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ABSTRACT 

Aim  

General movement assessment requires substantial expertise for accurate visual 

interpretation. Our aim was to evaluate an automated pose estimation method, using 

conventional video records, to see if it could capture infant movements using objective 

biomarkers.  

Methods  

We selected archived videos from 21 infants aged 8-17 weeks who had taken part in studies 

at the IRCCS Stella Maris Foundation (Italy), from 2011-2017. Of these, 14 presented with 

typical low-risk movements, while seven presented with atypical movements and were later 

diagnosed with cerebral palsy. Skeleton videos were produced using a computational pose 

estimation model adapted for infants and these were blindly assessed to see whether they 

contained the information needed for classification by human experts. Movements of skeletal 

key points were analysed using kinematic metrics to provide a biomarker to distinguish 

between groups. 

Results  

The visual assessments of the skeleton videos were very accurate, with Cohen’s K of 0.90 

when compared with the classification of conventional videos. Quantitative analysis showed 

that arm movements were more variable in infants with typical movements. 
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Conclusion  

It was possible to extract automated estimation of movement patterns from conventional 

video records and convert them to skeleton footage. This could allow quantitative analysis of 

existing footage. 

 

Keywords: automatic pose estimation, cerebral palsy, general movements, infants, 

spontaneous motor activity 

 

KEY NOTES 

 This study evaluated whether using automated pose estimation could effectively 

assess general movement using conventional video records.  

 We used archived videos from 21 infants aged 8-17 weeks who had taken part in 

Italian studies: 14 had typical low-risk movements, while seven had atypical 

movements and were later diagnosed with cerebral palsy.  

 The visual assessments of the skeleton videos were very accurate when compared 

with the classification of conventional videos. 

 

BACKGROUND 

There is growing awareness of the importance of recognising children who at risk of 

developing cerebral palsy (CP) at an early-stage and providing therapeutic interventions. 

Despite all the advances in biochemical and neuroimaging methods, CP remains a condition 

that is defined by abnormal neurological function and, conversely, spontaneous activity 

remains the most reliable marker of emerging CP. Assessment of spontaneous general 

movements (GMs) in an awake infant at the age of the fidgety pattern, from the second to 
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the fifth month after term, has the highest predictive power and sensitivity for later 

neurological outcomes (1,2). This assessment has so far been based on visual recognition 

of infant movement patterns, namely Gestalt perception, while lying supine in standardised 

settings. Despite its high reliability and reproducibility (3), a wider uptake of this approach 

has been hampered by the need for substantial training to achieve and maintain sufficient 

expertise. 

Non-invasive recording, combined with computational data analysis, presents a new 

approach for kinematic analysis and offers an attractive way to study infant mobility (4). Over 

the last decade, a number of computer-based methods have attempted to emulate visual 

GM analysis, either by employing miniaturised movement sensors worn on the body (4) or 

by assessing movements directly from a video image (5). These have been technically 

challenging because of issues in the sensor systems or computational tasks or because the 

mere complexity of the instrument precludes its implementation in a real-life clinical setting. 

Recent progress in computational methods, in particular the introduction of machine learning 

approaches, has led to dramatically improved automated image analysis. It is now possible 

to reliably track objects and even body parts with high accuracy from normal two-

dimensional or three-dimensional video streams (6). This provides the possibility of 

converting ordinary video recordings into kinematic time-series, which can be used with the 

same analytic approaches employed with other biosignals. 

A particular challenge in computational analyses is how to preserve the details of 

spontaneous movement patterns with sufficiently high fidelity so that the record can be used 

for diagnosis by trained clinicians. One technique that could be used to increase the 

availability of detail is pose estimation, an algorithmic procedure that extracts a skeletal 

model from an image of a human body. Ideally, the video image that is used should also 

include in-depth information to allow full three-dimensional recovery of the limb movement 

trajectories (7). While such camera technology is already available for prospective clinical 

studies (7), most of the existing GMs video material and current clinical practice is based on 
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recording conventional two-dimensional colour videos. A human expert trained in GMs 

analysis is able to make GMs classification from such videos, suggesting that video 

information on its own does contain the elements needed for GM classification (8). 

This study was an exploration to test whether novel pose estimation methods (6) were able 

to recover an infant skeleton in such detail that just its movements could be classified by a 

blinded human observer. If that was the case, we wanted to further test whether the 

quantified metrics of such skeleton movements could be used to distinguish between normal 

and abnormal spontaneous movements. 

 

METHODS 

The experimental flow chart is summarised in Figure 1. 

 

Subjects 

We selected 21 GMs video recordings from infants that had taken part in studies at the 

Infant Neurology Section of the IRCCS Stella Maris Foundation in Calambrone, Pisa, Italy 

(Table S1). The recordings were selected from two groups of infants that had been recorded 

at the fidgety age. One group consisted of recordings of children who later developed 

cerebral palsy, while the other group consisted of recordings of low-risk and term-born 

infants, recruited as controls for other ongoing studies. The first group of seven infants was 

selected from a cohort born between 2013 and 2016 with abnormal movement patterns due 

to absent fidgety movements. They were later diagnosed with cerebral palsy and showed a 

documented brain lesion on a magnetic resonance imaging (MRI) scan. The second group 

comprised 14 infants with low neurodevelopmental risk, who presented fidgety movements 

and a typical motor repertoire. They were recruited in 2011-2017 as controls in an ongoing 

study on the early signs of autism, which was carried out by the Italian network for the early 
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recognition of autism spectrum disorders and co-ordinated by Dr Scattoni at the Italian 

Institute of Health. The parents provided written consent for using the video recordings for 

clinical and research purposes. 

The video recordings were performed using the standard protocol devised by Prechtl and the 

General Movements Trust (8). General Movements were recorded during a session of 

spontaneous motility, when the infants were fully awake but were not crying or fussing. The 

ideal recording setting was with the infant lying supine and possibly naked, or in a bodysuit 

not covering the limbs, and the camera positioned about one metre above the infant. The 

surrounding adults were instructed not to touch the infant or enter the video scene. All videos 

lasted for at least two continuous minutes, while the infants were in a quiet awake state, and 

the mean length of the recordings was five minutes and 23 seconds (Table S1). However, 

the data comprised a collection of videos from a number of different years and studies, 

which means that the setting was less than ideal. There were instances when the infants had 

alternative clothing, there were occasional interruptions by adults in the scene and the 

camera, or its position, changed between recordings. These challenged the later analysis, 

prompted the development of quality control mechanisms and resulted in the exclusion of 14 

of the 21 infants from the quantitative assessments. However, variations of these kinds are 

expected in most historical datasets and they allowed us develop the methodological 

process more robustly for such wider use. The mean age of the infants in the videos that 

were selected was 12 weeks post-term (range 8-17 weeks).  

 

Pose estimation and video skeletonisation 

Pose estimation was carried out with OpenPose, an open-source computer vision software 

developed by Cao et al in 2017 (6). It is trained to detect human joint locations, namely key 

points, on single images. In the version used for our analysis, the 18 key points we used 

were: the nose, each eye, each ear, the neck, each shoulder, each elbow, each wrist, each 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 

hip, each knee and each ankle. A detailed description of the model can be found in Cao et al 

(6). 

In this study, the OpenPose framework was further enhanced with additional software 

elements customised for infants by Neuro Event Labs Oy, Tampere, Finland. In particular, 

this customisation included the ability to estimate different infant body-to-limb proportions, as 

well as to accommodate movement ranges that differed from adults and to present frequent 

mutual occlusions among limbs. In addition, customised adaptation was needed to 

compensate for technical issues, such as instability in handheld video recordings, as well as 

varying video resolutions and suboptimal colour contrasts between the infant’s clothing and 

the background. Accordingly, the process was adjusted to stabilise and normalise the view in 

order to produce comparable skeletons.  The infant body model was stabilised by fixing the 

origin at the neck key point, providing image stabilisation to counteract camera movements. 

To reduce variance due to different video resolutions and camera distances, the infant’s size 

was normalised by quantifying the distance between the shoulders as the base unit of 

distance measurement. Notably, most of these technical issues could be readily overcome in 

prospective video recordings by controlling the camera position and video quality. 

The locations of the skeletal key points were processed for quantified movement analysis 

using standard kinematic metrics, such as velocity, acceleration and jerk. We elaborate on 

this later. As the anatomical key points were often located in areas with low visual contrast, a 

high-frequency jitter could occur between consecutive frames. This jitter was removed with a 

moving average filter with a window size of 30 frames. The moving average filter also 

decreased, but did not resolve, errors induced by the occlusion of key points.  

The consecutive frames of the pose estimated skeleton were used to generate a skeleton 

video (Figure 2b), which was used for the inter-rater agreement study. An example of the 

skeleton video is provided (Video S1), while the time-series signal extracted from the key 

points was recorded in order to compute quantitative descriptors of the movements. 
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Visual video assessments 

All the original videos that were selected were re-assessed to generate the clinical 

benchmark, namely the gold standard. The GMs’ assessment was performed by two 

experienced experts (VM, AG), certified by the General Movements Trust, according to the 

standard methodological principles of Prechtl’s method. All the videos were renamed for the 

blind assessments and the assessors did not know the child’s identity or any of their clinical 

information. The scorers evaluated spontaneous motility as the presence or absence of 

fidgety movements. The third option, abnormal fidgety, was not observed in our cohort. In 

cases of disagreement the final score was reached by consensus and the final categories 

were globally classified as typical, when fidgety movements were present, and atypical, if 

fidgety movements were absent. 

After the videos had been processed, two experts certified by the General Movements Trust 

(VM, FD), carried out blind, independent assessments of the skeleton videos that had been 

re-coded for full anonymity. One of the scorers (FD) had not even participated in the visual 

analysis of the conventional videos in this dataset. The scoring of the skeleton videos was 

only carried out to determine a dichotomic group assignment by assessing the quality of the 

overall movement repertoire. While the skeleton video assessment could not be fully 

equivalent to assessing movements in a real human subject, our experts were intuitively 

guided by the Assessment of Motor Repertoire developed by the Prechtl group (9). Verbal 

descriptions of the perceived normality included motor repertoires that were fluent, smooth 

and variable, while abnormal movements were monotonous, jerky or stiff (10–15). Notably, 

the experts did not attempt to recognise particular fidgety movements as they were 

technically more challenging due to their temporal and spatial ambiguity. They also 

demonstrated a subtle physical appearance relative to the spatial accuracy available in the 

pose estimation from our present two-dimensional video recordings, as discussed later. 
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No consensus was sought, as we wanted to measure both the classification accuracy and 

inter-rater agreement between our experts. The benchmark, or gold standard, for correct 

classification was taken from the assessment of original GMs videos. 

 

Quantitative characterisation of the GM pattern 

We plotted all the key points generated by the pose estimation for every frame of the video, 

recording them as a point cloud in order to visually estimate the spatial spread of the 

movement (Figure 3b). After a visual inspection of these point clouds, we used kinematic 

metrics to select a set of measures to be computed. These metrics included the time-series 

values of: the distance between the wrists, the spatial centroid of the key points, the 

normalised locations of the elbows and wrists, the distance between shoulders and wrists, 

the spectrum of the location of wrists and the standard deviations of velocity and 

acceleration of the shoulder, elbow and wrist movements. After inspecting the quality of the 

derived metrics, we chose to focus on the upper limb data, as the pose estimation of the 

lower limbs was not accurate enough with the regular two-dimensional videos. Despite the 

apparently good-quality cloud plots, there seemed to be disturbing levels of technical noise 

from jitter in the pose estimation output. We therefore needed to develop a quality control 

method at this stage. The first step was to identify the extent of the jitter in the cloud plots 

generated from apparently good-quality video recordings. This allowed us to define limits for 

physically impossible movements in the videos (Figure 3a). For instance, we empirically 

placed a threshold based on velocity estimation of the wrists at 3.3 m/s between consecutive 

frames. Videos with more than 5% of data defined as physically impossible were excluded 

from the analysis to limit the effect of outliers. This yielded seven recordings, four from the 

typical group and three from the atypical group. 
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Statistical analysis 

Inter-rater reliability was assessed using skeletonised videos of the infants. We computed 

Cohen’s K, inter-rater agreement and binomial probability. Between-group differences in the 

upper limb kinematic parameters were tested by using a non-parametric Mann-Whitney U 

test for small samples. The software we used was the Stats package in R version 3.4 (R 

Foundation for Statistical Computing, Vienna, Austria; 16).  

 

RESULTS 

The two scorers were able to distinguish normal from abnormal movements with very high 

accuracy, identifying the correct categories in 18 and 19 of the 21 videos respectively. The 

global inter-rater agreement was 95% and the skeleton videos agreed with the original GM 

assessments in 90% of cases. Taken all together, we obtained Cohen’s K of 0.90, with a 

combined error in only three cases. This was highly significant, with a binomial probability of 

p<0.001.  

The errors in the skeleton video scores occurred both ways: one scorer assigned normal 

movement to an infant judged abnormal in the original video. The other scorer stated that 

two skeleton videos showed abnormal movement patterns when the original videos had 

been classified as normal. 

In some cases, the quantitative assessment of the movements showed estimated 

movements patterns that could not reflect physiological movements. They were obviously 

caused by technical issues in the video recording that could not be fully compensated for in 

the pose estimation. After strict and objective exclusions of cases with such technical 

uncertainties, we could only include seven videos in our preliminary assessment of 

quantitative comparisons: four with normal and three with abnormal movements. 

Assessment of the spatial distributions of key points showed that the overall scatter might be 
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different between groups and an example of a cloud plot is shown in Figure 3b. However, 

the distributions of key point coordinates appeared to overlap too much between the infant 

groups (Figure S1) to allow us to determine direct classifications from the key point 

coordinates. Therefore, we further assessed the movements and found that the wrist-related 

measures were significantly different between the groups and the standard deviations of 

velocity and acceleration were significantly higher in infants with typical movements (p=0.03) 

(Figure 3c). The distinction between the groups seemed to increase from proximal to distal 

anatomical key points (Figure 3c). 

 

DISCUSSION 

Our explorative study shows that it is possible to perform accurate automatic pose 

estimation from a selective sample of video records. That is, the generated skeleton videos 

retain salient information allowing for an accurate visual classification by human experts. The 

inter-rater agreement rate was high, even in the absence of details on the fidgety 

movements, which are typically considered crucial for assessing the hallmarks of GMs. 

Moreover, the quantitative measures generated by the automatic pose estimation provided a 

means for classifying the extremes of the spectrum of GMs quality.  

We observed a high level of accuracy in the visual assessment of the skeleton videos. This 

was in keeping with the knowledge that the holistic perception of GMs, namely the visual 

Gestalt, adapts to ongoing changes in recording angles, as well as to jittering during 

recordings. For example, the visual assessments seemed to automatically ignore obvious 

and rare misallocations of the limbs generated in the skeleton videos. The high inter-rater 

agreement seemed to outlast the technical inaccuracies, which were probably related to the 

overall sub-optimal quality of the records. This suggested an underestimation of the real 

potential of the presently used pose estimation method. Furthermore, the fact that they were 

able to selectively disregard unnatural movements and locations could inform the 
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development of quantitative analysis methods that target the jitter and inter-frame disparity 

by building models that work on series of images (videos) rather than on single frames.  

It is interesting that our visual assessment did not focus on the specific features of Fidgety 

movements, namely the multi-planar, small amplitude movements of all the joints visible in 

typically developing babies between nine and 20 weeks of post-term age. Indeed, Fidgety 

movements are considered to be the hallmark of normal movement at about three months of 

age in traditional GMs analyses (18). However, they were hardly visible in the skeleton 

videos produced by our pose estimation method, if at all. Yet, the experts were able to 

identify normal and abnormal infants, suggesting that there are latent features in the 

movement repertoire that are less consciously identified, but are nevertheless part of the 

Gestalt perception in the visual GMs analysis. Interestingly, several studies have attempted 

to improve qualitative movement analysis by including features of movement beyond the 

pure evaluation of the Fidgety pattern (11–15,19).  

Our human rater assessments suggest that our skeleton videos captured the diagnostically 

essential information needed, which would support their use in developing novel 

computerised classification software. However, building such classifiers with machine 

learning methods requires much larger datasets. These need to provide high technical 

quality and well documented multi-rater classifications for testing human equivalence in 

diagnostic accuracy, as explained by Tapani et al (20). Indeed, the relatively low number of 

videos with high technical quality was a limitation of our present study and did not allow us to 

develop a diagnostic classifier of GMs per se. However, the quantitative measures 

generated by the automatic pose estimation of the high-quality videos, available in about 

one-third of the sample, meant that we were able to classify the extremes of quality of the 

GMs spectrums by using the information from the movement of the upper extremities. 

Furthermore, the present mix of lower and higher quality video clips supported the 

development of automated quality control, which could be implemented in future studies. 
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Our study supports the work by Adde et al (5,17), by showing that it was possible to obtain 

sensor-free kinematic quantification of infant movements from conventional video records. 

However, our pose estimation produced a much more detailed model of infant movements 

than Adde et al, which allowed us to quantify more complex movement patterns and to 

estimate a higher number of kinematic metrics.  

In addition to providing a way to quantify movement patterns, our study also suggests that 

GMs videos could be converted into skeleton videos that are fully anonymised, yet retain 

clinically relevant movements. This may be an attractive alternative in larger scale data 

sharing or transmission of GMs records between sites, for example in larger clinical trials 

where privacy protection would limit the transmission of conventional video clips. 

A sensor-free kinematic analysis based on video records is an optimal approach for 

developing automatic assessment of movement patterns in high-risk infants, as reviewed by 

Marcroft et al (4). Video recordings can be easily adapted and widely available in clinical 

practice. The new three-dimensional cameras that are already available (21) will allow the 

easy creation of three-dimensional models with better spatial resolution. The remaining 

challenge is the availability of reliable pose estimation methods, which are necessary if we 

are to produce kinematic measures for computational analyses. Our study shows that the 

OpenPose estimator (6) was reliable for mapping and recognising infant movements even 

on two-dimensional video recordings. These could be significantly improved with three-

dimensional camera technology, as an additional degree of freedom would allow for 

assessing movements orthogonal to the viewing plane. 

 

CONCLUSION 

Automatic pose estimation from video records is available and it seems a promising and 

objective way to assess movements in infants with neurodevelopmental risks. Adapting the 

OpenPose estimator (6) so that it could be used within infants was sensitive enough to 
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detect and reproduce Gestalt classifiers that drive the human eye during the diagnostic 

decision making. This suggests that it may also be used to train automated classifiers so that 

they can perform the same task. This could be a promising way to develop easily accessible, 

non-invasive methods for screening infants with suspected compromised neurodevelopment. 

 

ABBREVIATIONS 

GMs, General movements, CP; Cerebral palsy.   
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Figure Legends: 

Figure 1: Schematic drawing of the experimental flow chart. We conventionally selected a 

dataset of 21 GMs videos recorded at fidgety age and those videos were visually scored 

according to the GMs assessment protocol. The same videos were processed with pose 

estimation algorithm to obtain skeleton videos that were then judged visually, and the results 

were compared to the qualitative scores on the original videos, reaching an agreement of 

Cohen’s K of 0.90. Skeletal movements with sufficiently high quality were also processed by 

quantitative analysis to extract potential features that could help to distinguish normal from 

abnormal movements, as explained in the Methods section.  
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Figure 2: Pose estimation procedure from the video image to skeleton videos. In the original 

video image (a. left side), anatomical key points are identified (a. middle and right side with 

dots in infant's joints) and a skeleton is formed by drawing lines between these key points. 

This is repeated for all consecutive video frames (b.) that are then converted into a 

skeletonised video (see Video S1) for later assessment. The red dots in the middle figure of 

a. depict the wrist key points as these were the movements that were most robustly different 

between the infant groups. 
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Figure 3: a. Video quality assessment based rejecting movements that were physically 

impossible, shown in good quality (left) and poor quality (right) videos. I. global distribution of 

movements of the key point for the left elbow. II. distribution of the movements of key points 

after defining a threshold for physically impossible movements, based on maximal velocity 

estimation between consecutive frames to define possible infant movements: threshold for 

wrists at 3.3 m/s and for elbows at 1.7 m/s. The excluded dots are then considered as 

physically impossible key point movements. Videos containing more that 5% of physically 

impossible movements were excluded from the analysis to limit the effect of outliers. b.  

density plot of the locations of key points over time for typical (left) and atypical (right) GMs 

pattern. c. distribution of the standard deviation of velocity (left) and acceleration (right) for 

the shoulder, elbows and wrists key-points in typical (orange) and atypical (grey) GMs. 

Subjects with typical GMs presented larger standard deviations for wrists movements 

compared to atypical subjects. 

 

 


