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Nomenclature

a = semimajor axis, au
ap = propulsive acceleration, m/s2

c1, c2 = constants of integration, see Eqs. (13)
e = eccentricity vector, with e , ‖e‖
O = spacecraft center-of-mass
p = semilatus rectum, au
r = Sun-spacecraft distance, au
r̂ = radial unit vector
ra = aphelion radius, au
rp = perihelion radius, au
t = time, days
T = sail film degradation half-life, years
TO = polar reference frame
u = radial component of spacecraft velocity, km/s
v = transverse component of spacecraft velocity, km/s
β = sail lightness number
ε = sail film degradation parameter, 1/s
η = sail film reflectivity
θ = azimuthal angle, rad

θ̂ = transverse unit vector
λ = dimensionless parameter, see Eq. (10)
µ� = Sun’s gravitational parameter, km3/s2

ν = true anomaly, rad
ξ = dimensionless threshold value
ρ = dimensionless variable
ω = osculating orbit orientation, rad

Subscripts

0 = initial
⊕ = at 1 au from the Sun
max = maximum
min = minimum

Superscripts

· = time derivative
′ = derivative with respect to θ˜ = steady-state value

Introduction
Solar sails generate thrust by means of thin metalized polymer films, which extract momentum from the impinging photons

coming from the Sun [1–6] . The dynamics of a solar sail-based spacecraft is usually studied under the simplifying assumption
that the optical properties of its reflective membrane are time-invariant. Such an assumption is useful in a preliminary mission
design phase, because it allows the problem to be considerably simplified from a mathematical point of view. In practice,
the problem is more involved since a long-term exposure to radiations and to solar wind particles causes a degradation of the
metalized polymer film. Such an unavoidable phenomenon reduces the solar sail performance by inducing a decrease of both
its lightness number and the maximum reachable angle between the Sun-sail line and the thrust vector. A more refined study
of the solar sail trajectory should therefore consider the polymer film aging, especially in the case of long-duration missions.

Extensive test campaigns have not yet been made to deeply investigate the complex phenomenon of sail film degradation,
which is therefore difficult to model with accuracy. In this regard, Vulpetti and Scaglione [7] have processed some experimental
data related to aluminium in order to average its thermo-optical properties over the spectrum of the incident solar photons.
They [8] have also investigated the possibility of exploiting the degradation of plastic materials due to ultraviolet (UV)
radiation or atomic oxygen in order to obtain an entirely metallic solar sail (which is useful, for example, for performing an
angular momentum reversal maneuver). Khassanchine et al. [9] have described the effects of electron radiation on outgassing
of spacecraft materials, Prosvirikov et al. [10] have reported the measurements of hemispherical reflectance for some thermal
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control coatings within the spectral range 0.2 − 2.5µm, whereas Edwards et al. [11] have quantified the effect of the space
environment on thermo-optical and mechanical properties of candidate sail materials, such as aluminum coated Mylar, Teonex,
and Colorless Polyimide. More recently, Kezerashvili and Matloff [12] have investigated the interaction between solar radiation
and sail materials, showing that the latter are partially ionized by solar UV and low-energy electrons. Using a theoretical
approach, Kezerashvili [13] has analyzed the degradation of solar sail materials due to their interaction with electromagnetic
waves and induced by the radiation from low- and high-energy electrons, protons, and α-particles emitted by the Sun. In
particular, it has been shown [13] that the space environment causes a reduction of the reflectivity coefficient, which in turn
increases the solar sail equilibrium temperature. Moreover, Sznajder et al. [14–16] have proposed and empirically proved the
formation of tiny molecular hydrogen bubbles on metallic surfaces by simulating the space environment in terms of temperature,
proton dose, and kinetic energy of the incident particles, while Ancona and Kezerashvili [17] have shown that the degradation
of sail materials is also due to the dependence of emissivity on temperature. Finally, Pino et al. [18] have analyzed the influence
of wrinkles and creases (which can actually be seen as degrading effects) on the solar sail performance.

In the early 2000s, Rios-Reyes and Scheeres [19] have defined an analytical model for the description of the thrust and
torque generated by a solar sail of arbitrary shape and optical properties, while Dachwald et al. [20, 21] have proposed a
parametric model to describe the degradation of an optical solar sail, in which the time variation of the optical coefficients
is provided as a function of the absorbed radiation dose. Using the latter model, Ref. [22] has derived the optimal control
law with an indirect optimization method, and investigated the effects of different degradation behaviors in an Earth-Mars
transfer. The performance of a degrading solar sail has been analyzed in Ref. [23] in other heliocentric mission cases, such
as a Mercury rendezvous, fast missions to Neptune and to the heliopause, and the generation of artificial Lagrangian points.
Later, McInnes [24] has presented an approximate closed-form solution for solar sail spiral trajectories with film degradation,
starting from the parametric model conceived by Dachwald et al. [20, 21]. In particular, Ref. [24] provides the time evolution
of the solar sail orbital radius in an implicit form, assuming a quasi-circular spiral with a constant sail pitch angle, that is, a
fixed attitude with respect to the current Sun-sail line.

The aim of this Note is to extend the work by McInnes [24], by specializing those results to the case of a Sun-facing solar
sail, that is, a solar sail with a reflective membrane that is always perpendicular to the Sun-spacecraft line. The advantage of a
sail attitude remaining constant relative to the Sun-sail line is that it can be passively maintained through a suitable choice of
the sail shape [25]. In this configuration, a solar sail generates a purely outward radial propulsive acceleration, which makes a
number of heliocentric scenarios possible, such as the maintenance of heliostationary conditions [26], the formation of artificial
collinear Lagrangian points [27–29], or a heliocentric in-orbit repositioning [30]. In particular, this Note gives the closed-form
solution of the heliocentric motion of a Sun-facing solar sail with optical degradation. The orbital radius, the semimajor axis,
the eccentricity, and the in-plane osculating orbit orientation are all explicitly given as a function of the spacecraft angular
position. The availability of an analytical form for the solar sail trajectory represents a very useful tool for mission analysis
purposes, as it considerably reduces the computational cost that would otherwise be required for the simulation of a large
number of possible trajectories.

The Note is organized as follows. The next section extends the results of Ref. [24] to the special case of a Sun-facing
solar sail, and derives the analytical polar form of the spacecraft trajectory. The steady-state solution is then analyzed and
discussed, with an emphasis on the special case of circular parking orbits. After the discussion of an exemplary mission case,
the Note ends with some concluding remarks.

Trajectory analysis
Consider a solar sail-based spacecraft that initially covers a heliocentric (Keplerian) parking orbit of semilatus rectum p0

and eccentricity e0 < 1. The sail deployment occurs at the initial time t = t0 , 0, and the assumption is made that the sail
attitude remains Sun-facing at any time, that is, the reflective membrane is always perpendicular to the Sun-spacecraft line.

Due to the radiation dose, the optical and mechanical properties of the reflective film begin to degrade after the deployment,
so to progressively reduce the propulsive performance of the solar sail. Assume that the sail film degradation is mathematically
described by the parametric model proposed by Dachwald et al. [20, 22, 23]. In a Sun-facing sail, the propulsive acceleration
vector ap is purely radial and may be written by adapting the thrust model discussed in Ref. [24], that is

ap =
β (η + 1)µ�

2 r2
r̂ (1)

where µ� is the Sun’s gravitational parameter, r is the Sun-sail distance, r̂ is the Sun-spacecraft unit vector, β > 0 is the sail
lightness number [31], and η ∈ [0, 1] is the time-varying reflectivity coefficient [24]. The condition η = 1 (or η = 0) corresponds
to the case in which the incident photons are all specularly reflected (or absorbed) by the sail, which therefore behaves like an
ideal mirror (or a black body). According to Refs. [22,23], the time variation of η for a Sun-facing sail can be written as

η̇ = −ε η
(r⊕
r

)2
with η(t0) , η0 = 1 (2)

where r⊕ , 1 au is a reference distance, while

ε =
ln(2)

T
(3)

is a sort of “degradation parameter”, which depends on the sail degradation half-life T > 0, the latter being defined as the
time interval required for the parameter η to halve its initial value η0 [22, 23].

Introduce now a polar reference frame T (O; r, θ), with unit vectors r̂ and θ̂, of which the origin O coincides with the
Sun’s center-of-mass, while θ is the azimuthal angle measured counterclockwise from the initial Sun-sail direction; see Fig. 1.
Because the propulsive acceleration vector is radial, the semilatus rectum p is a constant of motion (i.e., p ≡ p(t0) , p0), and
the spacecraft dynamics is described by the following system of nonlinear differential equations

ṙ = u , θ̇ =

√
µ� p0

r2
, u̇ = −µ�

r2
+
µ� p0
r3

+ ap (4)
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Figure 1 Reference frame and sail propulsive acceleration vector.

where u is the radial velocity, while ap , ‖ap‖ is the magnitude of the propulsive acceleration vector of Eq. (1). Note also that
the term µ� p0/r

3 represents the centrifugal acceleration in the case of purely radial thrust (in fact,
√
µ� p0 is the constant

specific angular momentum of the spacecraft orbit). The initial conditions are

r(t0) , r0 =
p0

1 + e0 cos ν0
, θ(t0) = 0 , u(t0) , u0 =

√
µ�
p0

e0 sin ν0 (5)

where ν0 ∈ [0, 2π) rad is the initial true anomaly; see Fig. 1.
The system of Eqs. (2) and (4) may be conveniently rewritten by using θ as the independent variable. To that end, consider

the Bürdet-Ferrandiz regularization scheme [32–35], and introduce the dimensionless variable

ρ ,
p0
r
− 1 (6)

Note that ρ ≡ e cos ν, where e and ν are the eccentricity and true anomaly of the sail osculating orbit, respectively. In other
words, the dimensionless variable ρ represents the projection of the osculating orbit eccentricity vector e along the radial unit
vector r̂. With the aid of Eq. (6), Eqs. (2) and (4)-(5) become

ρ′′ + ρ+
β (1 + η)

2
= 0 (7)

η′ + λ η = 0 (8)

ρ(θ0) = e0 cos ν0 , ρ′(θ0) = −e0 sin ν0 , η(θ0) = 1 (9)

where the prime symbol denotes a derivative taken with respect to θ, while

λ ,
ε r2⊕√
µ� p0

≡ ln(2) r2⊕
T
√
µ� p0

(10)

is a dimensionless positive constant, which is typically less than 1. For example, assuming a sail half-life of one year [24] and
a semilatus rectum of the parking orbit of one astronomical unit, Eq. (10) gives a value of λ of about one tenth.

Equations (7)-(9) can be solved using standard methods to obtain the variation of {ρ, η} with respect to θ, and the result
is

ρ = c1 cos θ + c2 sin θ − β

2

(
1 +

e−λ θ

1 + λ2

)
(11)

η = e−λ θ (12)

where {c1, c2} are two constants of integration, given by

c1 = e0 cos ν0 +
β
(
2 + λ2

)
2 (1 + λ2)

, c2 = − β λ

2 (1 + λ2)
− e0 sin ν0 (13)

The polar form of the solar sail trajectory, that is, the function r = r(θ), can be derived from Eqs. (6) and (11) as

r =
p0

1 + c1 cos θ + c2 sin θ − β

2

(
1 +

e−λ θ

1 + λ2

) (14)
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while the radial (u) and azimuthal (v) components of the spacecraft velocity are given by

u = −
√
µ�
p0
ρ′ , v =

√
µ� p0

r
≡
√
µ�
p0

(1 + ρ) (15)

where

ρ′ = c2 cos θ − c1 sin θ +
β λ e−λ θ

2 (1 + λ2)
(16)

The closed form expression (14) of the propelled trajectory extends the results by McInnes [24], which provides an implicit
solution when the sail pitch angle is constant, to the special case of a Sun-facing sail.

Using Eq. (15) for the velocity components, it may be verified that e · θ̂ = ρ′, from which

e = ρ r̂ + ρ′ θ̂ (17)

The semimajor axis and the eccentricity of the osculating orbit may therefore be written as

a =
p0

1− ρ2 − (ρ′)2
, e =

√
ρ2 + (ρ′)2 (18)

The orientation of the osculating orbit depends on the angle ω between the direction of vector e and the initial Sun-sail line;
see Fig. 2. From the figure, the angle ω is given by

�

r

e

�
'�

�

r̂�̂

initial Sun-sail line

Figure 2 Eccentricity vector components and angle ω.

ω = θ + arctan

(
ρ′

ρ

)
≡ θ + arctan

 c2 cos θ − c1 sin θ +
β λ e−λ θ

2 (1 + λ2)

c1 cos θ + c2 sin θ − β

2

(
1 +

e−λ θ

1 + λ2

)
 (19)

Finally, the sail true anomaly ν along the osculating orbit is simply ν = θ − ω.
For exemplary purposes, the variation of {a, e, ω, η} with θ is shown in Fig. 3 when p0 = 1 au, e0 = 0, β = (1 mm/s2)/(µ�/r

2
⊕) '

0.1686, and T = 1 year. Note that this case is consistent with the deployment of a medium-high performance solar sail on a
parabolic escape trajectory from the Earth, with the simplifying assumption that the planet’s orbit is circular.

Steady-state solution

When the flight time (or the azimuthal angle) approaches infinity, the sail reflectivity η → 0. In other terms, after a
sufficiently long interval, which depends on the sail degradation half-life T , η is smaller than a positive threshold value ξ � 1,
and may be neglected. Recalling Eq. (12), when

θ ≥ θ̃ , − ln ξ

λ
(20)

the solar sail trajectory (14) reduces to

r ' r̃ , p0
1 + c1 cos θ + c2 sin θ − β/2 (21)

while Eqs. (18) yield the steady-state osculating orbit semimajor axis and eccentricity as

a ' ã , p0
1− ẽ2 , e ' ẽ ,

√
β2/4− β (c1 cos θ + c2 sin θ) + c21 + c22 (22)

where {c1, c2} are given by Eqs. (13). Note that Eq. (21) can also be obtained by observing that, when η = 0, the solar sail
covers a non-Keplerian elliptic orbit where the equivalent Sun’s gravitational parameter is µ� (1− β/2).

When the degradation process has finished, it is also possible to find an analytical expression of the extremes of the
osculating orbit eccentricity ẽ (or semimajor axis ã). In fact, enforcing the necessary condition ∂ẽ/∂θ = 0 into the second of
Eqs. (22), the maximum and minimum values of ẽ are given by

ẽmax , max{ẽ} =
√
c21 + c22 +

β

2
, ẽmin , min{ẽ} =

∣∣∣∣√c21 + c22 −
β

2

∣∣∣∣ (23)
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Figure 3 Sail trajectory characteristics when p0 = 1au, e0 = 0, β = (1mm/s2)/(µ�/r2⊕), and T = 1year.

which are reached when

θ = θ̃ , arctan

(
c2
c1

)
+ k π with k ∈ N ∩ k ≥ kmin ,

⌈
1

π

[
θ̃ − arctan

(
c2
c1

)]⌉
(24)

where d�e is the ceiling function. For example, assuming ξ = 10−2 and considering the simplified case when p0 = 1 au,

e0 = 0, β = 0.1686, and T = 1 year, Eq. (20) gives θ̃ ' 41.7446 rad, whereas Eq. (24) gives kmin = 14. Figure 4 shows the
variation of ẽmax and ẽmin as a function of the initial true anomaly ν0 for a medium-high performance [Fig. 4(a)] and for a
low performance [Fig. 4(b)] solar sail, assuming T = 1 year and a parking orbit coincident with the actual Earth’s heliocentric
orbit (i.e., p0 = 0.9997208 au and e0 = 0.0167086).

Circular parking orbit

In the special case when e0 = 0, the coefficients c1 and c2 are independent of the parking orbit characteristics (i.e., the
initial orbital radius r0). In fact, Eqs. (13) yield

c1 =
β
(
2 + λ2

)
2 (1 + λ2)

, c2 = − β λ

2 (1 + λ2)
(25)

while Eqs. (23) reduce to

ẽmax =
β

2

√4 + λ2

1 + λ2
+ 1

 , ẽmin =
β

2

√4 + λ2

1 + λ2
− 1

 ≡ ẽmax − β (26)

that is, ẽmax and ẽmin are both proportional to the sail lightness number β. In particular, in the limiting case of time-invariant
reflectivity, that is, when T → +∞ and {ε, λ} → 0+, Eqs. (26) give ẽmax → 3β/2− and ẽmin → β/2+. On the other hand,
when the reflective film degrades immediately after the sail deployment, that is, when T → 0+ and {ε, λ} → +∞, Eqs. (26)
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Figure 4 Variation of ẽmax (solid line) and ẽmin (dashed line) as a function of ν0 when p0 = 0.9997208 au, e0 = 0.0167086, and T = 1year.

give ẽmax → β− and ẽmin → 0+. This behaviour is better illustrated in Fig. 5, which shows the variation of the ratios ẽmax/β
and ẽmin/β with λ ∈ [0, 5] for a circular parking orbit.
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The previous mathematical model is useful to obtain an estimation of the transfer performance in a heliocentric mission
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case of a solar sail with a Sun-facing attitude, and considering the optical degradation of the reflective film. A possible mission
application is discussed in the next section.

Mission applications
Consider a solar sail heliocentric transfer between a circular parking orbit of radius r0 and a closed target orbit of given

perihelion radius rp (or aphelion radius ra). In this case p0 ≡ r0 and, bearing in mind Eqs. (18), the expressions of rp and ra
are

rp =
r0

1 +
√
ρ2 + (ρ′)2

, ra =
r0

1−
√
ρ2 + (ρ′)2

(27)

where ρ and ρ′ are given by Eqs. (11) and (16), respectively, while {c1, c2} are obtained from Eqs. (25). For a given value of
T [or λ, see Eq. (10)], the ratio rp/r0 (or ra/r0) is a function of the pair {θ, β}.

Figure 6 shows the variation of rp/r0 and ra/r0 as a function of β ∈ [0, 1] and θ ∈ [0, 360] deg assuming a sail half-life
T = 1 year (or λ ' 0.1103). The grey areas in the figure correspond to the pairs {θ, β} such that the spacecraft reaches an
escape condition (i.e., e ≥ 1). As expected, the minimum allowable value of rp/r0 is equal to 0.5.
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Figure 6 Osculating orbit perihelion and aphelion radius for a circular parking orbit when T = 1year.

For exemplary purposes, consider a transfer from a circular parking orbit with r0 = 1 au to the orbit of Mars, which may
be approximated to a circle with a radius of 1.523 au. The minimum value of the sail lightness number is approximately equal
to 0.18 when the polar angle is slightly less than 180 deg; see Fig. 6(a). Likewise, in a simplified flyby mission to Venus (which
is assumed to cover a circular orbit of radius 0.723 au), Fig. 6(b) gives a minimum value of β of about 0.2.

In both the previous cases, the sensitivity of the transfer performance to the sail film degradation half-life T (or λ) can be
analyzed with the aid of Fig. 7. As expected, Fig. 7 shows that, for a given value of θ, the required lightness number decreases
as T increases.
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Figure 7 Variation of β with θ and T in a flyby mission.
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Conclusions
Closed-form solutions for the motion of a Sun-pointing solar sail with optical degradation have been discussed. In particular,

the solar sail trajectory has been obtained in polar form, and the time variation of the orbital parameters has been derived
as a function of the polar angle. In this context, the expression of the asymptotic (steady-state) spacecraft trajectory allows
the maximum and minimum values of the osculating orbit eccentricity to be calculated in analytical form. In the simplified
case of circular parking orbit, the solution is independent of the initial conditions and, in this case, the transfer performances
in two typical interplanetary missions have been discussed with a graphical approach. It has been shown that the lightness
number and the degradation half-life may be used as design parameters for a realistic solar sail-based mission scenario.
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