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A REMARK ON THE MAYER-VIETORIS

DOUBLE COMPLEX FOR SINGULAR COHOMOLOGY

R. FRIGERIO AND A. MAFFEI

Abstract. Given an open cover of a paracompact topological space X,
there are two natural ways to construct a map from the cohomology of
the nerve of the cover to the cohomology of X. One of them is based
on a partition of unity, and is more topological in nature, while the other
one relies on the Mayer-Vietoris double complex, and has a more algebraic
flavour. In this paper we prove that these two maps coincide, thus answering
a question posed by N. V. Ivanov.

Let X be a paracompact space, and let U “ tUiuiPI be an open cover of X.
We denote by NpUq the nerve of U , i.e. the simplicial set having I as set of
vertices, in which a finite subset ti0, . . . , iku Ď I spans a simplex if and only
if Ui0 X . . . X Uik ‰ H. As usual, we endow the geometric realization |NpUq|
of NpUq with the weak topology associated to the natural CW structure of
|NpUq|.

Any partition of unity Φ “ tϕi : X Ñ RuiPI subordinate to U induces a map

fΦ : X Ñ |NpUq| , fΦpxq “
ÿ

iPI

ϕipxq ¨ i .

Moreover, the homotopy class of fΦ does not depend on the chosen partition of
unity Φ. Indeed, if Ψ is another partition of unity, then we have a well-defined
homotopy tfΨ ` p1 ´ tqfΦ between f and g. Therefore, if R is any ring with
unity, the map fΦ induces a map

f˚ “ f˚
Φ : H

˚p|NpUq|, Rq Ñ H˚pX,Rq ,

which does not depend on the choice of Φ. Throughout this paper, we fix a ring
with unity R, and for any topological space Y we denote by C˚pY q “ C˚pY,Rq
(resp. H˚pY q “ H˚pY,Rq) the singular cochain complex (resp. the singular
cohomology algebra) of Y with coefficients in R.

There is another natural way to define a map from the (simplicial) coho-
mology of NpUq to the singular cohomology of X. Let C˚,˚pUq be the Mayer-
Vietoris double complex associated to U , i.e. for every pp, qq P N2 let

Cp,qpUq “
ź

iPIp

CqpUiq ,

where Ip denotes the set of ordered pp` 1q-tuples pi0, . . . , ipq P Ip`1 such that
Ui :“ Ui0 X . . . X Uip ‰ H (in particular, I0 “ ti P I |Ui ‰ Hu). We refer the
reader to Section 1 for the precise definition of this double complex.
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To the double complex C˚,˚pUq there is associated the total complex T ˚,
and we have maps

αX : H˚pXq Ñ H˚pT ˚q , β : H˚pNpUqq Ñ H˚pT ˚q

from the singular cohomology of X to the cohomology of T ˚ and from the
simplicial cohomology of NpUq to the cohomology of T ˚. Moreover, the map
α turns out to be an isomorphism (see Section 1).

Let now ν : H˚p|NpUq|q Ñ H˚pNpUqq be the canonical isomorphism between
the simplicial cohomology ofNpUq and the singular cohomology of its geometric
realization (see Section 2). By setting η “ α´1

X ˝ β ˝ ν we have thus defined a
map

η : H˚p|NpUq|q Ñ H˚pXq .

The main result of this paper shows that the maps f˚ and η coincide:

Theorem 1. The maps

f˚ : H˚p|NpUq|q Ñ H˚pXq , η : H˚p|NpUq|q Ñ H˚pXq

coincide.

Theorem 1 answers a question posed by Ivanov in [Iva87, page 1113] and
in [Iva, page 71].

1. The Mayer-Vietoris double complex

Let U “ tUiuiPI be an open cover of the topological space X. We now
thoroughly describe the horizontal and the vertical differentials of the double
complex C˚,˚pUq defined in the introduction, also fixing the notation we will
need later.

If ϕ P Cp,qpUq and i P Ip, then we denote by ϕi the projection of ϕ on
CqpUiq. For every pp, qq P N2 we denote by

δp,qv : Cp,qpUq Ñ Cp,q`1pUq

the “vertical” differential which restricts to the usual differential CqpUiq Ñ
Cq`1pUiq for every i P Ip, and by

δ
p,q
h : Cp,qpUq Ñ Cp`1,qpUq

the “horizontal” differential such that, for every i “ pi0, . . . , ip`1q P Ip`1 and
every ϕ P Cp,qpUq,

(1) pδp,qh pϕqqi “
p`1ÿ

k“0

p´1qk
`
ϕpi0,...,̂ik,...,ip`1q

˘
|Ui

.

We augment the double complex C˚,˚pUq as follows. We define CU
q as the

subcomplex of the singular chain complex CqpXq generated (over R) by those
singular simplices s : ∆q Ñ X such that sp∆qq is contained in Ui for some i P I.
We then set C´1,qpUq “ C

q
U

“ HompCU
q , Rq. The usual boundary maps of the

complex CU
˚ induce dual coboundary maps, which endow C˚

U
with the structure

of a complex. The inclusion of the complex CU
˚ in the full complex of singular
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chains induces a map of complexes rγ : C˚pXq Ñ C˚
U
. It is known that the

map γ induced in cohomology is an isomorphism (see e.g. [Hat02, Proposition
2.21]) and we will identify the singular cohomology of X with the cohomology
of the complex Cq

U
via γ. The augmentation maps δ´1,q : C´1,qpUq Ñ C0,qpUq

are defined by setting, for every i P I0,

pδ´1,qpϕqqi “ ϕ|Ui
.

In order to define the augmentation of the vertical complexes, we consider

the Cech complex given by Cp,´1pUq “ qCppUq “
ś

iPIp
R, with boundary

maps defined as in formula (1). We then define the augmentation maps δp,´1 :
Cp,´1pUq Ñ Cp,0pUq by setting

pδp,´1pϕqqipsq “ ϕi P R

for every ϕ P Cp,´1pUq, every i “ pi0, . . . , ipq P Ip and every singular simplex
s : ∆0 Ñ Ui0 X . . . X Uip .

Remark 1.1. The complex qC˚pUq computes the Cech cohomology of the cover
U with coefficients in the constant presheaf R. Such cohomology, which is usu-

ally denoted by qHpUq, is tautologically isomorphic to the simplicial cohomology
of the nerve NpUq. It is costumary to rather study the Cech cohomology of
U with coefficients in the locally constant sheaf R. However this cohomology
does not always coincide with the cohomology of NpUq. They coincide, for
example, under the assumption that every Ui, i P Ip, p P N, is path connected.

In the next lemma we prove that the rows of the augmented double complex
are exact.

Lemma 1.2. For every q P N, the complex

0 // C´1,qpUq
δ

´1,q

h // C0,qpUq
δ
0,q

h // ¨ ¨ ¨
δ
p´1,q

h // Cp,qpUq
δ
p,q

h // ¨ ¨ ¨

is exact.

Proof. Let s : ∆q Ñ X be a singular simplex such that sp∆qq is contained in
Ui for some i P I. We set

C´1,q
s pUq “ tϕ P C´1,qpUq |ϕps1q “ 0 for every s1 ‰ su ,

and for every p ě 0 and every i P Ip we define

Cp,q
s pUiq “ tϕ P CqpUiq |ϕps1q “ 0 for every s1 ‰ su .

We also set Ipsq “ ti P I | sp∆qq Ď Uiu, Ippsq “ pIpsqqp`1 Ď Ip, and

Cp,q
s pUq “

ź

iPIppsq

Cp,q
s pUiq

(according to our definition, Cp,q
s pUiq “ 0 whenever i R Ippsq). We observe that

C
˚,q
s pUq is a subcomplex of C˚,qpUq, and that

Cp,qpUq “
ź

s : ∆qÑX

Cp,q
s pUq .
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Hence, in order to conclude it is sufficient to show that each C
˚,q
s pUq is ex-

act. However, the complex C˚,q
s pUq is isomorphic to the simplicial cohomology

complex of the full simplex with vertices Ipsq, whence the conclusion. �

As a consequence of the previous lemma the cohomology groups of the com-
plex C´1,˚ are isomorphic to the cohomology of the total complex T ˚ associated
to the double complex. Recall that T ˚ is defined by setting

T n “
à

pp,qqPN2

p`q“n

Cp,qpUq

with differential δn : T n Ñ T n`1 given by δn “
À

p`q“npδp,qh ` p´1qpδp,qv q.
The augmentation maps induce morphisms of complexes rα˚ : C˚

U
Ñ T ˚ and

rβ˚ : qC˚ Ñ T ˚ and we denote by α, β the maps induced by α˚, β˚ on coho-
mology. By Lemma 1.2 α is an isomorphism in every degree and the map
α ˝ γ : H˚pXq Ñ H˚pT ˚q is the isomorphism αX defined in the introduction.
We define ζ “ α´1 ˝ β and η “ α´1

X ˝ β ˝ ν.
The notation introduced so far is summarized in the following diagram:

H˚pXq
»
γ

//

αX

**
H˚pCq

U
q

»
α

// H˚pT q

qH˚pUq “ H˚pNpUqq

β

OO

ζ

hh◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

H˚p|NpUq|q .

η

hh◗
◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

◗

ν

OO

When we want to stress the dependence of these constructions on the cover U
we write αU , βU , etc.

2. The case of a simplicial complex

In this section we analyze the Mayer-Vietoris double complex when X “ |S|
is the geometric realization of a simplicial complex S. Let I be the vertex set of
S. We consider the open cover U˚ “ tU˚

i uiPI of |S| given by the open stars of
the vertices, i.e. for every i P I we set Ui “ tx P |S| : xi ą 0u, where xi denotes
the barycentric coordinate of the point x relative to the vertex i. Observe that
the simplical complexes NpU˚q and S on the set of vertices I are equal and we
will identify them. Hence, in this case ηU˚ : H˚p|S|q Ñ H˚p|S|q. Notice also
that in this case all intersections U˚

i are contractible, hence, also the columns
of the augmented double complex are exact. As a consequence, β and ζ are
isomorphisms. The next proposition shows that the map η is the identity in
this case.

Proposition 2.1. If S is a simplicial complex and U˚ is the cover described

above then η “ Id.
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To prove this proposition we will perform a computation by describing a
lift of ζ at the level of cochains. To simplify the computations we will use
alternating cochains, whose definition is recalled below.

Construction of rζ. We start by describing a lift

rζ : qCpUq Ñ C´1,ppUq “ C
p
U

of the map ζ at the level of cochains. We first construct chain homotopies

Kp,q : Cp,qpUq Ñ Cp´1,qpUq , p ě 0 , q ě 0 .

For each singular simplex s with image contained in some open subset Ui we
fix an index ipsq such that Im s Ď Uipsq. For all ϕ P Cp,qpUq and for all singular
simplices s with image contained in Ui for some i P Ip´1, p ě 0, we define

`
Kp,qpϕqi

˘
psq “ ϕipsq,ipsq

(when p “ 0 there is no index i and we just take s P CU
q ). It is easy to check

that δp´1,q
h Kp,q `Kp`1,qδ

p,q
h “ Id for every p ě 0, q ě 0. Hence, if we define

rζ “ p´1q
ppp`1q

2 K0,p ˝ δ0,p´1
v ˝ K1,p´1 ˝ ¨ ¨ ¨ ˝ Kp´1,1 ˝ δp´1,0

v ˝ Kp,0 ˝ δp,´1
v

then for every cocycle ϕ P qCppUq we have ζprϕsq “ rrζpϕqs in HppC˚
U

q.

Singular and algebraic simplices. Let us now recall the construction of the
isomorphism ν between the simplicial cohomology H˚pSq of S and the singu-
lar cohomology H˚p|S|q of its geometric realization. Let C˚pSq be the chain
complex of simplicial chains on S, i.e. let Cp be the free R-module with basis

tpi0, . . . , ipq P Ip`1 | ti0, . . . , ipu is a simplex of Su ,

and let C˚pSq be the dual chain complex of C˚pSq. Elements of the basis just
described are usually called algebraic simplices.

For any algebraic simplex σ “ pi0, . . . , ipq of S, one defines the singular
simplex xσy : ∆p Ñ |S| by setting

xσypt0, . . . , tpq “ t0i0 ` ¨ ¨ ¨ ` tpip .

The map σ ÞÑ xσy extends to a chain map C˚pSq Ñ C˚p|S|q, whose dual
map rν : C˚p|S|q Ñ C˚pSq induces the isomorphism ν : H˚p|S|q Ñ H˚pSq
(see e.g. [Hat02] Theorem 2.27). We write νS, rνS when we want to stress the
dependence on the simplicial complex.

Alternating cochains. To compute ζ ˝ ν it is convenient to use alternating

cochains. Let Sp`1 be the permutation group of t0, . . . , pu. We say that a sim-
plicial cochain ϕ P CppSq is alternating if ϕpiτp0q, . . . , iτppqq “ εpτqϕpi0, . . . , ipq
for every τ P Sp`1, and ϕpi0, . . . , ipq “ 0 whenever ij “ ij1 for some j ‰ j1.
Alternating cochains form a subcomplex of the complex of cochains which is
homotopy equivalent to the full complex (see e.g. [Sta18, Chap.20, Section 23]).

Alternating cochains may be defined also in the context of singular homology
as follows. For every τ P Sp`1 denote by ρτ : ∆

p Ñ ∆p the affine automorphism
of ∆p defined by ρτ pt0, . . . , tpq “ ptτp0q, . . . , tτppqq. If X is a topological space,
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we say that a singular cochain ϕ P CppXq is alternating if ϕps˝ρτ q “ εpτqϕpsq
for every τ P Sp`1 and every singular simplex s : ∆p Ñ X, and ϕpsq “ 0
for every singular simplex s such that s “ s ˝ ρτ for an odd permutation τ P
Sp`1. Alternating singular cochains form a subcomplex the complex of singular
cochains which is homotopy equivalent to the full complex (see e.g. [Bar95]).
Moreover, the map rν introduced above sends alternating singular cochain to
alternating simplicial cochains, and both the homotopy maps Kp,q and the
vertical differential send alternating cochains to alternating ones.

We want to compute rζpϕq on singular simplices of the form xσy, as σ varies
among the algebraic simplices of S. However, simplices of S are not contained
in any U˚

i . We will then make use of the barycentric subdivision S1 of S,
together with a suitable simplicial approximation of the identity S1 Ñ S. Let
I 1 be the set of vertices of S1. This set is in bijective correspondence with the
set of simplices of S: for i1 P I 1 we denote by ∆i1 the simplex of S of which i1 is
the barycenter; in the opposite direction, if ∆ is a simplex of S we denote by
i1
∆

its barycenter. The p-simplices of S1 are then the subsets ti10, . . . , i
1
pu where

∆i1
0

Ă ¨ ¨ ¨ Ă ∆i1
p
.

If for every simplex ∆ of S we denote by b∆ P |S| the geometric barycenter
of ∆ then the map b : |S1| Ñ |S| defined by bp

ř
∆
t∆i

1
∆

q “
ř

∆
t∆b∆ is a

homeomorphism, and we will identify the geometric realization of S1 and S via
this map. We construct a second map from |S1| to |S| as follows. We fix an
auxiliary total ordering on I, and we define a simplicial map g : S1 Ñ S by
setting

gpi1q “ max∆i1

for every vertex i1 of S1. The geometric realization |g| : |S| “ |S1| Ñ |S| of g is
homotopic to b via the homotopy tb` p1 ´ tq|g|, t P r0, 1s.

We may define the map i used to construct the homotopies Kp,q in such a
way that, for every algebraic simplex σ1 “ pi10, . . . , i

1
pq of C˚pS1q,

ipxσ1yq “ mintgpi10q, . . . , gpi1pqu .

For simplicity, we will denote ipxσ1yq by ipσ1q. With this choice, the singular
simplex xσ1y is supported in U˚

ipσ1q as required in the definition of the map i.

Let α “ pαiq P Ch,kpU˚q and let σ1 “ pi1
0
, . . . , i1k`1

q P Ck`1pU˚
i q, i P Ih, be

an algebraic pk ` 1q-simplex of S1. If Bhσ
1 “ pi1

0
, . . . ,pi1h, . . . , i1k`1

q denotes the
algebraic h-th face of σ1, then

`
δh´1,k
v Kh,kpαq

˘
pxσ1yq “

k`1ÿ

h“0

p´1qh
`
Kh,kpαq

˘
i
pxBhσ

1yq

“
k`1ÿ

h“0

p´1qhαipBhσ1q,ipxBhσ
1yq .

(2)
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Lemma 2.2. Let ϕ be an alternating cocycle in CppNpU˚qq “ qCppU˚q, and let

σ1 P CppS1q be an algebraic simplex. Then
`rζpϕq

˘
pxσ1yq “ ϕpg˚pσ1qq ,

where g˚ : CppS1q Ñ CppSq is the map induced by g : S1 Ñ S.

Proof. Let σ1 “ pi10, . . . , i
1
pq and set ∆ℓ “ ∆i1

ℓ
for ℓ “ 0, . . . , p and iℓ “ gpi1ℓq.

Recall that simplices of S1 corresponds to comparable subsets of a simplex of

S. Moreover, since ϕ is alternating, both g˚pϕq and rζpϕq are alternating, thus
in order to check that the equality of the statement holds we may assume that

∆0 ( ∆1 ¨ ¨ ¨ ( ∆p .

By definition we have iℓ “ max∆ℓ, hence in particular i0 ď i1 ď ¨ ¨ ¨ ď ip.
Since ϕ is alternating, this implies at once that

(3) ϕpg˚pσ1qq “

#
ϕi0,i1,...,ip if i0 ă ¨ ¨ ¨ ă ip

0 otherwise.

Let us now compute
`rζpϕq

˘
pxσ1yq. For every algebraic simplex τ 1

k P CkpS1q,
we write τ 1

k´1
ă τ 1

k if τ 1
k´1

is an algebraic face of τ 1
k, i.e. if there exists h “

0, . . . , k such that τ 1
k´1

“ Bhτ
1
k. By iterating (2) we get

(4)
`rζpϕq

˘
pxσ1yq “ p´1q

ppp`1q
2

ÿ

σ1
0

ă¨¨¨ăσ1
p“σ1

˘ϕipσ1
0

q,ipσ1
1

q,...,ipσ1
pq .

Let now σ1
0 ă ¨ ¨ ¨ ă σ1

p be a fixed descending sequence of faces of σ1. Since the

map i is given by taking a minimum we have ipσ1
0q ě ipσ1

1q ě ¨ ¨ ¨ ě ipσ1
pq and

all these elements belong to the set ti0, . . . , ipu. Hence if ϕipσ1
0

q,ipσ1
1

q,...,ipσ1
pq ‰ 0

we have i0 ă ¨ ¨ ¨ ă ip and ipσ1
ℓq “ ip´ℓ for every ℓ. In particular

`rζpϕq
˘
pxσ1yq

agrees with ϕpg˚pσ1qq in the second case of formula (3).
Assume now i0 ă ¨ ¨ ¨ ă ip. As just observed, if ϕipσ1

0
q,ipσ1

1
q,...,ipσ1

pq ‰ 0 then

ipσ1
ℓq “ ip´ℓ for every ℓ, and this readily implies that the unique non-trivial

addend in the right-hand sum in (4) corresponds to the sequence

σ1
0 “ pi1pq, σ1

1 “ pi1p´1, i
1
pq, . . . , σ1

p “ pi10, . . . , i
1
p´1, i

1
pq .

In particular, for every j “ 0, . . . , p´ 1 we have σ1
j “ p´1q0B0σ

1
j`1

. Hence

`rζpϕq
˘
pxσ1yq “ p´1q

ppp`1q
2 ϕipσ1

0
q,ipσ1

1
q,...,ipσ1

pq

“ p´1q
ppp`1q

2 ϕip,ip´1,...,i0 “ ϕi0,i1,...,ip

settling also the first case in formula (3). �

Before proving the proposition we notice that the map C˚pSq Ñ C˚p|S|q

constructed above does not factor through CU˚

˚ because no positive-dimension-
al simplex of S is contained in U˚

i for any i P I. However the analogous map
from C˚pS1q to C˚p|S|q does. Hence the map rνS1 : C˚p|S1|q Ñ C˚pS1q factors
as rνS1 “ rµ ˝ rγ, where rγ : C˚p|S1|q Ñ C˚

U˚ is the map defined in Section 1, and
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rµ : C˚
U˚ Ñ C˚pS1q. We denote by µ : H˚pC˚

U˚q Ñ H˚pSq the map induced by
rµ on cohomology.

Proof of Proposition 2.1. Being νS1 : H˚p|S|q “ H˚p|S1|q Ñ H˚pS1q injective
and |g| homotopic to the identity, in order to prove the proposition it is suffi-
cient to show that νS1 ˝ η “ νS1 ˝ |g|˚. Now recall that η “ γ´1 ˝ ζ ˝ νS, hence
νS1 ˝ η “ µ ˝ ζ ˝ νS. Hence it is enough to prove that µpζpνSpcqqq “ νS1p|g|˚pcqq
for all c P Hpp|S|q or, equivalently, that

rµprζprνSpψqqqpσ1q “ rνS1p|g|˚pψqqpσ1q

where ψ P Cpp|S|q is a cocycle and σ1 is any algebraic simplex of S1. Morover,
as observed above we can choose ψ to be alternating. However, if we set
ϕ “ rνSpψq, then

µprζprνSpψqqqpσ1q “ µprζpϕqqpσ1q “
`rζpϕq

˘
pxσ1yq ,

rνS1p|g|˚pψqqpσ1q “ p|g|˚pψqqpxσ1yq “ ψp|g|˚pxσ1yqq “ ϕpg˚pσ1qq ,

hence the conclusion follows from Lemma 2.2. �

3. Proof of Theorem 1

We can now prove the Theorem stated in the introduction. We first notice
that the construction of η is compatible with continuous maps in the following
sense.

Lemma 3.1. Let h : Y Ñ Z be a continuous map, and let V “ tViuiPI , W “
tWiuiPI be open covers of Y,Z, respectively, such that hpViq Ď Wi for every i P
I. The identity of the set I extends to a simplicial map Nphq : NpVq Ñ NpWq,

and in particular it induces a continuous map ĥ : |NpVq| Ñ |NpWq|. Then the

following diagram commutes:

H˚p|NpWq|q
ĥ˚

//

ηW

��

H˚p|NpVq|q

ηV

��
H˚pZq

h˚
// H˚pY q .

Proof. By considering the restriction of h to the open subset Vi the map h

induces a morphism thp,qu between the double complex associated to W and
the double complex associated to V and between their augmentations. Hence
we have ζV ˝Nphq˚ “ h˚ ˝ζW : H˚pNpWqq Ñ H˚pC˚

V
q. We also have rγV ˝h˚ “

h´1,˚ ˝rγW and by the definition of the map ν we have νV ˝h˚ “ Nphq˚ ˝νW . By
the definition of η, these three commutations imply the commutativity claimed
in the lemma. �

We can now conclude the proof of our main theorem. Let U “ tUiuiPI be an
open cover of the space X, let NpUq be the nerve of U , and let U˚ “ tU˚

i uiPI
be the open cover of |NpUq| given by the open stars of the vertices of NpUq.
Let fΦ : X Ñ |NpUq| be the map associated to a partition of unity subordinate
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to U as described in the introduction. We would like to apply the previous
lemma to the covers U of X and U˚ of |NpUq| and to the map h “ fΦ, but the
containment fΦpUiq Ď U˚

i does not hold in general. Therefore, we consider the

cover rU “ t rUiuiPI of X defined by rUi “ f´1

Φ
pU˚

i q for every i P I.

We can now apply Lemma 3.1 to the map h “ fΦ and to the covers V “ rU
and W “ U˚. Since rUi Ď Ui for every i P I, Lemma 3.1 also applies to the case

when h “ iX is the identity map of X, and to the covers V “ rU and W “ U .
Hence we obtain the following commutative diagrams:

H˚p|NpU˚q|q
f̂˚
Φ //

η
U˚

��

H˚p|Np rUq|q

η rU
��

H˚p|NpUq|q

ηU

��

î˚
X // H˚p|Np rUq|q

η rU
��

H˚p|NpUq|q
f˚
Φ // H˚pXq H˚pXq H˚pXq .

As already noticed in the previous section the simplicial complexes NpUq and
NpU˚q with set of vertices I are equal and, by construction, so are the simplicial

maps NpiXq and NpfΦq from Np rUq to NpU˚q “ NpUq. In particular f̂˚
Φ

“ î˚X .
Finally by Proposition 2.1 ηU˚ is the identity. Hence

f˚
Φ “ f˚

Φ ˝ ηU˚ “ η rU ˝ f̂˚
Φ “ η rU ˝ î˚X “ ηU ,

which proves the theorem.
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