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Introduction
Over the last decades, small celestial bodies like asteroids have drawn a growing interest due to their importance not only

for scientific explorations, but also for practical applications [1,2]. The value of asteroid detection is clearly confirmed by some
past mission tasks, such as NEAR-Shoemaker [3], characterized by a rendezvous with 433 Eros, and Hayabusa [4], the first
successful sample return prober with its target at 25143 Itokawa.

Different ways exist to plan missions for asteroid exploration, for example, by inserting a spacecraft into natural periodic
orbits [5], exploiting high-energy non-Keplerian orbits [6, 7], or using stationary hovering orbits [8]. In particular, the idea of
placing the hovering spacecraft at some artificial equilibrium points [8–10] of the rotating asteroid is considered one of the
best ways to acquire an area image of special interest within a certain field of vision [1], useful for identifying candidate sites
before landing (or impacting) on the asteroid’s surface [11].

So far, much effort has been devoted to the development of closed-loop hovering control strategies [12], aimed at tracking
a prescribed trajectory even in the presence of a complex gravitational field. In this regard, a robust performance is usually
the primary goal for many advanced control paradigms [13–15]. The effectiveness of those methods is in their capability
of accounting for uncertain dynamical environments and other realistic factors such as the existence of dead-band [16] in
the control system. Some open questions, however, still exist, which deserve a further study. For instance, in the available
literature, the asteroid hovering problem is seldom addressed in terms of propellant mass necessary to guarantee a certain
mission length. However, because the asteroids’ shape is in general nonspherical and even highly irregular, the overall fuel cost
necessary to counterbalance the asteroid gravity is strongly dependent on the hovering position, especially for those missions
requiring sustained close-proximity operations. This observation necessitates a clear insight in identifying a direct relationship
between the hovering position and the propellant consumption. In fact, if some flexibility is allowed in the choice of hovering
point, such a degree of freedom may be exploited to optimize the total fuel consumption, thus providing more redundancy for
other mission tasks, such as a deep impact or a soft landing on the asteroid.

The aim of this Note is to provide a comprehensive study of asteroid hovering from a fuel-consumption viewpoint, under the
assumption that the asteroid is modelled as a second-degree and a second-order non-spherical gravitational field. Our analysis
first relies on an analytical, although approximate, approach to determine the critical hovering orientations and to quantify
the fuel-consumption extrema. The linear stability for a given hovering distance is investigated, and a homotopic method is
adopted as an effective tool to emphasize the fuel-optimal control problem. In particular, optimal trajectories toward a stable,
minimum-fuel, hovering point are found by first solving the simpler energy-optimal problem. The initial (unknown) costate
vector is calculated with a normalization technique, in such a way that the sensitivity of the two-point boundary-value problem
(TPBVP) to the initial guess is significantly mitigated.

The Note is organized as follows. Section II discusses the necessary conditions for asteroid hovering. Section III investigates
the fuel-consumption extrema and the corresponding critical hovering orientations using an analytical point of view. In Section
IV, the linear stability is analyzed with a numerical approach. In Section V, a homotopic method, in association with a costate
vector normalization technique, is adopted to study the trajectory optimization problem. Finally, some concluding remarks
are proposed.

Mathematical Preliminaries
Consider an asteroid of uniform density that rotates at a constant rate about its maximum axis of inertia and a spacecraft,

propelled by a continuous thrust propulsion system, which moves subject to the asteroid gravitational field; see Fig. 1. The
dynamic model describing the spacecraft motion is formulated in a body-fixed (rotating) reference frame T (O; x̂, ŷ, ẑ), whose
origin O coincides with the asteroid center-of-mass, while axes {x̂, ŷ, ẑ} are aligned with the minimum, intermediate, and
maximum axis of inertia of the asteroid, respectively. In this model, the asteroid spin axis is assumed to coincide with the
ẑ-axis, that is, the angular velocity vector is ω ≡ ω ẑ, where ω is the constant asteroid spin rate.

The spacecraft dynamics is described by the second-order differential equation [17]

r̈ + 2ω × ṙ + ω × (ω × r) = −∂ U
∂ r

+ u (1)
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Figure 1 Rotating reference frame and spacecraft relative position.

where r , [x, y, z]T is the spacecraft position vector, u is the propulsive acceleration vector, and U is the asteroid gravitational
potential function. Assuming a second-degree and second-order asteroid gravitational potential [1], the potential function can
be written as

U = −µ
r

+
µ

2 r5
C̃20

(
x2 + y2 − 2 z2

)
− 3µ

r5
C̃22

(
x2 − y2

)
(2)

where r , ‖r‖ is the asteroid-spacecraft distance, µ is the asteroid gravitational parameter. The augmented Stokes coefficients{
C̃20, C̃22

}
are defined as C̃20 , R2

0 C20 and C̃22 , R2
0 C22, in which {C20, C22} are the second-degree and second-order gravity

field harmonic (Stokes) coefficients, and R0 is the normalizing distance.

For convenience, introduce the dimensionless (positive) parameter κ , ω2/
(
µ/r3

)
and a set of spherical coordinates

{r, θ, φ}, defined as x , r sin θ cosφ, y , r sin θ sinφ, z , r cos θ, where θ ∈ [0, π] rad is the angle between the ẑ-axis and the
position vector r, while φ ∈ [0, 2π] rad is the angle between the x̂-axis and the projection of r onto the (x̂, ŷ) plane; see Fig. 1.
An asteroid hovering condition is obtained by placing the spacecraft at some artificial equilibrium point in the frame T , which
amounts to enforcing the condition ṙ = r̈ = 0 in Eq. (1). Accordingly, the required spacecraft propulsive acceleration is

u = ω × (ω × r) +
∂ U

∂ r
(3)

Note that the expression asteroid hovering here refers to a body-fixed hovering [9], whereas an inertial hovering [18] (which is
useful for remote sensing, imaging, and surface mapping) is beyond the scope of this Note. Using Eq. (3), the components of
the propulsive acceleration vector are given by

ux =
µ

r2
sin θ cosφ

{
(1− κ) +

C̃20

r2

[
1−

5

2

(
sin2 θ − 2 cos2 θ

)]
−
C̃22

r2

[
6− 15 sin2 θ

(
cos2 φ− sin2 φ

)]}
(4)

uy =
µ

r2
sin θ sinφ

{
(1− κ) +

C̃20

r2

[
1−

5

2

(
sin2 θ − 2 cos2 θ

)]
+
C̃22

r2

[
6 + 15 sin2 θ

(
cos2 φ− sin2 φ

)]}
(5)

uz =
µ

r2
cos θ

{
1−

C̃20

r2

[
2 +

5

2

(
sin2 θ − 2 cos2 θ

)]
+
C̃22

r2
15 sin2 θ

(
cos2 φ− sin2 φ

)}
(6)

which are functions of the triplet {κ, θ, φ}. Note that, as a consequence of the assumption of uniformly rotating asteroid, the
vector u is time-invariant.

Fuel-Consumption Extrema

The total fuel consumption is a crucial point for long-term hovering missions, because the spacecraft has to compensate
for the asteroid local gravity through a continuous thrust. In this section, starting from Eqs. (4)–(6) and assigning the
asteroid-spacecraft distance, the extrema of fuel consumption for hovering control will be analytically obtained along with the
corresponding critical spacecraft directions.

Critical Hovering Directions

The fuel consumption can be analyzed by studying the spatial variation of the square of the propulsive acceleration
magnitude, that is, ‖u‖2. For a given hovering distance ρ, the extrema of ‖u‖2 can be obtained by solving a static optimization
problem with equality constraints in the form [19]

{θ?, φ?} = arg min
{θ,φ}

‖u‖2 s.t. ‖r (θ?, φ?)‖ = ρ (7)

where {θ?, φ?} are the angles that give the (critical) hovering directions from a fuel-consumption viewpoint. The augmented
cost functional Φ is

Φ = ‖u‖2 + ν
(
‖r‖2 − ρ2

)
(8)
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where ν is a Lagrange multiplier. The necessary conditions for an extremum are

∂ Φ

∂ θ
= 0,

∂ Φ

∂ φ
= 0 s.t. ‖r‖ = ρ (9)

Equations (9) constitute a system of three algebraic equations in the three variables {θ, φ, ν}, of which an analytical solution
is difficult to find when the actual expressions of the components {ux, uy, uz}, given by Eqs. (4)–(6), are substituted into

Eq. (8). An approximate expression of ‖u‖2 ≡ (u2
x + u2

y + u2
z) may however be derived by observing that the augmented

harmonics coefficients {C̃20, C̃22} are small compared to r2, viz.∣∣∣∣∣ C̃20

r2

∣∣∣∣∣� 1,

∣∣∣∣∣ C̃22

r2

∣∣∣∣∣� 1,

∣∣∣∣∣ C̃20

r2

∣∣∣∣∣� |κ− 1| ,

∣∣∣∣∣ C̃22

r2

∣∣∣∣∣� |κ− 1| (10)

Since κ is usually not close to 1, the last two assumptions in Eq. (10) naturally hold true in most cases. The first-order

approximation of ‖u‖2 is obtained from Eqs. (4)–(6) by neglecting the terms including {C̃2
20/r

4, C̃2
22/r

4, C̃20 C̃22/r
4}. After

some algebraic manipulations, the result turns out to be

‖u‖2 ' µ2

r4

{
1 +

6 C̃20

r2
+

15κ C̃20 − 30κ C̃22 cos 2φ

r2
sin4 θ

+

[
κ2 − 2κ+

6 (2κ+ 3) C̃22 cos 2φ− 3 (4κ+ 3) C̃20

r2

]
sin2 θ

}
(11)

Substituting Eq. (11) into Eq. (8), the necessary conditions (9) become

sin 2 θ (A cos 2θ + B) = 0 (12)

sin2 θ sin 2φ
[
5κ sin2 θ − (2κ+ 3)

]
= 0 (13)

where A and B are two auxiliary functions, defined as

A = 15κ
(

2 C̃22 cos 2φ− C̃20

)
(14)

B =
(
κ2 − 2κ

)
ρ2 + (3κ− 9) C̃20 + 18 (1− κ) C̃22 cos 2φ (15)

where ρ = 3
√
µκ/ω2. Thus, Eqs. (14)-(15) are functions of {φ, κ}, so that Eqs. (12)-(13) are nonlinear functions of {θ, φ, κ}.

For a given value of κ, the solution set of Eq. (12) is

S1 :

{
θ = {0, π/2, π} ∩ ∀φ ∈ [0, 2π]

A cos 2θ + B = 0 ∩ |A/B| ≥ 1
(16)

while that of Eq. (13) is

S2 :


θ =

{
0, π, arcsin

√
2κ+ 3

5κ
, π − arcsin

√
2κ+ 3

5κ

}
∩ ∀φ ∈ [0, 2π]

φ = {0, π/2, π, 3π/2, 2π} ∩ ∀ θ ∈ [0, π]

(17)
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The critical hovering directions {θ?, φ?} correspond to when Eqs. (16)-(17) are satisfied simultaneously, that is, {θ?, φ?} ∈
S1 ∩ S2. Therefore, the possible solution sets {Sa,Sb, . . . ,Se} can be written as

Sa : θ? = {0, π} ∩ ∀φ? ∈ [0, 2π] (18)

Sb : θ? =
π

2
∩ φ? = {0, π/2, π, 3π/2, 2π} (19)

Sc : ∆1 ≥ 0 ∩ θ? =

{
arcsin

√
2κ+ 3

5κ
, π − arcsin

√
2κ+ 3

5κ

}

∩ φ? =

{
1

2
arccos

9 C̃20 +
(
κ2 − 2κ

)
ρ2

6 C̃22 (2κ+ 3)
, π −

1

2
arccos

9 C̃20 +
(
κ2 − 2κ

)
ρ2

6 C̃22 (2κ+ 3)
,

π +
1

2
arccos

9 C̃20 +
(
κ2 − 2κ

)
ρ2

6 C̃22 (2κ+ 3)
, 2π −

1

2
arccos

9 C̃20 +
(
κ2 − 2κ

)
ρ2

6 C̃22 (2κ+ 3)

}
(20)

Sd : ∆2 ≥ 0 ∩ θ? =

1

2
arccos

(
κ2 − 2κ

)
ρ2 + (3κ− 9) C̃20 + 18 (1− κ) C̃22

15κ
(
C̃20 − 2 C̃22

) ,

π −
1

2
arccos

(
κ2 − 2κ

)
ρ2 + (3κ− 9) C̃20 + 18 (1− κ) C̃22

15κ
(
C̃20 − 2 C̃22

)
 ∩ φ? = {0; π; 2π} (21)

Se : ∆3 ≥ 0 ∩ θ? =

1

2
arccos

(
κ2 − 2κ

)
ρ2 + (3κ− 9) C̃20 − 18 (1− κ) C̃22

15κ
(
C̃20 + 2 C̃22

) ,

π −
1

2
arccos

(
κ2 − 2κ

)
ρ2 + (3κ− 9) C̃20 − 18 (1− κ) C̃22

15κ
(
C̃20 + 2 C̃22

)
 ∩ φ? =

{
π

2
;

3π

2

}
(22)

where the discriminants ∆1, ∆2, and ∆3 are given by

∆1 = 6 C̃22 (2κ+ 3)−
∣∣∣9 C̃20 +

(
κ2 − 2κ

)
ρ2
∣∣∣ (23)

∆2 =
∣∣∣15κ

(
2 C̃22 − C̃20

)∣∣∣− ∣∣∣(κ2 − 2κ
)
ρ2 + (3κ− 9) C̃20 + 18 (1− κ) C̃22

∣∣∣ (24)

∆3 =
∣∣∣15κ

(
2 C̃22 + C̃20

)∣∣∣− ∣∣∣(κ2 − 2κ
)
ρ2 + (3κ− 9) C̃20 − 18 (1− κ) C̃22

∣∣∣ (25)

According to Eqs. (18)–(22), Sa and Sb are solution sets of Eqs. (12)-(13) in all cases, whereas Sc, Sd, and Se are conditional

sets, depending on the sign of ∆1, ∆2, and ∆3. Note that, in order to identify the minima of ‖u‖2, the solutions (18)–(22)
must be further analyzed by examining the sign of the second-order (or high order if saddle points appear) partial derivative
at the critical hovering directions {θ?, φ?}.

Consider, for example, asteroid 433 Eros, of which the main physical parameters [13] are reported in Tab. 1. The solution

Table 1 Physical Parameters of asteroid 433 Eros [13].

parameter value

µ 4.462× 10−4 km3/s2

ω 3.31× 10−4 rad/s

C̃20 −26.755 km2

C̃22 12.752 km2

set S of all critical hovering directions is written in terms of pairs {θ?, φ?} as

S =



Sa ∪ Sb ∪ Sd : ∆1 < 0 ∩ ∆2 > 0 ∩ ∆3 ≤ 0 if κ ∈
(
1, κ?1

]
Sa ∪ Sb ∪ Sd ∪ Se : ∆1 ≤ 0 ∩ ∆2 > 0 ∩ ∆3 > 0 if κ ∈

(
κ?1, κ

?
2

]
Sa ∪ Sb ∪ Sc ∪ Sd ∪ Se : ∆1 > 0 ∩ ∆2 > 0 ∩ ∆3 ≥ 0 if κ ∈

(
κ?2, κ

?
3

]
Sa ∪ Sb ∪ Sc ∪ Sd : ∆1 ≥ 0 ∩ ∆2 > 0 ∩ ∆3 < 0 if κ ∈

(
κ?3, κ

?
4

]
Sa ∪ Sb ∪ Sd : ∆1 < 0 ∩ ∆2 ≥ 0 ∩ ∆3 < 0 if κ ∈

(
κ?4, κ

?
5

]
Sa ∪ Sb : ∆1 < 0 ∩ ∆2 < 0 ∩ ∆3 < 0 if κ > κ?5

(26)
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where the conditions ∆i(κ) ≥ 0 (i = 1, 2, 3), with ∆i given by Eqs. (23)–(25), are plotted in Fig. 2, and the values of κ?j (with
j = 1,. . . ,5) are obtained by enforcing the condition ∆i(κ

?
j ) = 0 in Eqs. (23)–(25). The result is

κ?1 = 1.466, κ?2 = 1.578, κ?3 = 1.607, κ?4 = 2.671, κ?5 = 3.606 (27)

The obtained solution is confirmed by the contour lines of the required propulsive acceleration magnitude ‖u‖ shown in Fig. 3,
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Figure 2 Regions of {∆1,∆2,∆3} ≥ 0 as a function of κ: case of asteroid 433 Eros.

while the critical hovering directions {θ?, φ?} are reassumed in Tab. 2.
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Figure 3 Contour lines of required propulsive acceleration ‖u‖ [m/s2] as a function of {θ, φ} and κ: case of asteroid 433 Eros.

Table 2 Critical hovering directions {θ?, φ?} [deg] of asteroid 433 Eros.

κ Sc Sd Se

1.4 ∅ θ? = {38.9, 141.1} ,
φ? = {0, 180, 360}

∅

1.5 ∅ θ? = {39.0, 141.0} ,
φ? = {0, 180, 360}

θ? = {28.4, 151.6} ,
φ? = {90, 270}

1.6 θ? = {61.7, 118.3} ,
φ? = {84.0, 96.0, 264.0, 276.0}

θ? = {39.3, 140.7} ,
φ? = {0, 180, 360}

θ? = {76.7, 103.3} ,
φ? = {90, 270}

2 θ? = {56.8, 123.2} ,
φ? = {58.4, 121.6, 238.4, 301.6}

θ? = {42.3, 137.7} ,
φ? = {0, 180, 360}

∅

3 ∅ θ? = {59.4, 120.6} ,
φ? = {0, 180, 360}

∅

4 ∅ ∅ ∅
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Minimum and Maximum Fuel-Consumption Directions

Despite the critical hovering directions corresponding to fuel-consumption extrema may be found with an analytical ap-
proach, the important question remains on how the hovering directions must be chosen within the admissible set to guarantee
a globally optimal solution. In fact, since some local fuel-consumption extrema may exist (see Fig. 3), the conditions for
obtaining a global minimum or a maximum require a further study.

To that end, Eqs. (18)–(22) should be considered together with Fig. 3 for a more direct insight into the variation tendency
of the global extrema. Note that, as long as κ is less than a critical value κ?a, the minimum fuel-consumption hovering always
happens on the x̂-axis, that is, θ?a1 = π/2 and φ?a1 = {0, π, 2π}. On the contrary, when κ > κ?a, the critical hovering directions
become θ?a2 = {0, π}, with φ?a2 arbitrary, showing that the fuel consumption takes its global minimum on the ẑ-axis. In
summary, the minimum required acceleration can be written as

‖u‖min =


‖u‖min1

=
∥∥u (θ?a1, φ?a1)∥∥min1

= µ
ρ2

√
(κ− 1)2 +

3 (κ−1) (C̃20−6 C̃22)
ρ2

if κ ≤ κ?a

‖u‖min2
=
∥∥u (θ?a2, φ?a2)∥∥min2

= µ
ρ2

√
1 + 6 C̃20

ρ2
if κ > κ?a

(28)

The value of κ?a may be found by enforcing the condition ‖u‖min1
= ‖u‖min2

, thus obtaining an algebraic equation in one
unknown, that is

κ?a (κ?a − 2)

(
µκ?a
ω2

)2/3

+ 3
(
C̃20 − 6 C̃22

)
(κ?a − 1)− 6 C̃20 = 0 (29)

which is easily solved numerically for κ?a. For example, using the data of asteroid 433 Eros, it turns out that κ?a = 2.2267.
The maximum fuel-consumption hovering case can be studied in a similar way. As long as κ ≤ κ?b , the maxima are reached

when the critical directions lie on the (x̂, ẑ) plane. In that case, {θ?b1, φ?b1} ∈ Sd, see Eq. (21). On the other hand, if κ > κ?b , the
maximum fuel-consumption hovering condition always takes place on the ŷ-axis, i.e. when θ?b2 = π/2 and φ?b2 = {π/2, 3π/2},
viz.

‖u‖max =



‖u‖max1
= ‖u (θ?b1, φ

?
b1)‖max1

= µ
ρ2

√
1 + 6 C̃20

ρ2
+

(κ2−2κ) ρ2+6 C̃22 (2κ+3)−3 C̃20 (4κ+3)

60κ ρ2 (2 C̃22−C̃20)
if κ ≤ κ?b

‖u‖max2
= ‖u (θ?b2, φ

?
b2)‖max2

= µ
ρ2

√
(κ− 1)2 +

3 (κ−1) (C̃20+6 C̃22)
ρ2

if κ > κ?b

(30)

The value of κ?b satisfies the equality ‖u‖max1
= ‖u‖max2

and, for asteroid 433 Eros, the value is κ?b = 2.0203.

The values of {‖u‖min , ‖u‖max} obtained from Eqs. (28) and (30) are validated by Fig. 4, which shows the projection of
the contour lines of ‖u‖ when κ < κ?b , κ = κ?b , κ = κ?a, and κ > κ?a. Note that the numerical values of minima (denoted with
a circle) and maxima (denoted with a star) are consistent with the analytical results, thus reinforcing the soundness of the
presented method.
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Figure 4 Contour lines of magnitude ‖u‖ projected to the (x̂, ẑ) plane when κ < κ?b , κ = κ?b , κ = κ?a, and κ > κ?a.
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Stability Analysis
The previous analysis provides a basis on which potential asteroid hovering positions can be chosen from a fuel-consumption

viewpoint. However, the practical implementation of a hovering mission would be greatly simplified by the choice of a stable
hovering point. For this reason, the stability of asteroid hovering problem, with a qualitative description in terms of parameter
κ, will now be investigated. The problem is addressed by assuming that the actual spacecraft position vector differs from
the designed hovering position by a small quantity. Let δr , [δx, δy, δz]T be the deviation in hovering position, and

V , − (ω × r) (ω × r) /2 + U the effective potential function. Because ‖δr‖ may be considered small when compared to
the asteroid-spacecraft distance ‖r‖, the linearized equation describing the error dynamics around the hovering position is
obtained from Eq. (1) as

δr̈ + 2ω × δṙ +
∂2V

∂r2
= 0 (31)

in which the variation in propulsive acceleration δu ' 0 is neglected. Equation (31) gives

δẍ− 2ω δẏ + Vxx δx+ Vxy δy + Vxz δz = 0 (32)

δÿ + 2ω δẋ+ Vyx δx+ Vyy δy + Vyz δz = 0 (33)

δz̈ + Vzx δx+ Vzy δy + Vzz δz = 0 (34)

where Vij = Vji = ∂2 V/∂ i ∂ j, with i, j = {x, y, z}, is the generic entry of ∂2 V/∂ r2, whose expression is omitted here for
brevity.

The motion stability around the hovering position may be investigated, as usual, by applying the Laplace transform to the
set of linear differential equations (32)–(34). It may be verified that the resulting characteristic polynomial is

s6 + C2 s4 + C1 s2 + C0 = 0 (35)

where s is the Laplace variable, and the coefficients of the characteristic polynomial are

C0 = Vxx Vyy Vzz + 2Vxy Vxz Vyz − Vxx V 2
yz − Vyy V 2

xz − Vzz V 2
xy (36)

C1 = Vxx Vyy + Vxx Vzz + Vyy Vzz − V 2
xy − V 2

xz − V 2
yz + 4ω2 Vzz (37)

C2 = Vxx + Vyy + Vzz + 4ω2 (38)

The stability of the linear system is determined by the roots of the characteristic equation (35), which can be rewritten as

η3 + C2 η2 + C1 η + C0 = 0 (39)

where η , s2. Because Eq. (39) is a cubic polynomial of η, its roots are either all real or one root is real and the other two
are complex. According to the topological property of the solution [8], the hovering position is stable if and only if all of the
roots of Eq. (39) are non-positive real numbers. In fact, in correspondence of a complex root of Eq. (39), there would be a
(unstable) root with positive real part in Eq. (35). Therefore, the necessary and sufficient conditions for linear stability are

∆s ≤ 0 ∩ C0 ≥ 0 ∩ C1 ≥ 0 ∩ C2 ≥ 0 (40)

where
∆s = (C1 C2 − 9 C0)2 − 4

(
C22 − 3 C1

) (
C21 − 3 C0 C2

)
(41)

In Eq. (40), the condition ∆s ≤ 0 implies the existence of three real roots of Eq. (39), while the last three conditions are
enforced to guarantee that all the roots of Eq. (39) are non-positive.

For illustrative purposes, Fig. 5 shows the (linearly) stable hovering regions over asteroid 433 Eros; see also Tab. 1. A value
of κ = 2 has been chosen, which corresponds to a hovering distance of about ρ = 20.12 km. To qualitatively visualize the
effect of parameter κ, the stable regions with a continuation of κ are illustrated in Fig. 6 when κ = {1.75, 1.8, 2.5, 3, 4, 5}.
As expected, the stability regions expand as κ increases, even though further simulations show that such an increase becomes
small when κ is greater than about 4.13.

Fuel-Optimal Transfer Toward a Given Hovering Point
Homotopic Method for Trajectory Optimization

In this section the transfer problem toward a hovering point is formulated in an optimal framework, that is, by minimizing
the fuel required to complete the transfer. To that end, consider a spacecraft of mass m, whose primary propulsion system is
an electric thruster with constant specific impulse Isp, and maximum thrust magnitude Tmax. Taking into account the asteroid
gravity and the propulsion system thrust only, and bearing in mind Eq. (1), the spacecraft equations of motion in the rotating
frame T are

ṙ = v (42)

v̇ = −2ω × v − ∂ V

∂ r
+
Tmax τ

m
α̂ (43)

ṁ = −Tmax τ

Isp g0
(44)
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Figure 5 Linear stable regions when κ = 2: case of asteroid 433 Eros.

where g0 is the standard gravity, τ ∈ [0, 1] is the engine throttle level, and α̂ is the unit thrust vector. The problem addressed
here consists in finding the optimal control law a? = a (τ?, α̂?) that minimizes the fuel required to transfer the spacecraft from
an arbitrary initial state (r0,v0) to a final desired hovering point (rf ,vf = 0), within a given flight time tf . The performance
index to minimize is

J0 =
Tmax

Isp g0

∫ tf

0

τ dt (45)

in which tf is fixed.

The optimal control problem is solved through an indirect approach. The fuel-optimal problem, which suffers from a rather
limited convergence range and a high sensitivity to the initial guess, is first translated into an energy-optimal problem, which
is easier to solve due to its inherent continuity and differentiability. Thus, instead of the original optimization index given by
Eq. (45), the homotopy here is built by introducing the modified perturbed performance index [20]

J =
λ0 Tmax

Isp g0

∫ tf

0

[τ − ε τ (1− τ)] dt (46)

where ε ∈ [0, 1] is the homotopy parameter that links the fuel-optimal criteria (ε = 0) with the energy-optimal criteria (ε = 1),
and λ0 ∈ R+ is a scaling factor used for restricting the costate vector on a unit hypersphere. From a practical standpoint, the
energy-optimal problem is first solved with a shooting method, and then ε is decreased with a continuation procedure until
the solution of the fuel-optimal problem is eventually obtained.

Bearing in mind Eqs. (42)–(44), the Hamiltonian H can be written as

H = λr · v + λv ·
(
−2ω × v − ∂ V

∂ r
+
Tmax τ

m
α̂

)
− λm Tmax τ

Isp g0
+
λ0 Tmax [τ − ε τ (1− τ)]

Isp g0
(47)

where λr and λv are the costate vectors adjoint to the position and the velocity, respectively, and λm is the mass costate.
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Figure 6 Linear stable regions as a function of κ: case of asteroid 433 Eros.

Accordingly, the Euler-Lagrange equations are

λ̇r = −∂H
∂ r

= ω × (ω × λv) +
∂2 U

∂ r2
· λv (48)

λ̇v = −∂H
∂ v

= −λr + 2λv × ω (49)

λ̇m = −∂H
∂ m

=
Tmax τ

m2
λv · α̂ (50)

According to the Pontryagin’s maximum principle, the optimal control law a? = a (τ?, α̂?), to be selected in the feasible
control domain D, is designed such that the Hamiltonian is an absolute minimum at any time, that is

a? = arg min
a∈D

H (51)
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Therefore, the optimal thrust vector α̂? that minimizes the Hamiltonian H is

α̂? = − λv
‖λv‖

(52)

and the optimal throttle level τ? is

τ? =


0 if β > ε

1 if β < −ε
ε− β

2 ε
if |β| ≤ ε

(53)

where β is the switching function, defined as

β = 1− Isp g0 ‖λv‖
λ0m

− λm
λ0

(54)

Since no constraint is enforced on the final mass, the transversality condition gives λm (tf ) = 0. To further alleviate the
difficulties in solving the TPBVP, a normalization technique of the initial costate vector is employed. To this end, introduce
a new costate vector

λ ,
[
λT
r , λ

T
v , λm, λ0

]T
(55)

Note that the Hamiltonian H is a homogeneous function of λ, so that the components of the costate variables λ can be
normalized to range within the interval [−1, 1], viz.

‖λ (0)‖ =

√
‖λr (0)‖2 + ‖λv (0)‖2 + λm (0)2 + λ2

0 = 1 (56)

Finally, with the new boundary condition (56), the shooting function of the TPBVP in terms of λ (0) is

Φ [λ (0)] =
[
rT (tf )− rT

f , v
T (tf ) , λm (tf ) , ‖λ (0)‖ − 1

]T
(57)

A continuation procedure parameterized with ε, which decreases from 1 to 0, is adopted to target the initial costate vector
λ (0) for the fuel-optimal problem (ε = 0).

Case Study

Consider a spacecraft with an initial mass m0 = 2000 kg, a maximum thrust magnitude Tmax = 60 N, and a specific impulse
Isp = 400 s. The acceleration magnitude of the electric thruster here is in accordance with the maximum value of that in
an asteroid descent mission [21]. The optimal control law with a homotopy mapping-based algorithm is used to study the
fuel-optimal trajectories for the case of asteroid 433 Eros; see Tab. 1. In particular, a typical mission scenario consisting in
transferring the spacecraft to a preferable hovering point is addressed. The spacecraft initial position is r0 = [30.3, 17.5, 0]T km,
the final position is rf = [20.12, 0, 0]T km, while the initial and final velocities are assumed to be both zero. Note that for a
hovering distance ρ = 20.12 km, the parameter κ is equal to 2, which gives a linearly stable and minimum fuel-consumption
hovering position over asteroid 433 Eros, as shown in Fig. 3 and Fig. 5.

A set of fuel-optimal transfer trajectories are collected in Fig. 7 as a function of the flight time tf ∈ [1680, 4000] s, while
the value of the spacecraft final mass mf = m (tf ) is shown in Fig. 8. Note that the final mass mf is, as expected, positively
correlated with the given flight time tf according to Eq. (44).
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Figure 7 Fuel-optimal transfer trajectories as a function of tf .

The simulations imply that the value of the minimum flight time that allows for a feasible solution is about tfmin ' 1672 s.
For example, assuming a flight time tf = 2000 s, the time variation of the spacecraft mass is given in Fig. 9, which shows the
presence of a coasting arc (i.e., a phase in which τ? = 0) of about 1070 s in the optimal trajectory.
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The throttle level τ during a homotopic process (where ε is discretized with a step of 0.2) is illustrated in Fig. 10, showing
that a bang-bang control law is eventually obtained when ε = 0. Finally, Fig. 11 provides the time variation of the thrust
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Figure 10 Optimal throttle level τ? as a function of ε when tf = 2000 s.

vector components. Note that the out-of-plane component is Tz = 0 (recall that both the initial and final position of the
spacecraft lies in the (x̂, ŷ) plane), which states that the optimal transfer trajectory is planar.

Conclusions
The problem of asteroid hovering by a spacecraft equipped with a continuous-thrust propulsion system has been thoroughly

investigated from a fuel-consumption perspective. Under the assumption of a second-degree and a second-order non-spherical
gravitational field, it has been shown that many fuel-consumption extrema may exist for asteroid hovering missions. The
closed-form solutions of the critical directions and the corresponding fuel-consumption extrema have been found through an
approximate method, while the global minima and maxima have been calculated with an analytical approach.

The linear stability for a given hovering distance has been studied in a parametric way, showing that the stable region
enlarges as the hovering distance increases. In particular, the optimal steering law that minimizes the fuel consumption toward
a stable hovering point has been analyzed using an indirect approach, in which a homotopic method (with an initial costate
vector normalization technique) has been adopted to reduce the numerical sensitivity of the optimal control problem. For
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Figure 11 Time variation of the thrust vector components in T when tf = 2000 s.

the purpose of decreasing the propellant expense, the minimum fuel-consumption hovering directions are preferable, provided
that the mission requirements allow some flexibility in specifying the hovering site. The fuel-optimal transfer can be used as
a nominal reference trajectory of a spacecraft in practical operations.
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