significant systems of the
Tokamak machine (e.g. Magnets, Cryostat, Vacuum Vessel, etc.) in one
analysis. In doing that, each component has to be represented with its
mass and stiffness and related uncertainties. In order for the analyses to
run in a reasonable time, it is useful to use simplified models. Such
simplified models should be capable of simulating the behaviour of the
detailed benchmark models without losing accuracy.

Although several methodologies exist for creating such simplified
models, such as those summarized in [1–3], in this study the sub-
structuring approach is used. This method allows to perform accurate
dynamic analysis and to reduce the computational cost. The sub-
structuring approach makes use of the Guyan reduction method [4–6],
which condensates the system matrices on a smaller number of DoFs.
The Guyan reduction therefore allows the size of each substructure

(finite element models) to be reduced.
The modelling approach is validated using criteria based on the

ability of the resulting model to reproduce the behaviour of the
benchmark model. A detailed model of the VV is used as input for the
substructuring analysis of the Vacuum Vessel. The VV model has to be
used in dynamic calculations together with other simplified models to
form the whole ITER Tokamak Machine, so in this sense the lightness of
the model is important.

In the following Section 2 the substructuring approach based on the
Guyan reduction method is described. Section 3 provides the validation
of the simplified model of the VV. Results obtained from the application
of this method are presented and discussed.

2. Substructuring method

2.1. Methodology description

The substructuring method is based on the Guyan reduction
method, which condensates the system matrices on a smaller number of
degrees of freedom [4,6], hereafter called master DoFs. Indeed, the
accuracy depends on the a-priori selection of these master DoFs.

In the substructuring method [7], the structure is partitioned into a
number of substructures. It is important to note that the partition
greatly affects the matrix formulation, so the partitioning must be done
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carefully. Once substructures have been created, they are assembled by
coupling coincident nodes on the boundaries.

The VV structure is divided into substructures based on the geo-
metry or modelling convenience. Each substructure is analysed sepa-
rately in order to reduce the system matrices to a smaller set of DoFs.
The resultant of the substructure method is a so-called superelement
[5], which groups elements meeting certain conditions (defined math-
ematically) and that, upon assembly, may be regarded as an individual
structural element for computational purposes. This superelement can
be used directly in an analysis or can be used to create more super-
elements (multi-level substructure).

2.2. Partition interface

When the partition of the model is performed, all the DoFs, both
displacements and rotations, on the interface of the substructure must
be selected as master DoFs. For models like the ITER VV, that implies
that for each subcomponent, a huge number of DoFs should be selected.
This causes a substantial increase of the wavefront value, i. e. the
maximum number of non-zero entries in a row of the stiffness matrix.

In this paper a method is presented to reduce the number of DoFs on
the boundary, without losing confidence on the good behaviour of the
structure. This method has been developed for shell elements using the
ANSYS Mechanical APDL code. More studies must to be carried out to
extend the application of the method to other element types. In the
following paragraphs, a brief description of some used commands or
nomenclatures of the code is provided.

Fig. 2 left shows a sketch of an initial shell mesh of a structure while
Fig. 2 right shows the same mesh after being divided into two parts. The
red dots represent the selected master nodes DoFs. These DoFs will be
rigidly linked by means of coupling (CP). In this case, not all of the
nodes on the interface are chosen as master nodes.

If “few” master DoFs are selected at the boundary, the interface
stiffness is underestimated. This selection will produce a detachment of
the mesh where the nodes are not directly connected, as shown in
Fig. 3.

To avoid this problem, the average motion of all the interface nodes
must be considered. To achieve this, all nodes on the interface, here-
after called slave nodes, are connected through RBE3 links [8] to the
nearest selected master node, as shown in Fig. 4.

If a set of slave nodes for a given RBE3 are collinear, the potential
for drilling must be taken into account. In this case, drilling refers to the
fact that the master node rotation parallel to the collinear direction
cannot be determined in terms of translations of the slave nodes. The
moment about the collinear axis therefore cannot be transmitted, and
the RBE3 cannot be defined.

To solve this problem, for each element attached to each slave node,
two more nodes are created. These are placed normal to the element
surface, at the extremes of the element thickness. For this reason they
are hereafter referred to as “external” nodes. These nodes are rigidly
linked to the relevant slave node through Constraint Equations (CEs),
and to the master node by means of RBE3. Moreover weighting factors
(WFs) are applied to take into account the area of influence of each
slave node.

For each RBE3 the vector of WFs is defined as:

= … …WF WF WF WF WF{ } { , , , , , }k n1 2 (1)

With reference to Fig. 5, the WF for each external node is:

=WF A
Ak

k

tot (2)

Where: Atot is the total area of the elements at the interface, given as:

= ∙A L ttot tot (3)

Ak is the influence area of the node k:

= ∙ =

∙

=A L t L t A
2 2 4 4k
elm elm elm k,

(4)

Fig. 1. Scheme of the Tokamak Complex.

Fig. 2. Initial mesh (left). Division of the mesh with the master DoFs selected
(right).

Fig. 3. Effect of the selection of few DoFs on the interface.

Fig. 4. Interface connection: the RBE3 is represented through the magenta link,
while the CP are in green.

Fig. 5. Geometrical parameters used for WFs calculation. Ak is the green rec-
tangle, Aelm k, is the red rectangle (where ¼ is covered by the green one).
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Ltot is the total length of the elements considered in the connection;
t is the thickness of the element;
Lelm is the length of the single element.
Aelm k, is the area of the single element.
As stated before, for each slave node two external nodes are created

for each element that contains the node. Fig. 6 shows that for each slave
node, two external nodes are created. The reason for creating a number
of external nodes proportional to the elements attached to the slave
node is to take into account discontinuities in thickness, or different
orientations of two adjacent elements.

Because the matrix condensation cannot be performed on nodes that
belong to CEs, the master node of the RBE3 connection is duplicated
and the two nodes are linked with very stiff spring (COMBIN14) ele-
ments. The final layout of the interface is shown in Fig. 7.

2.3. Benchmark model breakdown and simplified model creation

The simplified model is obtained by performing substructuring
analysis on the benchmark model [1]. The benchmark model is parti-
tioned in multiple components, as follow (Fig. 8):

• 9 Sectors of Inboard VV body (in pink);

• 9 Sectors of Outboard VV body with the lower port structure (in
grey);

• 18 Upper Ports (in cyan);

• 14 Equatorial Ports (in blue);

• 3 Neutral Beam Ports (HNB1+DNB in red, HNB2 in yellow and
HNB3 in magenta);

• 1 Divertors, corresponding to 54 divertor cassettes (in green only 1/
9 of the partitioned component).

The blanket modules are also represented in the model by means of
their masses directly condensed on the master nodes selected in the
main VV body.

For the Vacuum Vessel Gravity Supports (VVGS) and the port plugs
(PP), the elements defined in the benchmark model are directly used in
the simplified model (Fig. 9).

Finally, for visualization purposes, dummy elements (solid and shell
type) with no mass or stiffness are created. Fig. 9 shows the overview of
the simplified model of the VV.

2.4. Damping ratio and non-linearity

The damping of the superelements is considered in a similar manner
to that of traditional elements. A constant damping ratio of 4% is de-
fined for the whole VV system for a Category IV earthquake [9]. The
effect of damping on the solved eigenmodes is strictly dependent on the
solver used in the modal analysis. Considering the relatively low
damping, the Block Lanczos solver is used, not taking into account the
effect of damping on the eigenmodes.

Non-linearity cannot be included in the superelement matrices.
However the superelements can be linked to other components with
non-linear behaviour. E.g. it would be possible to consider friction in
the VVGS, by using standard non-linear elements and connecting them
to the superelements presented in this paper.

3. Validation of the simplified model

The mass and CoG of the simplified and benchmark models have
been extracted, considering the reaction forces and the moments. The
results have given a perfect match between the two models.

In order to verify the validity of the methodology used to obtain the
simplified model, the following verification analyses were performed:

• Modal analysis;

• Power Spectral Density (PSD) analysis.

3.1. Modal analysis

For the modal analyses, constraints have been applied at the bottom
of the VVGSs. The Block Lanczos modal solver has been selected in
order to extract all the significant modes between 0 and 34 Hz.

The response of the simplified model is compared to that of the
benchmark model. The main modes of the structure are reproduced
with excellent fidelity. Fig. 10 shows the cumulative mass fraction
comparison.

Table 1 lists the frequency and the effective mass of the main modes
of the simplified model of the VV, while Table 2 lists the discrepancy
with respect to the equivalent values obtained from the benchmark
model.

Figs. 11 and 12 show examples of comparisons of modal shapes
between simplified and benchmark models.

Fig. 6. Layout of the external nodes in case of different thickness and or-
ientation of adjacent elements. The external nodes are the blue crosses. The
master node is the red dot.

Fig. 7. Layout of the interface connection.

Fig. 8. Partition of the detailed model.

Fig. 9. Simplified model of the Vacuum Vessel.
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Using the simplified model the computational time is reduced by
approximately of 2 orders of magnitude. Table 3 lists the computational
time comparison between detailed benchmark and simplified models.

3.1.1. Modal assurance criterion (MAC)
The MAC is a widely used tool for quantitative comparison of modal

vectors. It is a statistical indicator, i.e. a coherence function [10], [11].
In the present study, the MAC is applied to compare the mode shapes of
the benchmark model with those of the simplified model.

For each modal vector, the MAC takes a value equal to zero, if there
is no consistent correspondence between the two modal vectors from
the two models, to one, if there is full consistent correspondence. If the
simplified model perfectly replicates the modes of the detailed one, the
MAC plot would:

• Have a square base, as the number of modes in both models would
be identical.

• Have a diagonal of red lines, indicating perfect correspondence
between equivalent modes.

• Have mostly blue lines for the out-of-diagonal terms.

Fig. 13 shows the MAC comparison between the benchmark and the
simplified models. Although there are a good number of red lines in the
diagonal, there are places where the diagonal does not have a MAC
close to one. In addition, there are more modes with frequency lower
than 34 Hz in the detailed model than in the simplified one.

The reason for the ‘gaps’ in the diagonal is the large number of
identical port extensions. As each extension has local modes with al-
most identical natural frequencies, all port modes have shapes that
involve movements of several ports at once. In both models the number
of modes associated with such local deformation is identical, and the
frequencies match well. However, the two models tend to have different
combinations of ports that are excited in any given mode. This means
that the correspondence between these port modes is poor.

The benchmark model has more modes than the simplified model
due to the fact that the simplified model has deliberately been built to
not capture modes of the divertor cassettes. Modes from local motion of
the divertors in the benchmark model therefore have no equivalents in
the simplified model.

3.2. PSD analysis

In order to determine whether or not the simplified model is sui-
table despite the lack of a perfect diagonal in the MAC, further ver-
ification has been performed using PSD analysis. A wide input spectrum
has been used, with a PGA of 0.315 g, applied at the bottom of the
VVGS.

When response spectra extracted at various locations inside the
benchmark and simplified models are compared, it is clear that the
differences are very small. Where noticeable differences exist they are
at high frequencies, and in regions highly affected by the local motion
of the structure (e.g. Equatorial port connecting ducts, Lower port ex-
tensions, etc.).

Fig. 14 shows a comparison of a typical set of spectra. As can be
seen, the correlation is very good. Fig. 15 represents the location where
the discrepancy between benchmark and simplified model is the highest
out of 369 locations that have been checked. Even here, the correlation
is still acceptable considering that due to the dynamic characteristics of

Fig. 10. Cumulative mass fraction for benchmark (Detailed) and simplified
model of the VV.

Table 1
Frequency and effective mass of the main modes of the simplified model of the
VV.

Mode # Frequency [Hz] Effective mass [tons]

X Y Z

2 5.7372 70 6001 20
3 5.9209 6537 62 1
5 8.4006 14 904 2945
6 9.3370 33 560 3647
7 9.7734 1024 111 9

Table 2
Discrepancy from the benchmark model. The error is normalized to the total
mass of the VV.

Mode # Frequency [%] Effective mass [%]

X Y Z

2 −0.25 0.09 0.05 −0.01
3 −0.23 0.08 0.08 0.00
5 −0.18 0.00 0.10 0.86
6 −0.02 0.00 −0.21 0.98
7 −0.05 −0.17 0.06 0.03

Fig. 11. Mode #3 – 5.29 Hz – X main mode: benchmark model (left) and
simplified model (right).

Fig. 12. Mode #6 – 9.33 Hz – Z main mode: benchmark model (left) and
simplified model (right).

Table 3
Modal analysis computational time comparison.

Model Time [s]

Detailed model 25000
Simplified model 240
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the Tokamak Complex there is little input energy above 20 Hz. Thus,
although the model is less accurate above this frequency, it has little
practical impact on the behaviour of the complete system during an
earthquake. It would be possible to increase the fidelity of the results by
increasing the number of nodes considered in the substructuring phase.

4. Conclusions

In the present study the substructuring methods has been shown to
allow the creation of suitable simplified models. This method re-
produces well the modal behaviour of the benchmark model, reducing
the computational time to perform modal analyses by approximately
two orders of magnitude.

In terms of the main modes of the structure, it has been shown that
the maximum discrepancy between simplified and benchmark model
frequency is 0.25%, with consistent mass contribution.

Using a combination of MAC and PSD analysis, it has been de-
monstrated that the generated simplified model behaves very similarly
to the detailed model, and is therefore suitable for use in global seismic
analyses. In terms of the spectra, errors of the order of 20% can be
found, but at frequency values which are not expected to be excited,
and have small impacts on the final results.

Considering the results achieved and presented in this paper it can
be claimed that the technique used is suitable for the generation of
simplified models of complex structures intended for global seismic
analyses.
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