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A REMARK ON THE MAYER-VIETORIS
DOUBLE COMPLEX FOR SINGULAR COHOMOLOGY

R. FRIGERIO AND A. MAFFEI

ABSTRACT. Given an open cover of a paracompact topological space X,
there are two natural ways to construct a map from the cohomology of
the nerve of the cover to the cohomology of X. One of them is based
on a partition of unity, and is more topological in nature, while the other
one relies on the Mayer-Vietoris double complex, and has a more algebraic
flavour. In this paper we prove that these two maps coincide, thus answering
a question posed by N. V. Ivanov.

Let X be a paracompact space, and let U = {U,};c; be an open cover of X.
We denote by N (U) the nerve of U, i.e. the simplicial set having I as set of
vertices, in which a finite subset {ig,...,ix} < I spans a simplex if and only
if Uiy n...nU;, # &. As usual, we endow the geometric realization |N (i)
of N(U) with the weak topology associated to the natural CW structure of
[N (U)I.

Any partition of unity ® = {p;: X — R};e; subordinate to U/ induces a map

for X > INU)|,  fo(z) = Y @) -i.
el
Moreover, the homotopy class of fg does not depend on the chosen partition of
unity ®. Indeed, if ¥ is another partition of unity, then we have a well-defined
homotopy tfy + (1 — t) fo between f and g. Therefore, if R is any ring with
unity, the map fg induces a map

[ =T H*(INU)|, R) — H*(X, R) ,

which does not depend on the choice of ®. Throughout this paper, we fix a ring
with unity R, and for any topological space Y we denote by C*(Y) = C*(Y, R)
(resp. H*(Y) = H*(Y,R)) the singular cochain complex (resp. the singular
cohomology algebra) of Y with coefficients in R.

There is another natural way to define a map from the (simplicial) coho-
mology of N(U) to the singular cohomology of X. Let C**(U) be the Mayer-
Vietoris double complex associated to U, i.e. for every (p,q) € N? let

criu) = [ Jeuwy)

ielp

where I, denotes the set of ordered (p + 1)-tuples (ig, ... ,4,) € IP*! such that
Ui :=Uyn...nU, # & (in particular, Iy = {i € I |U; # J}). We refer the
reader to Section [l for the precise definition of this double complex.
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To the double complex C**(U) there is associated the total complex T*,

and we have maps

ax: H*(X) - H*(T*) ,  B: HY(NU)) — H*(T¥)
from the singular cohomology of X to the cohomology of T* and from the
simplicial cohomology of N (i) to the cohomology of T*. Moreover, the map
« turns out to be an isomorphism (see Section [II).

Let now v: H*(|N(U)|) — H*(N(U)) be the canonical isomorphism between
the simplicial cohomology of N (I/) and the singular cohomology of its geometric
realization (see Section [). By setting n = ay' o 8o v we have thus defined a
map

n: H*(INU)]) - H*(X) .
The main result of this paper shows that the maps f* and n coincide:

Theorem 1. The maps
[P HYN(INU)) — HY(X), n: HY(INU)]) — H*(X)
coincide.

Theorem [I] answers a question posed by Ivanov in [[va87, page 1113] and
in [Ival page 71].

1. THE MAYER-VIETORIS DOUBLE COMPLEX

Let U = {U;}ier be an open cover of the topological space X. We now
thoroughly describe the horizontal and the vertical differentials of the double
complex C**(U) defined in the introduction, also fixing the notation we will
need later.

If o € CP9(U) and i € I, then we denote by ¢; the projection of ¢ on
C4(U;). For every (p,q) € N? we denote by

&1 CPIUY) — CPITHY)
the “vertical” differential which restricts to the usual differential C?(U;) —
CaTY(U;) for every i € I, and by
Sy CPIU) — CPTRY)
the “horizontal” differential such that, for every i = (ip,...,ip+1) € Ip+1 and
every ¢ € CP9(U),
p+1
K P k
(1) (03 (9))i = ;(—1) (Plior i mini))Us -
=0
We augment the double complex C**(U) as follows. We define Cfl” as the
subcomplex of the singular chain complex Cy(X) generated (over R) by those
singular simplices s: A? — X such that s(AY) is contained in U; for some i € I.
We then set C~14(U) = Cl = Hom(C’g’ , R). The usual boundary maps of the
complex C¥ induce dual coboundary maps, which endow (7, with the structure
of a complex. The inclusion of the complex C¥ in the full complex of singular
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chains induces a map of complexes ¥ : C*(X) — Cjj. It is known that the
map 7 induced in cohomology is an isomorphism (see e.g. [Hat02, Proposition
2.21]) and we will identify the singular cohomology of X with the cohomology
of the complex Cf, via 7. The augmentation maps §~14: C~14(U) — C%(U)
are defined by setting, for every i € I,

(6™ (9))i = elu, -

In order to define the augmentation of the vertical complexes, we consider
the Cech complex given by CP~1(U) = ép(U) = Hzel,, R, with boundary
maps defined as in formula (). We then define the augmentation maps 67~ :
CP~YU) — CPO(U) by setting

(6" Hp))i(s) =i € R
for every ¢ € CP~Y(U), every i = (ig,...,ip) € I, and every singular simplex
s: A0—>UZ~O No.nU,.

Remark 1.1. The complex C* (U) computes the Cech cohomology of the cover
U with coefficients in the constant presheaf R. Such cohomology, which is usu-
ally denoted by H (U), is tautologically isomorphic to the simplicial cohomology
of the nerve N(U). It is costumary to rather study the Cech cohomology of
U with coefficients in the locally constant sheaf R. However this cohomology
does not always coincide with the cohomology of N (U). They coincide, for
example, under the assumption that every U;, i € I, p € N, is path connected.

In the next lemma we prove that the rows of the augmented double complex
are exact.

Lemma 1.2. For every q € N, the complex

o " u
0 —C MU) —C™"UY) - —= CPIU) —— - -

1S exact.

Proof. Let s: A? — X be a singular simplex such that s(AY) is contained in
U; for some i € I. We set

C7MU) = {pe CTHU) | p(s') = 0 for every s’ # s},
and for every p > 0 and every i € I, we define
CPUT,;) = {p e CUU;) | p(s") = 0 for every s # s} .
We also set I(s) = {i e I|s(A%) € U;}, I(s) = (I(s))P*! < I, and
cra) = ] ovawy
i€lp(s)

(according to our definition, C5/(U;) = 0 whenever i ¢ I,,(s)). We observe that
C:9(U) is a subcomplex of C*9(1{), and that

criuy = [ crou) .
s: A1—X
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Hence, in order to conclude it is sufficient to show that each C9(U) is ex-
act. However, the complex Cs'?({f) is isomorphic to the simplicial cohomology
complex of the full simplex with vertices I(s), whence the conclusion. O

As a consequence of the previous lemma the cohomology groups of the com-
plex C~1* are isomorphic to the cohomology of the total complex T* associated
to the double complex. Recall that T* is defined by setting

™= P C"1U)

(p,q)eN?
ptrq=n

with differential 6": T" — T"*! given by 6" = @, ,_,(00" + (=1)P6).
The augmentation maps induce morphisms of complexes a* : Cj; — T™ and
E*: C* — T* and we denote by «, 8 the maps induced by a*, 8* on coho-
mology. By Lemma « is an isomorphism in every degree and the map
aoy: H*(X) — H*(T*) is the isomorphism «x defined in the introduction.
We define ( = a~1op andn:a)}loﬁoy.

The notation introduced so far is summarized in the following diagram:

ax

12

~

H*(X) H*(CF) HX(T)

07

H*(IN@U)]) -

When we want to stress the dependence of these constructions on the cover U
we write oy, By, etc.

2. THE CASE OF A SIMPLICIAL COMPLEX

In this section we analyze the Mayer-Vietoris double complex when X = |5]|
is the geometric realization of a simplicial complex S. Let I be the vertex set of
S. We consider the open cover U* = {U}};cs of | S| given by the open stars of
the vertices, i.e. for every i € I we set U; = {x € |S| : z; > 0}, where z; denotes
the barycentric coordinate of the point x relative to the vertex i. Observe that
the simplical complexes N(U*) and S on the set of vertices I are equal and we
will identify them. Hence, in this case ny« : H*(|S|) — H*(|S]). Notice also
that in this case all intersections U;* are contractible, hence, also the columns
of the augmented double complex are exact. As a consequence, 3 and ( are
isomorphisms. The next proposition shows that the map 7 is the identity in
this case.

Proposition 2.1. If S is a simplicial complex and U* is the cover described
above then n = Id.
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To prove this proposition we will perform a computation by describing a
lift of ¢ at the level of cochains. To simplify the computations we will use
alternating cochains, whose definition is recalled below.

Construction of E . We start by describing a lift
C: CU) - o) =)
of the map ( at the level of cochains. We first construct chain homotopies
KP4 oPaY) — CcPHU), p=0, ¢=0.

For each singular simplex s with image contained in some open subset U; we
fix an index i(s) such that Im s < Uy(,). For all ¢ € CP9(U) and for all singular
simplices s with image contained in U; for some i € I,_1, p > 0, we define

(EP(p)i) (s) = @is)a(s)
(when p = 0 there is no index i and we just take s € C’g’). It is easy to check

that 52_1"1}(7”‘1 + KPt1asP4 = 1d for every p > 0, ¢ > 0. Hence, if we define

~ p(p+1) _ _ _ _ _
C=(-1)"z Komo(;g,p Lo gbp=lg... 0 KP 171055 l,OOKp,OO(;;g, 1

then for every cocycle p € CP(U) we have (([¢]) = [C(¢)] in HP(CH).

Singular and algebraic simplices. Let us now recall the construction of the
isomorphism v between the simplicial cohomology H*(S) of S and the singu-
lar cohomology H*(|S|) of its geometric realization. Let C,(S) be the chain
complex of simplicial chains on 9, i.e. let C}, be the free R-module with basis

{(ig, ..., ip) € IP™ | {ig, ... ip} is a simplex of S} ,

and let C*(.S) be the dual chain complex of C(S). Elements of the basis just
described are usually called algebraic simplices.

For any algebraic simplex o = (ig,...,i,) of S, one defines the singular
simplex (o): AP — |S| by setting

(o)(to, ..., tp) = toio + -+ + tpip .

The map o — (o) extends to a chain map Cy(S) — C4(|S]), whose dual
map v : C*(|S|) — C*(S) induces the isomorphism v: H*(|S|) — H™*(S)
(see e.g. [Hat02] Theorem 2.27). We write vg, Vs when we want to stress the
dependence on the simplicial complex.

Alternating cochains. To compute ( o v it is convenient to use alternating
cochains. Let &, be the permutation group of {0, ...,p}. We say that a sim-
plicial cochain ¢ € CP(9S) is alternating if p(i, (o), - - -, irp)) = €(7)@(i0; - - -, bp)
for every 7 € &p41, and ¢(ig,...,i,) = 0 whenever i; = i; for some j # j'.
Alternating cochains form a subcomplex of the complex of cochains which is
homotopy equivalent to the full complex (see e.g. [Stal8, Chap.20, Section 23]).

Alternating cochains may be defined also in the context of singular homology
as follows. For every 7 € &1 denote by p,: AP — AP the affine automorphism
of AP defined by p-(to, ... tp) = (tr(0);---»tr(p)). If X is a topological space,
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we say that a singular cochain ¢ € CP(X) is alternating if p(sop;) = e(1) o(s)
for every 7 € &p41 and every singular simplex s: AP — X, and ¢(s) = 0
for every singular simplex s such that s = s o p, for an odd permutation 7 €
Sp+1. Alternating singular cochains form a subcomplex the complex of singular
cochains which is homotopy equivalent to the full complex (see e.g. [Bar95]).
Moreover, the map 7 introduced above sends alternating singular cochain to
alternating simplicial cochains, and both the homotopy maps KP¢ and the
vertical differential send alternating cochains to alternating ones.

We want to compute ¢(¢) on singular simplices of the form (c), as o varies
among the algebraic simplices of S. However, simplices of .S are not contained
in any U}. We will then make use of the barycentric subdivision S’ of S,
together with a suitable simplicial approximation of the identity S’ — S. Let
I’ be the set of vertices of S’. This set is in bijective correspondence with the
set of simplices of S: for ¢/ € I’ we denote by A; the simplex of S of which 4’ is
the barycenter; in the opposite direction, if A is a simplex of S we denote by
iy its barycenter. The p-simplices of S” are then the subsets {ig, ..., ,} where
Ai6 c---C Al;

If for every simplex A of S we denote by ba € |S| the geometric barycenter
of A then the map b: |S'| — |[S| defined by b(3 A taiy) = D ataba is a
homeomorphism, and we will identify the geometric realization of S" and S via
this map. We construct a second map from |S’| to |S| as follows. We fix an
auxiliary total ordering on I, and we define a simplicial map g: 8" — S by
setting

g(i") = max Ay
for every vertex ¢’ of S’. The geometric realization |g|: |S| = |S’| — |S| of g is
homotopic to b via the homotopy tb + (1 —t)|g|, ¢ € [0, 1].

We may define the map ¢ used to construct the homotopies K?-? in such a
way that, for every algebraic simplex o’ = (i, ... ,i;,) of C(S’),

i(¢o")) = min{g(ip), - .., 9(i)} -

For simplicity, we will denote i({c”)) by i(c’). With this choice, the singular
simplex (¢’ is supported in U;Eo") as required in the definition of the map i.

Let a = (ag) € CMF(U*) and let o/ = (if),...,1},) € Cr+1(Uf), i € Ip, be
an algebraic (k + 1)-simplex of S'. If o0’ = (ig,...,4),. .., ) denotes the
algebraic h-th face of ¢/, then

(6h lehk i th ))1<<6h0'/>)
(2)

i~
+
= o

(=) (2,01, ((On0") -

0

>
Il
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Lemma 2.2. Let ¢ be an alternating cocycle in CP(N(U*)) = CP(U*), and let
o' € Cp(S') be an algebraic simplex. Then

() (o) = w(gs(0"))
where gy: Cp(S") — Cp(S) is the map induced by g: S" — S.

Proof. Let o’ = (ig,...,4,) and set Ay = Ay for £ = 0,...,p and iy = g(iy).
Recall that simplices of S’ corresponds to comparablNe subsets of a simplex of
S. Moreover, since ¢ is alternating, both ¢*(p) and ((y) are alternating, thus

in order to check that the equality of the statement holds we may assume that
Ag S A C Ay

By definition we have iy = max A, hence in particular ig < i1 < -+ < 0.
Since ¢ is alternating, this implies at once that

(3) 90(9*(0’))={(p°’1’ e T 0 b

0 otherwise.

Let us now compute (E (¢))({o")). For every algebraic simplex 7}, € Ci(S5’),
we write 7/, < 7 if 7;,_, is an algebraic face of 77, i.e. if there exists h =
0,...,k such that 7;,_, = d7(. By iterating () we get

(4) C@)@) = D" N 4ot mitor) -

! <! =g
0y<<op=0

Let now oj < --- < 0, be a fixed descending sequence of faces of o’. Since the
map i is given by taking a minimum we have i(op) > i(0}) = -+ = i(0},) and
all these elements belong to the set {io,...,4p}. Hence if @) i(o] )yi(o) #0
we have iy < -+ < ip and i(0}) = ip—¢ for every £. In particular (((¢))({c"))
agrees with ¢(g«(0’)) in the second case of formula (3)).

Assume now ip < -+ < ip. As just observed, if ¢;( i(o1) 7 0 then

O—(l))vi(o'll)v---vl
i(0}) = ip—¢ for every ¢, and this readily implies that the unique non-trivial

addend in the right-hand sum in (@) corresponds to the sequence

G0 = (i), T1=(ip1,0p)y o Ty = (Ggs- s lp_1,0p) -
In particular, for every j = 0,...,p — 1 we have O'j = (-1)° 6’00']Jrl Hence
~ p(p+1)
€@K = (1) "2 vi@y)i@)....iw,)
p(p+1)
=(=1)" 2 Pipip_1,ic = Piositrip
settling also the first case in formula (3]). O

Before proving the proposition we notice that the map Cy(S) — Cy(|S|)
constructed above does not factor through C’,,Lf* because no positive-dimension-
al simplex of S is contained in U} for any i € I. However the analogous map
from Cy(S") to Cy«(|S]) does. Hence the map vg : C*(]|S'|) — C*(S’) factors
as Ugr = i o7, where : C*(]S’|) — Cj« is the map defined in Section [, and
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fi: Cliy — C*(S"). We denote by p: H*(Cfix) — H*(S) the map induced by
11 on cohomology.

Proof of Proposition [2. Being vg : H*(|S|) = H*(|S’|) — H*(S’) injective
and |g| homotopic to the identity, in order to prove the proposition it is suffi-
cient to show that vg o = vg o |g|*. Now recall that n = v~! o ( o vg, hence
vgron = poovg. Hence it is enough to prove that u(¢(vs(c))) = vs:/(|g]*(c))
for all ¢ € HP(|S|) or, equivalently, that

~
~

A(¢(Ps(¥))(0") = v (lg* (¥)) (o)
where 1 € CP(|S]) is a cocycle and ¢’ is any algebraic simplex of S”. Morover,
as observed above we can choose 1 to be alternating. However, if we set

© = vg(), then
s (W))(0”) = pl())(0") = (C(9) (o)
Vs (lg1*(@))(e”) = (g () (o)) = ¥(lgl«((o'))) = @(g4(0))

hence the conclusion follows from Lemma O

3. ProoOF oF THEOREM [1I

We can now prove the Theorem stated in the introduction. We first notice
that the construction of 7 is compatible with continuous maps in the following
sense.

Lemma 3.1. Let h: Y — Z be a continuous map, and let V = {V;}jer, W =
{Wi}ier be open covers of Y, Z, respectively, such that h(V;) < W; for every i €
I. The identity of the set I extends to a simplicial map N(h): N(V) — N(W),
and in particular it induces a continuous map h : |N(V)| — [N(W)|. Then the
following diagram commutes:

H*(NOW)|) 22 H*(IN (D))

b

H*(Z) H*(Y) .

Proof. By considering the restriction of h to the open subset V; the map h
induces a morphism {h”?} between the double complex associated to W and
the double complex associated to V and between their augmentations. Hence
we have (yoN(h)* = h* oy : H*(N(W)) — H*(Cy;). We also have Jyoh* =
h~%* o0 and by the definition of the map v we have vyyoh* = N(h)*ovy. By
the definition of 7, these three commutations imply the commutativity claimed
in the lemma. (]

We can now conclude the proof of our main theorem. Let U = {U;};c; be an
open cover of the space X, let N(U) be the nerve of U, and let U* = {U}}ier
be the open cover of |N(U)| given by the open stars of the vertices of N(U).
Let fo: X — |N(U)| be the map associated to a partition of unity subordinate
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to U as described in the introduction. We would like to apply the previous
lemma to the covers U of X and U* of |N(U)| and to the map h = fg, but the
containment fe(U;) < U does not hold in general. Therefore, we consider the
cover U = {ﬁi}ig of X defined by U, = f;l(Ui*) for every i € I.

We can now apply Lemma [B.1] to the map h = f$ and to the covers V = u
and W = U*. Since [7, c U; for every i € I, Lemma[B.1] also applies to the case
when h = ix is the identity map of X, and to the covers V = Uand W = U.
Hence we obtain the following commutative diagrams:

(NG S i (N@)) BN~ B (N@))
lnu* Lﬁa lnu L"ﬁ
HA(INU)|) —2— H*(x) H*(X) ——— H*(X) .

As already noticed in the previous section the simplicial complexes N (U) and
N (U*) with set of vertices I are equal and, by construction, so are the simplicial

~

maps N(ix) and N(fg) from N(U) to N(U*) = N(U). In particular fq"; = i%.
Finally by Proposition 2.1] 4+ is the identity. Hence

fa=Ffaonus=mngo fa=nzoi% =m,
which proves the theorem.
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