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EXISTENCE AND STABILITY OF STANDING WAVES FOR SUPERCRITICAL
NLS WITH A PARTIAL CONFINEMENT

JACOPO BELLAZZINI, NABILE BOUSSAÏD, LOUIS JEANJEAN, AND NICOLA VISCIGLIA

Abstract. We prove the existence of orbitally stable ground states to NLS with a
partial confinement together with qualitative and symmetry properties. This result
is obtained for nonlinearities which are L2-supercritical, in particular we cover the
physically relevant cubic case. The equation that we consider is the limit case of the
cigar-shaped model in BEC.

1. Introduction

The aim of this work is the study of the existence, stability, qualitative and sym-
metry properties of standing waves associated with the following Cauchy problem:

(1.1)

{

i∂tu +∆u − (x21 + x22)u = −u|u|p−1, (t,x1,x2,x3) ∈R ×R3,

u(0,x) = ϕ,

with 1 + 4/3 ≤ p < 5. Notice that the range of nonlinearities are respectively L2-
supercritical and H1-subcritical. It is well known that in this range the ground
states of the translation invariant Nonlinear Schrödinger Equation (NLS), i.e. (1.1)
where we remove the term (x21 + x

2
2)u, are unstable by blow-up, see [8, 14]. As we

shall see the situation changes completely if we add a confinement.
Note that the physically relevant cubic nonlinearity p = 3 is covered by our as-

sumptions. Cubic NLS, often referred as Gross-Pitaevskii equation (GPE), is very
important in physics. NLS when p = 3 with an external trapping potential gives
a good description for the Bose-Einstein condensate (BEC). Bose-Einstein conden-
sate consists in a macroscopic ensemble of bosons that at very low temperature oc-
cupy the same quantum states. Such kind of condensate has been experimentally
observed only in the last two decades [1] and this fact has stimulated a wave of
activity on both the theoretical and the numerical side. In the experiment BEC
is observed in presence of a confined potential trap and its macroscopic behavior
strongly depends on the shape of this trap potential. From the mathematical side,
the properties of BEC at temperature much smaller than the critical temperature
can be well described by the three-dimensional Gross-Pitaevskii equation (GPE) for
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the macroscopic wave function u given by, see. e.g. [23], [16]

(1.2) i~∂tu +
~2

2m
∆u −W (x1,x2,x3)u =NU0|u|2u, (t,x1,x2,x3) ∈R ×R3

where ~ is the reduced Plank constant, m the particle mass, N the number of parti-
cles, U0 is a constant accounting for the interaction among the particles and W an
external potential.
A rigorous derivation of GPE from the N body quantum system of particles has

been deeply investigated in recent years [18, 17, 32, 31] as well as numerical analysis
associated to the dynamics of GPE, see e.g [4]. GPE incorporates information about
the trapping potential as well as the interaction among the particles. Repulsive
interactions correspond to the case U0 > 0, while attractive interactions to the case
U0 < 0. The trapping potential in experiments is usually harmonic, i.e. W = ω2

x1
x21 +

ω2
x2
x22 +ω

2
x3
x23 with ωx1 , 0,ωx2 , 0,ωx3 , 0. In this case it is known, see [21], that

there exist orbitally stable solitary waves. We show that in the intermediate case of
partial confinement stable solutions still exist. Our assumptions cover the case of
Bose-Einstein condensate with attractive interactions and partial confinement. The
latter includes the limit case of the so-called cigar-shaped model, see [3].
To our knowledge existence and stability of standing states for BEC in presence

of a partial confinement has not been studied in the literature.

In order to go further and to present our main results, we fix some definition that
will be useful in the sequel. We consider

H =
{

u ∈H1(R3;C) s.t.

∫

R3
(x21 + x

2
2)|u(x1,x2,x3)|2dx <∞

}

where x = (x1,x2,x3) ∈R3. We also introduce

E(u) =
1
2
‖u‖2

Ḣ
− 1
p +1

∫

R3
|u(x1,x2,x3)|p+1dx,

where

‖u‖2
Ḣ
=

3
∑

i=1

∫

R3
|∂xiu(x1,x2,x3)|

2dx +

∫

R3
(x21 + x

2
2)|u(x1,x2,x3)|2dx.

We shall need the following sets:

(1.3) Sr =
{

u ∈H s.t.

∫

R3
|u(x1,x2,x3)|2dx = r2

}

, BR = {u ∈H s.t. ‖u‖2
Ḣ
≤ R2}.

Following [15] a first idea to construct orbitally stable standing waves to (1.1) is to
consider the following constrained minimization problems

Ir = inf
u∈Sr

E(u)

and to try to prove the compactness of the minimizing sequences up to the action
of the group of the symmetries. If one assumes that 1 < p < 1 + 4/3 then Ir > −∞
for any r > 0 and this approach by global minimization would indeed work. On the
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contrary in the case p > 1 + 4/3, we have Ir = −∞ for any r > 0. Indeed notice that if
we fix ψ ∈ C∞0 (R3) and we define ψλ(x) = λ

3/2ψ(λx) then

‖ψλ(x)‖L2 = ‖ψ(x)‖L2 and E(ψλ) = λ2
∫

R3
|∇xψ|2dx−λ

3(p−1)
2 ‖ψ‖p+1

Lp+1
+
1

λ2

∫

R3
(x21+x

2
2)|ψ|2dx

and hence E(ψλ)→−∞ as λ→∞.
For this reason and since we are assuming that 1 + 4/3 ≤ p < 5 we shall construct

orbitally stable solutions by considering a suitable localized version of the mini-
mization problems above. More precisely for every given χ > 0 we consider the
following localized minimization problems:

(1.4) J
χ
r = inf

u∈Sr∩Bχ
E(u),

recall definitions (1.3). Clearly Jχr > −∞ but it is worth noticing that in principle it
could be Sr ∩Bχ = ∅, as a consequence of the following computation:

2

∫

R3
|u|2dx =

∫

R3
|u|2div(x1,x2)dx = −

∫

R3
(∂x1(|u|

2)x1 +∂x2(|u|
2)x2)dx

≤ 2‖∇x1,x2u‖L2

√

∫

R3
(x21 + x

2
2)|u|2dx ≤ ‖u‖2Ḣ .

The first aim of this work is to show that for every χ > 0 there exists r0 = r0(χ) > 0
such that Sr ∩ Bχ , ∅ for r < r0 and moreover all minimizing sequences to Jχr are
compact, up to the action of translations w.r.t. x3, provided that r < r0. In order to
guarantee that the minimizers of (1.4) are critical points of E restricted on Sr it is
also necessary to show that they do not belong to the boundary of Bχ ∩ Sr . Then it
is classical, see for example [27, Proposition 14.3], that for any minimizer u there
exists λ = λ(u) ∈ R such that the Euler-Lagrange equation

−∆u + (x21 + x
2
2)u − u|u|p−1 = λu

holds. The associated standing wave is then given by e−iλtu(x). Concerning the
stability note that the Cauchy wellposedness in H is established in [2]. For the sake
of completeness, we recall the notion of stability of a set M ⊂ H under the flow
associated with (1.1) namely

∀ε > 0, ∃δ > 0, inf
v∈M
‖ϕ − v‖H < δ =⇒ sup

t∈R
inf
v∈M
‖u(t)− v‖H < ε,

where the norm || · ||H is given by

‖v‖2H = ‖v‖2
Ḣ
+

∫

R3
|v(x1,x2,x3)|2dx.

We can now state our first result.

Theorem 1. Let 1+4/3 ≤ p < 5 be fixed. For every χ > 0 there exists r0 = r0(χ) > 0 such
that:

(1) Sr ∩Bχ , ∅, ∀r < r0;
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(2) we have the following inclusions:

∅ ,Mχ
r ⊂ Bχr , ∀r < r0

where

Mχ
r = {u ∈ Sr ∩Bχ s.t. E(u) = Jχr };

(3) the setMχ
r is stable under the flow associated with (1.1) for any r < r0.

Remark 1.1. The core of the proof of the stability will follow from the classical argument
by [15] once we obtain the following: for all r < r0, for all minimizing sequence (un) ⊂
Sr ∩ Bχ such that limn→∞E(un) = J

χ
r there exists (kn) ⊂ R such that (un(x1,x2,x3 − kn))

is compact in H . Notice that once this is established then in particular it implies the
existence of minimizers.

Remark 1.2. By the previous statement (more precisely by the second property) we can
deduce that for any couple χ1,χ2 > 0 we have

Mχ1
r =Mχ2

r , ∀r << 1.

This shows that the above minimizers are independent of choice of χ for small r.

Remark 1.3. The main difficulty in Theorem 1 is the lack of compactness, due to the
translation invariance w.r.t. x3. Indeed if one assumes that the potential is fully har-
monic, namely that x21 + x

2
2 is replaced by x21 + x

2
2 + x

2
3 then one benefits from the com-

pactness of the inclusion of H (with x21 + x
2
2 + x

2
3) into L

q(R3) where q ∈ [2,6) see for
example [40, Lemma 3.1] and the proof of Theorem 1 would be rather simple. We over-
come this lack of compactness by using a concentration-compactness argument, that we
have to adapt in a suitable localized minimization problem (indeed global minimizers
cannot exist because of the L2 supercritical character of the nonlinearity). We believe that
this situation is quite new in the literature.

Remark 1.4. In Lemma 3.1 we prove that

inf
Sr∩Bχr/2

E(u) < inf
Sr∩(Bχ\Bχr )

E(u), ∀r < r0.

where r0 = r0(χ) > 0 is given in Theorem 1. Then E has a geometry of local minima. It
is important to observe that this geometry still holds when (x21 + x

2
2) in (1.1) is replaced

by a general potential V (x). In particular it is the case when V ≡ 0 (no potential) or
V (x) = x21 + x

2
2 + x

2
3 (full harmonic potential). Actually this geometry only depends on

the assumption that p ≥ 1 + 4/3. Now the fact that the geometry implies the existence
of a local minimizer depends on a balance between the potential and the strength of the
nonlinear term. If V ≡ 0 then it is well known that, for 1 + 4/3 < p < 5, no local mini-
mizer exists (in practise any minimizing sequence is vanishing). On the contrary when
V (x) = x21 +x

2
2+x

2
3, as already indicated, a local minimizer exists for any 1+4/3 ≤ p < 5.

In between, namely when only a partial confinement is present, a restriction on p is nec-
essary. This is not apparent in the statement of Theorem 1 but it is specified in Remark
1.9. Actually, what seems to be an essential requirement, is that the power p is subcrit-
ical with respect to the set of variables bearing no potential. This leads to the restriction
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p < 1+4/(n−d) in Remark 1.9 and at the level of the proof this condition is used to estab-
lish the equivalent of Lemma 3.2. Roughly speaking the larger is the number of dimension
of confinement, the larger can be the interval of admissible p ∈R.
The nonlinearity is thus supercritical as the energy functional is not bounded from below.
It is supercritical in the dynamical sense as well. In [13], for full confinement, the power
p = 1+4/3 is critical as the Gagliardo-Nirenberg level is a threshold for global wellposed-
ness. Even though the equation has no scaling invariance, it can be scaled asymptotically
to bear the same criticality levels as the usual nonlinear Schrödinger equation.

Remark 1.5. Our results should be compared to the corresponding ones for NLS posed
on R×M2, whereM2 is a 2d compact manifold, see [37]. In the latter case, there exists a
special family of solutions that depend only on the dispersive variable R and that can be
extended in a trivial way on the transverse directionM2.
Notice that in our case the situation is different, even if the partial confinement provides

some compactness analogously to the R ×M2 setting. The main point is that in our
situation we have infinite volume and then the one line solitons cannot be extended in
a trivial way on the whole space, by preserving the property of being finite energy. In
particular is it is not clear that standing waves solutions exist neither that the approach
of Weinstein (see [38], [35]), based on a linearization argument, can work to establish the
stability.

Our second result provides properties of the minimizers obtained in Theorem 1.

Theorem 2. Every minimizer obtained in Theorem 1 (that is in principle C-valued) is of
the form eiθf (x1,x2,x3) where f is a positive real valued minimizer and θ ∈R. Moreover
for some k ∈ R, f (x1,x2,x3 − k) is radially symmetric and decreasing w.r.t. (x1,x2) and
w.r.t. x3. In addition for every fixed χ > 0, for every r < r0(χ) and for every u ∈Mχ

r there
exists λ = λ(u) > 0 such that

−∆u + (x21 + x
2
2)u − |u|p−1u = λu, on R

3

with the estimates:

(1.5) (1−Crp−1)Λ0 ≤ λ < Λ0

where C > 0 is an universal constant and Λ0 = inf( spec (−∑3
i=1∂

2
xi
+ (x21 + x

2
2))).

Moreover, we have

(1.6) sup
u∈Mχ

r

‖u(x1,x2,x3)−ϕ0(x3)Ψ0(x1,x2)‖Ḣ = o(r)

where Ψ0(x1,x2) is the unique normalized positive eigenvector of the quantum harmonic

oscillator −∑2
i=1∂

2
xi
+ x21 + x

2
2 and

ϕ0(x3) =

(∫

R2
u(x1,x2,x3)Ψ0(x1,x2)dx1dx2

)

.

Remark 1.6. The existence of stable standing waves of a L2 supercritical nonlinarity had
already been observed in [19, 21] and more recently in [5, 20, 34], under compactness
assumptions corresponding to complete confinement. In particular in [21, Theorem 2],
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see also [19] for an earlier partial result, the authors consider the ground state solutions
for the equation

(1.7) −∆u +V (x)u − |u|p−1u = λu, u ∈H1(R3)

and they show that when 1 < p < 5 the ground states are orbitally stable provided that
λ ∈ (λ∗,λ1), where λ1 corresponds to the bottom of the spectrum of the operator −∆+V (x)
(which in [21] is an eigenvalue). Likely the solutions of Theorem 1, which we recall
satisfy (1.5), correspond to the ground states of (1.7). Note also that in [22] it is proved
on the contrary that the ground states of (1.7), when λ is sufficiently close to −∞, are
unstable. In light of the forthcoming Remark 1.10 we do believe these solutions could be
characterized as mountain pass critical points on Sr , for r > 0 small.

Remark 1.7. The fact that complex valued minimizers are real valued modulo the mul-
tiplication by a complex number of modulus 1, is well–known in the literature (see
[14, 25]). However the proof that we give here is, we believe, shorter and less involved
than the previous ones. We also underline that the moving plane technique should pro-
vide the symmetry result, nevertheless we propose an alternative argument based on sym-
metrization that as far as we can see has an independent interest, for instance in the
context of systems.

Remark 1.8. Notice that in view of the estimate on the Lagrange multipliers λ given in
Theorem 2, we can, somehow, consider our results as enlighting a bifurcation phenomena

from Λ0. Notice however that Λ0 is not an eigenvalue for −∑3
i=1∂

2
xi
+ (x21 +x

2
2), and thus

it is unclear how to get an existence result via a standard bifurcation argument. Of course
the situation is completely different in the case of a complete confinement where we have
a compact resolvent and hence a discrete spectrum.

In addition to the properties given in Theorem 2 we can show that our solutions
are ground state in the following sense.

Definition 1.1. Let r > 0 be arbitrary, we say that u ∈ Sr is a ground state if

E′ |Sr (u) = 0 and E(u) = inf{E(v) s.t. v ∈ Sr ,E′ |Sr (v) = 0}.

We have

Theorem 3. Let 1 + 4
3 < p < 5. Then for any fixed χ > 0 and sufficiently small r > 0, the

local minimizers u ∈Mχ
r are ground states.

Remark 1.9. It is worth noticing that our main results can be easily generalized. First of

all instead of the confinement (x21+x
2
2), one can consider any potentialV

(

√

x21 + x
2
2

)

where

V : (0,∞)→ R is stricly increasing and unbounded. Moreover by a direct adaptation of
our proofs we can extend our results as to cover the general situation where

i∂tu +∆u − (x21 + ...+ x2d )u = u|u|p−1, (t,x1, ...,xd ,xd+1, ...,xn) ∈R ×Rd ×Rn−d .
Actually assuming that

1+4/n < p <min{1+4/(n − d),1+4/(n − 2)},
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one can construct orbitally stable standing waves. In addition these standing waves enjoy
the symmetry

w(x1, ...,xn) = w̃(x1, ...,xd ,xd+1 − kd+1, ....,xn − kn),
for some (kd+1, ....,kn) ∈Rn−d and w̃ is radially symmetry and decreasing w.r.t. to the first
d variables and the least n − d variables separately.

Remark 1.10. We end this introduction by mentioning an open problem related to our
results. The solutions found in Theorem 1 appear as local minimizers of E on Sr and
we recall that E is unbounded from below on Sr . This indicates that E has a so-called
mountain-pass geometry on Sr . Namely it holds that

γ(c) := inf
g∈Γc

max
t∈[0,1]

E(g(t)) > Jχr

where

Γc =
{

g ∈ C([0,1],Sr ) s.t. g(0) ∈Mχ
r ,g(1) ∈ Sr\Bχ,E(g(1)) < Jχr

}

.

An interesting, but we suspect difficult, question would be to prove the existence of a
critical point for E at the level γ(c). In that direction we refer to [5, 6, 26] where a
constrained critical point is obtained by a minimax procedure set on a constraint. If this
is true this would establish the existence of at least two critical points on Sr for r > 0
small.

Notation In the sequel we shall use, without any further comment, the following
notations as well as the ones introduced along the presentation above:

∫

f dx =

∫

R3
f (x1,x2,x3)dx1dx2dx3,

∫

gdx1dx2 =

∫

R2
g(x1,x2)dx1dx2,

∫

hdx3 =

∫

R

h(x3)dx3.

We shall also denote by ∇x the full gradient w.r.t. x1,x2,x3, by ∇x1,x2 the partial gra-
dient w.r.t. x1,x2.

Acknowlegments The authors thanks R. Carles, A. Farina, J. Van Schaftingen,
C.A. Stuart for very useful discussions and suggestions. In particular we thank C.A.
Stuart [36] for providing us with elements to simplify the original proof of Theorem
4. We are also indebted to the referees whose comments helped to significantly
improve our manuscript.

2. Spectral theory

For the sake of completeness, we provide a proof of the lemma below even though
it is a classical statement. Moreover, the proof will be useful for the last assertion
of Theorem 2. The aim is to compare the quantities associated with two spectral
problems defined respectively in 3d and in 2d:

Λ0 = inf
∫

|w|2dx=1

(

∫

|∇xw|2dx +
∫

(x21 + x
2
2)|w|2dx

)
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and

λ0 = inf
∫

|ψ|2dx1dx2=1

(

∫

|∇x1,x2ψ|
2dx1dx2 +

∫

(x21 + x
2
2)|ψ|2dx1dx2

)

.

Note that the spectrum of the 1-dimensional quantum harmonic oscillator −∂2x1 +
x21 is given by the odd integers (all simple) and the corresponding eigenspaces are
generated by Hermite functions. In the 2-dimensional case, this provides that λ0 =
2, it is simple and a corresponding minimizer is given by the gaussian function

e−(x
2
1+x

2
2).

Lemma 2.1. We have the following equality:

λ0 = Λ0.

Proof. We introduce Ψj(x1,x2) and λj for j ≥ 0 such that

−∆x1,x2Ψj + (x21 + x
2
2)Ψj = λjΨj ,

∫

|Ψj |2dx1dx2 = 1,

λj ≤ λj+1, j = 0,1,2, .....

It is well-known that (Ψj ) is a Hilbert basis for L2(R2). Using Fourier decomposition
w.r.t. this basis in the first two variables (x1,x2) we get

w(x) =
∑

j≥1
Ψj(x1,x2)ϕj(x3).

Notice also that if ‖w‖2 = 1 then

1 =
∑

j≥0
(

∫

|Ψj |2dx1dx2)(
∫

|ϕj |2dx3) =
∑

j≥0

∫

|ϕj |2dx3.

Moreover we have
∫

|∇xw|2dx +
∫

(x21 + x
2
2)|w|2dx =

∫

(−∆x1,x2w+ (x21 + x
2
2)w)w̄dx +

∫

|∂x3w|
2dx

=
∑

j≥0
λj

∫

|ϕj |2dx3 +
∑

j≥0

∫

|∂x3ϕj |
2dx3 ≥ λ0

and hence
Λ0 ≥ λ0.

To prove the other inequality, we choose

wn(x) =Ψ0(x1,x2)ϕn(x3),

∫

|ϕn|2dx3 = 1

and notice that arguing as above we get
∫

|∇xwn|2dx +
∫

(x21 + x
2
2)|wn|2dx = λ0

∫

|ϕn|2dx3 +
∫

|∂x3ϕn|
2dx3

= λ0 +

∫

|∂x3ϕn|
2dx3.
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We conclude by choosing properly ϕn such that limn→∞
∫

|∂x3ϕn|2dx3 = 0. Notice
that this choice can be done since

inf
∫

|ϕ|2dx3=1

∫

|∂x3ϕ|
2dx3 = 0. �

3. Proof of Theorem 1

The proof is split in several steps. The main point is to obtain the following
compactness. For all r < r0, for any minimizing sequence (un) ⊂ Sr ∩ Bχ such that
limn→∞E(un) = J

χ
r there exists (kn) ⊂ R such that (un(x1,x2,x3− kn)) is compact in H .

Notice as well that Lemma 3.1 below implies the second point of Theorem 1.

3.1. Local Minima Structure for E(u) on Sr .

Lemma 3.1. Let 1 + 4/3 ≤ p < 5 be fixed, then for every χ > 0 there exists r0 = r0(χ) > 0
such that:

(3.1) Sr ∩Bχ , ∅, ∀r < r0;

(3.2) inf
Sr∩Bχr/2

E(u) < inf
Sr∩(Bχ\Bχr )

E(u), ∀r < r0.

Proof. Let u0 ∈ H with ||u0||Ḣ = χ and let r0 := ||u0||L2 . Then the fact that Sr ∩ Bχ ,
∅ for any 0 < r ≤ r0 follows by considering ur = r

r0
u0. To prove (3.2) we borrow

some arguments from [26]. Notice that we have the following Gagliardo-Sobolev
inequality

(3.3) ‖u‖p+1
Lp+1
≤ C‖u‖

5−p
2

L2
‖u‖

3p−3
2

Ḣ
,

(see for example [14]) and hence














E(u) ≥ 1
2‖u‖2Ḣ −Cr

5−p
2 ‖u‖

3p−3
2

Ḣ
= fr(‖u‖Ḣ ), ∀u ∈ Sr

E(u) ≤ 1
2‖u‖

2
Ḣ
= gr(‖u‖Ḣ )), ∀u ∈ Sr

where
{

fr (s) =
1
2s

2 −Crǫs2+δ
gr(s) =

1
2s

2

and

ǫ = ǫ(p) =
5− p
2

> 0, δ = δ(p) =
3p − 7

2
≥ 0.

Notice that it is sufficient to prove the existence of r0 = r0(χ) > 0 such that

gr(χr/2) < inf
s∈(χr,χ)

fr(s), ∀r < r0(χ).

In fact this inequality implies:

inf
Sr∩Bχr/2

E(u) < inf
Sr∩(Bχ\Bχr )

E(u).
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Notice that fr(s) =
1
2s

2(1−Crǫsδ) > 3
8s

2 for s ∈ (0,χ) and for r < r0(χ) << 1, and hence

inf
s∈(χr,χ)

fr(s) ≥
3
8
χ2r2.

We conclude since

gr(χr/2) =
1
8
χ2r2. �

3.2. No Vanishing for Minimizing Sequences.

Lemma 3.2. Let 1 < p < 5 be fixed, then for every χ > 0 there exists r0 = r0(χ) > 0 such
that

inf
Sr∩Bχ

E(u) < r2
Λ0

2
, ∀r < r0.

Proof. First note that Λ0 = λ0 by Lemma 2.1. Now we set

w(x) =Ψ0(x1,x2)ϕ(x3),

∫

|ϕ|2dx3 = r2

with ϕ(x3) to be chosen later. Notice that

E(w) =
1
2

∫

|∂x3ϕ|
2dx3 +

1
2
λ0

∫

|ϕ|2dx3 −
1

p +1
(

∫

|Ψ0|p+1dx1dx2)(
∫

|ϕ|p+1dx3)

=
1
2

∫

|∂x3ϕ|
2dx3 +

Λ0

2
r2 − 1

p +1
(

∫

|Ψ0|p+1dx1dx2)(
∫

|ϕ|p+1dx3).

In order to conclude it is sufficient to choose ϕ such that:

• 1
2

∫

|∂x3ϕ|2dx3 −
1
p+1 (

∫

|Ψ0|p+1dx1dx2)(
∫

|ϕ|p+1dx3) < 0.

• ‖Ψ0(x1,x2)ϕ(x3)‖2Ḣ ≤ χ
2.

In order to get the existence of ϕ(x3) we fix ψ(x3) such that
∫

|ψ(x3)|2dx3 = r2 and
we introduce ψµ(x3) =

√
µψ(µx3). We claim that there exists µ0 > 0 such that ψµ(x3)

satisfies all the conditions above for every µ < µ0. Concerning the first condition
notice that

1
2

∫

|∂x3ψµ|
2dx3 −

1
p +1

(

∫

|Ψ0|p+1dx1dx2)(
∫

|ψµ|p+1dx3)

=
1
2
µ2

∫

|∂x3ψ|
2dx3 −

1
p +1

µ
p−1
2 (

∫

|Ψ0|p+1dx1dx2)(
∫

|ψ|p+1dx3).

In particular, since 1 < p < 5, the first condition follows for every µ << 1. Concerning
the second condition notice that

‖Ψ0(x1,x2)ψλ(x3)‖2Ḣ =

∫

|∂x3ψµ|
2dx3 +λ0

∫

|ψµ|2dx3 = µ2
∫

|∂x3ψ|
2dx3 +λ0r

2

and hence we conclude by choosing µ small enough and r0 = r0(χ) such that 2λ0r
2
0 <

χ2. �
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Lemma 3.3. Let χ > 0 and r0(χ) > 0 be as in Lemma 3.2. Let r < r0 and (un) be a
sequence such that

un ∈ Sr ∩Bχ, lim
n→∞

E(un) = inf
u∈Sr∩Bχ

E(u) = Jχr ,

then

(3.4) liminf
n→∞

∫

|un|p+1dx > 0.

Proof. Assume by contradiction that (3.4) is false then we get:

J
χ
r = lim

n→∞
1
2

∫

|∇xun|2dx +
1
2

∫

(x21 + x
2
2)|un|2dx ≥ r2

Λ0

2
.

Notice that it gives a contradiction with Lemma 3.2. �

We can now prove the non-vanishing of the minimizing sequences up to trans-
lation w.r.t. to the direction x3. This follows from the next lemma, the proof of
which is classical (see for instance [7] where a similar argument is used to prove the
existence of vortex), however we keep it in order to be self-contained.

Lemma 3.4. Assume that sup(‖un‖L2 + ‖un‖Ḣ) <∞ and there exists ε0 > 0 such that

‖un‖Lp+1 > ε0, ∀n
then for a sequence (zn) ∈R we have

un(x1,x2,x3 − zn)⇀ ū , 0, in H.

Proof. By interpolation we get

(3.5) ‖un‖L2+4/3 > η0 > 0, ∀n.
Moreover we have

‖u‖2+
4
3

L2+
4
3 (Tk )
≤ C‖u‖

4
3

L2(Tk )
‖u‖2

H1(Tk )

where
Tk =R

2 × (k,k +1), k ∈Z
and hence by taking a sum over k ∈Z we get:

‖u‖2+
4
3

L2+
4
3
≤ C(sup

k
‖u‖L2(Tk ))

4
3 ‖u‖2

H1 .

Hence (due to the lower bound (3.5) and due to the boundedness of (un) in H
1) we

get
∃kn s.t. inf‖un(x1,x2,x3)‖L2(Tkn ) > δ0 > 0

and the sequence wn(x) = un(x1,x2,x3 − kn) satisfies

sup(

∫

T1

|∇xwn|2 +
∫

T1

(x21 + x
2
2)|wn|2dx +

∫

T1

|wn|2dx) <∞,

‖wn‖L2(T1) > δ0.
By a compactness argument (that comes from the confining potential (x21 + x

2
2)) we

deduce that (wn) has a non-trivial weak limit in L2(T1). �
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3.3. Avoiding Dichotomy for Minimizing Sequences. From now on we assume
χ > 0 fixed and let r0 = r0(χ) > 0 be the associated number via Lemma 3.1.
Our next lemma will be crucial to obtain the compactness of minimizing se-

quences.

Lemma 3.5. Let 1 < p < 5 be fixed. We have the following inequality for 0 < r < s <
min{1, r0}

r2J
χ
s < s

2J
χ
r .

Proof. Let (vn) ⊂ Sr ∩Bχ be such that limn→∞E(vn) = J
χ
r . Notice that, by Lemma 3.1

and since r < r0(χ) we can assume vn ∈ Bχr for every n large enough. In particular
we have

s

r
vn ∈ Ss ∩Bχs ⊂ Ss ∩Bχ

provided that s < 1. In particular we get

J
χ
s ≤ E(

s

r
vn)

=
s2

r2

(1
2

∫

|∇xvn|2dx +
1
2

∫

(x21 + x
2
2)|vn|2dx

)

− 1
p +1

sp+1

rp+1

∫

|vn|p+1dx.

Recall that by Lemma 3.3 we can assume that

1
p +1

‖vn‖
p+1
Lp+1

> δ0 > 0

and hence we can continue the estimate above as follows

... =
s2

r2

(1
2

∫

|∇xvn|2dx +
1
2

∫

(x21 + x
2
2)|vn|2dx −

1
p +1

∫

|vn|p+1dx
)

+
1

p +1

( s2

r2

− s
p+1

rp+1

)

∫

|vn|p+1dx

≤ s
2

r2
E(vn) +

( s2

r2
− s

p+1

rp+1

)

δ0 ≤
s2

r2
J
χ
r +

( s2

r2
− s

p+1

rp+1

)

δ0 + o(1) < J
χ
r
s2

r2
,

for every n large enough. �

3.4. Conclusion of the Proof of Theorem 1. It is now classical, see for example
[14], that the orbital stability of the setMχ

r is equivalent to the fact that any min-
imizing sequence (un) ⊂ Sr ∩ Bχ is compact up to translation. Namely that there
exists (kn) ⊂ R s.t. un(x1,x2,x3 − kn) is compact in H . Let us fix (un) ⊂ Sr ∩ Bχ such
that limn→∞E(un) = J

χ
r . By Lemma 3.4 we get the existence of (kn) ⊂ R such that

wn ⇀ w̄ , 0 where (wn) = (un(x1,x2,x3 − kn)). We claim that if ‖w̄‖L2 = r then the
strong convergence of (wn) to w̄ in H holds. Indeed if ‖w̄‖L2 = r then wn → w̄
strongly in L2(R3) and using the Gagliardo-Sobolev inequality (3.3) we get that
wn → w strongly in Lp+1(R3). We then deduce, from the weak convergence in H ,
that J(w) ≤ lim J(wn) = J

χ
r . Now if we assume that ‖w‖2H < liminfn→∞ ‖wn‖2H we ob-

tain the contradiction that J(w) < Jχr . Thus ‖w‖2H = limn→∞ ‖wn‖2H and, using again
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the weak convergence, we deduce thatwn→ w strongly inH . To prove that ‖w̄‖L2 = r
we assume by contradiction that ‖w̄‖L2 = r̄ < r and split wn = (wn − w̄) + w̄. We have

‖wn‖2Ḣ = ‖wn − w̄‖2Ḣ + ‖w̄‖2
Ḣ
+ o(1)

‖wn‖2L2 = ‖wn − w̄‖
2
L2
+ ‖w̄‖2

L2
+ o(1).

Moreover by using the Brezis-Lieb Lemma [9] we also have

‖wn‖
p+1
Lp+1

= ‖wn − w̄‖
p+1
Lp+1

+ ‖w̄‖p+1
Lp+1

+ o(1)

and hence

E(un) = E(wn − w̄) +E(w̄) + o(1) ≥ Jχrn + J
χ
r̄ + o(1)

where r2n = ‖wn − w̄‖2L2 and r̄
2 = ‖w̄‖2

L2
, hence r2n + r̄

2 = r2 + o(1). We can also assume
that rn→ l and hence l2+r̄2 = r2 which implies, by the identity above and by Lemma
3.5

J
χ
r ≥ Jχl + Jχr̄ >

l2

r2
J
χ
r +

r̄2

r2
J
χ
r = Jχr .

This contradiction proves that necessarily w̄ ∈ Sr . �

4. Proof of Theorem 2

This section is devoted to the proof of Theorem 2.

4.1. Characterization of C-valued Minimizers. Let w ∈ H1(R3;C) be a complex
valued minimizer. A standard elliptic regularity bootstrap ensures that w is of class
C1. It is well-known by the diamagnetic inequality that also |w| ∈ C1(R3;R) is a
minimizer. Moreover by the Euler-Lagrange equation and by using the strong max-
imum principle we get |w| > 0 and thus w ∈ C1(R3;C \ {0}). Now observe that since
w and |w| are minimizers, and since all the terms involved in the energy (that we
are minimizing) are unchanged by replacing w by |w| except in principle the kinetic
term, we deduce that the unique possibility for w and |w| to be both minimizers is
that

∫

R3 |∇x |w||2dx =
∫

R3 |∇xw|2dx. We conclude by Theorem 5 given in the Appendix.

4.2. Symmetry of Minimizers. We now focus on the symmetry of the minimizers.
As pointed out to us by A. Farina, moving planes techniques as in [29] could likely
be used to obtain the radial symmetry and monotonicity properties w.r.t. the (x1,x2)
variables and x3 variable respectively. We have chosen here however to proceed
differently and in particular to rely on the Schwartz symmetrization and reflexion
type arguments. Doing so we are lead to establish results, see in particular Theorem
4, that we think have their own interest and could be useful in other contexts where
in principle the moving plane techniques do not work (e.g. the case of systems.
Assume that u(x1,x2,x3) is a real minimizer. We introduce the partial symmetriza-

tion w.r.t to the variables (x1,x2):

ũ(x1,x2,x3) = u
∗
x3
(x1,x2)
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where ux3(x1,x2) = u(x1,x2,x3) and ∗ denotes the Schwartz rearrangement w.r.t. (x1,x2)
(see [30]). The following properties hold

∫

R3
|∇xũ|2dx ≤

∫

R3
|∇xu|2dx,

∫

R3
|ũ|2dx =

∫

R3
|u|2dx

∫

R3
|ũ|p+1dx =

∫

R3
|u|p+1dx

see [10, Theorem 8.2] and by (A.1) (from the appendix) we get

(4.1)

∫

R2
(x21 + x

2
2)|ũ(x1,x2,x3)|2dx1dx2 ≤

∫

R2
(x21 + x

2
2)|u(x1,x2)|2dx1dx2, ∀x3

that by integration w.r.t to dx3 gives
∫

R3
(x21 + x

2
2)|ũ|2dx ≤

∫

R3
(x21 + x

2
2)|u|2dx.

As a consequence we deduce that ũ is also a minimizer. Moreover since u is a mini-
mizer, then necessarily

∫

R3
(x21 + x

2
2)|ũ|2dx =

∫

R3
(x21 + x

2
2)|u|2dx.

By this fact and (4.1) we get
∫

R2
(x21 + x

2
2)|ũ|2dx1dx2 =

∫

R2
(x21 + x

2
2)|u|2dx1dx2, a.e. x3 ∈R

and hence by Theorem 4 (with V (x1,x2) = x
2
1 + x

2
2) we get u(x1,x2,x3) = ũ(x1,x2,x3)

for a.e. x3 ∈R.
Summarizing u(x1,x2,x3) is radially symmetric and decreasing w.r.t. (x1,x2) for x3

in a set with full measure. On the other hand u(x1,x2,x3) is continuous and hence
u(x1,x2,x3) is radially symmetric and decreasing w.r.t. (x1,x2) for every x3.
We now establish that u(x1,x2, ·) is even, namely radial with respect to the x3 vari-

able, after a suitable translation in the x3-direction. To obtain this result we follow
the approach introduced by O. Lopes [33], see also [39, Theorem C.3]. Clearly, up
to a suitable translation along (0,0,1), we can assume that

∫

R2×[0,+∞[
|u(x)|2dx =

∫

R2×]−∞,0]
|u(x)|2dx.

We then define

E+(u) =

∫

R2×[0,+∞[
|∇xu|2 + (x21 + x

2
2)|u|2dx −

∫

R2×[0,+∞[
|u(x)|p+1dx

E−(u) =

∫

R2×]−∞,0]
|∇xu|2 + (x21 + x

2
2)|u|2dx −

∫

R2×]−∞,0]
|u(x)|p+1dx.
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Let v be the reflection with respect to x3 = 0 of u restricted to R2 × [0,+∞[. Namely
v(x1,x2,x3) = u(x1,x2,x3) if x3 ≥ 0 and u(x1,x2,−x3) if x3 ≤ 0. Using the regularity of
u we deduce that v ∈ Sr ∩Bχ and then

E+(u) +E−(u) ≤ 2E+(u).

Similarly by considering w(x1,x2,x3) = u(x1,x2,−x3) if x3 ≥ 0 and u(x1,x2,x3) if x3 ≤
0 we obtain that

E+(u) +E−(u) ≤ 2E−(u).

Hence E−(u) = E+(u) and we deduce that v is also a minimizer of Jχr . Then there
exists λ1,λ2 ∈R such that

−∆u + (x21 + x
2
2)u − |u|p−1u = λ1u

−∆v + (x21 + x
2
2)v − |v|p−1v = λ2v.

Since u = v on R2× [0,+∞[ it follows that λ1 = λ2 := λ and thus z defined by z = u−v
satisfies the linear equation −∆z = L(x)z where

L(x) = −(x21 + x22) +λ+ a(x) with a(x) =

∫ 1

0
p|v + t(u − v)|p−2(v + t(u − v))dt.

At this point we conclude, from the Unique Continuation Principle [28], that z = 0.
Thus u = v and u is even.
To conclude we still need to prove that u(x1,x2, ·) is decreasing as a function of

x3. As after a suitable translation k in the x3-direction u is even in x3. Without loss
of generality, we assume k = 0 and u is even in x3. Consider for this the partial
symmetrization w.r.t to the variables x3:

u†(x1,x2,x3) = u
∗
x1,x2

(x3)

where ux1,x2(x3) = u(x1,x2,x3) and ∗ denotes the Schwartz rearrangement w.r.t. x3.
The following properties hold

∫

R3
|∂xiu

†|2dx ≤
∫

R3
|∂xiu|

2dx, for i = 1,2,

∫

R3
|u†|2dx =

∫

R3
|u|2dx,

∫

R3
|u†|p+1dx =

∫

R3
|u|p+1dx

see [10, Corollary 8.1] and
∫

R

|∂x3u
†|2dx3 ≤

∫

R

|∂x3u|
2dx3,

∫

R

|u†|2dx3 =
∫

R

|u|2dx3

for almost all (x1,x2) in R2 multiplying by x21 +x
2
2 the last identity and integrating it

over R2 we obtain
∫

R3
(x21 + x

2
2)|u†(x1,x2,x3)|2dx1dx2 =

∫

R3
(x21 + x

2
2)|u(x1,x2,x3)|2dx1dx2dx3.

As a consequence we deduce that u† is also a minimizer and necessarily
∫

R

|∂x3u
†|2dx3 =

∫

R

|∂x3u|
2dx3
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for a.e. (x1,x2) in R2. We now use [11, Lemma 3.2] characterizing functions satisfy-
ing this equality. Some comments are in order. This lemma is stated for compactly
supported functions but can be extended as long as one assumes, as in [12, Lemma
9], that (u − t)+ ∈ H1(R) and has compact support for any t > 0, see also [11, Re-
mark 4.5]. This extension uses ideas similar to the proof of Theorem 4 below. In the
present case u is C1 and tends to 0 at infinity in x3. Indeed each of its partial deriv-
ative in x3 is square integrable for almost all (hence all by continuity) (x1,x2) ∈ R2.
So (u − t)+ ∈ H1(R) and has compact support for any t > 0. We thus have with
[11, Lemma 3.2] that the level sets {|u(x1,x2, ·)| > t} are, up to a negligible set in
(x1,x2), intervals in R. Since u is continuous this is exactly an open interval. Then
as {|u(x1,x2, ·)| ≥ t} = ∩s<t{|u(x1,x2, ·)| > s} it is an interval which is closed.
As a consequence of this fact we deduce that for any given (x1,x2) the functions

ux1,x2 : R ∋ x3→ u(x1,x2,x3) ∈ R are decreasing for x3 ≥ k(x1,x2) and increasing for
for x3 ≤ k(x1,x2), where k(x1,x2) ∈ R is any point where the function ux1,x2 has a
maximum. We conclude provided that we show that k(x1,x2) = 0. Notice that if by
contradiction it is not true, then by the evenness of the function ux1,x2 (proved above)
we get that −k(x1,x2) , k(x1,x2) are both points of maximum. Hence by convexity
(proved above) of the set {x3 ∈ R|ux1,x2(x3) ≥ ux1,x2(k(x1,x2))} we deduce that every
point belonging to the interval [−k(x1,x2),k(x1,x2)] is a maximum point for ux1,x2 ,
and in particular we can choose k(x1,x2) = 0 as maximum point of ux1,x2 . �

Remark 4.1. Finally we point out that our arguments can be adapted in the more gen-
eral context described in Remark 1.9. Note that in this context the argument from [11,
Lemma 3.2] provides that all level sets in the unconfined variable (freezing the confined
ones) are balls while the argument from [33] provides that any hyperplan (in the uncon-
fined subspace) is up to a translation (in the unconfined variables) a symmetry hyperplan.
Coupling both arguments we have that all the level sets are concentric balls by consider-
ing any hyperplan orthogonal to lines joining the centres of any pair of such balls.
Note that without the the argument from [33], [11, Lemma 3.2] gives that up to a transla-
tion in the unconfined variables (which may depend on the confined ones) the minimizers
is decreasing along any ray from the origin. But it is not necessarily radially decreasing.

4.3. Lagrange Multipliers. Since u ∈ Mχ
r implies u ∈ Bχr (see Theorem 1), we de-

duce that u is a critical point of E(u) on Sr and hence there exists λ = λ(u) ∈ R such
that

−∆u + (x21 + x
2
2)u − u|u|p−1 = λu.

Multiplying by u and integrating by parts we get

(4.2) λ =
1

∫

|u|2dx
(

‖u‖2
Ḣ
−
∫

|u|p+1dx
)

<
2E(u)

r2

where we have used p > 1. Moreover by Lemma 3.2 E(u) < r2Λ0/2, and hence

λ <
2E(u)

r2
< Λ0.
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On the other hand since

(4.3)

∫

|u|p+1dx ≤ Cr
5−p
2 ‖u‖

3p−3
2

Ḣ

by (3.3), we obtain from (4.2) and the fact that u ∈ Bχr (see Theorem 1) that

λ ≥ 1

r2

(

‖u‖2
Ḣ
−Cr

5−p
2 ‖u‖

3p−3
2

Ḣ

)

≥
‖u‖2

Ḣ

r2

(

1−Cr
5−p
2 ‖u‖

3p−7
2

Ḣ

)

≥
‖u‖2

Ḣ

r2

(

1−Cr
5−p
2 (χ2r2)

3p−7
4

)

≥
‖u‖2

Ḣ

r2

(

1−Crp−1
)

where the value of the constant C > 0 can change at every step. Now by definition
of Λ0

‖u‖2
Ḣ

r2
≥Λ0

and it follows that
λ ≥Λ0(1−Crp−1).

In summary, for some constant C > 0,

(1−Crp−1)Λ0 ≤ λ < Λ0

and in particular λ→Λ0 as r→ 0. �

4.4. Asymptotic Profile in the Small Soliton Limit. We are now in position to
complete the proof of Theorem 2 by establishing the asymptotic profile in the limit
r → 0 (see (1.6)). Recall that from Theorem 1, for every fixed χ > 0, for every
r < r0(χ) ,

Mχ
r := {u ∈ Sr ∩Bχ s.t. E(u) = Jχr } , ∅.

First observe that since
Mχ

r ⊂ Bχr , ∀r < r0
we have, using (4.3), that

(4.4) ∃C > 0, ∀u ∈Mχ
r , ‖u‖

p+1
Lp+1
≤ Crp+1.

Now using again theHilbert basis (Ψj ) of L
2(R2) introduced in the proof of Lemma

2.1 we write for any u ∈Mχ
r :

u(x1,x2,x3) =
∑

j∈N∪{0}
ϕj(x3)Ψj(x1,x2),

where

ϕj(x3) =

∫

u(x1,x2,x3)Ψj (x1,x2)dx1dx2.

We have ϕj ∈ L2(R) and by orthogonality
∑

j∈N∪{0}
‖ϕj‖2L2 =

∑

j∈N∪{0}
‖ϕj‖2L2‖Ψj‖

2
L2

= ‖u‖2
L2

= r2.
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Also, as in the proof of Lemma 2.1, and taking into account (4.4)

(4.5) E(u) ≥ 1
2

∑

j∈N∪{0}
‖∂x3ϕj‖

2
L2
+λj‖ϕj‖2L2 −Cr

p+1.

Now we know from Lemma 3.2 and Lemma 2.1 that

E(u) = inf
Sr∩Bχ

E(u) < r2
λ0
2
, ∀r < r0

and thus (4.5) leads to

(4.6)
1

r2

∑

j∈N∪{0}
‖∂x3ϕj‖

2
L2
+λj‖ϕj‖2L2 < λ0 +2Crp−1.

In view of the following identity

λ0
r2

∑

j∈N∪{0}
‖ϕj‖2L2 =

λ0
r2
‖u‖2

L2
= λ0

and by recalling λ0 < λj for all j ∈N, we get from the estimate above

(4.7)
∑

j∈N∪{0}

1

r2
‖∂x3ϕj‖

2
L2
< 2Crp−1 and

∑

j∈N

1

r2
‖ϕj‖2L2 <

2C

infj∈N
(

λj −λ0
)rp−1

or incidentally,

(4.8)

∣

∣

∣

∣

∣

∣

‖ϕ0‖2L2
r2

− 1
∣

∣

∣

∣

∣

∣

<
2C

infj∈N
(

λj −λ0
)rp−1.

From (4.6), (4.7) and (4.8) it follows that there exists C > 0 such that for any u ∈Mχ
r

∥

∥

∥

∥

u

r
− ϕ0

r
Ψ0

∥

∥

∥

∥

Ḣ
=

√

1

r2

∑

j∈N
‖∂x3ϕj‖

2
L2
+λj‖ϕj‖2L2 ≤ Cr

p−1
2 ,

and we get (1.6).
�

5. Proof of Theorem 3

We fix χ > 0 and notice that

(5.1) lim
r→0

J
χ
r = 0.

This follows from Point (2) in Theorem 1 and (3.3).
Now let us suppose by contradiction the existence of a critical point ū for E on Sr

with E(ū) < Jχr . It is standard to prove, see for example [5, 26], that P(ū) = 0 where

P(ū) := ‖∇xū‖2L2 −
∫

(x21 + x
2
2)|ū |2dx −

3(p − 1)
2(p +1)

||ū||p+1
Lp+1

.
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So to say, the condition P(ū) = 0 corresponds to a Pohozaev’s type identity on Sr .
Thus we can write

E(ū) = E(ū)− 2
3(p − 1)P(ū) =

3p − 7
6(p − 1)‖∇ū‖

2
L2
+

3p +1

6(p − 1)

∫

(x21+x
2
2)|ū|2dx >

3p − 7
6(p − 1)‖ū‖

2
Ḣ
.

In particular, by using (5.1), we get

3p − 7
6(p − 1)‖ū‖

2
Ḣ
< E(ū) < Jχr = o(1).

At this point we have reached a contradiction since this implies that, for r > 0 small
enough, ‖ū‖2

Ḣ
< χ2 and Jχr is the infimum of the energy on Sr ∩Bχ. �

Appendix A. A remark on Schwartz symmetrization

The main result that we prove on Schwartz symmetrization is the following one.

For the definition of a function vanishing at infinity, used in the next theorem, we
refer to [30].

Theorem 4. Let V : Rn→ [0,∞) be a measurable function, radially symmetric satisfying
V (|x|) ≤ V (|y|) for |x| ≤ |y| then we have:

(A.1)

∫

Rn
V (|x|)|u∗|2dx ≤

∫

Rn
V (|x|)|u|2dx.

If in addition V (|x|) < V (|y|) for |x| < |y| then

(A.2)

∫

Rn
V (|x|)|u∗|2dx =

∫

Rn
V (|x|)|u|2dx⇒ u(x) = u∗(|x|).

This result holds for any measurable function u which is vanishing at infinity.

In the sequel we shall use the following well-known inequality

(A.3)

∫

Rn
f ∗ · g∗dx ≥

∫

Rn
f · gdx.

Proposition A.1. Let u : {x ∈ Rn||x| < R} → [0,∞) be a measurable function and let V :
{x ∈ Rn||x| < R} → [0,∞) be radially symmetric satisfying V (|x|) > V (|y|) for |x| < |y| < R.
Then we have the following implication

∫

|x|<R
V (|x|)|u∗|2dx =

∫

|x|<R
V (|x|)|u|2dx⇒ u(x) = u∗(|x|).

Proof. This result is classical in the case R =∞, more precisely for functions defined
on Rd , see [30, Theorem 3.4]. The proof given there directly adapt on any ball
{x ∈Rn||x| < R}. �

Proposition A.2. Let V : Rn→ [0,∞) be a measurable function, radially symmetric with
V (|x|) > V (|y|) for |x| < |y| < R and V (x) = 0 for |x| > R. Let u : Rn→ [0,∞) be measurable
and vanishing at infinity. The following implication holds:
∫

Rn
V (|x|)|u∗|2 =

∫

Rn
V (|x|)|u|2dx⇒ u(x) ·χ|x|<R is radially symmetric and decreasing.
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Proof. We defined uR(x) = u(x) ·χ|x|<R(x). First note that by (A.3) we have

(A.4)

∫

Rn
V (|x|)|u∗R|2 ≥

∫

Rn
V (|x|)|uR|2

where we used that V (x) = V ∗(x) holds since V is radially symmetric decreasing, see
[24, Proposition 2.4]. Now by elementary considerations since uR(x) ≤ u(x) we have
u∗R(x) ≤ u∗(x) and hence

∫

Rn
V (|x|)|u∗|2 ≥

∫

Rn
V (|x|)|u∗R|2 ≥

∫

Rn
V (|x|)|uR|2 =

∫

Rn
V (|x|)|u|2

where in the second inequality we have used (A.4) and in the last identity the as-
sumption suppV (x) = {x ∈ Rn||x| < R}. Since by assumption

∫

Rn
V (|x|)|u∗|2 =

∫

Rn
V (|x|)|u|2dx

we get by the inequalities above
∫

Rn
V (|x|)|u∗R|2 =

∫

Rn
V (|x|)|u|2dx, that in turn, by

using again the assumption suppV (x) = BR, implies
∫

BR

V (|x|)|u∗R|2 =
∫

Rn
V (|x|)|u∗R|2 =

∫

Rn
V (|x|)|u|2 =

∫

BR

V (|x|)|uR|2.

We conclude by Proposition A.1. �

Proof of Theorem 4 To prove (A.1) notice that for every R > 0 we can introduce
the function VR(|x|) = min{V (|x|),V (R)}. Then we get that x → −VR(|x|) + V (R) is
decreasing, radially symmetric and positive. Hence by (A.3) we get

∫

Rn
(−VR(|x|) +V (R))|u|2dx ≤

∫

Rn
(−VR(|x|) +V (R))|u∗|2dx.

Since moreover
∫

Rn
|u|2dx =

∫

Rn
|u∗|2dx, then we deduce

∫

Rn
(VR(|x|)|u|2dx ≥

∫

Rn
(VR(|x|)|u∗|2dx.

We conclude the proof of (A.1) since limR→∞VR(|x|) = V (|x|) and by using the Beppo
Levi monotonic convergence theorem.
Next we prove (A.2). We claim that

(A.5)

∫

Rn
VR0

(|x|)|u∗|2dx =
∫

Rn
VR0

(|x|)|u|2dx ∀R0 > 0

where VR0
(|x|) is defined as above with a truncation procedure. Notice that (A.5) is

equivalent to
∫

Rn
(−VR0

(|x|) +V (R0))|u∗|2dx =
∫

Rn
(−VR0

(|x|) +V (R0))|u|2dx.

Since the potential x → −VR0
(|x|) + V (R0) satisfies the assumptions of Proposition

A.2 for R = R0 we deduce that the restriction of u on {x ∈ Rn||x| < R0} is decreasing
radially symmetric. Since R0 > 0 is arbitrary we conclude that u(x) = u(|x|) and u is
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decreasing on Rn, and thus that u = u∗. In order to prove (A.5) first notice that since
V −VR0

is increasing and positive, then we can apply (A.1) to deduce

(A.6)

∫

Rn
(V (|x|)−VR0

(|x|))|u∗|2dx ≤
∫

Rn
(V (|x|)−VR0

(|x|))|u|2dx.

Assume now by contradiction that (A.5) is false, then we have

(A.7)

∫

Rn
VR0

(|x|)|u∗|2dx <
∫

Rn
VR0

(|x|)|u|2dx.

By summing (A.6) and (A.7) we get
∫

Rn
V (|x|)|u∗|2dx <

∫

Rn
V (|x|)|u|2dx, which gives a

contradiction with the hypothesis done in (A.2). �

Appendix B. On the canonical form of complex minimizers

The result below is the key to derive the structure of the set of our complex mini-
mizers.

Theorem 5. Let w ∈ C1(Rn;C \ {0}) be such that
∫

Rn

∑

j

|∂xj |w||
2dx =

∫

Rn

∑

j

|∂xjw|
2dx

then we have
w(x) = eiθρ(x)

where θ ∈R is a constant and ρ(x) ∈ R for every x ∈Rn.
Proof. We write w = ρu where ρ = |w| > 0. Since w ∈ C1(Rn,C \ {0}) it follows that |w|
and u ∈ C1(Rn;C \ {0}). Using that |u| = 1 we get

∇w = (∇ρ)u + ρ∇u = u(∇ρ+ ρū∇u).
Again from |u| = 1 it follows that Re(ū∇u) = 0 that is ū∇u is purely imaginary. Then
|∇w|2 = |∇ρ|2 + ρ2|∇u|2. Now since |w| = ρ, we have that |∇|w|| = |∇ρ|. At this point
our assumption gives

∫

Rn
|∇ρ|2dx =

∫

Rn
(|∇ρ|2 + |ρ∇u|2)dx

and thus
∫

Rn
|ρ∇u|2dx = 0 which leads to ∇u = 0. �

References

[1] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Bose-Einstein
condensation in a dilute atomic vapor. Science, 269:14, 1995.

[2] P. Antonelli, R. Carles, and J. Drumond Silva. Scattering for nonlinear Schrödinger equation
under partial harmonic confinement. Comm. Math. Phys., 334(1):367–396, 2015.

[3] W. Bao and Y. Cai. Mathematical theory and numerical methods for Bose-Einstein condensation.
Kinet. Relat. Models, 6(1):1–135, 2013.

[4] W. Bao, D. Jaksch, and P. A. Markowich. Numerical solution of the Gross-Pitaevskii equation
for Bose-Einstein condensation. J. Comput. Phys., 187(1):318–342, 2003.

[5] J. Bellazzini and L. Jeanjean. On dipolar quantum gases in the unstable regime. SIAM J. Math.
Anal., 48(3):2028–2058, 2016.



22 JACOPO BELLAZZINI, NABILE BOUSSAÏD, LOUIS JEANJEAN, AND NICOLA VISCIGLIA

[6] J. Bellazzini, L. Jeanjean, and T. Luo. Existence and instability of standing waves with prescribed
norm for a class of Schrödinger-Poisson equations. Proc. Lond. Math. Soc. (3), 107(2):303–339,
2013.

[7] V. Benci and N. Visciglia. Solitary waves with non-vanishing angular momentum. Adv. Nonlin-
ear Stud., 3(1):151–160, 2003.

[8] H. Berestycki and T. Cazenave. Instabilité des états stationnaires dans les équations de
Schrödinger et de Klein-Gordon non linéaires. C. R. Acad. Sci. Paris Sér. I Math., 293(9):489–
492, 1981.

[9] H. Brézis and E. Lieb. A relation between pointwise convergence of functions and convergence
of functionals. Proc. Amer. Math. Soc., 88(3):486–490, 1983.

[10] F. Brock and A. Y. Solynin. An approach to symmetrization via polarization. Trans. Amer. Math.
Soc., 352(4):1759–1796, 2000.

[11] J. E. Brothers and W. P. Ziemer. Minimal rearrangements of Sobolev functions. J. Reine Angew.
Math., 384:153–179, 1988.

[12] J. Byeon, L. Jeanjean, and M. Mariş. Symmetry and monotonicity of least energy solutions. Calc.
Var. Partial Differential Equations, 36(4):481–492, 2009.

[13] R. Carles. Critical nonlinear Schrödinger equations with and without harmonic potential.Math.
Models Methods Appl. Sci., 12(10):1513–1523, 2002.

[14] T. Cazenave. Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathe-
matics. New York University, Courant Institute of Mathematical Sciences, New York; American
Mathematical Society, Providence, RI, 2003.

[15] T. Cazenave and P.-L. Lions. Orbital stability of standing waves for some nonlinear Schrödinger
equations. Comm. Math. Phys., 85(4):549–561, 1982.

[16] F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari. Theory of bose-einstein condensation
in trapped gases. Reviews of Modern Physics, 71(3):463, 1999.

[17] L. Erdős, B. Schlein, and H.-T. Yau. Derivation of the Gross-Pitaevskii hierarchy for the dynam-
ics of Bose-Einstein condensate. Comm. Pure Appl. Math., 59(12):1659–1741, 2006.

[18] L. Erdős, B. Schlein, and H.-T. Yau. Rigorous derivation of the Gross-Pitaevskii equation with a
large interaction potential. J. Amer. Math. Soc., 22(4):1099–1156, 2009.

[19] R. Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equa-
tion with harmonic potential. Discrete Contin. Dynam. Systems, 7(3):525–544, 2001.

[20] R. Fukuizumi, F. Hadj Selem, and H. Kikuchi. Stationary problem related to the nonlinear
Schrödinger equation on the unit ball. Nonlinearity, 25(8):2271–2301, 2012.

[21] R. Fukuizumi and M. Ohta. Instability of standing waves for nonlinear Schrödinger equations
with potentials. Differential Integral Equations, 16(6):691–706, 2003.

[22] R. Fukuizumi and M. Ohta. Stability of standing waves for nonlinear Schrödinger equations
with potentials. Differential Integral Equations, 16(1):111–128, 2003.

[23] A. Griffin, D Snoke, and S. Stringari. Bose-Einstein Condensation. Cambridge University Press
Cambridge, 1996.

[24] H. Hajaiej and C. A. Stuart. Symmetrization inequalities for composition operators of
Carathéodory type. Proc. London Math. Soc. (3), 87(2):396–418, 2003.

[25] H. Hajaiej and C. A. Stuart. On the variational approach to the stability of standing waves for
the nonlinear Schrödinger equation. Adv. Nonlinear Stud., 4(4):469–501, 2004.

[26] L. Jeanjean. Existence of solutions with prescribed norm for semilinear elliptic equations. Non-
linear Anal., 28(10):1633–1659, 1997.

[27] O. Kavian. Introduction à la théorie des points critiques et applications aux problèmes elliptiques, vol-
ume 13 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer-Verlag,
Paris, 1993.

[28] C. E. Kenig. Carleman estimates, uniform Sobolev inequalities for second-order differential op-
erators, and unique continuation theorems. In Proceedings of the International Congress of Math-
ematicians, Vol. 1, 2 (Berkeley, Calif., 1986), pages 948–960. Amer. Math. Soc., Providence, RI,
1987.



STANDING WAVES FOR NLS WITH PARTIAL CONFINEMENT 23

[29] Y. Li and W.-M. Ni. Radial symmetry of positive solutions of nonlinear elliptic equations in Rn.
Comm. Partial Differential Equations, 18(5-6):1043–1054, 1993.

[30] E. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathe-
matical Society, Providence, RI, second edition, 2001.

[31] E. Lieb and R. Seiringer. Proof of Bose-Einstein condensation for dilute trapped gases. Physical
review letters, 88(17):170409, 2002.

[32] E. Lieb, R. Seiringer, J. P. Solovej, and J. Yngvason. The mathematics of the Bose gas and its con-
densation, volume 34 of Oberwolfach Seminars. Birkhäuser Verlag, Basel, 2005.

[33] O. Lopes. Radial symmetry of minimizers for some translation and rotation invariant function-
als. J. Differential Equations, 124(2):378–388, 1996.

[34] B. Noris, H. Tavares, and G. Verzini. Existence and orbital stability of the ground states with
prescribed mass for the L2-critical and supercritical NLS on bounded domains. Anal. PDE,
7(8):1807–1838, 2014.

[35] F. Rousset and N. Tzvetkov. Stability and instability of the KdV solitary wave under the KP-I
flow. Comm. Math. Phys., 313(1):155–173, 2012.

[36] C. A. Stuart. Private communication. February 2016.
[37] S. Terracini, N. Tzvetkov, and N. Visciglia. The nonlinear Schrödinger equation ground states

on product spaces. Anal. PDE, 7(1):73–96, 2014.
[38] M. I.Weinstein. Lyapunov stability of ground states of nonlinear dispersive evolution equations.

Comm. Pure Appl. Math., 39(1):51–67, 1986.
[39] M. Willem. Minimax theorems. Progress in Nonlinear Differential Equations and their Applica-

tions, 24. Birkhäuser Boston, Inc., Boston, MA, 1996.
[40] J. Zhang. Stability of standing waves for nonlinear Schrödinger equations with unbounded po-

tentials. Z. Angew. Math. Phys., 51(3):498–503, 2000.

Jacopo Bellazzini
Università di Sassari
Via Piandanna 4, 07100 Sassari, Italy
E-mail address: jbellazzini@uniss.it

Nabile Boussaïd
Laboratoire de Mathématiques (UMR 6623)
Univ. Bourgogne Franche-Comté
16, Route de Gray 25030 Besançon Cedex, France
E-mail address: nabile.boussaid@univ-fcomte.fr

Louis Jeanjean
Laboratoire de Mathématiques (UMR 6623)
Univ. Bourgogne Franche-Comté
16, Route de Gray 25030 Besançon Cedex, France
E-mail address: louis.jeanjean@univ-fcomte.fr

Nicola Visciglia
Dipartimento di Matematica
Università Degli Studi di Pisa
Largo Bruno Pontecorvo 5 I - 56127 Pisa
E-mail address: viscigli@dm.unipi.it


	1. Introduction
	2. Spectral theory
	3. Proof of Theorem 1
	3.1. Local Minima Structure for E(u) on Sr
	3.2. No Vanishing for Minimizing Sequences
	3.3. Avoiding Dichotomy for Minimizing Sequences
	3.4. Conclusion of the Proof of Theorem 1

	4. Proof of Theorem 2
	4.1. Characterization of C-valued Minimizers
	4.2. Symmetry of Minimizers
	4.3. Lagrange Multipliers
	4.4. Asymptotic Profile in the Small Soliton Limit

	5. Proof of Theorem 3
	Appendix A. A remark on Schwartz symmetrization
	Appendix B. On the canonical form of complex minimizers
	References

