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1. Introduction

In this paper we make another step in the direction of designing robust and
reliable tools for the study of mixing phenomena, with possible applications to
modeling of certain geophysical flows as for instance oceanic flow models [24]
or volcanic plumes [14] (at least in certain regimes). We wish to develop a
complete new family of large scale methods to simulate mixing and to per-
form numerical simulations of the Oberbeck–Boussinesq equations (which are
generally simply known as Boussinesq equations, see Rajagopal, Růžička, and
Srinivasa [26]), when Direct Numerical Simulations (DNS) are not feasible. In
particular, the numerical simulation of fluids which can be described by the
Boussinesq equations, as explained in Majda [23] and Cushman–Roisin and
Beckers [19], presents –at least– the same difficulties of the Navier–Stokes equa-
tions, and the range of active scales precludes a DNS in a foreseeable future,
see for instance Sagaut [28], Geurts [21], and also [4, 6]. Moreover, for the
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Boussinesq equations, a phenomenology à la Kolmogorov with a quantitative
description involving eddies decaying towards smaller and smaller scales is not
clear. Hence, one can try to collect relevant modeling property from other
sources.

In this paper (after passing to suitable non-dimensional quantities and with
positive constants ν and K) we consider the Boussinesq equations

∂tu+∇ · (u⊗ u)− ν∆u+∇π = −ϑe3 ,
∇ · u = 0 ,

∂tϑ+∇ · (ϑu)−K∆ϑ = 0 ,

and especially the filtered counterpart, which can be used to model turbulent
stratified flows. We will consider the Boussinesq equations in a bounded domain
and in presence of Dirichlet boundary conditions. In particular, we continue
the theoretical investigation on Large Eddy Simulation (LES) models applied
to stratified flows, for which recent numerical results are reported in [3, 24,
25]. By adapting and extending ideas from [1], where only the Navier–Stokes
equations have been considered, we construct different families of Large Eddy
Simulation models based on differential filters and zeroth order deconvolution,
and we analyze the well-posedness of the corresponding initial boundary value
problems.

To emphasize the relevance of the analytical results that we obtain, we ob-
serve that most of the results (existence, uniqueness, . . . ) valid for the Navier–
Stokes equations are still valid also for the Boussinesq equations [8,20]. On the
other hand, we stress that previous results on the Navier-Stokes equations and
anisotropic filters as those in [1] use in a peculiar manner the interchangeable or-
der of the convection/convected-field in the nonlinear term of the Navier-Stokes
equations, and the additional regularity coming form the divergence-free con-
straint [18]. This is not anymore true in the transport equation involving the
variable ρ (which corresponds to the variation of density ϑ) and the adaption
of some results using also anisotropic regularity of the two different fields is not
straightforward, hence deserves some analysis.

As explained step-by-step in [1] (hence we skip full details here), we use
a setting in which we can define in a proper way the filtering, even in pres-
ence of boundaries, using a channel-type domain. Recall just that the idea of
anisotropic filters comes back from the seventies and the work of Deardorff,
but in the context of Approximate Deconvolution LES Models (ADM), the
most important reference is the paper by Stolz, Adams, and Kleiser [29], from
which we have borrowed and extended some ideas. Concerning Approximate
deconvolution, we consider mainly the zeroth order approximation, with some
variants in the filtering, as in Layton and Lewandowski [22]. Recently, in [9],
the asymptotic behavior in terms of the order of deconvolution (proved for the
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Navier-Stokes equations in [7] and for magnetohydrodynamics in [2]) have been
adapted to the Boussinesq system with periodic boundary conditions.

A special role is played by a suitable splitting of horizontal and vertical
unknowns and variables and we will use the following notation:

x := (x1, x2, x3) , xh := (x1, x2) ,

∂j := ∂xj , ∆h := ∂21 + ∂22 , ∇h := (∂1, ∂2) ,

where “h” stays for “horizontal”. For a vector function w := (w1, w2, w3), we
set wh := (w1, w2). The physical domain is the following flat channel

D := {x ∈ R3 : −π < x1, x2 < π, −d < x3 < d } ,

and we impose 2π-periodicity with respect to xh (i.e. with respect to both x1
and x2) and homogeneous Dirichlet conditions on the boundary

Γ := {x ∈ R3 : −π < x1, x2 < π, x3 = ±d } .

We also observe that one main geometric property is that the boundary is flat.
(This is not unreasonable, since in oceanic flows horizontal scales are much
larger than the vertical as in the primitive equations [10,11] or in the equations
for horizontal Ekman layers [18].) We introduce the following function spaces:

L2(D) := {φ : D → R measurable, 2π periodic in xh,

∫
D

|φ|2 dx < +∞} ,

L2
0(D) := {φ ∈ L2(D) with zero mean with respect to xh } ,

H := {φ ∈ (L2
0(D))3 : ∇ · φ = 0 in D, φ · n = 0 on Γ } ,

(n is the outward normal to Γ), all with L2 norm denoted by ‖·‖, and scalar
product (·, ·) in L2. Here and in the following, we use the same notation for
scalar and vector valued functions, when they make sense. Moreover, we also
set

H1
h := {φ ∈ L2

0(D) : ∇hφ ∈ L2(D) } ,
Vh := {φ ∈ H : ∇hφ ∈ L2(D) } ,
V := {φ ∈ H : ∇φ ∈ L2(D) and φ = 0 on Γ } ,
H2

h := {φ ∈ H1
h : ∇h∇φ ∈ L2(D) } ,

and denote by V ∗ the topological dual space to V . We denote by Lp and
Hm classical Lebesgue and Sobolev spaces. Weakly continuous functions are
denoted by the symbol Cw.

A main mathematical limitation to introduce ADM in presence of solid
boundaries is related with the boundary conditions to be imposed on the op-
erator used for filtering. The lack of commutation between differentiation and



4 L. C. Berselli et al.

filtering (cf. [5, 16]) is source of problems in deriving the filtered equations. To
this end, we introduce the anisotropic (horizontal) filter

vh = A−1h v, where Ah := I − α2∆h ,

(with periodic conditions in xh). Let us note that the filter is linear and com-
mutes with differentiation with respect to the vector variable x.

2. A doubly filtered LES model

We first start considering a double filtered model, that is a model in which both
equations are filtered by applying the operator A−1h . Filtering the equations for
u and the equation for ϑ, we obtain

∂tu
h +∇ · (u⊗ u)

h
− ν∆uh +∇πh = −ϑh

e3 ,

∇ · uh = 0 ,

∂tϑ
h

+∇ · (ϑu)
h
−K∆ϑ

h
= 0 .

We set as usual w := uh, q := πh and ρ := ϑ
h
, so that u = Ahw and ϑ = Ahρ.

We then address the interior closure problem by the zeroth order approximations

u⊗ uh ≈ uh ⊗ uh
h

= w ⊗wh
,

ϑu
h ≈ ϑ

h
uh

h

≈ ρwh ,

so that we finally deduce the approximate model

∂tw +∇ · (w ⊗w)
h
− ν∆w +∇q = −ρe3 in D×]0, T [ , (1)

∇ ·w = 0 in D×]0, T [ , (2)

∂tρ+∇ · (ρw)
h
−K∆ρ = 0 in D×]0, T [ . (3)

Remark 2.1. It is possible to use different filters for u and ϑ. In particular,
we can introduce the filters

vαi := A−1i v with Ai := I − α2
i∆h, for i = 1, 2 ,

and use A1 in the equations for u and A2 in the equation for ϑ. Settingw = uα1 ,
q = πα1 and ρ = ϑ

α2
, we deduce

∂tw +∇ · (w ⊗w)
α1 − ν∆w +∇q = −A2ρ

α1e3 ,

∇ ·w = 0 ,
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∂tρ+∇ · (ρw)
α2 −K∆ρ = 0 .

The regularity of the solutions does not change, and the proof can be reproduced
straightforwardly. We choose to use just one filter to simplify the notation and
keep the proofs more easily readable.

In order to make the equations (1), (2), (3) have a meaning, let us assume
w(t) : D → R3 and ρ(t) : D → R. We say that (w, ρ) is a regular weak solution
(omitting the pressure term q) to (1), (2), (3), with w = 0 and ρ = 0 on
]0, T [ × Γ, and (w(0,x), ρ(0,x)) = (w0, ρ0) ∈ Vh × H1

h, when the following
properties are verified.

• Regularity:

w ∈ L∞(0, T ;Vh) ∩ L2(0, T ;V ∩H2
h) ∩ Cw(0, T ;Vh) ,

w3 ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) ,

∂tw ∈ L2(0, T ;V ∗) ,

ρ ∈ L∞(0, T ;H1
h) ∩ L2(0, T ;H1 ∩H2

h) ∩ Cw(0, T ;H1
h) ,

∂tρ ∈ L2(0, T ;H−1) .

• Weak formulation:∫ +∞

0

{
(w, ∂tϕ)− ν(∇w, ∇ϕ) + (w ⊗w, ∇ϕh)

}
(s) ds

=

∫ +∞

0

(ρe3, ϕ)(s) ds− (w(0), ϕ(0)) ,∫ +∞

0

{
(ρ, ∂tψ) + (ρw, ∇ψh

)−K(∇ρ, ∇ψ)
}

(s) ds = −(ρ(0), ψ(0)),

for each ϕ ∈
(
C∞0 (D × [0, T [)

)3
such that ∇ · ϕ = 0, and for each ψ ∈

C∞0 (D × [0, T [) or, equivalently (see [17]),∫ t1

t0

{
(w, ∂tϕ)− ν(∇w, ∇ϕ) + (w ⊗w, ∇ϕh)

}
(s) ds

=

∫ t1

t0

(ρe3, ϕ)(s) ds+ (w(t1), ϕ(t1))− (w(t0), ϕ(t0)) ,∫ t1

t0

{
(ρ, ∂tψ) + (ρw, ∇ψh

)−K(∇ρ, ∇ψ)
}

(s) ds

= (ρ(t1), ψ(t1))− (ρ(t0), ψ(t0)),

for each 0 ≤ t0 ≤ t1 < T .
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The main theorem of this section is the following existence and uniqueness
result.

Theorem 2.2. Let be given (w0, ρ0) ∈ Vh × H1
h and ν,K > 0. Then, there

exists a unique regular weak solution to (1), (2), (3), with w = 0 and ρ = 0
on ]0, T [× Γ, and (w(0,x), ρ(0,x)) = (w0, ρ0), depending continuously on the
data (the system is well-posed). Moreover, the solution satisfies the energy (of
the model) identity

1

2

(
‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ρ(t)‖2 + α2‖∇hρ(t)‖2

)
+ ν

∫ t

0

(
‖∇w(s)‖2 + α2‖∇h∇w(s)‖2

)
ds

+K

∫ t

0

(
‖∇ρ(s)‖2 + α2‖∇h∇ρ(s)‖2

)
ds

=
1

2

(
‖w(0)‖2 + α2‖∇hw(0)‖2 + ‖ρ(0)‖2 + α2‖∇hρ(0)‖2

)
−
∫ t

0

(
A

1/2
h ρ(s)e3, A

1/2
h w(s)

)
ds .

Proof. We divide the proof in three parts: first we prove existence and energy
inequality, then we show the energy equality, and finally the uniqueness.

Proof of the existence and of the energy inequality. Let us consider the
Galerkin approximate solutions

wm(t,x) =
m∑
j=1

gjm(t)Ej(x) ,

ρm(t,x) =
m∑
j=1

γjm(t)Ej(x) ,

where Ej and Ej are smooth eigenfunctions of the Stokes operator on D, with
Dirichlet boundary conditions on Γ and periodicity in x1 and x2 (see Rumm-
ler [27]). If Pm denotes the projection on span {E1, . . . ,Em } and similarly for
Pm, the couple (wm, ρm) solves the Cauchy problem

d

dt
(wm, Ei) + ν(∇wm, ∇Ei)− (wm ⊗wm, ∇E

h

i ) = −(ρme3, Ei) ,

d

dt
(ρm, Ei) +K(∇ρm, ∇Ei)− (ρmwm, ∇E

h

i ) = 0 ,

wm(0) = Pm

(
w(0)

)
, ρm(0) = Pm

(
ρ(0)

)
,

for i = 1, . . . ,m.
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We test the first equation against Ahwm and use the following fundamental
identity (see [1])

−(wm ⊗wm, ∇Ahwm
h
) = (∇ · (wm ⊗wm)

h
, Ahwm) = 0,

to get

1

2

d

dt

(
‖wm‖2 + α2‖∇hwm‖2

)
+ ν
(
‖∇wm‖2 + α2‖∇h∇wm‖2

)
= −(ρme3, wm)− α2(∇hρm, ∇hwm)

≤ 1

2
‖ρm‖2 +

1

2
‖wm‖2 +

α2

2
‖∇hρm‖2 +

α2

2
‖∇hwm‖2 .

We test the second equation against Ahρm and use

−(ρmwm
h, Ah∇ρm) = −(ρmwm, ∇ρm) = 0,

(due to ∇ ·wm = 0; note that we need to test the equation for ρmagainst Ahρm
in order to cancel the filter and obtain the previous identity) to get

1

2

d

dt

(
‖ρm‖2 + α2‖∇hρm‖2

)
+K

(
‖∇ρm‖2 + α2‖∇h∇ρm‖2

)
= 0 .

Summing up the latest two inequalities, we obtain

1

2

d

dt

(
‖wm‖2 + α2‖∇hwm‖2 + ‖ρm‖2 + α2‖∇hρm‖2

)
+ ν
(
‖∇wm‖2 + α2‖∇h∇wm‖2

)
+K

(
‖∇ρm‖2 + α2‖∇h∇ρm‖2

)
≤ 1

2

(
‖wm‖2 + α2‖∇hwm‖2 + ‖ρm‖2 + α2‖∇hρm‖2

)
.

(4)

An application of the Gronwall’s lemma gives

‖wm(t)‖2 + α2‖∇hwm(t)‖2 + ‖ρm(t)‖2 + α2‖∇hρm(t)‖2

≤ et
(
‖wm(0)‖2 + α2‖∇hwm(0)‖2 + ‖ρm(0)‖2 + α2‖∇hρm(0)‖2

)
,

so that wm ∈ L∞(0, T ;Vh) and ρm ∈ L∞(0, T ;H1
h). Integrating (4) over [0, T ],

we have wm ∈ L2(0, T ;V ∩H2
h) and ρm ∈ L2(0, T ;H1 ∩H2

h).
From ∇ · wm = 0, we get ∂3w

3
m = −∇h · wh

m, hence w3
m ∈ L∞(0, T ;H1),

since w3
m = 0 on Γ, and ∂23w

3
m = −∇h · ∂3wh

m, thus ∆w3
m ∈ L2(0, T ;L2), and

finally w3
m ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2).

Now we need estimates in order to pass to the limit as m → +∞. The
nonlinear terms can be estimated using the Hölder and the Gagliardo–Nirenberg
inequalities. We have (see [1])∣∣(∇ · (wm ⊗wm)

h
, ϕ
)∣∣
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≤ C
(
‖wh

m‖
1/2‖∇wh

m‖
1/2‖∇hwm‖+ ‖w3

m‖
1/2‖∇w3

m‖
1/2‖∇wm‖

)
‖∇ϕ‖,

while
∫ T
0
|(ρme3, ϕ)| ≤ ‖ρm‖L2L2‖ϕ‖L2L2 , so we deduce that

∂twm ∈ L2(0, T ;V ∗).

Concerning ∂tρm, we have

−(ρmwm
h, ∇ψ) =

(
∇h(ρmwh

m)
h
, ψ
)
− (ρmw3

m

h
, ∂3ψ) ,

and hence, by using the Hölder and the Gagliardo–Nirenberg inequalities,∣∣∣(ρm(t)wm(t)
h
, ∇ψ(t)

)∣∣∣
≤ C

(
‖ρm(t)‖L2‖wh

m(t)‖L3‖ψ(t)‖L6 + ‖ρm(t)‖L2‖w3
m(t)‖L∞‖∇ψ(t)‖L2

)
,

≤ C‖ρm(t)‖L2

(
‖wm(t)‖1/2L2 ‖∇wm(t)‖1/2L2 ‖∇ψ(t)‖L2

+ ‖∆w3
m(t)‖3/4L2 ‖w3

m(t)‖1/4L2 ‖∇ψ(t)‖L2

)
,

≤ C‖ρm(t)‖L2

(
‖wm(t)‖V + ‖w3

m(t)‖H2

)
‖∇ψ(t)‖L2 ,

so that ∫ T

0

∣∣∣(ρm(t)wm(t)
h
, ∇ψ(t)

)∣∣∣ dt
≤ C‖ρm‖L∞L2

(
‖wm‖L2V + ‖w3

m(t)‖L2H2

)
‖∇ψ(t)‖L2L2 .

Finally, to estimate |(∇ρm, ∇ψ)|, we use ρm ∈ L2(0, T ;H1) to get∫ T

0

∣∣(∇ρm(t), ∇ψ(t)
)∣∣ dt ≤ ‖∇ρm‖L2L2‖∇ψ‖L2L2 ,

so that ∂tρm ∈ L2(0, T ;H−1).
The estimates for the time derivatives and standard compactness results (as

the Aubin–Lions lemma, see [15]; and it is here that we need ν,K > 0 in order to
have the required compact embeddings) imply that there exist w and ρ regular
as in the definition of regular weak solutions so that, up to sub-sequences,

wm → w , ρm → ρ, in L2(0, T ;L2(D)), as m→ +∞.

This is sufficient to pass to the limit in the nonlinear terms and get that (w, ρ) is
a regular weak solution to the model. Moreover, by using standard lower semi-
continuity results for norms, we obtain that such solution satisfies the energy
inequality

1

2

(
‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ρ(t)‖2 + α2‖∇hρ(t)‖2

)
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+ ν

∫ t

0

(
‖∇w(s)‖2 + α2‖∇h∇w(s)‖2

)
ds

+K

∫ t

0

(
‖∇ρ(s)‖2 + α2‖∇h∇ρ(s)‖2

)
ds

≤ 1

2

(
‖w(0)‖2 + α2‖∇hw(0)‖2 + ‖ρ(0)‖2 + α2‖∇hρ(0)‖2

)
−
∫ t

0

(
A

1/2
h ρ(s)e3, A

1/2
h w(s)

)
ds .

Finally, we can easily deduce w ∈ Cw(0, T ;Vh) and also that ρ ∈ Cw(0, T ;H1
h).

On the Energy identity. We now show that in addition to the energy inequal-
ity, we have for this model an exact balance of the energy, hence the energy of
the model identity. Let wε, ρε denote the standard regularization (convolution
in time) of w, ρ (and so on), with 0 < t0 < t1 < T fixed, and 0 < ε < t0,
ε < T − t1, ε < t1 − t0 (see [1]). For each t ∈ [t0, t1], we have

wε(t) = (jε ∗w)(t) =

∫ t1

t0

jε(t− s)w(s) ds ,

where the smooth function jε is even, positive, supported in ]−ε, ε[, and such
that

∫ ε
−ε jε(s) ds = 1. Under these assumptions, for any w ∈ Lq(t0, t1;X), with

1 ≤ q < +∞ and X Hilbert space, we have the following properties (see [17]):

• wε ∈ C∞([t0, t1];X);

• lim
ε→0
‖wε −w‖Lq(t0,t1;X) = 0;

• lim
k→+∞

‖[wk]ε −wε‖Lq(t0,t1;X) = 0 for each sub-sequence wk ∈ Lq(t0, t1;X)

such that wk → w in Lq(t0, t1;X).

Let be given

wk → w in L∞(0, T ;Vh) ∩ L2(0, T ;V ∩H2
h) ,

ρk → ρ in L∞(0, T ;H1
h) ∩ L2(0, T ;H1 ∩H2

h) ,

and test the weak formulation against Ahwk,ε in the first equation and Ahρk,ε
in the second one:∫ t1

t0

{(w, ∂tAhwk,ε)− ν(∇w,∇Ahwk,ε) + (w ⊗w, ∇wk,ε)}(s) ds

=

∫ t1

t0

(ρ e3, Ahwk,ε)(s) ds+ (w(t1), Ahwk,ε(t1))− (w(t0), Ahwk,ε(t0)) ,∫ t1

t0

{(ρ, ∂tAhρk,ε) + (ρw, ∇ρk,ε)−K(∇ρ, ∇Ahρk,ε)}(s) ds

= (ρ(t1), Ahρk,ε(t1))− (ρ(t0), Ahρk,ε(t0)) .
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Summing up and using Ah = I − α2∆h yields∫ t1

t0

{
(w, ∂twk,ε) + α2(∇hw, ∂t∇hwk,ε)− ν(∇w,∇wk,ε)

− να2(∇h∇w,∇h∇wk,ε) +
(
(w · ∇)wk,ε,w

)
+ (ρ, ∂tρk,ε)

+ α2(∇hρ, ∂t∇hρk,ε) + (ρw, ∇ρk,ε)
−K(∇ρ, ∇ρk,ε)−Kα2(∇h∇ρ, ∇h∇ρk,ε)

}
(s) ds

= (w(t1), wk,ε(t1)) + α2(∇hw(t1), ∇hwk,ε(t1))

+ (ρ(t1), ρk,ε(t1)) + α2(∇hρ(t1), ∇hρk,ε(t1))

− (w(t0), wk,ε(t0))− α2(∇hw(t0), ∇hwk,ε(t0))

− (ρ(t0), ρk,ε(t0))− α2(∇hρ(t0), ∇hρk,ε(t0)) +

∫ t1

t0

(ρe3, Ahwk,ε)(s) ds .

Remark 2.3. When K = 0, the term (ρw, ∇ρk,ε) is problematic, since we
need the convergence property ρk → ρ in L2(0, T ;H1 ∩H2

h), while we have only
convergence in L2(0, T ;H1

h), for K = 0. This is an additional reason to assume
K > 0.

We show now that

lim
k→+∞

∫ t1

t0

(ρ w, ∇ρk,ε)(s) ds =

∫ t1

t0

(ρw, ∇ρε)(s) ds . (5)

In fact, for each s ∈ [t0, t1], we have∣∣(ρw, ∇(ρk,ε − ρε)
)∣∣ ≤ ∣∣(ρwh, ∇h(ρk,ε − ρε)

)∣∣+
∣∣(ρw3, ∂3(ρk,ε − ρε)

)∣∣
≤ ‖ρ‖L2‖w‖L3‖∇h(ρk,ε − ρε)‖L6 + ‖ρ‖L3‖w3‖L6‖∂3(ρk,ε − ρε)‖L2

≤ C

{
‖ρ‖L2‖w‖1/2L2 ‖∇w‖1/2L2 ‖∇h∇(ρk,ε − ρε)‖L2

+ ‖ρ‖1/2L2 ‖∇ρ‖1/2L2 ‖∇w3‖L2‖∇(ρk,ε − ρε)‖L2

}
≤ C

{
‖ρ‖L2‖w‖V ‖ρk,ε − ρε‖H2

h
+ ‖ρ‖H1‖w3‖H1‖ρk,ε − ρε‖H1

}
.

Hence∫ t1

t0

∣∣(ρw, ∇(ρk,ε − ρε)
)
(s)
∣∣ ds

≤ C
{
‖ρ‖L∞L2‖w‖L2V ‖ρk,ε − ρε‖L2H2

h
+ ‖ρ‖L2H1‖w3‖L∞H1‖ρk,ε − ρε‖L2H1

}
,

and this implies (5).
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Moreover, since

lim
k→+∞

∫ t1

t0

(
(w · ∇)wk,ε, w

)
(s) ds =

∫ t1

t0

(
(w · ∇)wε, w

)
(s) ds,

as in [1], and by observing that the other terms do not give any problem (since
they are linear terms and we have convergence in appropriate spaces), by taking
the limit as k → +∞, we get∫ t1

t0

{
(w, ∂twε) + α2(∇hw, ∂t∇hwε)− ν(∇w,∇wε)− να2(∇h∇w,∇h∇wε)

+
(
(w · ∇)wε,w

)
+ (ρ, ∂tρε) + α2(∇hρ, ∂t∇hρε) + (ρw, ∇ρε)

−K(∇ρ, ∇ρε)−Kα2(∇h∇ρ, ∇h∇ρε)
}

(s) ds

= (w(t1), wε(t1)) + α2(∇hw(t1), ∇hwε(t1)) + (ρ(t1), ρε(t1))

+ α2(∇hρ(t1), ∇hρε(t1))− (w(t0), wε(t0))− α2(∇hw(t0), ∇hwε(t0))

− (ρ(t0), ρε(t0))− α2(∇hρ(t0), ∇hρε(t0)) +

∫ t1

t0

(A
1/2
h ρe3, A

1/2
h wε)(s) ds .

(6)

We are going to show that∫ t1

t0

{
(w, ∂twε) + α2(∇hw, ∂t∇hwε) + (ρ, ∂tρε) + α2(∇hρ, ∂t∇hρε)

}
(s) ds

= 0 ,
(7)

lim
ε→0

∫ t1

t0

{(
(w · ∇)wε,w

)
+ (ρw, ∇ρε)

}
(s) ds = 0 , (8)

lim
ε→0

∫ t1

t0

(A
1/2
h ρ e3, A

1/2
h wε)(s) ds =

∫ t1

t0

(
A

1/2
h ρ(s)e3, A

1/2
h w(s)

)
ds , (9)

lim
ε→0

∫ t1

t0

{
−ν(∇w,∇wε)− να2(∇h∇w,∇h∇wε)

−K(∇ρ, ∇ρε)−Kα2(∇h∇ρ, ∇h∇ρε)
}

(s) ds

= −ν
∫ t1

t0

{
‖∇w(s)‖2 + α2‖∇h∇w(s)‖2

}
ds

−−K
∫ t1

t0

{
‖∇ρ(s)‖2 + α2‖∇h∇ρ(s)‖2

}
ds ,

(10)
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and

(w(t1), wε(t1)) + α2(∇hw(t1), ∇hwε(t1))

+ (ρ(t1), ρε(t1)) + α2(∇hρ(t1), ∇hρε(t1))

=
1

2

{
‖w(t1)‖2 + α2‖∇hw(t1)‖2 + ‖ρ(t1)‖2 + α2‖∇hρ(t1)‖2

}
+O(ε) ,

(11)

(w(t0), wε(t0)) + α2(∇hw(t0), ∇hwε(t0))

+ (ρ(t0), ρε(t0)) + α2(∇hρ(t0), ∇hρε(t0))

=
1

2

{
‖w(t0)‖2 + α2‖∇hw(t0)‖2 + ‖ρ(t0)‖2 + α2‖∇hρ(t0)‖2

}
+O(ε) ,

(12)

so that, substituting in (6) and taking the limit ε → 0, we get the energy
identity for the model:

1

2

{
‖w(t1)‖2 + α2‖∇hw(t1)‖2 + ‖ρ(t1)‖2 + α2‖∇hρ(t1)‖2

}
+

∫ t1

t0

{
ν‖∇w(s)‖2 + να2‖∇h∇w(s)‖2 +K‖∇ρ(s)‖2 +Kα2‖∇h∇ρ(s)‖2

}
ds

=
1

2

{
‖w(t0)‖2 + α2‖∇hw(t0)‖2 + ‖ρ(t0)‖2 + α2‖∇hρ(t0)‖2

}
−
∫ t1

t0

(
A

1/2
h ρ(s)e3, A

1/2
h w(s)

)
ds .

Taking t0 → 0 and t1 = t, thanks to the weak continuity of w, ρ, we conclude

1

2

{
‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ρ(t)‖2 + α2‖∇hρ(t)‖2

}
+

∫ t

0

{
ν‖∇w(s)‖2 + να2‖∇h∇w(s)‖2 +K‖∇ρ(s)‖2 +Kα2‖∇h∇ρ(s)‖2

}
ds

=
1

2

{
‖w(0)‖2 + α2‖∇hw(0)‖2 + ‖ρ(0)‖2 + α2‖∇hρ(0)‖2

}
−
∫ t

0

(
A

1/2
h ρ(s)e3, A

1/2
h w(s)

)
ds .

Now we prove the previous relations. Equations (10) and (9) follow immediately
because of the convergence properties of wε and ρε. By using just the regularity
of w and ρ, we have the convergence

lim
ε→0

∫ t1

t0

{(
(w · ∇)wε,w

)
+ (ρw, ∇ρε)

}
(s) ds

=

∫ t1

t0

{(
(w · ∇)w,w

)
+ (ρw, ∇ρ)

}
(s) ds = 0 ,
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where the equality to zero is obtained in a standard way by approximating w, ρ
through smooth functions and using the fact that ∇ ·w = 0; thus we have (8).
As for (7), let us observe that jε is supported in ]−ε, ε[ and even, so that its
derivative j′ε is odd. Recalling the definition of wε, we deduce∫ t1

t0

(
w(s), ∂twε(s)

)
ds =

∫ t1

t0

∫ t1

t0

j′ε(s− r)
(
w(s), w(r)

)
ds dr

=

∫∫
E1

+

∫∫
E2

j′ε(s− r)
(
w(s), w(r)

)
ds dr = 0 ,

where

E1 = { (r, s) ∈ [t0, t1]× [t0, t1] : r ≤ s ≤ r + ε } ,
E2 = { (r, s) ∈ [t0, t1]× [t0, t1] : r − ε ≤ s ≤ r , r ≤ t1 } .

Indeed, note that E1 is symmetric to E2 with respect to s = r, and j′ε(s − r)
is odd with respect to s − r, hence

∫∫
E2

= −
∫∫

E1
. Similarly, we deal with the

remaining terms in (7).
Finally, we prove that

(
w(t1), wε(t1)

)
= 1

2
‖w(t1)‖2 +O(ε); the other terms

in (11) and (12) can be handled in the same way. First, using the fact that jε
is even and then performing the parameter change r = s− t1, we have that

wε(t1) =

∫ t1

t0

jε(t1 − s)w(s) ds

=

∫ 0

t0−t1
jε(r)w(r + t1) dr =

∫ 0

−ε
jε(r)w(r + t1) dr ,

since jε is supported in ]−ε, ε[ and t0 − t1 < −ε. Thus

(
w(t1), wε(t1)

)
=

∫ 0

−ε
jε(r)

(
w(t1), w(r + t1)

)
dr

=

∫ 0

−ε
jε(r)

(
w(t1), w(t1)

)
dr +

∫ 0

−ε
jε(r)

(
w(t1), w(r + t1)−w(t1)

)
dr

=
1

2
‖w(t1)‖2 +O(ε) ,

where we have used
∫ 0

−ε jε(r) dr = 1
2

for the first term and w ∈ Cw(0, T ;Vh) for
the second one.

Uniqueness and continuous dependence when K > 0. Let us consider
two solutions (w1, ρ1) and (w2, ρ2) to (1), (2), (3) with the same initial data
(w1(0), ρ1(0)) = (w2(0), ρ2(0)), and set w := w1−w2 and ρ := ρ1−ρ2, so that
(w(0), ρ(0)) = (0, 0). We test the equations for ∂tw1 and ∂tw2 against [Ahw]k,ε
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and the equations for ∂tρ1 and ∂tρ2 against [Ahρ]k,ε (note that Ahw and Ahρ
are not directly allowed as test functions). Observe that the ε regularization
commutes with the filter Ah and more generally with space derivatives. Using
the same arguments as in the previous subsection, we can pass to the limit
k → +∞. The equation for ∂tw1 becomes∫ t

0

{(w1, ∂tAhwε)− ν(∇w1, ∇Ahwε) + (w1 ⊗w1, ∇wε)}(s) ds

=

∫ t

0

(A
1/2
h ρ1e3, A

1/2
h wε)(s) ds+

(
w1(t), Ahwε(t)

)
−
(
w1(0), Ahwε(0)

)
,

and hence∫ t

0

{
(w1, ∂twε) + α2(∇hw1, ∂t∇hwε)− ν(∇w1, ∇wε)

− να2(∇h∇w1, ∇h∇wε) +
(
(w1 · ∇)wε, w1

)}
(s) ds

=

∫ t

0

(A
1/2
h ρ1e3, A

1/2
h wε)(s) ds+

(
w1(t), wε(t)

)
+ α2

(
∇hw1(t), ∇hwε(t)

)
−
(
w1(0), wε(0)

)
− α2

(
∇hw1(0), ∇hwε(0)

)
.

If we take this equation and subtract the analogous one for w2, we deduce∫ t

0

{
(w, ∂twε) + α2(∇hw, ∂t∇hwε)

− ν(∇w, ∇wε)− να2(∇h∇w, ∇h∇wε)

+
(
(w1 · ∇)wε, w1

)
−
(
(w2 · ∇)wε, w2

)}
(s) ds

=

∫ t

0

(A
1/2
h ρe3, A

1/2
h wε)(s) ds+

(
w(t), wε(t)

)
+ α2

(
∇hw(t), ∇hwε(t)

)
−
(
w(0), wε(0)

)
− α2

(
∇hw(0), ∇hwε(0)

)
;

since w(0) = 0 and(
(w1 · ∇)wε, w1

)
−
(
(w2 · ∇)wε, w2

)
=
(
(w · ∇)wε, w

)
+
(
(w2 · ∇)wε, w

)
+
(
(w · ∇)wε, w2

)
,

we obtain∫ t

0

{
(w, ∂twε) + α2(∇hw, ∂t∇hwε)− ν(∇w, ∇wε)− να2(∇h∇w, ∇h∇wε)

+
(
(w · ∇)wε, w

)
+
(
(w2 · ∇)wε, w

)
+
(
(w · ∇)wε, w2

)}
(s) ds

=

∫ t

0

(A
1/2
h ρe3, A

1/2
h wε)(s) ds+

(
w(t), wε(t)

)
+ α2

(
∇hw(t), ∇hwε(t)

)
.

(13)
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Now, the equation for ρ1 gives∫ t

0

{(ρ1, ∂tAhρε) + (ρ1w1, ∇ρε)−K(∇ρ1, ∇Ahρε)}(s) ds

= (ρ1(t), Ahρε(t))− (ρ1(0), Ahρε(0)) .

By subtracting the analogous equation for ρ2, we get∫ t

0

{(ρ, ∂tAhρε) + (ρ1w1, ∇ρε)− (ρ2w2, ∇ρε)−K(∇ρ, ∇Ahρε)}(s) ds

= (ρ(t), Ahρε(t))− (ρ(0), Ahρε(0)) .

Recalling that ρ(0) = 0 and using

(ρ1w1, ∇ρε)− (ρ2w2, ∇ρε) = (ρw, ∇ρε) + (ρw2, ∇ρε) + (ρ2w, ∇ρε) ,

we obtain ∫ t

0

{
(ρ, ∂tAhρε) + (ρw, ∇ρε) + (ρw2, ∇ρε) + (ρ2w, ∇ρε)

−K(∇ρ, ∇Ahρε)
}

(s) ds = (ρ(t), Ahρε(t)) ,

i.e.∫ t

0

{
(ρ, ∂tρε) + α2(∇hρ, ∂t∇hρε) + (ρw, ∇ρε) + (ρw2, ∇ρε) + (ρ2w, ∇ρε)

−K(∇ρ, ∇ρε)−Kα2(∇h∇ρ, ∇h∇ρε)
}

(s) ds

= (ρ(t), ρε(t)) + α2(∇hρ(t), ∇hρε(t)) .
(14)

Summing up (13) and (14) yields∫ t

0

{
(w, ∂twε) + α2(∇hw, ∂t∇hwε) + (ρ, ∂tρε) + α2(∇hρ, ∂t∇hρε)

− ν(∇w, ∇wε)− να2(∇h∇w, ∇h∇wε)

−K(∇ρ, ∇ρε)−Kα2(∇h∇ρ, ∇h∇ρε)
+
(
(w · ∇)wε, w

)
+
(
(w2 · ∇)wε, w

)
+
(
(w · ∇)wε, w2

)
+ (ρw, ∇ρε) + (ρw2, ∇ρε) + (ρ2w, ∇ρε)

}
(s) ds

=

∫ t

0

(A
1/2
h ρe3, A

1/2
h wε)(s) ds+

(
w(t), wε(t)

)
+ α2

(
∇hw(t), ∇hwε(t)

)
+ (ρ(t), ρε(t)) + α2(∇hρ(t), ∇hρε(t)) .
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In order to take the limit as ε → 0, we observe that, by proceeding as in the
previous subsection (we can consider the integral over [t0, t1] and then take
t0 → 0, t1 = t), we have:∫ t

0

{
(w, ∂twε) + α2(∇hw, ∂t∇hwε) + (ρ, ∂tρε) + α2(∇hρ, ∂t∇hρε)

}
(s) ds = 0 ,

lim
ε→0

∫ t

0

{
−ν(∇w,∇wε)− να2(∇h∇w,∇h∇wε)

−K(∇ρ, ∇ρε)−Kα2(∇h∇ρ, ∇h∇ρε)
}

(s) ds

= −ν
∫ t

0

{
‖∇w(s)‖2 + α2‖∇h∇w(s)‖2

}
ds

−K
∫ t

0

{
‖∇ρ(s)‖2 + α2‖∇h∇ρ(s)‖2

}
ds ,

lim
ε→0

∫ t

0

{(
(w · ∇)wε, w

)
+
(
(w2 · ∇)wε, w

)
+
(
(w · ∇)wε, w2

)}
(s) ds

=

∫ t

0

(
(w · ∇)w, w2

)
(s) ds ,

lim
ε→0

∫ t

0

{
(ρw, ∇ρε) + (ρw2, ∇ρε) + (ρ2w, ∇ρε)

}
(s) ds

=

∫ t

0

(ρ2w, ∇ρ)(s) ds ,

lim
ε→0

∫ t

0

(A
1/2
h ρe3, A

1/2
h wε)(s) ds =

∫ t

0

(
A

1/2
h ρ(s)e3, A

1/2
h w(s)

)
ds ,

and also

(w(t), wε(t)) + α2(∇hw(t), ∇hwε(t)) + (ρ(t), ρε(t)) + α2(∇hρ(t), ∇hρε(t))

=
1

2

{
‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ρ(t)‖2 + α2‖∇hρ(t)‖2

}
+O(ε) .

Thus, we get

− ν
∫ t

0

{
‖∇w(s)‖2 + α2‖∇h∇w(s)‖2

}
ds

−K
∫ t

0

{
‖∇ρ(s)‖2 + α2‖∇h∇ρ(s)‖2

}
ds
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+

∫ t

0

{(
(w · ∇)w, w2

)
+ (ρ2w, ∇ρ)

}
(s) ds

=

∫ t

0

(
A

1/2
h ρ(s)e3, A

1/2
h w(s)

)
ds

+
1

2

{
‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ρ(t)‖2 + α2‖∇hρ(t)‖2

}
,

and hence

1

2

{
‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ρ(t)‖2 + α2‖∇hρ(t)‖2

}
+ ν

∫ t

0

{
‖∇w(s)‖2 + α2‖∇h∇w(s)‖2

}
ds

+K

∫ t

0

{
‖∇ρ(s)‖2 + α2‖∇h∇ρ(s)‖2

}
ds

≤ 1

2

∫ t

0

{
‖w(s)‖2 + α2‖∇hw(s)‖2 + ‖ρ(s)‖2 + α2‖∇hρ(s)‖2

}
ds

+

∫ t

0

∣∣((w · ∇)w, w2

)
+ (ρ2w, ∇ρ)

∣∣(s) ds .

(15)

The term
(
(w · ∇)w, w2

)
can be estimated as follows:

∫ t

0

∣∣((w(s) · ∇)w(s), w2(s)
)∣∣ ds ≤ ∫ t

0

{
ν

2
‖∇w(s)‖2 +

να2

2
‖∇h∇w(s)‖2

}
ds

+ C

∫ t

0

{
1

ν3
‖∇hw2(s)‖4 +

1 + α2

να
‖∇w2(s)‖2

}
‖w(s)‖2 ds .

(16)

In order to estimate |(ρ2w, ∇ρ)|, we utilize the identity

(ρ2w, ∇ρ) = (ρ2w
h, ∇hρ) + (ρ2w

3, ∂3ρ)

and the following estimates, where we use Hölder, Gagliardo–Nirenberg and
Young inequalities. For the first term in the right-hand side, we have

|(ρ2wh, ∇hρ)| ≤ ‖ρ2‖L3‖w‖ ‖∇hρ‖L6 ≤ C‖ρ2‖1/2‖∇ρ2‖1/2‖w‖ ‖∇h∇ρ‖

≤ Kα2

2
‖∇h∇ρ‖2 +

C

Kα2
‖ρ2‖ ‖∇ρ2‖ ‖w‖2

≤ Kα2

2
‖∇h∇ρ‖2 +

C

Kα2

(
‖ρ2‖2 + ‖∇ρ2‖2

)
‖w‖2 .
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For the second term, we have

|(ρ2w3, ∂3ρ)| ≤ ‖ρ2‖L3‖w3‖L6‖∂3ρ‖ ≤ C‖ρ2‖1/2‖∇ρ2‖1/2‖∇w3‖ ‖∇ρ‖

≤ K

2
‖∇ρ‖2 +

C

K
‖ρ2‖ ‖∇ρ2‖ ‖∇w3‖2

≤ K

2
‖∇ρ‖2 +

C

Kα2
(‖ρ2‖2 + ‖∇ρ2‖2)α2‖∇hw‖2 ,

(17)

where we have used again the fact that, since ∇ · w = 0, there holds ∂3w
3 =

−∇h ·wh, and consequently

‖∇w3‖2 = ‖∇hw
3‖2 + ‖∂3w3‖2 = ‖∇hw

3‖2 + ‖∇h ·wh‖2 ≤ 2‖∇hw‖2 .

By inserting (16)–(17) in (15), and setting

Y (t) := ‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ρ(t)‖2 + α2‖∇hρ(t)‖2 ,

B(s) :=
1

ν3
‖∇hw2(s)‖4 +

1 + α2

να
‖∇w2(s)‖2 +

1

Kα2

(
‖ρ2(s)‖2 + ‖∇ρ2(s)‖2

)
,

we obtain

Y (t) + ν

∫ t

0

{
‖∇w(s)‖2 + α2‖∇h∇w(s)‖2

}
ds

+K

∫ t

0

{
‖∇ρ(s)‖2 + α2‖∇h∇ρ(s)‖2

}
ds ≤

∫ t

0

(
1 + CB(s)

)
Y (s) ds .

Since B ∈ L1(0, T ), an application of the Gronwall’s lemma implies Y (t) ≡ 0,
i.e. uniqueness of the solution and also, by adapting the argument, continuous
dependence on the data.

3. Other models with horizontal filtering

In this section we briefly study other two models in which the equation for the
density has not been filtered. In this section we just sketch the proofs since
they are along the mainstream of those given with great details in the previous
part of the paper.

It is interesting to observe that the analysis of the following two models is
motivated by the fact that the numerical simulations in [24,25] seem to justify
that the regularization of the equation for the density is not necessary to have a
well-posed system. This has been later rigorously proved or reviewed in [8], but
the results obtained there do not cover the possible regularization only in the two
horizontal variables (this is similar to what happens in magnetohydrodynamics,
where filtering the equation for the magnetic field can be avoided, see [12,13]).
Hence, here we take a close look to these models. In particular, we will not
reproduce all the calculations, but just show the changes needed to deal with
different models.
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3.1. A LES model without filtering in the equation for ρ. We consider
now the system

∂tw +∇ · (w ⊗w)
h
− ν∆w +∇q = −ρhe3 in D×]0, T [ , (18)

∇ ·w = 0 in D×]0, T [ , (19)

∂tρ+∇ · (ρAhw)−K∆ρ = 0 in D×]0, T [ , (20)

where the third equation has not been filtered, and so we have ρ = ϑ. In
particular in the equation for ρ the transport is made by the field u = Ahw.
For a regular weak solution, in this case, we require the regularity

w ∈ L∞(0, T ;Vh) ∩ L2(0, T ;V ∩H2
h) ∩ Cw(0, T ;Vh) ,

w3 ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) ,

∂tw ∈ L2(0, T ;V ∗) ,

ρ ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1) ∩ Cw(0, T ;L2) ,

∂tρ ∈ L2(0, T ;H−5/2−δ) , δ > 0 ,

and that the weak formulation∫ +∞

0

{
(w, ∂tϕ)− ν(∇w, ∇ϕ) + (w ⊗w, ∇ϕh)

}
(s) ds

=

∫ +∞

0

(ρhe3, ϕ)(s) ds− (w(0), ϕ(0)) ,∫ +∞

0

{(ρ, ∂tψ) + (ρAhw, ∇ψ)−K(∇ρ, ∇ψ)}(s) ds = −(ρ(0), ψ(0)),

is satisfied for each ϕ ∈
(
C∞0 (D × [0, T [)

)3
such that ∇ · ϕ = 0, and for each

ψ ∈ C∞0 (D × [0, T [).
We have the following result

Theorem 3.1. Let be given (w0, ρ0) ∈ Vh × L2(D) and ν,K > 0. Then there
exists (at least) a regular weak solution to (18), (19), (20), with w = 0 and
ρ = 0 on ]0, T [ × Γ, and (w(0,x), ρ(0,x)) = (w0, ρ0). Moreover, solutions
satisfy the energy (of the model) inequality

1

2

(
‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ρ(t)‖2

)
+ ν

∫ t

0

(
‖∇w(s)‖2 + α2‖∇h∇w(s)‖2

)
ds+K

∫ t

0

‖∇ρ(s)‖2 ds

≤ 1

2

(
‖w(0)‖2 + α2‖∇hw(0)‖2 + ‖ρ(0)‖2

)
−
∫ t

0

(
ρ(s)e3, w(s)

)
ds .
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Proof. We can easily adapt the steps performed for the previous model, to prove
existence and energy inequality. This can be obtained by noticing that in the
equation (20) we have ∇ · (ρAhw) instead of ∇ · (ρwh).

The only essential difference concerns the regularity of ∂tρm. We have the
following estimate∣∣(ρm(t)Ahwm(t), ∇ψ(t)

)∣∣ ≤ ‖ρm(t)‖L2‖Ahwm(t)‖L2‖∇ψ(t)‖L∞

≤ C‖ρm(t)‖L2‖wm(t)‖H2
h
‖ψ(t)‖H5/2+δ ,

and also∫ T

0

∣∣(ρm(t)wm(t), ∇ψ(t)
)∣∣ dt ≤ C‖ρm‖L∞L2‖wm‖L2H2

h
‖ψ‖L2H5/2+δ .

In order to estimate |(∇ρm, ∇ψ)|, we utilize ρm ∈ L2(0, T ;H1) and show∫ T

0

∣∣(∇ρm(t), ∇ψ(t)
)∣∣ dt ≤ ‖∇ρm‖L2L2‖∇ψ‖L2L2 ,

so that ∂tρm ∈ L2(0, T ;H−5/2−δ). Note that, indeed, we do not strictly need
ρm ∈ L2(0, T ;H1), since we can use in alternative∫ T

0

∣∣(∇ρm(t), ∇ψ(t)
)∣∣ dt ≤ ‖ρm‖L2L2‖ψ‖L2H2 ,

and the rest of the proof is almost the same.

What is relevant is that now the energy identity cannot be proved and it
has difficulties similar to those known for the weak solutions to the 3D Navier–
Stokes equations. In fact, if we try to reproduce the steps performed for the
previous model, the term (ρAhw, ∇ρk,ε) appears. Here, the problem is to show
that (ρAhw, ∇ρk,ε)→ (ρAhw, ∇ρε), as k → +∞.

We are not able to achieve uniqueness for this model as well. Without
the energy equality we cannot use the same tools, but one can understand
why the result cannot be deduced from the known regularity of the solution,
directly by performing some formal calculations. In order to get uniqueness,
we could in fact consider two solutions (w1, ρ1) and (w2, ρ2) to (18)–(20) with
the same initial data, and then find the equations satisfied by (w, ρ), where
w := w1−w2 and ρ := ρ1−ρ2. We have the same difficulty to pass to the limit
(ρAhw, ∇ρk,ε) → (ρAhw, ∇ρε), as k → +∞. Even if this convergence should
be true, a term ∫ t

0

(
ρ2Ahw, ∇ρ

)
(s) ds

appears, and we are not able to estimate this term in order to apply the Gron-
wall’s lemma.



On the Boussinesq equations with anisotropic filter 21

3.2. Another LES model without filtering in the equation for ρ. Since
the previous model seems not to introduce enough regularization to have the
requested properties, we can consider also the following (more regular) LES
model

∂tw +∇ · (w ⊗w)
h
− ν∆w +∇q = −ρhe3 in D×]0, T [ , (21)

∇ ·w = 0 in D×]0, T [ , (22)

∂tρ+∇ · (ρw)−K∆ρ = 0 in D×]0, T [ ; (23)

once again, the third equation has not been filtered, so ρ = ϑ. Nevertheless
observe that, with respect to the previous model, the third equation is more
regular, since the transport is now made by the field w and not by Ahw.

For regular weak solutions we have to require the following regularity

w ∈ L∞(0, T ;Vh) ∩ L2(0, T ;V ∩H2
h) ∩ Cw(0, T ;Vh) ,

w3 ∈ L∞(0, T ;H1) ∩ L2(0, T ;H2) ,

∂tw ∈ L2(0, T ;V ∗) ,

ρ ∈ L∞(0, T ;L2) ∩ L2(0, T ;H1) ∩ Cw(0, T ;L2) ,

∂tρ ∈ L2(0, T ;H−7/4) .

Moreover, we ask that the weak formulation∫ +∞

0

{
(w, ∂tϕ)− ν(∇w, ∇ϕ) + (w ⊗w, ∇ϕh)

}
(s) ds

=

∫ +∞

0

(ρhe3, ϕ)(s) ds− (w(0), ϕ(0)) ,∫ +∞

0

{(ρ, ∂tψ) + (ρw, ∇ψ)−K(∇ρ, ∇ψ)}(s) ds = −(ρ(0), ψ(0)) ,

is satisfied for each ϕ ∈
(
C∞0 (D × [0, T [)

)3
such that ∇ · ϕ = 0, and for each

ψ ∈ C∞0 (D × [0, T [). We are nevertheless able to obtain the following result.

Theorem 3.2. Let be given (w0, ρ0) ∈ Vh × L2(D) and ν,K > 0. Then there
exists (at least) a regular weak solution to (21), (22), (23), with w = 0 and
ρ = 0 on ]0, T [ × Γ, and (w(0,x), ρ(0,x)) = (w0, ρ0). Moreover, a solution
satisfies the energy (of the model) inequality

1

2

(
‖w(t)‖2 + α2‖∇hw(t)‖2 + ‖ρ(t)‖2

)
+ ν

∫ t

0

(
‖∇w(s)‖2 + α2‖∇h∇w(s)‖2

)
ds+K

∫ t

0

‖∇ρ(s)‖2 ds

≤ 1

2

(
‖w(0)‖2 + α2‖∇hw(0)‖2 + ‖ρ(0)‖2

)
−
∫ t

0

(
ρ(s)e3, w(s)

)
ds .
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Proof. Again existence and energy inequality are identical to the ones for the
first model, except for one term: in equation (23) we have ∇ · (ρw) instead of
∇ · (ρAhw).

Concerning for the regularity of ∂tρm, we have∣∣(ρm(t)wm(t), ∇ψ(t)
)∣∣ ≤ ‖ρm(t)‖L2‖wm(t)‖L4‖∇ψ(t)‖L4

≤ C‖ρm(t)‖L2‖wm(t)‖V ‖ψ(t)‖H7/4 ,

and ∫ T

0

∣∣(ρm(t)wm(t), ∇ψ(t)
)∣∣ dt ≤ C‖ρm‖L∞L2‖wm‖L2V ‖ψ‖L2H7/4 .

We have ρm ∈ L2(0, T ;H1) and hence∫ T

0

∣∣(∇ρm(t), ∇ψ(t)
)∣∣ dt ≤ ‖∇ρm‖L2L2‖∇ψ‖L2L2 ,

so that ∂tρm ∈ L2(0, T ;H−7/4).
When looking to the energy identity, we are not able to prove it: If we try to

proceed as for the first model, we note that in equation (23) we have ∇ · (ρw)
instead of ∇ · (ρAhw). Here the problem is to show that (ρw, ∇ρk,ε) →
(ρw, ∇ρε), as k → +∞.

Also in this case the uniqueness is not achieved since we have the same
difficulty to pass to the limit (ρw, ∇ρk,ε) → (ρw, ∇ρε) as k → +∞. Even if
this convergence should be true, a term∫ t

0

(
ρ2w, ∇ρ

)
(s) ds

appears, and we are not able to estimate this term in order to apply the Gron-
wall’s lemma.
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