
Feedback Control Law of Solar Sail with Variable Surface Reflectivity
at Sun-Earth Collinear Equilibrium Points

Lorenzo Niccolai∗, Giovanni Mengali, Alessandro A. Quarta, Andrea Caruso

Department of Civil and Industrial Engineering, University of Pisa, I-56122 Pisa, Italy

Abstract

A solar sail generates thrust without consuming any propellant, so it constitutes a promising option for mission
scenarios requiring a continuous propulsive acceleration, such as the maintenance of a (collinear) L1-type artificial
equilibrium point in the Sun-[Earth+Moon] circular restricted three-body problem. The usefulness of a spacecraft
placed at such an artificial equilibrium point is in its capabilities of solar observation, as it guarantees a continuous
monitoring of solar activity and is able to give an early warning in case of catastrophic solar flares. Because those
vantage points are known to be intrinsically unstable, a suitable control system is necessary for station keeping
purposes. This work discusses on how to stabilize an L1-type artificial equilibrium point with a solar sail by suitably
adjusting its lightness number and thrust vector orientation. A full-state feedback control law is assumed, where
the control gains are chosen with a linear-quadratic regulator approach. In particular, the numerical simulation
results show that an L1-type artificial equilibrium point can be maintained with small required control torques,
by using a set of reflectivity control devices.
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Nomenclature

A = total sail area, m2

A, Ã, B, Bv, C = auxiliary matrices
a = dimensionless propulsive acceleration vector
B = non-Lambertian coefficient
{b1, b2, b3} = dimensionless optical parameters, see Eqs. (4)
C = center-of-mass
{c1, c2, c3} = dimensionless constants, see Eqs. (18)
G = universal gravitational constant, N m2/kg2

I = principal moment of inertia, kg m2

I = identity matrix
J = LQR functional, see Eq. (29)

K , [Kp Kd] = control gain matrix
kpi, kdi = proportional and derivative gains (i = 1, . . . 3)
l = Sun-[Earth+Moon] distance, au
M = control torque component, N m
m = mass, kg
n̂ = sail normal unit vector
O = zero matrix
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P = solar radiation pressure, µPa
Qx, Qu = weighting matrices
R = rotational matrix
r = dimensionless position vector
r̃ = reflectivity coefficient
S = spacecraft center-of-mass
T = solar sail thrust vector, N

T (C; î, ĵ, k̂) = synodic reference frame
Tb(S; n̂, p̂, q̂) = body reference frame
t = time, years
u = control vector

δṙ , [vx, vy, vz]T = dimensionless velocity perturbation
x = state vector

δr , [x, y, z]T = dimensionless position perturbation
β = sail lightness number
δβ = lightness number variation
ε = emissivity coefficient
{θ, ψ} = Euler angles, rad

λi (i = 1, . . . 6) = eigenvalue of matrix Ã
µ = [Earth+Moon]’s dimensionless mass
µ̄ = auxiliary constant, see Eq. (19)

ρ = dimensionless primary-spacecraft vector (with ρ , ‖ρ‖)
σ = solar sail areal density, g/m2

ω = spacecraft angular velocity w.r.t. an inertial frame, rad/s

Subscripts

� = Sun
⊕ = [Earth+Moon]
0 = initial value
{1, 2, 3} = body-frame components
b = back sail surface
e = equilibrium value
f = front sail surface
S = spacecraft

Superscripts

· = dimensionless time derivative
T = transpose
∧ = unit vector

1. Introduction

The features of the circular restricted three-body problem (CR3BP) [1, 2] allow transfer trajectories
with small propellant consumption to be designed by exploiting the existence of invariant manifolds, as is
discussed in Refs. [3, 4, 5, 6] in the case of the Earth-Moon CR3BP. A potential application of the results
of the CR3BP analysis is constituted by space missions orbiting around equilibrium points. In particular,
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the Sun-Earth collinear L1 point is located along the Sun-Earth direction at about 1.5 million kilometers
from Earth, and a spacecraft (or a constellation [7, 8]) placed there is able both to perform a continuous
solar observation, and to guarantee an early warning in case of catastrophic solar events. Currently, NASA’s
Advanced Composition Explorer (ACE) is monitoring the solar activity while tracking a Lissajous orbit
around the Sun-Earth L1 point, which guarantees an early warning time of about 1 hour [9]. In principle,
such a warning time could be further increased by means of propellantless propulsion systems such as solar
sails or electric solar wind sails [10, 11, 12], which are able to artificially displace the collinear point towards
the Sun by exploiting a continuous (outward) radial thrust. In this regard, the Authors [13] have recently
analyzed the impact of solar wind fluctuations [14] on the dynamics of an electric solar wind sail orbiting
around the Sun-Earth L1 point. In particular, Ref. [13] proposes a simplified control law that exploits a
suitable variation of tether electric voltage to counteract the fluctuations of the solar wind characteristics and
to stabilize the spacecraft motion around such an equilibrium point. However, this sort of “voltage-control”
is peculiar to the electric solar wind sail and cannot be employed in case of solar sails.

The potentiality of solar sails in envisaging advanced mission scenarios have been extensively discussed
in the literature, with several works proposing solar sail-based phasing maneuvers [15], non-Keplerian or-
bits [16], scientific observation of Earth’s magnetosphere [17], near-Earth asteroid exploration [18], and
transfers to Lagrangian points [19]. The use of solar sails to generate collinear artificial equilibrium points
(AEPs) must face the intrinsic instability of such equilibrium positions. This implies that a station keeping
is possible only provided the spacecraft is equipped with a suitable control system. In this regard, some
possible choices are available for a solar sail-based spacecraft. For example, cold gas thrusters or momentum
wheels could in principle be used as actuation means, although their large mass would decrease the sail
performance. A more promising alternative is offered by electrochromic materials [20, 21], which are able
to modify their reflectivity upon application of a low electric voltage. Electrochromic materials allow the
manufacturing of reflectivity control devices (RCDs), which may be used to adjust the sail thrust, as dis-
cussed in Refs. [17, 22]. Moreover, RCDs can also generate control torques belonging to the sail plane, which
are useful to properly orient the propulsive acceleration vector, as tested (and validated) by the pioneering
IKAROS mission [23]. The flexibility of RCDs could be further increased by means of polymer dispersed
liquid crystals (PDLCs) [24, 25], which may refract the incoming sunlight to generate a small tangential
force, and so a control torque perpendicular to the sail nominal plane. A further strategy for varying the
sail thrust magnitude and direction has been recently discussed by Luo et al. [26], who proposed the concept
of a solar sail composed of controllable blade elements. The relative rotation of such blades, generated by
electric actuators, is able to change the sail attitude and also to slightly adjust the thrust vector direction
and magnitude.

The idea of generating AEPs with a solar sail is not new, and, in fact, such a problem has been addressed
in the literature from different viewpoints, including the maintenance of AEPs [22, 27, 28, 29, 30], or the
generation of periodic orbits around AEPs [31, 32]. In particular, the AEP maintenance scenario may be
viewed as a case useful for quantifying the upper performance bounds for a given solar sail-based spacecraft.
Actually, a more realistic scientific mission would not require the vehicle to be constantly placed at the AEP,
as this is not the best choice for guaranteeing a good tracking and communication with the ground station.
However, a solution to the communication problem may be obtained by allowing the sail to librate at a
certain distance from the Ecliptic plane.

The existing studies on AEPs maintained by solar sails are based on simplifying assumptions, such as
that of an ideal (i.e., perfectly reflecting) sail or a constant sail attitude, and, more importantly, do not give
any estimation of the control torques necessary to meet the mission requirements. The aim of this work
is to fill that gap with a preliminary analysis of the maintenance problem of an L1-type AEP in the Sun-
Earth CR3BP using a solar sail with RCD-based control systems, which are assumed to be able to modify
both the sail lightness number and the sail attitude. The sail thrust is here modelled with an optical force
model, using the recent results obtained by NASA during the preliminary phase of NEA Scout mission [33].
A full-state feedback control system is used to compensate for the dynamics instability, where the control
gains are chosen with a linear-quadratic regulator approach. The actual performance of the control law is
evaluated via numerical simulations, and the required control torques are estimated by means of Euler’s
equations, in order to assess the feasibility of the mission scenario maintenance. The obtained results show
that a simplification of the control system is possible, with a negligible decrease of the performance level
defined in terms of early warning time for a solar observation mission.
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2. Mathematical model

Assume that a solar sail-based spacecraft S is moving under the gravitational forces exerted by the Sun
and the [Earth+Moon], where [Earth+Moon] denotes the position of the center of mass of the Earth-Moon
system. The analysis of the orbital motion of S can be simplified by means of two fundamental assumptions
of the CR3BP [1] . First, the spacecraft mass mS is considered negligible with respect to the Sun’s mass
m� and the [Earth+Moon]’s mass m⊕, so that the motion of the primaries is unaffected by the presence of
the spacecraft. In the second place, the orbital eccentricity of the primaries is neglected, so that they are
assumed to track two coplanar circular orbits around the center-of-mass of the system C. Accordingly, the
Sun and the [Earth+Moon] maintain a constant relative distance l , 1 au .

Introduce a Cartesian synodic reference frame T (C; î, ĵ, k̂), which rotates with respect to an inertial
frame with a constant angular velocity of magnitude ω⊕ ,

√
G(m⊕ +m�)/l3 = 2π rad/year, where G is

the universal gravitational constant. The unit vector î points from the Sun to the [Earth+Moon], and k̂ is
perpendicular to the ecliptic plane in the direction of the angular momentum vector; see Fig. 1. Using the
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î

Earth+Moon
Sun

Ecliptic

ĵ
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Figure 1: Sketch of the Sun-[Earth+Moon] CR3BP framework. Adapted from Ref. [34].

standard notation of CR3BP [1], the total mass (m� + m⊕) of the two primaries is taken as the reference
mass, and the (constant) distance l is chosen as the reference length. Finally, the time t is expressed in
dimensionless units by normalizing ω⊕ to 1. Accordingly, the [Earth+Moon] dimensionless mass is µ ,
m⊕/(m� + m⊕) ' 3.0404 × 10−6 [2] , while the dimensionless distance between C and the [Earth+Moon]
(or the Sun) is 1− µ (or µ), as shown in Fig. 1.

Bearing in mind that the angular velocity vector of the rotating reference frame can be expressed as k̂
in dimensionless units, the motion of S is described by the following differential equation [35]

r̈ + 2 k̂ × ṙ + k̂ ×
(
k̂ × r

)
+

1− µ
ρ3�

ρ� +
µ

ρ3⊕
ρ⊕ = a (1)

where the dot symbol denotes a derivative with respect to the dimensionless time (t ω⊕), a denotes the dimen-
sionless propulsive acceleration vector provided by the solar sail, while r, ρ� and ρ⊕ are the dimensionless
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position vectors of S with respect to C, the Sun, and the [Earth+Moon], respectively, with ρ� ,
∥∥ρ�

∥∥ and

ρ⊕ ,
∥∥ρ⊕

∥∥. By geometrical considerations, it is possible to express the vectors r and ρ⊕ as

r = ρ� − µ î , ρ⊕ = r − (1− µ)̂i = ρ� − î (2)

which allows Eq. (1) to be rewritten more conveniently as

ρ̈� + 2 k̂ × ρ̇� + k̂ ×
[
k̂ ×

(
ρ� − µ î

)]
+

1− µ
ρ3�

ρ� +
µ∥∥∥ρ� − î
∥∥∥3
(
ρ� − î

)
= a (3)

Therefore, the spacecraft dynamics can be analyzed once the propulsive acceleration vector a is described
by a suitable solar sail thrust model.

2.1. Solar sail thrust model and propulsive acceleration expression

Several mathematical models have been proposed in the literature to express the thrust generated by
a flat solar sail. Among them, the ideal force model [36, 37] is the first and simpler one, as it assumes
that each photon incident on the sail surface is specularly reflected. This assumption provides a handy and
analytical expression for the sail thrust, but it leads to oversimplified and non-conservative results. In the
following analysis an optical force model is used, which takes into account the optical properties of the sail
film [36, 37, 38] and represents a good compromise between simplicity and accuracy. Other (more complex)
sail thrust models take into account the sail billowing effect [39], the sail film’s optical degradation with
time [40, 41], the fluctuations of solar radiation pressure [42], or the light polarization and the sail surface
roughness [43, 44], which are all neglected by the optical model. Finally, it is assumed that the sail attitude is
known at each time instant, without orientation uncertainties. In this context, the thrust vector T generated
by a solar sail-based spacecraft may be written as [37]

T =
2P⊕A

ρ2�

ρ̂� · n̂
b1 + b2 + b3

{b1 ρ̂� + [b2 (ρ̂� · n̂) + b3] n̂} (4)

where P⊕ , 4.563µPa is the solar radiation pressure at a Sun-[Earth+Moon] distance, A is the sail reflective
area, ρ̂� , ρ�/ρ� is the Sun-spacecraft unit vector, and n̂ is the unit vector normal to the sail nominal
surface in the direction opposite to the Sun. In Eq. (4), the dimensionless parameters {b1, b2, b3} are related
to the optical characteristics of the sail film material, viz.

b1 =
1− r̃ s

2
, b2 = r̃ s , b3 =

Bf r̃ (1− s)
2

+
(1− r̃) (εf Bf − εbBb)

2 (εf + εb)
(5)

where r̃ is the reflectivity coefficient, s is the fraction of specularly reflected photons, Bf (or Bb) is the front
(or back) non-Lambertian coefficient, and εf (or εb) is the front (or back) sail surface emissivity.

The optical characteristics involved in the calculation of {b1, b2, b3} have been recently estimated by
experimental measurements and numerical simulations performed by NASA [45, 46] during the preliminary
phase of NEA Scout mission, yielding

r̃ = 0.91 , s = 0.89 , Bf = 0.79 , Bb = 0.67 , εf = 0.025 , εb = 0.27 (6)

Accordingly, the values of the parameters in Eq. (4) are

b1 = 0.0950 , b2 = 0.8099 , b3 = 0.0150 (7)

Note that the b3 term gives a small contribution, as confirmed by authors’ previous work [47].
From Eq. (4), it is possible to calculate the dimensionless acceleration vector a to be substituted into

Eq. (1). Let β be the solar sail lightness number [37], that is, the performance parameter defined as the
ratio of the propulsive acceleration generated in a Sun-facing configuration to the Sun’s local gravitational
attraction at a given heliocentric distance. With the standard CR3BP notation, the propulsive acceleration
vector a can therefore be written as

a = β
1− µ
ρ2�

(ρ̂� · n̂)
1

b1 + b2 + b3
{b1 ρ̂� + [b2 (ρ̂� · n̂) + b3] n̂} (8)
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2.2. Reference mission scenario and spacecraft linearized dynamics

In our reference mission scenario, a solar sail-based spacecraft is placed at a collinear L1-type AEP. The
continuous propulsive acceleration is used to displace the natural L1 (collinear) point towards the Sun, as is
illustrated in Fig. 2. Note that the Sun-sail distance is characterized by the subscript e, which is used here
to denote the nominal (reference) equilibrium point.

e
l�

�

Earth+Moon

ĵ

Sun

spacecraft

l

AEP

î

k̂

�
�

l�

Figure 2: Sketch of a collinear L1-type AEP.

The location of an L1-type AEP in the CR3BP system may be found by substituting Eqs. (2) and (8)
into Eq. (1), and by imposing the first and second derivatives of the position vector to be zero. Because
such an L1-type AEP lies on the line connecting the two primaries, its dimensionless position and velocity
vectors are given by

re = [ρ�e
− µ, 0, 0]T ṙe = [0, 0, 0]T (9)

and the required propulsive acceleration ae is aligned along the î-direction, viz.

ae = βe
1− µ
ρ2�e

î (10)

so that the only nonzero component of Eq. (1) is

−ρ�e
+ µ+

1− µ
ρ2�e

− µ

(1− ρ�e
)2

= βe
1− µ
ρ2�e

(11)

which gives

βe = 1−
µρ2�e

1− µ

[
ρ�e

µ
+

1

(1− ρ2�e
)
− 1

]
(12)

From the last equation, the equilibrium distance ρ�e
may be easily found numerically as a function of a

given (reference) sail lightness number βe.
To study the dynamical behavior of a solar sail-based spacecraft in the vicinity of an L1-type AEP, use

the transformation

r = re + δr , [ρ�e
− µ+ x, y, z]T ṙ ≡ δṙ , [vx, vy, vz]T (13)

where {x, y, z} � 1 and {vx, vy, vz} � 1 are considered as perturbation terms, and introduce the state
vector x defined as

x , [δrT, δṙT]T = [x, y, z, vx, vy, vz]T (14)
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of which the components are the position and velocity errors relative to the L1-type AEP; see Eqs. (9).
Substituting Eqs. (13) into Eq. (1), subtracting the equilibrium solution given by Eq. (11) and neglecting
the second-order perturbation terms, the spacecraft linearized dynamics may be written in a compact form
as

ẋ = Ax (15)

where

A =
[ O I

C D
]

(16)

in which O is a 3× 3 zero matrix, I is a 3× 3 identity matrix, while matrices C and D are defined as

C ,

[
c1 0 0
0 c2 0
0 0 c3

]
, D ,

[
0 2 0
−2 0 0

0 0 0

]
(17)

with

c1 , 1 + 2µ̄− 2βe
1− µ
ρ3�e

, c2 , 1− µ̄, c3 , −µ̄ (18)

where, in analogy with Ref. [2], the constant µ̄ > 0 is written as

µ̄ ,
µ

(1− ρ�e
)3

+
1− µ
ρ3�e

(19)

A collinear L1-type AEP is unstable [29, 48], as is confirmed by one positive eigenvalue of matrix A in
Eq. (16). Therefore, to guarantee the AEP maintenance, the spacecraft must be equipped with a suitable
control system.

3. Feedback control law for equilibrium point maintenance

In this study, it is assumed that the solar sail is capable of modifying both the magnitude and the
direction of the propulsive acceleration a, and that these modifications can be actuated independently. This
is possible by exploiting the properties of electrochromic materials and making use of RCDs located on the
sail surface. In fact, the activation (or deactivation) of electrochromic actuators increases (or decreases) the
thrust generated by the fraction of sail area covered by the RCD, as sketched in Fig. 3. In analogy with
previous works [17], it is assumed that such variation is continuous, which amounts to stating that the sail
is equipped with a large number of small RCDs.

RCD off spacecraft

high reflectivity material

(a) Minimum thrust.

RCD on RCD off spacecraft

high reflectivity material

(b) Intermediate thrust.

RCD on spacecraft

high reflectivity material

(c) Maximum thrust.

Figure 3: Basic sketch of thrust control by means of RCDs. Adapted from Ref. [49].
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In particular, RCDs could be also used to generate control torques capable of modifying the sail attitude,
that is, varying the direction of the sail normal n̂ and therefore the direction of the propulsive acceleration
vector; see Eq. (8). A conceptual sketch of an attitude control system based on RCDs is given in Fig. 4,
which shows that control torques lying on the sail nominal plane are obtainable with RCDs, whereas a
control torque normal to the sail nominal plane (i.e., along the direction of n̂) must be generated with a
different strategy. To that end, a promising option is the utilization of PDLCs [24, 25], which are capable
of exploiting the incident photons to generate a tangential force.

deactivated
state

activated
state

net
torque

net
torque

deactivated
state

activated
state

Figure 4: Sketch of RCD-based attitude control system.

To describe the solar sail attitude, which determines the direction of a, it is useful to introduce a body
reference frame Tb(S; n̂, p̂, q̂) with origin at the spacecraft center-of-mass, whose unit vectors {p̂, q̂} lie on
the sail nominal plane along the principal axes of inertia; see Fig. 5. Note that when the spacecraft is at its
design L1-type AEP, p̂ lies on the ecliptic plane, while q̂ is perpendicular to it. Two consecutive rotations,
of angles θ and ψ, are required to superimpose the axes of the synodic frame T to those of the body frame
Tb; see Fig. 6. Accordingly, the rotation matrix from T to Tb is

R = R2(θ)R3(ψ) =

cos θ cosψ sinψ cos θ − sin θ
− sinψ cosψ 0

cosψ sin θ sinψ sin θ cos θ

 (20)

where R2 and R2 are the principal rotations about the 2- or 3-axis, respectively [50].
A third Euler angle would be required to describe the sail rotation around the direction of n̂, which

however does not affect the orientation of the propulsive acceleration vector a and, therefore, is neglected
in the following analysis. Note that the components of n̂ in the synodic frame are

[n̂]T = RT [1 0 0]
T

= [cos θ cosψ sinψ cos θ − sin θ]
T

(21)

When Eq. (21) is substituted into Eq. (8), the components of the propulsive acceleration in T are obtained
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p̂

q̂

n̂

p̂

q̂

Figure 5: Orientation of the unit vectors of body-fixed reference frame Tb(S; n̂, p̂, q̂).

n̂

Ecliptic plane
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q̂

ˆj

ˆk

ˆi

�

�

Sun

Earth
+Moon

projection of
on the Ecliptic

n̂

Figure 6: Mutual orientation of T and Tb and Euler angles definition.

as

[a]T = β
1− µ
ρ2�

cosψ cos θ
1

b1 + b2 + b3

b1 + b2 cos2 ψ cos2 θ + b3 cosψ cos θ

cos θ sinψ (b2 cos θ cosψ + b3)

− sin θ (b2 cosψ cos θ + b3)

 (22)

Recall that in an equilibrium condition at the L1-type AEP, the sail is in a Sun-facing configuration, that
is, ψ = θ = 0 and β = βe.

The solar sail is controlled by means of a (small) variation of the lightness number δβ , β − βe and
through a suitable orientation of the propulsive acceleration vector, which is defined by the Euler angles ψ
and θ. As a result, the (dimensionless) control vector is given by

u , [δβ, ψ, θ]T (23)
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where ψ and θ have to be regarded as virtual inputs in that they may be generated by means of suitable
torques, as will be discussed later. Equation (22) may be simplified under the assumption of small Euler
angles, that is, by considering cosψ ' 1, cos θ ' 1, sinψ ' ψ, and sin θ ' θ. Likewise, the inverse squared
Sun-spacecraft distance is ρ−2� = [(ρ�e

+ x)2 + y2 + z2]−1 ' ρ−2�e
(1− 2x/ρ�e

), so that Eq. (22) becomes

[a]T = (βe + δβ)
1− µ
ρ2�e

(
1− 2x

ρ�e

)


1

ψ
b2 + b3

b1 + b2 + b3

−θ b2 + b3
b1 + b2 + b3

 (24)

where the minus sign in the last row comes from the definition of θ, which is positive when the unit vector
n̂ points below the ecliptic plane.

The (linearized) spacecraft dynamics around the design L1-type AEP is obtained by substituting Eq. (24)
into Eq. (1), subtracting the equilibrium condition (10), and neglecting the second order terms. The resulting
dynamical equations in the vicinity of an L1-type point are in the form

ẋ = Ax+ Bu (25)

where x and A are given by Eqs. (14) and (16), respectively, the control vector u is defined in Eq. (23), and

B =
[ O
Bv

]
(26)

with

Bv ,
1− µ
ρ2�e


1 0 0

0 βe
b2 + b3

b1 + b2 + b3
0

0 0 −βe
b2 + b3

b1 + b2 + b3

 (27)

3.1. Control law definition and closed-loop system dynamics

A suitable control law is necessary for maintaining the solar sail at the L1-type AEP. Assuming the
spacecraft state vector to be measurable, a full-state feedback control law is proposed, that is

u = −Kx = − [ Kp Kd ]x (28)

where Kp and Kd are 3×3 sub-matrices of control gains associated with the position and velocity components
of the state vector.

The selection of an appropriate set of control gains is not a simple task, since it represents a trade-off
solution between system performance and magnitude of the required control inputs. To simplify the design,
a linear-quadratic regulator (LQR) is employed, according to which the control law minimizes the functional

J ,
1

2

∫ +∞

0

(xTQxx+ uTQuu) dt (29)

where Qx ≥ 0 and Qu > 0 are suitable weighting matrices associated with state and control variables,
respectively. Matrices {Qx, Qu} are chosen to be diagonal and the entries of Qu have to be significantly
larger than those of Qx to avoid input saturation problems. The minimization of the J functional of Eq. (29)
is obtained by the MATLAB built-in function “lqr”, which provides the K matrix.

In general, the solution of an LQR problem corresponds to a matrix K with all nonzero entries. However,
preliminary (and extensive) simulations have shown that the off-diagonal terms of sub-matrices Kp and Kd

are usually smaller than those on the main diagonal. It is therefore reasonable to set the off-diagonal entries
equal to zero and use

Kp =

[
kp1 0 0
0 kp2 0
0 0 kp3

]
, Kd =

[
kd1 0 0
0 kd2 0
0 0 kd3

]
(30)
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With such a choice, the gains {kp1, kd1}, associated with the control variable δβ, are used to control the

system dynamics along the î-direction, the gains {kp2, kd2} are associated with ψ and used to control the

ĵ-direction, and finally the gains {kp3, kd3} are involved in the k̂-direction dynamics. This significantly
simplifies the control law implementation, because each control variable is associated with two state vector
components only.

The closed-loop system dynamics is

ẋ = Ax− BKx = (A− BK)x = Ãx (31)

with Ã , A − BK. The linear stability of the system depends on the eigenvalues of Ã, which, in turn, are
functions of the control gains {kpi, kdi}. Unlike the original LQR controller, which is known to give a stable
closed-loop system, no a priori guarantee exists on the system stability with a reduced-order controller in the
form of Eq. (30). Nevertheless, the suggested procedure gives in practice good results, as will be discussed
in the following case study.

3.2. Required control torques evaluation

The desired sail attitude angles θ and ψ must be generated by suitable control torques. To estimate
such torques, the angular velocity ω of the body-fixed reference frame Tb with respect to an inertial frame
is written as

ω = ωbs + ω⊕ (32)

where ωbs denotes the angular velocity of Tb with respect to T , and ω⊕ = ω⊕k̂ is the angular velocity vector
of T with respect to an inertial frame. Using the rotation matrix of Eq. (20), one obtains

[ω⊕]Tb = R

[
0
0
ω⊕

]
=

[
−ω⊕ sin θ

0
ω⊕ cos θ

]
(33)

whereas

[ωbs]Tb = ψ̇R

[
0
0
1

]
+ θ̇

[
cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

][
0
1
0

]
=

−ψ̇ sin θ
θ̇

ψ̇ cos θ

 (34)

Substituting Eqs. (33)-(34) into Eq. (32) and assuming small Euler angles, it is found that

[ω]Tb '

−θ(ψ̇ + ω⊕)
θ̇

ψ̇ + ω⊕

 ,

[
ω1
ω2
ω3

]
(35)

where {ω1, ω2, ω3} are the components of ω in Tb.
RCD-based control systems are able to produce small control torques. The sail attitude controlled

dynamics may be well approximated by the Euler’s equations, viz.

I1 ω̇1 + (I3 − I2)ω2 ω3 = M1 (36)

I2 ω̇2 + (I1 − I3)ω1 ω3 = M2 (37)

I3 ω̇3 + (I2 − I1)ω1 ω2 = M3 (38)

where the subscripts 1, 2 and 3 refer to the principal axes of the body frame Tb. Note that, from the definition
of Tb, the torque components M2 and M3 can be generated by a suitable RCD activation or deactivation,
while M1 must be provided by PDLCs or by other control actuators; see Fig. 4.

Substituting the angular velocity components given by Eq. (35) into Eqs. (36)–(38), and linearizing for
small angles and angular derivatives, yields

M1 = −I1(ψ̈ θ + ψ̇ θ̇ + ω⊕θ̇) + (I3 − I2)(ψ̇ + ω⊕) θ̇ ' (I3 − I1 − I2)ω⊕θ̇ (39)

M2 = I2 θ̈ − (I1 − I3)(ψ̇ + ω⊕)2 θ ' I2 θ̈ − (I1 − I3)ω2
⊕θ (40)

M3 = I3 ψ̈ − (I2 − I1)(ψ̇ + ω⊕) θ̇ θ ' I3 ψ̈ (41)
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which allows the control torques {M1, M2, M3} to be found as functions of the time histories of the Euler
angles. Note that three control torques are required to generate the desired time variations of θ and ψ, and
to avoid the generation of a sail spinning motion.

4. Case study and numerical simulations

The effectiveness of the proposed control law is now verified by numerical simulations. To that end, a test
case scenario is chosen with lρ�e

= 0.988720 au, which could guarantee an early-warning time of 1.17 hours,
thus improving the performance of NASA’s ACE mission [9], of which the warning time is about 1 hour.
The position of this L1-type AEP is shifted towards the Sun of about 189 840 km with respect to the natural
equilibrium point L1. Its maintenance requires a nominal lightness number βe = 0.0101, a value close to that
of NEA Scout mission [51], which therefore represents the current state-of-the-art of solar sail technology.

The initial conditions are chosen in the vicinity of the L1-type AEP, with a magnitude of position error
of 1000 km (with equal error components in each direction) and a magnitude of velocity error of 1 m/s
(again, with equal error components in each direction) [13]. In other terms, the following initial state vector
x0 , x(t0) (with t0 , 0) is considered in the numerical simulations

x0 = [3.859× 10−6 3.859× 10−6 3.859× 10−6 1.938× 10−5 1.938× 10−5 1.938× 10−5]
T

(42)

This particular choice is based on the assumptions of Folta et al. [52], which are scaled from the Earth-Moon
CR3BP to the Sun-[Earth+Moon] CR3BP. Note that other simulated cases with a larger initial bias give
similar results, assuming that the initial errors do not increase too much, which would invalidate the linear
approximation assumption.

The gains of {Kp, Kd}, given by Eq. (30), are obtained from the solution of an LQR problem. First, the
coefficients of matrices {Qx, Qu} are chosen in accordance with Bryson’s rule [53], which suggests assuming
both Qx and Qu to be diagonal matrices, of which the nonzero entries are equal to the inverse square of the
maximum desired values of state and control variables, respectively. In particular, a desired position error
smaller than 1000 km and a velocity error smaller than 1 m/s (in each direction) are selected, in analogy
with Ref. [13] . As for the control variables, a maximum desired value of 5 deg is given for Euler’s angles,
while the maximum lightness number variation is assumed equal to 1% of the nominal value βe, a value
that is compatible with the current RCD technology [22]. These assumptions are made to ensure that the
spacecraft remains in the vicinity of the AEP and that the Euler’s angles are small, in order to guarantee
the validity of the linear approximation. Therefore, matrices {Qx, Qu} are obtained as

Qx = 1010 ×
[

2.238 I O
O 0.089 I

]
, Qu =

[
9.8× 107 0 0

0 130 0
0 0 130

]
(43)

where O and I are 3× 3 matrices. Using the proposed procedure, sub-matrices {Kp, Kd} are found to be

Kp =

[
22.40 0 0

0 1.18× 104 0
0 0 1.28× 104

]
, Kd =

[
7.01 0 0

0 3.16× 103 0
0 0 3.10× 103

]
(44)

Substituting the control gains of Eq. (44) into Eq. (31), the closed-loop system is found to be stable, and

the six eigenvalues of Ã are

λ1 = −24.485 , λ2 = −23.513 , λ3 = −5.472 , λ4 = −5.172 , λ5,6 = −3.232± 1.591j (45)

where j is the imaginary unit. The system dynamics has been simulated by integrating the nonlinear
equations of motion (1) for a total flight time of 5 years, using a variable order Adams-Bashforth-Moulton
solver scheme [54, 55] with absolute and relative errors of 10−12. The results are reported in Fig. 7 , which
shows the time histories of the state variables for t ≤ 100 days. Note that the system dynamics quickly
moves toward the nominal position, which is reached in about 50 days, corresponding to about 14% of the
revolution period of the primaries.

Such a spacecraft trajectory requires a maximum lightness variation equal to max |δβ| = 0.0220βe.
The corresponding required RCD area can be estimated with the simplified model discussed in Ref. [22].
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Assuming a 14 kg-spacecraft equipped with an 86 m2-sail (values taken from NEA Scout mission [33]), a
total RCD area for lightness number control of about 0.35 m2 is estimated. Note that this value does not
take into account the fraction of RCD that are necessary for controlling the sail attitude. Moreover, power
generation considerations are neglected in this estimation, since they would require more accurate data on
onboard subsystems. Finally, the maximum values (in modulus) of θ and ψ are max(|θ|) ' 6.24 deg and
max(|ψ|) ' 6.08 deg, which are compatible with the previous assumption of small Euler’s angles.

0 25 50 75 100
-1000

0

1000

0 25 50 75 100
-1000

0

1000

0 25 50 75 100
-1000

0

1000

0 25 50 75 100
-1

0

1

0 25 50 75 100
-1

0

1

0 25 50 75 100
-1

0

1

Figure 7: Time histories of the system state variables with gains given by Eq. (44).

Equations (39)–(41) can be used to estimate the magnitude of the required control torques. Because
the inertial properties of the solar sail-based spacecraft must be known, some simplifying assumptions are
now introduced, that is: i) the sail has a negligible width and an uniform areal density σ; ii) the spacecraft
sides are parallel to the axes of Tb; iii) the center-of-mass of the sail coincides with that of the spacecraft
main body; iv) the mass of structural elements (booms) is taken into account in the calculation of σ, so
it is assumed to be uniformly distributed on the sail surface; v) the spacecraft main body is approximated
by a homogeneous parallelepiped with mass mS . In particular, the first hypothesis is commonly enforced
for conventional solar sails [37], the second and the third assumptions are justified by the design of NEA
Scout mission [56], while the last two are introduced to overcome the lack of more detailed information. The
spacecraft moments of inertia can therefore be written as

I1 =
1

12
(mS − σA2)(l22 + l23) +

1

6
σA2 (46)

I2 =
1

12
(mS − σA2)(l21 + l23) +

1

12
σA2 (47)

I3 =
1

12
(mS − σA2)(l21 + l22) +

1

12
σA2 (48)

where {l1, l2, l3} are the lengths of the three sides of the spacecraft aligned with {n̂, p̂, q̂}. The mass proper-
ties of spacecraft NEA Scout [33, 51, 57] are taken as a reference to estimate the moments of inertia, that is,
βe = 0.0101, mS = 14 kg, and A = 86 m2. Moreover, since the NEA Scout is a 6U CubeSat, the side lengths
are set equal to {l1, l2, l3} = {0.3, 0.2, 0.1}m, see Ref. [56]. The total mass of NEA Scout sail (including
structural elements) amounts to 3.6 kg [57], and the sail areal density is assumed to be σ = 41.86 g/m2. As
a result, the moments of inertia are estimated to be {I1, I2, I3} = {51.64, 25.89, 25.91} kg m2. The Euler’s

13



equations (39)–(41) are used to quantify the required control torques over a flight time of 5 years, giving
max {|M1| , |M2| , |M3|} = {1.314, 5.882, 6.058} × 10−4 mN m. Note that the torque components are very
small, with M2 and M3 that could be generated by covering a small fraction of the sail area near the edges
with RCDs devoted to attitude control. Assuming the RCDs to be perfectly opaque in their off state [58],
such a fraction amounts to about 0.1% − 0.2% of the sail total area. In particular, the control torque M1

could be provided by a small actuator or by PDLC-based control devices.
To further simplify the control law design, the system dynamics has been re-simulated by setting kp2 =

kp3 = kd2 = kd3 = 0 in Eq. (44), while leaving kp1 and kd1 unchanged. As a result, the only effective control
variable is δβ, whereas it is assumed that the sail is constantly in a Sun-facing attitude. It may be verified
that the eigenvalues of matrix Ã are

λ1,2 = −3.507± 2.571j , λ3,4 = −0.078± 1.332j , λ5,6 = ±1.776j (49)

showing that the dynamics along the k̂-direction is undamped due to the presence of two imaginary eigen-
values. The spacecraft oscillates about the ecliptic plane with an amplitude of about 1800 km, as is shown
in Fig. 9. This dynamical behaviour is compatible with the mission requirements (for comparison, ACE
mission is tracking a Lissajous orbit with a semimajor axis of 75 000 km and a semiminor axis of 37 500 km,
see Ref. [9]). On the other hand, the motion on the ecliptic plane is stable, and the spacecraft moves towards
the L1-type AEP position as is shown in Fig. 8. However, the system dynamics with the simplified control
law is significantly slower, and the in-plane distance of the spacecraft from the AEP becomes negligible only
after a few years.
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Figure 8: Solar sail trajectory on the ecliptic plane relative to the L1-type AEP with simplified control law.

Although the possibility of adjusting the propulsive acceleration direction through attitude variation is
removed, the dynamical behaviour of the system remains stable. The maximum absolute value of δβ is
still about 2.20% of the nominal value, implying that RCDs seem capable of stabilizing the spacecraft in
such a mission scenario, as previously stated. These results suggest that a proportional-derivative control in
the î-direction is a good compromise between performance and simplicity for an L1-type AEP-maintenance
control law. The previous considerations are supported by other simulations with different initial conditions
(and, consequently, different gains Kp and Kd), which are not reported here for the sake of conciseness.

The main conclusion that can be deduced is that an accurate control of the sail center-of-mass, which
seems possible to obtain by equipping the solar sail with RCDs, is the key factor for guaranteeing an L1-type
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Figure 9: Time histories of the system state variables with simplified control law.

AEP maintenance. If an accurate station keeping is required for mission success, a more complex control
law could be implemented, which also accounts for the possibility of adjusting the sail attitude.

5. Conclusions and future perspectives

A preliminary analysis of the possibility of maintaining an L1-type artificial equilibrium point in the
Sun-[Earth+Moon] circular restricted three-body problem by means of a solar sail-based spacecraft has
been discussed. A control system capable of adjusting the sail lightness number and the attitude has been
assumed, and a full-state control law has been tested, where the control gains are chosen by means of
a linear-quadratic regulator approach. The numerical results show that the mission performance mainly
depends on the dynamics along the radial direction, and an efficient control may therefore be obtained with
a suitable adjustment of the sail lightness number. The latter can be changed by covering a relatively small
portion of the sail front surface with reflectivity control devices, manufactured with electrochromic materials.
The sail attitude can also be controlled to obtain an asymptotically stable dynamics and a fast convergence
toward the equilibrium point. The required torques are small, and can be generated by a set of reflectivity
control devices. An extension of the analysis discussed in this work should take into account both the actual
orbital eccentricity of the primaries, and the typical ephemeris constraints. In that context, the effect of the
electrochromic actuator accuracy should be investigated in a more general mission scenario that involves the
generation of non-collinear artificial equilibrium points in the Sun-[Earth+Moon] system.
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