
1 23

The European Physical Journal C
Particles and Fields
 
ISSN 1434-6044
Volume 80
Number 4
 
Eur. Phys. J. C (2020) 80:1-11
DOI 10.1140/epjc/s10052-020-7849-2

Study of the interactions of the axion with
mesons and photons using a chiral effective
Lagrangian model

Giacomo Landini & Enrico Meggiolaro



1 23

Your article is published under the Creative

Commons Attribution license which allows

users to read, copy, distribute and make

derivative works, as long as the author of

the original work is cited. You may self-

archive this article on your own website, an

institutional repository or funder’s repository

and make it publicly available immediately.



Eur. Phys. J. C          (2020) 80:302 
https://doi.org/10.1140/epjc/s10052-020-7849-2

Regular Article - Theoretical Physics

Study of the interactions of the axion with mesons and photons
using a chiral effective Lagrangian model

Giacomo Landini1,a, Enrico Meggiolaro1,b

1 Dipartimento di Fisica, Università di Pisa, and INFN, Sezione di Pisa, Largo Pontecorvo 3, 56127 Pisa, Italy

Received: 25 November 2019 / Accepted: 16 March 2020
© The Author(s) 2020

Abstract We investigate the most interesting decay pro-
cesses involving axions, photons and the lightest pseu-
doscalar mesons, making use of a chiral effective Lagrangian
model with L = 3 light quark flavors, which also includes
the flavor-singlet pseudoscalar meson and implements the
U (1) axial anomaly of the fundamental theory. In particu-
lar, we compute the electromagnetic coupling of the axion to
photons and we compare our result with the prediction of the
Chiral Effective Lagrangian with L = 2 light quark flavors.
Moreover, we study the decay channels η/η′ → ππa and we
estimate the corresponding decay widths, using the existing
bounds on the U (1)P Q breaking scale.

1 Introduction

It is well known that the QCD Lagrangian LQC D can be
extended by adding the term Lθ = θ Q, where Q =

g2

64π2 εμνρσ Ga
μνGa

ρσ is the so-called topological charge den-
sity and θ is a free parameter, which can assume any value
in [0, 2π). This θ -term (or topological term) introduces an
explicit breaking of the CP symmetry in the strong sector
(referred to as strong-CP violation). Despite the fact that
Q = ∂μK μ, where K μ is the so-called Chern–Simons cur-
rent, its contribution is nonzero because of topologically
nontrivial configurations of gauge fields, such as instan-
tons. So far, however, no CP violation in the strong sector
has been observed experimentally, constraining θ to be zero
or extremely small. In particular, one can find a relation-
ship between θ and the neutron electric-dipole moment [1],

dN � m2
π

m3
N

e|θ | � 10−16|θ | e · cm, where m N is the neu-

tron mass, whereas mπ is the pion mass. From experimental
data [2] we know that dN < 10−26 e · cm, which leads to the
upper bound |θ | < 10−10. (More refined relations among the
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neutron electric dipole moment and the θ angle and a more
detailed discussion can be found in Refs. [3–6]; see also Ref.
[7] for a recent lattice determination).

This “fine-tuning” problem, known in the literature as the
“strong-CP problem”, is one of the open issues of the Stan-
dard Model. Among the several possible solutions, the most
appealing is surely the one proposed by Peccei and Quinn
(PQ) [8,9] and developed by Weinberg and Wilczek [10,11].
The key idea (see also Ref. [12] for a recent review) is to
extend the Standard Model by adding a new pseudoscalar
particle, called “axion”, in such a way that there is a new U (1)

global symmetry, referred to as U (1)P Q , which is both spon-
taneously broken at a scale fa and anomalous (i.e., broken
by quantum effects), with the related current satisfying the
relation ∂μ Jμ

P Q = aP Q Q, where aP Q is the so-called color
anomaly parameter. The most general Lagrangian describing
the QCD degrees of freedom and the axion has the following
form:

L = LQC D + 1

2
∂μSa∂μSa − aP Q

Sa

fa
Q + Lint [∂μSa, 
],

(1.1)

where Sa is the axion field, which under U (1)P Q transforms
nonlinearly as

U (1)P Q : Sa → S′
a = Sa + γ fa . (1.2)

The term Lint [∂μSa, 
] describes the interactions between
the axion and the quark fields and it is strongly model depen-
dent. The effect of this extension of the Lagrangian is to
replace the static θ parameter of LQC D with a dynamical
degree of freedom, namely the combination θ − aP Q

Sa
fa

: on

the vacuum we get 〈θ − aP Q
Sa
fa

〉 = 0. Performing a U (1)P Q

transformation (1.2) with γ = θ
aP Q

, we can rotate away the θ

term, so obtaining a manifestly CP-conserving theory (with
〈Sa〉 = 0).

Moreover, it is well known that the U (1) axial symmetry
of QCD with L light quark flavors (taken to be massless in
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the ideal chiral limit; the physically relevant cases are L = 2,
with the quarks up and down, and L = 3, including also the
strange quark),

U (1)A : qi → q ′
i = eiβγ5qi , i = 1, . . . , L , (1.3)

is also anomalous, with the related U (1) axial current Jμ
5 =

q̄γ μγ5q satisfying the relation ∂μ Jμ
5 = 2L Q. Therefore,

we find that the U (1)A ⊗ U (1)P Q transformations with the
parameters β and γ satisfying the constraint 2Lβ +aP Qγ =
0, form a U (1) subgroup which is spontaneously broken but
anomaly-free (in the chiral limit): as a consequence, a new
(pseudo-)Nambu–Goldstone boson appears in the spectrum,
the axion.

In the original Peccei–Quinn–Weinberg–Wilczek
(PQWW) model [8,10,11] the scale fa was identified with
the electroweak breaking scale v ≈ 250 GeV, but this
leads to large couplings between the axion and the Stan-
dard Model fields, which have been ruled out by experi-
ments (see, for example, Ref. [13]). In order to bypass these
experimental bounds, the so-called “invisible axion” mod-
els were developed, such as the Kim–Shifman–Vainshtein–
Zakharov (KSVZ) model [14,15] and the Dine–Fischler–
Srednicki–Zhitnisky (DFSZ) model [16,17], in which new
heavy quarks or scalar fields, charged under U (1)P Q but
neutral with respect to the Standard Model gauge group, are
introduced. In these models, the U (1)P Q breaking scale fa is
a free parameter of the theory and, assuming fa 	 v, a very
light axion with small couplings to the Standard Model fields
is predicted, a scenario which is still compatible with the
experimental bounds. At present, the more precise bounds on
the U (1)P Q breaking scale come from astrophysical and cos-
mological considerations (see, for example, Refs. [18,19]):
109 GeV � fa � 1017 GeV.

All these models predict an axion-photon-photon cou-
pling and therefore the electromagnetic decay of the axion in
two photons: most of the experimental research concerning
the axion is focused on this process (see, for example, Ref.
[20] for an exhaustive review on both the theoretical aspects
and the experimental research of axions and axion-like parti-
cles). The electromagnetic interaction of the axion is usually
parametrized as


Laγ γ = −1

4
gaγ γ aFμν F̃μν, (1.4)

where a is the “physical” axion [as we will see, the field Sa ,
which appears in the Lagrangian (1.1), has nonzero mixings
with the QCD degrees of freedom, such as the pseudoscalar
meson fields], Fμν is the electromagnetic field-strength ten-
sor, F̃μν = 1

2εμνρσ Fρσ is its dual, and gaγ γ is the axion-
photon-photon coupling constant. This last, in general, is the
sum of two contributions, gaγ γ = g0

aγ γ +gQC D
aγ γ , where g0

aγ γ

is the model-dependent contribution proportional to the elec-
tromagnetic anomaly of the U (1)P Q symmetry (which can

also be simply zero, as it happens in the original KSVZ model
[14,15]), while gQC D

aγ γ is the model-independent contribution
coming from the minimal coupling to QCD (i.e., the mixing
of the axion with the pseudoscalar mesons π0, η, and η′).
The coupling constant gQC D

aγ γ has been computed using the
Chiral Effective Lagrangian with L = 2 light quark flavors
both at the leading order (LO) in the momentum expansion
[O(p2)] and at the next-to-leading order (NLO) [O(p4] (see
Ref. [21] and references therein).

The aim of this paper is to compute the axion-photon-
photon coupling constant gQC D

aγ γ and, moreover, to study the
decay processes involving the axion and the lightest pseu-
doscalar mesons, making use of a chiral effective Lagrangian
model proposed by Witten et al. [22–28], which describes
the Nambu-Goldstone bosons originated by the spontaneous
breaking of the SU (3)L ⊗ SU (3)R chiral symmetry (with
L = 3 light quark flavors) and the flavor-singlet pseudoscalar
meson, implementing the U (1) axial anomaly of the funda-
mental theory.

In Sect. 2, for the benefit of the reader, we briefly recall this
chiral effective Lagrangian model, as well as its “axionized”
version (see Ref. [29]).

Using this model, in Sect. 3 we compute the axion-photon-
photon coupling constant gQC D

aγ γ and the result is compared
with the one obtained using the Chiral Effective Lagrangian
with L = 2 light quark flavors.

Section 4 is devoted to the study of the hadronic decays
η/η′ → ππa (which, of course, cannot be studied using
the Chiral Effective Lagrangian with L = 2 light quark fla-
vors, since the η and η′ degrees of freedom are integrated
out). Among all the possible hadronic decays involving also
the axion, these are the ones involving the lowest-energy
hadrons.

In Sect. 5 we study the effects of a possible U (1) axial
condensate on the various quantities that we have evaluated
in the previous sections: we do this by using a chiral effective
Lagrangian model proposed in Refs. [30–32] and then elab-
orated on in Refs. [33–37], which can be interpreted as an
extension of the model considered in Sect. 2 with the inclu-
sion of a U (1) axial condensate.

In Sect. 6 we report numerical estimates for the axion-
photon-photon coupling constant (making also a comparison
with the prediction of the Chiral Effective Lagrangian with
L = 2 light quark flavors) and for the widths of the hadronic
decays η/η′ → ππa.

Finally, in Sect. 7 we summarize and critically comment
on the results that we have obtained in the previous sections
for the electromagnetic and the hadronic processes involving
the axion (considering the existing bounds on the U (1)P Q

breaking scale) and we also give some prospects for further
theoretical and experimental studies of the hadronic decays
η/η′ → ππa.
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2 The effective Lagrangian model of Witten, Di Vecchia,
Veneziano, et al., with the inclusion of the axion

The effective Lagrangian model proposed by Witten et al.
[22–28] describes the Nambu–Goldstone bosons originated
by the spontaneous breaking of the SU (3)L ⊗ SU (3)R chiral
symmetry and the flavor-singlet pseudoscalar meson, imple-
menting the U (1) axial anomaly of the fundamental theory.
We will refer to it as the “WDV model”. Even if this model
was derived and fully justified in the large-Nc limit (Nc being
the number of colors), the numerical results obtained for the
physical value Nc = 3 turn out to be quite consistent with
experimental data. The Lagrangian is given by (see Ref. [23]
for a detailed discussion)

L =1

2
Tr

[
∂μU †∂μU

]
+ B Fπ√

2
Tr

[
M(U + U †)

]

+ i

2
Q Tr[ln U − ln U †] + Q2

2A
+ θ Q.

(2.1)

The mesonic field U is represented by a 3×3 complex matrix,
which can be written in terms of the quark fields as Ui j ∼
q̄ j Rqi L , up to a multiplicative constant.1 Under a general
SU (3)L ⊗ SU (3)R ⊗ U (1)A transformation [qL → q ′

L =
ṼLqL and qR → q ′

R = ṼRqR , where ṼL = eiβ VL , ṼR =
e−iβ VR , with VL ,R ∈ SU (3)] the field U transforms as

U → U ′ = ṼLU Ṽ †
R, (2.2)

At zero temperature (after integrating out the scalar meson
fields) we can adopt the usual nonlinear parametrization:

U (x) = Fπ√
2

e
i

Fπ

(∑8
a=1 πa(x)λa+

√
2
3 S(x)I

)

, (2.3)

where λa (a = 1, . . . , 8) are the usual generators of SU (3)

(Gell–Mann matrices), normalized so as Tr [λaλb] = 2δab,
and πa(x) are the nonsinglet pseudoscalar-meson fields,
while S(x) is the flavor-singlet pseudoscalar-meson field.
Moreover:

• Fπ is the pion decay constant.
• M = diag(mu, md , ms) is the quark-mass matrix.
• B is a constant (with the dimension of a mass) which

relates the squared masses of the pseudoscalar mesons
and the quark masses: for example, m2

π = B(mu + md).

1 Throughout this paper, we shall use the following notations for the
left-handed and right-handed quark fields: qL ,R ≡ 1

2 (1 ± γ5)q, with
γ5 ≡ −iγ 0γ 1γ 2γ 3. Moreover, we shall adopt the convention ε0123 =
−ε0123 = 1 for the (Minkowskian) completely antisymmetric tensor
εμνρσ (= −εμνρσ ) which appears in the expressions of the topological
charge density Q and of the dual electromagnetic field-strength tensor
F̃μν .

The topological charge density Q is introduced as an aux-
iliary field, whereas A is a parameter which (at least in
the large-Nc limit) can be identified with the topologi-
cal susceptibility in the pure Yang-Mills theory (A =
−i

∫
d4x〈T Q(x)Q(0)〉|Y M ). It is easy to see that the anoma-

lous term 
Lanomaly = i
2 Q Tr[ln U − ln U †] is invariant

under SU (3)L ⊗ SU (3)R , while under U (1)A (U → U ′ =
e2iβU ) it transforms as


Lanomaly → 
Lanomaly − 6βQ, (2.4)

so correctly reproducing the U (1) axial anomaly of the fun-
damental theory.

The model can be easily “axionized” (see Ref. [29]),
essentially by promoting the parameter θ to the axion field
Sa (apart from a multiplicative constant aP Q/ fa) and adding
a kinetic term for it, i.e.,

L =1

2
Tr

[
∂μU †∂μU

] + 1

2
∂μN †∂μN + B Fπ√

2
Tr

[
M(U + U †)

]

+ i

2
Q
{
Tr[ln U − ln U †] + aP Q[ln N − ln N †]} + Q2

2A
,

(2.5)

where N = faei Sa
fa parameterizes the axion field in the stan-

dard notation for Nambu–Goldstone bosons. It is convenient
to integrate out the auxiliary field Q using its equations of
motion:

Q = − i

2
A
{

Tr[ln U − ln U †] + aP Q(ln N − ln N †)
}

.(2.6)

The resulting Lagrangian is given by

L = 1

2
Tr[∂μU †∂μU ] + 1

2
∂μN †∂μN

+ B Fπ√
2

Tr[M(U + U †)]

+ A

8

{
Tr

[
ln U − ln U †

]
+ aP Q

[
ln N − ln N †

]}2
.

(2.7)

Expanding the Lagrangian up to the second order in the fields,
we get the following squared-mass matrix for the fields π3,
π8, S, Sa (the mass term for the fields π1, π2, π4, π5, π6, and
π7 being diagonal):

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2Bm̃ 1√
3

B


√
2
3 B
 0

1√
3

B
 2
3 B(m̃ + 2ms)

2
√

2
3 B(m̃ − ms) 0√

2
3 B
 2

√
2

3 B(m̃ − ms)
2
3 B(2m̃ + ms) + 6A

F2
π

2
√

3Ab
F2

π

0 0 2
√

3Ab
F2

π

2Ab2

F2
π

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(2.8)

where we have defined

m̃ ≡ 1

2
(mu + md), 
 ≡ mu − md , b ≡ aP Q Fπ√

2 fa
. (2.9)
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The fields π3, π8, S, Sa can be written in terms of the “phys-
ical” fields π0, η, η′, a, associated with the mass eigenstates
of Eq. (2.8), as follows:

⎛
⎜⎜⎝

π3

π8

S
Sa

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

θπ3π3 θπ3π8 θπ3 S θπ3 Sa

θπ8π3 θπ8π8 θπ8 S θπ8 Sa

θSπ3 θSπ8 θSS θSSa

θSaπ3 θSaπ8 θSa S θSa Sa

⎞
⎟⎟⎠

⎛
⎜⎜⎝

π0

η

η′
a

⎞
⎟⎟⎠ , (2.10)

where θi j is an orthogonal mixing matrix.
From the astrophysical bounds on the scale fa [18,19] (or

better on fa/aP Q , but aP Q ∼ O(1) for the more realistic
axion models [38]) we have: 10−18 � b � 10−10. As a con-
sequence, it is surely legitimate to perform the computations
only at the leading order in b. In particular, diagonalizing the
squared-mass matrix, we can derive the following expression
(at the leading order in b) for the squared mass of the axion
[29]:

m2
a = 2b2 B

mumdms

mumd + mums + mdms + B F2
π

A mumdms

.

(2.11)

This expression is in perfect agreement with the well-known
relationship (valid at the leading order in b) [15]: m2

a =
2b2

F2
π

χQC D , between the squared mass of the axion and the

topological susceptibility of QCD, χQC D ≡
−i

∫
d4x〈T Q(x)Q(0)〉|QC D , considering the expression of

χQC D which is found using the WDV model (see Refs.
[29,39] and references therein).

3 Electromagnetic decay of the axion

In order to investigate the electromagnetic decay of the axion,
we have to introduce the electromagnetic interactions into the
Lagrangian (2.7). This is done by (i) replacing the derivative
of the field U with the corresponding covariant derivative
DμU = ∂μU + ieAμ[Q, U ], where Aμ is the electromag-
netic field and Q = diag(2/3,−1/3,−1/3) is the quark
electric-charge matrix (in units of e, the absolute value of

the electron charge), and (ii) by adding the following term,
which reproduces the electromagnetic anomaly of the U (1)

and SU (3) axial currents (see Ref. [40]):


L(e.m.)
anomaly = i

2
G Tr

[
Q2

(
ln U − ln U †

)]
, (3.1)

where G = e2 NC
32π2 εμνρσ Fμν Fρσ , Fμν being the electromag-

netic field-strength tensor. Using Eq. (2.3), this term can be
rewritten explicitly in terms of the meson fields, as follows:


L(e.m.)
anomaly = − G

3Fπ

(
π3 + 1√

3
π8 + 2

√
2√

3
S

)
. (3.2)

Making use of Eq. (2.10), one immediately sees that this
term contains an axion-photon-photon interaction of the type
(1.4), with the following expression for the axion-photon-
photon coupling constant:2

gaγ γ = αe.m.

π Fπ

(
θπ3 Sa + 1√

3
θπ8 Sa + 2

√
2√
3

θSSa

)
, (3.3)

where αe.m. = e2

4π
� 1

137 is the fine-structure constant.
To find the mixing parameters in Eq. (2.10), we have to

solve the equations for the eigenvectors of the matrix (2.8).
In particular, using the following notation:

|π3〉 =

⎛
⎜⎜⎝

1
0
0
0

⎞
⎟⎟⎠ , |π8〉 =

⎛
⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎠ ,

|S〉 =

⎛
⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎠ , |Sa〉 =

⎛
⎜⎜⎝

0
0
0
1

⎞
⎟⎟⎠, (3.4)

the axion eigenvector is given by

|a〉 = θπ3 Sa |π3〉 + θπ8 Sa |π8〉 + θSSa |S〉 + θSa Sa |Sa〉

=

⎛
⎜⎜⎝

θπ3 Sa

θπ8 Sa

θSSa

θSa Sa

⎞
⎟⎟⎠. (3.5)

First we shall derive our expressions for 
 = 0, i.e.,
neglecting the experimentally small violations of the SU (2)V

isospin symmetry. For 
 = 0 the mass matrix becomes diag-
onal with respect to π3, which can thus be identified with π0:
therefore θπ3 Sa |
=0 = 0. The eigenvector equations are, in
this case:

⎧⎪⎪⎨
⎪⎪⎩

[ 2
3 B(m̃ + 2ms) − m2

a |
=0
]
θπ8 Sa + 2

√
2

3 B(m̃ − ms)θSSa = 0,

2
√

2
3 B(m̃ − ms)θπ8 Sa +

[
2
3 B(2m̃ + ms) + 6A

F2
π

− m2
a |
=0

]
θSSa + 2

√
3 bA

F2
π
θSa Sa = 0,

θ2
π3 Sa

+ θ2
π8 Sa

+ θ2
SSa

+ θ2
Sa Sa

= 1,

(3.6)

2 As we have already said in the Introduction, this is indeed the model-
independent contribution gQC D

aγ γ coming from the minimal coupling to
QCD: for simplicity, in the rest of the paper we will refer to it simply
as gaγ γ , ignoring the model-dependent contribution g0

aγ γ proportional
to the electromagnetic anomaly of the U (1)P Q symmetry.
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where m2
a |
=0 is given by the expression (2.11) with 
 = 0,

i.e., with mu = md = m̃, and the third equation is the nor-
malization condition. At the leading order in b, the following
results are found:

θπ8 Sa = −
√

2

3
b

(
ms − m̃

m̃ + 2ms + B F2
π

A m̃ms

)
,

θSSa = − b√
3

(
m̃ + 2ms

m̃ + 2ms + B F2
π

A m̃ms

)
,

θSa Sa = 1. (3.7)

Let’s now consider the realistic case 
 �= 0. If we write the
squared-mass matrix (2.8) as M2 = M2


=0 + δM2

, where

δM2

 =

⎛
⎜⎜⎜⎜⎝

0 1√
3

B


√
2
3 B
 0

1√
3

B
 0 0 0√
2
3 B
 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎠

, (3.8)

we can evaluate the eigenvalues and the eigenstates of the
matrixM2 at the first order in the parameter
, by treating the
term δM2


 as a small perturbation. In particular, using first-
order perturbation theory, we obtain for the axion eigenstate:
|a〉 = |a
=0〉 + |δa〉, with

|δa〉 = 1

m2
a |
=0 − m2

π0 |
=0
|π0


=0〉〈π0

=0|δM2


|a
=0〉,
(3.9)

where |π0

=0〉 = |π3〉 and m2

π0 |
=0 = 2Bm̃. Therefore, at
the leading order in 
 and b:

θπ3 Sa = b
√
2m̃

(
ms

m̃ + 2ms + B F2
π

A m̃ms

)
, (3.10)

while the corrections to the other mixing parameters are of
order O(
2).

Finally, substituting the expressions (3.7) and (3.10) into
Eq. (3.3), we find the following result:

gaγ γ = −αe.m.
√

2b

3π Fπ

(
m̃ + 5ms − 3ms


2m̃

m̃ + 2ms + B F2
π

A m̃ms

)
. (3.11)

We observe that, if we take the formal limits ms → ∞ and
A → ∞, this result correctly reduces to the correspond-
ing expression derived with the Chiral Effective Lagrangian
(χ E L) with L = 2 flavors at LO, i.e.,

gaγ γ |(LO)
χ E L = −αe.m.

√
2b

3π Fπ

(
mu + 4md

mu + md

)
. (3.12)

4 Hadronic decays with the axion

This section is devoted to the study of the following pro-
cesses:⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η → π0 + π0 + a,

η → π+ + π− + a,

η′ → π0 + π0 + a,

η′ → π+ + π− + a.

(4.1)

Among all the possible hadronic decays involving also
the axion, these are the ones involving the lowest-energy
hadrons. (Since, as we shall see below, every axion in the
final or initial state implies a factor b in the decay ampli-
tude, multiaxion processes are extremely suppressed and we
disregard them.) The couplings of the axion with hadrons
in general (and with the lightest mesons in particular) have
already been investigated in the past literature, in many cases
using also chiral effective Lagrangian techniques (see, e.g.,
Refs. [41–43]), but never using the WDV Lagrangian (2.7).
Moreover, the particular processes (4.1) have never been
explicitly investigated before.3 From an experimental point
of view, there are well-known bounds on the decay widths of
η/η′ → π0π0 and η/η′ → π+π−: they will be compared
to our predictions in Sect. 7.

In order to compute the amplitudes of the processes (4.1),
we must derive the interaction vertices between the axion and
the pseudoscalar mesons. This can be achieved by expanding
the WDV Lagrangian (2.7) up to the fourth order in the fields.
We thus obtain the following quartic Lagrangian:

L4 = 1

4F2
π

[
−2

3
fi jc fcαβ(πi∂μπ j )(πα∂μπβ)

]

+ B

24F2
π

Tr

⎡
⎣M

(
8∑

a=1

πaλa +
√

2

3
S I

)4⎤
⎦ , (4.2)

where fabc are the SU (3) structure constants (defined as
[λa, λb] = 2i fabcλc). In particular, only the following term
of the quartic Lagrangian is relevant for studying the pro-
cesses (4.1):


L4 = Bm̃

3F2
π

(
1

2
π2

3 + π+π−
)(

π2
8 + 2S2 + 2

√
2π8S

)
,

(4.3)

where, as usual, π± = π1∓iπ2√
2

are the charged pion fields. As
in the previous section, we shall work at the leading order in
the parameter b. Moreover, considering also the explorative
nature of this study, we shall neglect (for simplicity) isospin

3 However, in the recent Ref. [44] similar processes, such as a → 3π

or a → η(η′)ππ , involving QCD-scale axionlike particles with masses
mπ � ma � 3 GeV, have been investigated, using also (for the case
ma � 1 GeV) chiral effective Lagrangian techniques.
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violations (
 = 0).4 With these approximations, the follow-
ing (relevant) mixing parameters are found diagonalizing the
squared-mass matrix (2.8):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

θπ3π3 = 1, θπ3π8 = θπ3 S = θπ3 Sa = 0,

θπ8π3 = 0, θπ8π8 = cos ϕ, θπ8 S = − sin ϕ, θπ8 Sa = −
√

2
3 b

(
ms−m̃

m̃+2ms+ B F2
π

A m̃ms

)
,

θSπ3 = 0, θSπ8 = sin ϕ, θSS = cos ϕ, θSSa = − b√
3

(
m̃+2ms

m̃+2ms+ B F2
π

A m̃ms

)
,

(4.4)

where ϕ is the mixing angle between π8 and S, given by [45]:

tan ϕ = √
2 − 3

2
√

2

[
m2

η − 2Bm̃

B(ms − m̃)

]
. (4.5)

In particular, being 
 = 0, π3 can be simply identified with
π0. Making use of Eq. (2.10) and of the expressions (4.4),
the following quartic interaction terms are found from Eq.
(4.3):
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩


Lηπ0π0a = 1
2 gηπ0π0aη(π0)2a,


Lηπ+π−a = gηπ+π−aηπ+π−a,


Lη′π0π0a = 1
2 gη′π0π0aη′(π0)2a,


Lη′π+π−a = gη′π+π−aη′π+π−a,

(4.6)

with

gηπ0π0a = gηπ+π−a ≡ −2
√

2bB√
3F2

π

×
(

cos ϕ + √
2 sin ϕ

)( m̃ms

m̃ + 2ms + B F2
π

A m̃ms

)
, (4.7)

and

gη′π0π0a = gη′π+π−a ≡ −2
√

2bB√
3F2

π

×
(
− sin ϕ + √

2 cos ϕ
)( m̃ms

m̃ + 2ms + B F2
π

A m̃ms

)
.

(4.8)

The equality of the decay amplitudes A(η → π0π0a) =
gηπ0π0a and A(η → π+π−a) = gηπ+π−a (as well as of
the amplitudes A(η′ → π0π0a) = gη′π0π0a and A(η′ →
π+π−a) = gη′π+π−a) is, of course, a consequence of the
fact that we are neglecting isospin violations.

4 This is usually expected to be a not too “brutal” approximation. For
example, in the case of the axion-photon-photon coupling constant gaγ γ

derived in the previous section, the percentage variation between the
value obtained using Eq. (3.11) and the corresponding value obtained
by putting 
 = 0 comes out to be about 17% (using the known values
of the parameters that will be reported in Sect. 6).

5 Effects of an extra U(1) axial condensate

In this section, we will try to answer the following ques-
tion: considering the relevance of the U (1) axial symme-

try in defining the physical aspects of a hypothetical axion
(i.e., its mass and its interactions), could a (no matter how
small) hypothetical U (1) axial condensate significantly mod-
ify these expectations? More precisely, we will study the
effects of a possible U (1) axial condensate on the various
quantities that we have evaluated in the previous sections,
by using a chiral effective Lagrangian model proposed in
Refs. [30–32] and then elaborated on in Refs. [33–37]: it
can be interpreted as an extension of the WDV model with
the inclusion of a U (1) axial condensate and therefore we
will refer to it as the “extended model”. In this model the
U (1) axial anomaly is implemented as in the WDV model
(by properly introducing the auxiliary field Q), so that it
correctly satisfies the transformation property (2.4) under
the chiral group, but it also includes an extra U (1) axial
condensate, in addition to the usual chiral condensate 〈q̄q〉.
This U (1) axial condensate has the form CU (1) = 〈OU (1)〉,
where, for a theory with L light quark flavors, OU (1) is a
2L-quark local operator that has the chiral transformation
properties of OU (1) ∼ detst (qs Rqt L)+detst (qsLqt R), where
s, t = 1, . . . , L are flavor indices. The color indices (not
explicitly indicated) are arranged in such a way that (i) OU (1)

is a color singlet and (ii) CU (1) is a genuine 2L-quark con-
densate, i.e., it has no disconnected part proportional to some
power of the quark-antiquark chiral condensate 〈q̄q〉. The
explicit form of this condensate has been discussed in detail
in Refs. [35,36]. In what follows we shall consider the case
L = 3.

The Lagrangian of the extended model is thus written
in terms of the topological charge density Q, the usual
mesonic field Ui j ∼ q̄ j Rqi L , and a new field variable
X ∼ detst q̄s Rqt L , associated with the U (1) axial conden-
sate, which under a general SU (3)L ⊗ SU (3)R ⊗ U (1)A

chiral transformation [see Eq. (2.2)] transforms as:

X → det(ṼL) det(ṼR)∗ X. (5.1)

In the usual nonlinear parametrization, the field X can be
written as

X = FX√
2

e
i

√
2

FX
SX , (5.2)
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where FX is essentially the vacuum expectation value of
X (〈X〉 = FX√

2
), i.e., the U (1) axial condensate, and SX is

an exotic flavor-singlet pseudoscalar field. The model can
be “axionized” in the same way as the WDV model. The
Lagrangian of the “axionized extended model” is written as:

L = 1

2
Tr[∂μU †∂μU ] + 1

2
∂μ X†∂μ X + 1

2
∂μN †∂μN

+ B Fπ√
2

Tr
[
M(U + U †)

]

+ κ1

2
√

2

(
X† det U + X det U †) + Q2

2A

+ i

2
Q
{
ω1 Tr[ln U − ln U †] + (1 − ω1)(ln X − ln X†)

+aP Q(ln N − ln N †)
}
. (5.3)

Integrating out the auxiliary field Q, one obtains:

L = 1

2
Tr[∂μU †∂μU ] + 1

2
∂μ X†∂μ X + 1

2
∂μN †∂μN

+ B Fπ√
2

Tr
[

M(U + U †)
]

+ κ1

2
√

2

(
X† det U + X det U †

)

+ A

8

{
ω1 Tr[ln U − ln U †] + (1 − ω1)[ln X − ln X†]

+aP Q[ln N − ln N †]
}2

. (5.4)

The model is characterized, with respect to the WDV model,
by three new parameters: ω1, κ1, and FX . As already observed
in Refs. [35,36,39], the Lagrangian of the extended model
reduces to that of the WDV model by first choosing ω1 =
1 and then letting FX → 0. Therefore, ω1 = 1 seems to
be the most “natural” choice, at least at low temperatures,
near T = 0, where minimal deviations from the results of
the WDV model are expected (on the other side, ω1 must
necessarily vanish above the chiral transition temperature in
order to avoid a singular behaviour of the anomalous term:
see Refs. [30–32,37]).

Expanding the Lagrangian up to the second order in the
fields, one finds the following squared-mass matrix for the
fields π3, π8, S, SX , Sa :

M2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2Bm̃ 1√
3

B


√
2
3 B
 0 0

1√
3

B
 2
3 B(m̃ + 2ms)

2
√

2
3 B(m̃ − ms) 0 0√

2
3 B
 2

√
2

3 B(m̃ − ms)
2
3 B(2m̃ + ms) + 6(Aω2

1+c)
F2

π

2
√

3[Aω1(1−ω1)−c]
Fπ FX

2
√

3bAω1
F2

π

0 0 2
√

3[Aω1(1−ω1)−c]
Fπ FX

2[A(1−ω1)
2+c]

F2
X

2bA(1−ω1)
Fπ FX

0 0 2
√

3bAω1
F2

π

2bA(1−ω1)
Fπ FX

2b2 A
F2

π

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

c ≡ κ1
FX

2

(
Fπ√

2

)3

.

The eigenstates of this matrix are the usual pseudoscalar
mesons π0, η and η′, plus another exotic pseudoscalar state,
called ηX , and the axion. At the leading order in b, the fol-
lowing value for the squared mass of the axion is found:

m2
a = 2b2 B

mumd ms

mumd + mums + md ms + B F2
π

A

(
1 + A(1−ω1)2

c

)
mumd ms

.

(5.5)

Also in this case [see the discussion after Eq. (2.11)], the
expression for m2

a turns out to be in agreement with the rela-

tion m2
a = 2b2

F2
π

χQC D , considering the expression of χQC D

which is found using the extended model (see Ref. [39]).
Moreover, we notice that for ω1 �= 1 the mass of the axion
in the extended model is smaller than the one obtained in
the WDV model, due to the positive corrective factor in the
denominator. If, instead, we consider ω1 = 1, the result coin-
cides precisely with the result (2.11) of the WDV model,
independently of the other parameters (κ1 and FX ) of the
extended model. This is not a totally unexpected result since
in this particular case the potential coincides with that of
the WDV model, apart from a term independent of the axion
field (a more detailed explanation of this can be found in Ref.
[39]).

Concerning the axion-photon-photon coupling gaγ γ , the
following result is found:

gaγ γ = −αe.m.
√

2b

3π Fπ

(
m̃ + 5ms − 3ms


2m̃

m̃ + 2ms

)

×
{

A[ω1 − (1 − ω1)z]
B F2

π
m̃ms

m̃+2ms
+ Aω2

1 + c + z [c − Aω1(1 − ω1)]

}
,

(5.6)

with z ≡ Aω1(1−ω1)−c
A(1−ω1)2+c

. Also in this case, setting the “natu-
ral” value ω1 = 1 we recover the WDV expression (3.11),
independently of the other parameters of the extended model.
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Finally, we analyze the hadronic decays (4.1) with the
axion. The explicit computation shows that the quartic
Lagrangian is the same of the WDV model [see Eq. (4.2)],

apart from an additional term δL(c)
4 = c

6

(√
3S

Fπ
− SX

FX

)4
. Any-

way, if we neglect the isospin violations (
 = 0), this term
does not contribute to the processes (4.1). If, for the reasons
explained above, we take ω1 = 1, which is the “natural”
choice (at least at T = 0), we easily derive (proceeding as in
Sect. 4 and making use of the results already found in Refs.
[33–36]) the following expressions for the coupling constants
gηππa and gη′ππa :

gηπ0π0a = gηπ+π−a ≡ −2
√

2bB√
3F2

π

×
(

cos ϕ̃ +
√

2Fπ

Fη′
sin ϕ̃

)(
m̃ms

m̃ + 2ms + B F2
π

A m̃ms

)
,

(5.7)

and

gη′π0π0a = gη′π+π−a ≡ −2
√

2bB√
3F2

π

×
(

− sin ϕ̃ +
√

2Fπ

Fη′
cos ϕ̃

)(
m̃ms

m̃ + 2ms + B F2
π

A m̃ms

)
,

(5.8)

where Fη′ �
√

F2
π + 3F2

X can be interpreted as the η′

decay constant (see Refs. [30–36]) and ϕ̃ is the mixing angle
between π8 and S, which turns out to be a bit larger than the

value ϕ in Eq. (4.5), being [33–36]: tan ϕ̃ = Fη′
Fπ

tan ϕ. We
observe that in the limit FX → 0 we have Fη′ → Fπ and
ϕ̃ → ϕ, and the expressions (5.7) and (5.8) correctly reduce
to the WDV results (4.7) and (4.8).

Recalling the upper limit |FX | � 20 MeV found in Refs.
[30–36], we have that 1 ≤ Fη′/Fπ � 1.07. Using also the
fact that the mixing angle is quite small [Eq. (4.5) predicts
a value ϕ � 5.5◦ and thus 5.5◦ � ϕ̃ � 5.85◦], we find
that the coupling constant gηππa [Eq. (5.7)] practically coin-
cides with the WDV result (4.7), while the coupling constant
gη′ππa [Eq. (5.8)] approximately gets, with respect to the
WDV result (4.8), a multiplicative factor 0.94 � Fπ/Fη′ ≤
1.

6 Numerical results

In this section we report numerical estimates for the axion-
photon-photon coupling constant and for the decay widths of
the hadronic processes (4.1) with the axion. For the numer-
ical computations, we have used the following values of the
known parameters:

• Fπ = (92.1 ± 1.2) MeV (see Ref. [46], where the value
of fπ ≡ √

2Fπ is reported).
• A = (180 ± 5 MeV)4 (see Ref. [6] and references

therein).
• For what concerns the parameter B and the quark masses

mu , md , ms , we can make use of the well-known rela-
tions (see, e.g., Ref. [1]) between Bmu , Bmd , Bms and
the squared pseudoscalar-meson masses, derived using
leading-order chiral perturbation theory (and ignoring
small corrections due to the mixing with the axion):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bmu = m2
π0 − 1

2

(
m2

K 0 − m2
K + + m2

π+
)

,

Bmd = 1
2

(
m2

K 0 − m2
K + + m2

π+
)

,

Bms = 1
2

(
m2

K 0 + m2
K + − m2

π+
)

.

(6.1)

The pseudoscalar-mesons masses are given by [46]

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

mπ+ = 139.57061(24) MeV,

mπ0 = 134.9770(5) MeV,

mK + = 493.677(16) MeV,

mK 0 = 497.611(13) MeV.

(6.2)

We also need mη = 547.862(17) MeV and mη′ =
957.78(6) MeV.

6.1 Axion-photon-photon coupling constant gaγ γ

In Table 1 we report the numerical estimate for the axion-
photon-photon coupling constant gaγ γ , obtained using the
expression (3.11) that we have derived in Sect. 3 using
the “axionized” WDV model (as we have seen in Sect. 5,
this expression is not modified using, in place of the WDV
model, a “natural” extension of it which also includes an
extra U(1) axial condensate): for comparison, we also report
the corresponding estimates derived using the Chiral Effec-
tive Lagrangian (χ E L) with L = 2 light quark flavors at
LO [O(p2)] and NLO [O(p4)] (see Ref. [21] and references
therein).

Table 1 Numerical values of the axion-photon-photon coupling con-
stant gaγ γ , obtained using Eq. (3.11), compared with the predictions of
the Chiral Effective Lagrangian (L = 2) at LO and NLO

|gaγ γ |/b [10−5MeV−1]

χ E L (L = 2) at LO [21] 3.59 ± 0.05

χ E L (L = 2) at NLO [21] 3.42 ± 0.07

WDV (L = 3) [Eq. (3.11)] 3.29 ± 0.06
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6.2 Hadronic decay widths with the axion

The decay widths for the processes (4.1) are given by
⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�(η → π0π0a) = 1
2mη ·2! |gηπ0π0a |2�(3)(mη|mπ0 , mπ0 , ma),

�(η → π+π−a) = 1
2mη

|gηπ+π−a |2�(3)(mη|mπ+ , mπ− , ma),

�(η′ → π0π0a) = 1
2mη′ ·2! |gη′π0π0a |2�(3)(mη′ |mπ0 , mπ0 , ma),

�(η′ → π+π−a) = 1
2mη′ |gη′π+π−a |2�(3)(mη′ |mπ+ , mπ− , ma),

(6.3)

where the amplitudes gηππa and gη′ππa are given by Eqs.
(4.7) and (4.8) respectively and �(3)(M |m1, m2, m3) is the
phase space (with the usual “relativistic” normalization) for
three particles of masses m1, m2, m3 with total energy M
in the center-of-mass system. The exact expression is rather
complicated (see Eq. (3.18) in Refs. [35,36], and also Ref.
[47] and references therein), but it is surely a good approxi-
mation to take ma � 0, considering the experimental upper
bound on the axion mass ma � 10−2 eV [18,20]. The expres-
sion for the phase space for two particles of mass m and one
massless particle turns out to be

�(3)(M |m, m, 0)

= M2

256π3

⎧⎨
⎩
(

1 + 2m2

M2

)√
1 − 4m2

M2 − 4m2

M2

(
1 − m2

M2

)

× ln

⎡
⎣ M2

2m2

⎛
⎝1 +

√
1 − 4m2

M2

⎞
⎠ − 1

⎤
⎦
⎫⎬
⎭ .

(6.4)

Inserting the numerical values of the constants (6.1)–(6.2)
and Fπ , we obtain the following results:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�(η → π0π0a) = b2(5.62 ± 0.04) × 10−3 MeV,

�(η → π+π−a) = b2(10.52 ± 0.07) × 10−3 MeV,

�(η′ → π0π0a) = b2(2.49 ± 0.02) × 10−2 MeV,

�(η′ → π+π−a) = b2(5.01 ± 0.03) × 10−2 MeV.

(6.5)

7 Conclusions: summary of the results and prospects

In this paper we have investigated the most interesting decay
processes involving axions, photons and the lightest pseu-
doscalar mesons, making use of the “axionized” version of a
chiral effective Lagrangian model proposed by Witten et al.
(WDV), which describes the Nambu–Goldstone bosons orig-
inated by the spontaneous breaking of the SU (3)L ⊗SU (3)R

chiral symmetry (with L = 3 light quark flavors) and the
flavor-singlet pseudoscalar meson, implementing the U (1)

axial anomaly of the fundamental theory.

In particular, in Sect. 3 we have computed the axion-
photon-photon coupling constant gQC D

aγ γ and the result is
given by the expression (3.11), that we have compared with
the one obtained using the Chiral Effective Lagrangian with
L = 2 light quark flavors. As we have verified in Sect. 5,
this expression (as well as the expression for the mass of the
axion) is not modified using, in place of the WDV model, a
“natural” extension of it which also includes an extra U(1)
axial condensate.

In Table 1 of Sect. 6 we have reported the numerical esti-
mate for the axion-photon-photon coupling constant (3.11):
for comparison, we have also reported the corresponding esti-
mates derived using the Chiral Effective Lagrangian with
L = 2 light quark flavors at LO and NLO. Comparing our
result with the estimate found using the L = 2 Chiral Effec-
tive Lagrangian at LO, we get a value which is about 9%
smaller, and it is also a bit smaller than (but almost com-
patible within the errors with) the value obtained using the
L = 2 Chiral Effective Lagrangian at NLO. Of course, in
the hypothesis that this type of process will be observed in
the future, it will be important to know the level of accuracy
of a given theoretical estimate, when comparing it with the
experimental result, and in this perspective our result will be
surely relevant. Looking at the values reported in Table 1,
one could optimistically consider our result as a more “pre-
cise” determination, with respect to the result obtained using
the L = 2 Chiral Effective Lagrangian at LO and NLO
(because, maybe, our effective model, already at tree level,
is able to reproduce results with an accuracy comparable to
the one which is obtained using the L = 2 Chiral Effec-
tive Lagrangian after including many higher-order correc-
tions…). Adopting, instead, a more conservative approach,
one could simply consider our result as an alternative deter-
mination using a chiral effective Lagrangian model, which
(when compared with other similar determinations) allows
to estimate a sort of “systematic uncertainty” for this kind of
theoretical predictions.

Then, in Sect. 4 we have performed an explorative study of
the hadronic decays η/η′ → ππa (which, among all the pos-
sible hadronic decays involving also the axion, are the ones
involving the lowest-energy hadrons): the expressions for the
amplitudes gηππa and gη′ππa are given by Eqs. (4.7) and (4.8)
respectively. In Sect. 6, Eq. (6.5), we have reported the numer-
ical estimates for the corresponding decay widths: these are
the main original results obtained in this paper. (Moreover,
as we have found in Sect. 5, the addition of a possible U(1)
axial condensate, while not modifying the η → ππa decays,
makes the η′ → ππa decay widths a bit smaller by a factor
0.88 � (Fπ/Fη′)2 ≤ 1.) Considering the existing experi-
mental bounds on b (based on astrophysical and cosmologi-
cal considerations) [18,19], 10−18 � b � 10−10, the decay
widths (6.5) turn out to very small, smaller than about 10−22
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MeV.5 As far as we know, no experimental search for these
processes has been attempted up to know. However, even if
the electromagnetic decay of the axion (a → γ γ ) certainly
remains the most promising process which might provide
some experimental signature of the axion, we believe that it
would be worthwhile to look also for these possible decay
processes η/η′ → ππa in future η-factory experiments.

We conclude by observing that our estimates (6.5) for the
widths of the η/η′ → ππa decays are based on the expres-
sions (4.7) and (4.8) for the amplitudes gηππa and gη′ππa ,
which have been obtained directly (i.e., at leading order)
from our chiral effective Lagrangian model (described in
Sect. 2). It is plausible that these LO estimates will receive
large contributions from chiral loop corrections at NLO and
NNLO, and from strong final-state rescattering (as it hap-
pens, for example, in the η/η′ → 3π decays). Alterna-
tively, one could consider the approach described in Refs.
[44,50], in which one takes into account an extended chiral
effective Lagrangian model, which also includes the lowest-
lying nonet of scalar mesons (i.e., a linearized version of
the [nonlinear] chiral effective Lagrangian model described
in Sect. 2): in this alternative approach, also contributions
to the η/η′ → ππa amplitudes coming from scalar-meson
exchanges are taken into account.

We believe that it would be worthwhile to go beyond
the explorative study undertaken in this paper and to better
investigate the η/η′ → ππa decays following the “guide-
lines” mentioned above: some progress in these directions is
expected in the near future.
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included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-

5 Just for comparison, we recall here the experimental bounds on the
CP-violating η/η′ decays in two pions [46]: �exp(η → π0π0) <

4.6 × 10−7 MeV, �exp(η → π+π−) < 1.7 × 10−8 MeV, �exp(η′ →
π0π0) < 7.8×10−5 MeV, �exp(η′ → π+π−) < 3.5×10−6 MeV. We
also observe that, even with the largest value of b allowed by the above-
mentioned astrophysical bounds, i.e, b � 10−10, the decay widths
(6.5) turn out to be about a factor 10−3 (for η → ππa) and 10−2

(for η′ → ππa) smaller than the model-independent bounds on the
rates of the rare (CP-violating) decays η(η′) → ππ , which have been
derived in Refs. [48,49], using the experimental limits on the neutron
electric dipole moment.

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3.
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