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Abstract— This paper tackles the challenge of predicting
grasp failures in soft hands before they happen, by combining
deep learning with a sensing strategy based on distributed
Inertial Measurement Units. We propose two neural architec-
tures, which we implemented and tested with an articulated soft
hand - the Pisa/IIT SoftHand - and a continuously deformable
soft hand - the RBO Hand. The first architecture (Classifier)
implements a-posteriori detection of the failure event, serving
as a test-bench to assess the possibility of extracting failure
information from the discussed input signals. This network
reaches up to 100% of accuracy within our experimental
validation. Motivated by these results, we introduce a second
architecture (Predictor), which is the main contribution of the
paper. This network works on-line and takes as input a multi-
dimensional continuum stream of raw signals coming from
the Inertial Measurement Units. The network is trained to
predict the occurrence in the near future of a failure event.
The Predictor detects 100% of failures with both hands, with
the detection happening on average 1.96 seconds before the
actual failing occurs - leaving plenty of time to an hypothetical
controller to react.

I. INTRODUCTION

The use of compliant and soft elements in robotic hands
has proven to be a formidable tool for endowing them with
previously unmatched capabilities [1], [2], [3]. At the same
time, this new technology has initiated the grand challenge
of developing algorithms able to deal with, and even exploit,
the intelligence embodied in the hands by the purposeful
introduction of these elastic components.

Under a control point of view, the controller should let
the hand itself (i.e. the embodied mechanical intelligence)
performing the larger part of the grasping/manipulation task.
Indeed, the physical adaptability of these systems allows to
overcome local uncertainties, requiring only an approximated
estimation of the relative hand-object pose. Accordingly, most
of the grasp strategies for soft hands proposed so far resort to
implementing correct wrist placement and hand pre-shaping
[4], [5], [6]. Furthermore, the controller should purposefully
react if any unexpected situation occurs. For example, the
hand could fail in grasping the object, in which case the
controller should be informed in due time, so that a recover
routine can be triggered [7]. This makes detecting failures a
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Fig. 1. In this paper two deep learning based architectures are proposed
for classifying and predicting failure events in soft robotic hands. Three
IMUs are placed on each finger of the hands, for a total of 15 units. The
raw readings coming from on-board accelerometers and gyroscopes - 135
signals - are directly fed into the networks.

central goal for developing effective control architectures for
soft hands.

A commonly used strategy for grasp failure detection -
often employed with rigid hands - is to directly measure
contact forces with dedicated sensors [8]. With this kind of
information, the a posteriori detection of a failure becomes
trivial [9]. Slippages can also be directly sensed when
tangential forces are measured. More sophisticated usages
of these sensors include the prediction of future failure
event when the hand is in static conditions [10], and the
prediction of slippage even before it starts [11]. These types
of techniques use machine learning to perform the prediction.
In [12] a similar strategy is adopted within the context of
articulated soft hands (i.e. hands with rigid structure but highly
deformable joints, also called compliant hands). The failing is
here predicted by directly measuring tangential forces through
sensors placed at the fingertips. This is however a strategy
that is hardly feasible in the generic soft case - especially
for what concerns continuum soft hands (i.e. hands made
of continuously deformable materials). Indeed, obtaining
effective force sensing within the softness constraints is
exceptionally challenging [13], [14].

A promising alternative to force sensing is to measure other
quantities either tactile or related to other sensory sources
- e.g. hand posture [15], audio signals [16], video streams
[17] - and infer contact forces through algorithms. Model
based techniques are hard to use in these cases, due to the
well-known difficulties in formulating reliable models of the
hand-object interaction when softness is involved [18]. The
use of machine learning to extract force information have
therefore been investigated, with promising outcomes [17],
[19], [20]. However, we are not aware of any application of
these approaches to failure detection or prediction.

This paper moves from the following consideration; since
in any case advanced failure prediction involves the use
of machine learning strategies - even when force sensors



are available - why do not directly learning an end-to-end
mapping from the raw sensors to the detection of the failure
event?

To the best of authors’ knowledge, the only related
approach going in this direction is introduced in [21],
which however proposes failure characterization, rather than
prediction. Moreover, the strategy is tailored on articulated
soft hands only, and experimentally tested with a 2-fingered
articulated soft gripper grasping a cylinder.

We deal instead with the challenge of predicting a failure
event with a generic - either continuum or articulated - soft
hand. Furthermore, the emphasis is on exploiting temporal
features to act on-line and before the event happens, rather
than in static conditions. We tackle this challenge through
deep learning. First, we propose a deep neural architecture
discerning failed grasps from successful ones after the grasp
is completed. This serves as ground truth and motivation for
our second neural architecture, which is built by stacking
three convolutional layers (CNN) and two Long Short
Memory Networks (LSTM), and it is able to reliably predict
failure events several seconds before they actually happen.
The sensing strategy relies on a set of distributed Inertial
Measurement Units (IMUs), reading both accelerations and
angular velocities. The proposed sensing system and machine
learning architecture have been tested with two soft robotic
hands: the Pisa/IIT SoftHand [22] and the RBO Hand [23].
The first is an articulated soft hand, the second is continuously
deformable. To conclude, this paper contributes with
• the use of IMUs as a reliable source of contact informa-

tion in soft hands,
• a deep neural network capable of a-posteriori detection

of failure events in soft hands,
• a deep neural network capable of on-line prediction of

failure events in soft hands,
• the validation of the method with two soft robotic hands.

II. PROBLEM DEFINITION

A. Sensing apparatus

We propose here to use a set of Inertial Measurement Units
(IMUs) to acquire information on soft hands behavior. A total
of 16 IMUs is used here. We place one IMU on the back
of the hand palm, and three for each finger. The IMUs are
rigidly connected to a deformable glove, which can be easily
added to any soft hand1 without spoiling its softness. Fig.
2 shows the two hands considered in this work, with and
without the sensing glove. The first hand is an articulated soft
hand - the Pisa/IIT SoftHand [22] - with 19 flexible joints and
an under-actuated mechanism implementing a single degree
of actuation. The second hand is a continuum soft hand -
the RBO Hand [23]. Fully made of silicon rubber, it can
undergo continuum deformations. The actuation is pneumatic.
From each of these units we read accelerations and angular
velocities expressed along the three local axes. We have thus
a total of 96 signals. These signals are peculiarly information-
rich, carrying both low frequency and high frequency content.
The first is related to the change in posture of the hand, and
the latter to (micro-)impacts and (micro-)slippage events.

1Note that while we consider here anthropomorphic soft hands, the
proposed strategy is general in its formulation and thus seamlessly applicable
to any soft gripper.

Let us assume a soft robotic hand performing a grasping
action. Let us also consider this hand sensorized as discussed
above. Sensors measures are collected in the vector Xt =
[xT

1,t ,x
T
2,t , . . . ,x

T
n,t ]

T ∈Rnm, where xi,t ∈Rm is the measurement
of the i-th sensor at time frame t ∈N. m is the dimensionality
of the measured quantities and n is the total number of
sensors. In the apparatus discussed above these values are
m = 6 and n = 16. Given a set of available measurements at
times frames {1 . . .k}, we can collect them into the matrix
X = [X1,X2, . . . ,Xk] ∈ Rnm×k.

B. Regression problems

We analyze failure detection from two - strictly connected
- points of view. First, we tackle the easier case in which
the goal is to classify whether one execution resulted in
a successful or a failed grasp. The whole evolution of Xt
is considered available as input to the network. As already
discussed in the introduction, this would be a trivial problem
if contact sensors were available. However, the nature of the
sensor input considered here, and their complex and hard-
to-formulate relationship with the event we intend to detect,
makes this goal already quite challenging. More specifically,
we describe this goal as approximating the function

y = C (X), P : Rnm×k→{0,1} (1)

where y ∈ {0,1}, is a boolean variable that classifies the
whole sequence X between two possible conditions: success
(y = 0) or failure (y = 1).

Second, we consider a more challenging problem - whose
solution is the main contribution of this paper - in which the
goal is to predict at each time t̄ the success or failing of a
grasp given the current sensor readings Xt̄ . More specifically

Y = P(X), P : Rnm×k→{0,1}m (2)

where Y = [y1,y2, . . . ,ym]
T is the boolean vector collecting

the elements yt̄ ∈ {0,1}. This value is equal to 1 if the hand-
object motions happening at t̄ will end into a failure event.
yt̄ is 0 otherwise. Therefore, Y has always the structure of a
sequence of zeros, possibly followed by a single sequence of
ones - which starts from the time in which the hand-object
configuration leading to the failure appears, till the end of
the experiment.

Consider here a given ordered set X∗ of measurements X
coming from a number of experiments. We hypothesize the
knowledge of y∗ =C (X)∗, Y∗ =P(X∗) . The pairs {X∗,y∗}
and {X∗,Y∗} will be referred as training set in the following.
This knowledge is provided by an expert labeller, who visually
inspects video material off the experiments. Our goal is to
learn both C and P models by minimizing the difference
between the predicted labels ŷ, Ŷ and the ground truths y∗,
Y∗.

It is very important to underline that while the labeling is
performed in a non-causal way - i.e. by looking if the motions
at time t will produce a failure in the future - we ask P(X)
to be causal, i.e. that the t̄−th component yt̄ = Pt̄(X) is
actually only function of {X1,X2, · · · ,Xt̄}. This is equivalent
to introducing the hypothesis that the current readings carry
enough information on the hand state to allow for a prediction
of the failure event, based on an internal representation of
hand-object physics.



(a) P/I SoftHand, no sens. (b) RBO Hand, no sensors (c) P/I SoftHand, with sens. (d) RBO Hand, with sensors

Fig. 2. Panels (a,b) show the two robotic hands considered in this study, without sensors. The first is an articulated soft hand [22], the second a continuum
soft hand [23]. Panels (c,d) show the same hands when the proposed sensing apparatus is used.

(a) Classifier

(b) Predictor

Fig. 3. The two deep neural networks proposed in this paper. Panel (a)
shows the Classifier. Its inputs are entire sequences X∈Rnm×k and its output
a single boolean value {0,1}. Panel (b) shows the Predictor. This network
approximates (2) by breaking down X ∈ Rnm×k into its samples Xt ∈ Rnm,
and it uses them as inputs. To any sequence of inputs {1, . . . ,Xt̄} corresponds
a single output in yt̄ ∈ {0,1}. Note therefore that the first stage - CNN for
Feature Extraction - has only apparently the same structure in the two cases.
Indeed, the one in Panel (a) is a CNN for 2-D feature extraction, while the
architecture in Panel (b) is a CNN for 1-D feature extraction.

III. GRASP FAILURE DETECTION VIA
DEEP NEURAL NETWORKS

Finding C and P can be regarded as pattern recognition
(PR) problems. We consider here the use of Deep Learning
(DL) to achieve this goal. Compared to the other traditional
PR approaches - see e.g. decision trees [24], hidden Markov
models [25], support vector machines [26]) - DL techniques
can learn features automatically from data, thus being
more appropriate for our highly unstructured framework.
Furthermore, DL techniques can extract on-line high-level
feature details in deep layers.

In this work we propose two deep architectures as depicted
in (Fig.3), named respectively “Classifier” - approximating
(1) - and “Predictor” - approximating (2).

We will describe these architectures already referring to
their optimal structures - in terms of hyperparameters - which
we learned from data. We will provide details on this learning
process in Sec. V.

TABLE I
STRUCTURE OF THE CNN USED IN THE CLASSIFIER.

type # of kernels (b) kernel size (f ) stride (s)

Conv 1 64 11 4
MaxPool 1 - 3 2

Conv 2 96 5 1
MaxPool 2 - 3 2

Conv 3 96 5 1
MaxPool 3 - 3 2

A. Classifier
We attack the problem through a Convolutional Neural

Network [27] (CNN). Note that input X - being a matrix
- can be regarded as analogous to a 2D image. The input
is processed by the CNN, which acts as a feature extractor.
Note that the convolution in time is essentially related to
Fourier transforms. So through this technique we can at the
same time isolate spatial 2 relationship between signals, and
- even more importantly - separate high frequency and low
frequency information (see Sec. II).

The first stage of the CNN comprises three sequences of
convolution, rectified linear units, and pooling. Convolution
layers - ‘Conv2D i” - extract features from the input data by
means of a convolution operation of the input. Number of
kernels b, of dimension f , and stride s of each layer if reported
in Tab. I. . Each Convolution layer is followed by a standard
Rectified linear units (ReLU) - saturating the outcomes of
convolutional layers - and a standard pooling layer - down-
sampling the inputs. Finally two fully connected layers (FCN
1 and FCN 2) are added, each one including 512 neurons.
In this way, features describing specific time intervals and/or
local events within the soft hand can be combined to achieve
global features - in this way reasoning on the whole hand, in
the whole time period. Finally, a softmax function - not shown
in figure - capitalizes on these fixed size representations to
generate a probability distribution over {0,1}.

B. Predictor
This network cannot extract temporal features by means of

convolutions, since they are non causal operator. Therefore,
we split spatial and temporal features extraction into two

2Note that X has been defined so that signals coming from a same IMU
are adjacent, and signals coming from close IMUs are close.



TABLE II
STRUCTURE OF THE CNN USED IN THE PREDICTOR.

type # of kernels (b) kernel size (f ) stride (s)

Conv1D 1 64 3 1
MaxPool1D 1 - 2 1

Conv1D 2 64 3 1
MaxPool1D 2 - 2 1

Conv1D 3 64 3 1
MaxPool1D 3 - 2 1

Fig. 4. Eigen-Objects considered for the experiments presented in this paper.
Three different fundamental shapes and two values of surface roughness are
considered (smooth on the top images, rough in the bottom images).

separate stages. The latter assumes also the role that was of
the fully connected layers in the Classifier, i.e. to correlate
features which are physically and temporally far from each
others.

This results in an architecture consisting of two fundamen-
tal ingredients: (i) a Convolutional Neural Network , and (ii)
Recurrent Neural Networks, of the Long Short Time Memory
(LSTM) type [28]. The input of the CNN is 1D, being the
vector Xt. Details on the CNN architecture are reported in
Tab. II. Input channels are processed by three Conv1D layers,
each of them followed by ReLU and MaxPool layers as
illustrated in Fig.3. The CNN outputs are connected to the
Sequence Learning module, implemented by 2 LSTM layers
including 128 memory cells each.

Fig. 5. Experimental Setup used in this paper. Two soft robotic hands
(namely RBO Hand and Pisa/IIT SoftHand) were used to grasp six objects
with different shape and surface roughness. A camera was used to record the
whole experimental execution. Accelerations of the fingers were recorded
through a custom glove endowed with 16 IMUs.

IV. EXPERIMENTS AND DATA COLLECTION

With the goal of acquiring a dataset to be used for training
and validation, we carried out a series of experiments in
which an expert user maneuvered the soft hands through a
handle.

Fig. 5 shows the experimental setup. A camera is used to
record the scene and to keep track of the time. The hand
is equipped with the IMUs, which are used to record the
accelerations and the gyroscope values of the hand fingers.
During the experiments, a custom routine was used to record
synchronously the IMUs signals and the video.

We executed the grasp of three different objects: a cylinder
(H = 95mm, R = 40mm), a pyramid (H = 60mm, L = 80mm)
and a L-shape polyhedron (L1 = 40mm, L2 = 80mm). Each
object was presented two times, first covered with a rough
surface (high roughness object), and then with a smooth
surface (low roughness object) - see Fig. 4 for details. The
idea is to provide the network with examples of prototypical
shapes and roughnesses. More realistic objects - see below
- can then be seen as a combination of these fundamental
ingredients. For this reason we refer to these objects as eigen-
objects, in analogy to eigen-vectors of linear spaces. For the
sake of space, we cannot provide in this paper a more formal
analysis of this idea, which will provided in future work.

Each acquisition was repeated five times, in two different
experimental conditions: i) object free to move; ii) object
fastened to the surface through a fixed-length wire (see Fig. 4).
This resulted in the generation - in a controlled and repeatable
fashion - of successful grasps in case i) and failed grasps in
case ii). It is worth noticing that, given the non-zero length
of the wire, the initial part of the acquisition for case ii) is
expected to be analogous, under a phenomenological point
of view, to the acquisitions of case i), while differences are
- by experimental design - arising only when the action of
the wire is effectively introducing an external wrench on the
object (please refer also to Fig. 6).

The same experiments were performed with the Pisa/IIT
SoftHand, and the RBO Hand. Note that, the strong design
differences between the two models are a key point for the
development of this work and also an important point of
strength of the overall proposed architecture. Indeed, these
differences have an effect on the distributed vibrations along
the fingers and, hence, introduce non trivial differences in
the recorded signals.

Finally, experiment are repeated when grasping the objects
in Fig. 7. These are objects of common day use, and data
extracted from them will be used to test the capabilities of the
network to generalize in complex ways. These experiments
were performed using the RBO hand.

V. RESULTS

The two proposed architectures are tested on three datasets
described in the previous section: one containing data from
Pisa/IIT SoftHand experiments only, one containing data from
RBO Hand only, and a mixed dataset obtained by merging the
first two. More specifically, we use both successful and failure
grasp datasets in the case of the grasp execution classification
problem, while in the grasp execution prediction we employ
only failure grasp datasets. This choice has been carried out
to avoid to polarize the network to success examples. Indeed,
failure examples already incorporate a certain amount of
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Fig. 6. Stills from four examples of experiments. Panels (a-f) show the Pisa/IIT SoftHand SH successfully grasping a rough pyramid object. Panels (g-l)
show the Pisa/IIT SoftHand failing in grasping a smooth L-shaped object. Panels (m-r) show the RBO Hand successfully grasping a smooth pyramidal
object. Panels (s-x) show the RBO hand failing to grasp a rough L-shaped object.

Fig. 7. Objects used for the evaluation of the proposed network, outside
the eigen-objects set. Panel (a) shows an umbrella, Panel (b) a tape, Panel
(c) a ball, Panel (d) a torch.

success information (the failure starts happening only when
the tendon starts producing external wrenches). However,
rather than discarded, all the success examples are collected
in a second validation set, on which we will test the network
after training.

Both architectures are implemented using keras library
and are trained from scratch. The library is written in python,
and we adopt Tensorflow as back-end. Training and testing
procedures are executed on a NVIDIA GTX1080 with 8GB
of on board memory.

We use hold out cross-validation to ensure the general-
ization and robustness of both the networks. The goal is
to estimate the expected level of model predictive accuracy
independently from the data used to train the model. During
training process we reduce over-fitting risk applying dropout
technique in both networks. Thereby, each neuron composing
the last ”FCN 2” layer (or each memory cell composing
”LSTM 2” layer) is disconnected with probability pdrop. This
action enhances network variability and minimizes weights
co-adaption.

1) Classifier: The three datasets we consider in this
case are composed by: 100 acquisitions for both Pisa/IIT
Softhand and RBO hand and 200 acquisitions for the mixed
dataset. We randomly split the three datasets discussed above
in: 80% for training and 20% for testing. We trained 40
different network configurations to discover both network
hyper-parameters (i.e., CNN depth and width) and learning
hyper-parameters (i.e., batch size, learning rate, number of
epochs and dropout). Each configuration was obtained by
varying number of convolutional layers in {2,3,4}, number
of kernels for each conv layer in {32,64,96,128}, number of
FCN layers in {1,2,3}, number of neurons for each FCN layer
in {256,512,1024}, batch size in {5,10,15,20}, learning rate
in {10−2,10−3,10−4}, number of epochs in {10,20,30,40}
and dropout pdrop ∈ {0.4,0.5,0.6}.

Among all the architectures resulting from training, we
select the one that provides the highest accuracy on the mixed
test dataset. This network configuration has been exhaustively
described in Sec. V. The selected hyper-parameters are: batch
size 10, Adam optimizer with learning rate 10−3, number of
epochs 30 and dropout 0.5. With such learning parameters,
the network classifies the two classes (successful and failure)
with an accuracy of 93% in the Pisa/IIT SoftHand test dataset,
100% in the RBO Hand test dataset and 95% in the mixed
test dataset, as also reported in Tab. III.

2) Predictor: The dataset that we consider here are
composed of: 50 acquisitions for both Pisa/IIT Softhand and
RBO hand, and 100 acquisitions for the mixed dataset. Here
as well the three datasets are randomly divided in 80% for



TABLE III
CONFUSION MATRICES RELATIVE TO GRASP CLASSIFICATION. FROM LEFT TO RIGHT: PISA/IIT SOFTHAND, RBO HAND, AND MIXED DATASETS.

Predicted
Success Fail

Tr
ue Success 93 7

Fail 7 93

Predicted
Success Fail

Tr
ue Success 100 0

Fail 0 100

Predicted
Success Fail

Tr
ue Success 97 3

Fail 7 93

TABLE IV
CONFUSION MATRICES RELATIVE TO OBJECT FAILURE PREDICTION. FROM LEFT TO RIGHT; PISA/IIT SOFTHAND, RBO HAND, AND MIXED DATASETS.

Predicted
No Fail. Ongoing

Tr
ue No Fail. 86.3 13.7

Ongoing 14.6 85.4

Predicted
No Fail. Ongoing

Tr
ue No Fail. 93.2 6.8

Ongoing 4.7 95.3

Predicted
No Fail. Ongoing

Tr
ue No Fail. 91.6 8.4

Ongoing 10.3 89.7

training and 20% for testing. We train 40 different network
configurations, obtained by varying the hyper-parameters,
within the same intervals discussed for the Classifier. Looking
at the results of each simulation, we select the configuration
that provides the highest accuracy on the test mixed dataset.
The network configuration has been described by Sec. III. The
selected learning hyper-parameters are: batch size 8, RMSprop
optimizer with learning rate 10−4, number of epochs 30
and dropout pdrop = 0.5. In this configuration the network
predicts the two classes (no failure and ongoing failure) with
an accuracy of 85.8% in the Pisa/IIT Softhand test dataset,
94.2% in the RBO Hand test dataset and 90.6% in the mixed
test dataset, as also reported in Tab. IV. Despite being trained
only on failure examples, the network is remarkably good in
not producing false positives. Indeed the accuracy tested on
success examples is 83.3%. Fig. 8 shows the results expressed
in time for the mixed dataset, showing that the algorithm
is able to predict the failure event 100% of times, with an
average anticipation of 1.96 seconds. Similar results can be
obtained for the other validations sets. Two examples - one
success and one failure - of measured signals, together with
predicted and ground truth labels, are shown in Fig. 10, for
the RBO hand and Fig. 9.

Finally the network is tested on failure prediction within the
objects of common use shown in Fig. 7. This is done to test
the ability of the network to generalize to less standardized
objects, with more complex surface characteristics. This
provides a first validation of the above-introduced idea
of learning fundamental features from eigen-objects. This
learned feature extraction capability is then exploited while
dealing with unseen objects that can be considered intuitively
as combinations of these basic components. Note that objects
(a) and (c) have a partially deformable nature, while (b) and
(d) are rigid. The results on the whole validation set are
provided in Tab. V. Two conditions are tested; network (i)
not retrained, and (ii) retrained exclusively using experiments
from objects (a) and (b). Also in this case the failure is
predicted in 100% of cases, with the network identifying the
failure several seconds before it happened. Two examples
of measured signals, together with predicted and ground
truth labels, are shown in Fig. 11. The first example shows
the most common case, in which the two outputs of the
retrained and not retrained networks are similar, with the first
presenting only slightly improved performance. The second
shows a behavior which can be spotted in few experiments,
where the untrained network presents some spikes before the
actual failing starts. This behavior always disappears after

(a)

(b)Fig. 8. Performance of the network measured in time for the failures in
the mixed validation set. Panel (a) shows the difference between the time in
which the change of label happens in the ground truth, and when it occurs
in the network’s output. Negative values identify and anticipation. Panel (b)
shows how much in advance the network predicts the failure. The average
value is 1.96 seconds. TABLE V
CONFUSION MATRICES FOR THE SECOND OBJECT SET. WITHOUT (TOP)

AND WITH (BOTTOM) RETRAINING.

Predicted
No Fail. Ongoing

Tr
ue No Fail. 71.1 28.9

Ongoing 24.7 75.3

No Fail. Ongoing

Tr
ue No Fail. 86.7 13.3

Ongoing 11.6 88.4

the training.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented a deep learning based framework
to predict grasp failures in soft robotic hands. The idea
is based on three main pillars: i) the usage of soft hands
to exploit the vibrations induced by objects’ sliding and
transferred to the fingers; ii) an IMU-based sensing setup
to record such vibrations; iii) a high level intelligence that
predicts the object sliding by looking at IMUs reading. The



(a) Labels, success (b) Acceleration profiles, success (c) Angular velocity profiles, success

(d) Labels, failure (e) Acceleration profiles, failure (f) Angular velocity profiles, failure

Fig. 9. Labels, classification, and sensor readings for one success experiment - Panels (a-c) respectively - and one failure experiment - Panels (e-f)
respectively - with the Pisa/IIT SoftHand. When compared to the success case, clear patterns - even if high dimensional and supposedly non-linear- can be
visually recognized in both acceleration and angular velocities while the object slips, and even more clearly when the object falls.

(a) Labels, success (b) Acceleration profiles, success (c) Angular velocity profiles, success

(d) Labels, failure (e) Acceleration profiles, failure (f) Angular velocity profiles, failure

Fig. 10. Labels, classification, and sensor readings for one success experiment - Panels (a-c) respectively - and one failure experiment - Panels (e-f)
respectively - with the RBO hand. When compared to the success case, clear patterns - even if high dimensional and supposedly non-linear- can be visually
recognized in both acceleration and angular velocities while the object slips, and even more clearly when the object falls.

system has been first tested on a set of six eigen-objects, with
different size and surface roughness, and with two different
hand designs, i.e. a continuum soft hand (RBO Hand) and an
articulated soft hand (Pisa/IIT SoftHand). Then, we applied
the Predictor on data acquired with the continuum hand,
grasping four objects of daily use. Results show promising
performances of the overall framework, for both tasks of
classification and sliding prediction. In our future work we
will integrate this algorithm within the control architecture [6].
Another major direction of investigation will be formalizing
the eigen-object concept, here only preliminary introduced.
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