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THE LACK OF COMPACTNESS IN THE

SOBOLEV-STRICHARTZ INEQUALITIES

LUCA FANELLI AND NICOLA VISCIGLIA

Abstract. We provide a general method to decompose any bounded sequence
in Ḣ

s into linear dispersive profiles generated by an abstract propagator, with
a rest which is small in the associated Strichartz norms. The argument is quite
different from the one proposed by Bahouri-Gérard and Keraani in the cases
of the wave and Schrödinger equations, and is adaptable to a large class of
propagators, including those which are matrix-valued.

1. introduction

In the recent years, the research on nonlinear PDE’s produced a relevant incre-
ment of strategies and techniques finalized to a complete understanding of some
critical differential models. As a starting example, motivated by the interest on
the Yamabe problem, some pioneer results were obtained by Aubin and Talenti in
[1, 26], giving answers to some natural questions related to the criticality of the

Sobolev embedding Ḣs(Rd) ⊂ Lp(s)(Rd), with p(s) = 2d/(d−2s), and 0 < s < d/2.
Some years later, a great and well celebrated contribution to the theory of critical
elliptic PDE’s was given by Pierre Louis Lions, who introduced the concentration-
compactness method, which immediately turned out to be a standard tool (see
[19, 20, 21]). After the work by Lions, Solimini and Gérard in [10, 24] indepen-
dently, and with different proofs, were able to describe in a precise way the lack of
compactness of the Sobolev embedding Ḣs(Rd) ⊂ Lp(s)(Rd) (and also the version
for Lorentz spaces, in [24]). Inspired to [10], Gallagher in [8], Bahouri and Gérard in
[2] and Keraani in [15] proved analogous results related to the Sobolev-Strichartz es-
timates, respectively for the Navier-Stokes, the wave and the Schrödinger equation.
As an example, we paste here the result proved by Keraani in [15]: the following
standard notations

Lp
tL

q
x := Lp(R;Lq(Rd)), Lp

t Ḣ
s
x := Lp(R; Ḣs(Rd)), Lr

t,x := Lr
tL

r
x

will accompany the rest of the paper.

Theorem 1.1 (Keraani [15]). Let (ϕn)n≥0 be a bounded sequence in Ḣ1(R3) and
let vn(t, x) := eit∆ϕn. Then there exist a subsequence (v′n) of (vn), a sequence
(hj)j≥1, hj = (hjn)n≥0 for any j ≥ 1 of scales, a sequence (zj)j≥1 = (tj,xj)j≥1,
with zj = (tjn, x

j
n)n≥0 for any j ≥ 1 of cores, and a sequence of functions (U j)j≥1

in Ḣ1(R3) such that:

(1.1)

∣∣∣∣
hkn

hjn

∣∣∣∣+
∣∣∣∣
hjn
hkn

∣∣∣∣+
∣∣∣∣∣
tjn − tkn

(hjn)2

∣∣∣∣∣+
∣∣∣∣
xjn − xkn

hjn

∣∣∣∣→ +∞,
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as n→ ∞, for any j 6= k;

(1.2) v′n(t, x) =
l∑

j=1

1√
hjn
e
i

(

t−t
j
n

(h
j
n)2

)

∆
U j

(
x− xjn

hjn

)
+ wl

n(t, x),

for any l ≥ 1, with

(1.3) lim sup
n→∞

‖wl
n‖Lp

tL
q
x
→ 0,

as l → ∞, for any (non-endpoint) H1-admissible couple (p, q) satisfying

2

p
+

3

q
=

3

2
− 1, 4 < p ≤ ∞;

(1.4)
∫

|∇xv
′
n(0, x)|

2 dx =

l∑

j=1

∫
|∇U j(x)|2 dx+

∫
|∇xw

l
n(0, x)|

2 dx+o(1), as n→ ∞.

Almost in the same years of [2], [15], Kenig and Merle introduced in [13, 14] a new
strategy to solve a large class of critical nonlinear Schrödinger and wave equations.
The argument by Kenig and Merle is based on extrapolating, by contradiction, a
single compactly behaving solution to the problem, which they call critical element,
via concentration-compactness methods; then, the rigidity given by the algebra of
the equation implies that such solution, with such compactness properties, cannot
exist. The basic tool in capturing the critical element is given by a nonlinear version
of Theorem 1.1 (in the case of Schrödinger, and the analogous in [2] for wave),
which is in fact a consequence of the same result and the scattering properties of
the nonlinear flow. Since the Kenig-Merle proof turns out to be adaptable to a
large class of nonlinear dispersive equations, a lot of results appeared in the very
last years in the same spirit of Theorem 1.1, for different propagators (see e.g.
[3, 4, 5, 8, 9, 16, 17, 22, 23]. Among the previous list, we mention the papers by
Merle-Vega [17], Begout-Vargas [3], Rogers-Vargas [23] and recently Ramos [22], in
which Strichartz estimates at the lowest scales are treated, and some refinements
are needed, in the style of the one which has been proved by Moyua-Vargas-Vega
in [18]; in the cases of [2] and [15] the inequality (2.38) in the sequel, proved by
Gérard in [10], plays the analog role of the Strichartz refinement.

Therefore, it would be appreciable to have a general result, in the same style of
Theorem 1.1, which might hold for a large and unified class of dispersive propaga-
tors. On the other hand, as far as we can see, it is not clear if the strategy proposed
in [2] and [15] might be adaptable, in total generality, to many problems, as for
example the case of dispersive systems.

In view of the above considerations, the aim of this paper is to provide a new
proof, which is quite different from the one proposed in [2] and [15], and which
works for a large amount of dispersive propagators, including among the others the
matrix-valued cases.

We are now ready to prepare the setting of our main theorem. In the following,
we work with vector-valued functions f = (f1, ..., fN ) : Rd → CN , with the notation

(1.5) ‖f‖2
Ḣs

x

=

N∑

j=1

‖fj‖
2
Ḣs

x

.
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With the symbol L = L(D) we denote an operator

L(D) = F−1 (L(ξ)F) , L(ξ) = (Lij(ξ))i,j=1...N : Rd → MN×N(C),

where F is the standard Fourier transform, and the matrix L(ξ) is assumed to be
hermitian; in the above setting, the dispersive character of the Cauchy problem

(1.6)

{
i∂tu+ L(D)u = 0

u(0, x) = f(x)

just depends on the geometrical properties of the graph of L(ξ), as it is well known.
In addition, we make the following abstract assumptions:

(H1) there exists 0 < s < d
2 such that the problem (1.6) is globally well-

posed in Ḣs
x, and the unique solution is given via the propagator u(t, x) =

eitL(D)f(x);

(H2) the flow eitL(D) is unitary onto Ḣs
x, i.e.∥∥∥eitL(D)f

∥∥∥
Ḣs

x

= ‖f‖Ḣs
x
, ∀t ∈ R,

where s is the same as in (H1), and ‖ · ‖Ḣs
x
is defined in (1.5).

(H3) the symbol L(ξ) : Rd → MN×N (C) is α-homogeneous, i.e., for all λ > 0,

L(λξ) = λαL(ξ);

(H4) there exist 2 ≤ p < q ≤ ∞ such that the following Strichartz estimate hold
∥∥∥eitL(D)f

∥∥∥
L

p
tL

q
x

≤ C‖f‖Ḣs
x
,

with the same s as in (H1) and some constant C > 0.

By homogeneity, the couple (p, q) in (H4) needs to satisfy the scaling condition

(1.7)
α

p
+
d

q
=
d

2
− s,

where s is given by (H1) and α is the one in (H3). Notice that, by the Sobolev

embedding Ḣs
x ⊂ L

2d
d−2s
x , for 0 < s < d/2, and the Ḣs

x-preservation∥∥∥eitL(D)f
∥∥∥
L∞

t Ḣs
x

= ‖f‖Ḣs
x

(assumption (H2) above), we get

(1.8)
∥∥∥eitL(D)f

∥∥∥
L∞

t L
2d

d−2s
x

≤ C‖f‖Ḣs
x
, 0 < s <

d

2
,

for some constant C > 0. Consequently, by interpolation with (1.8), an estimate
as the one of assumption (H4) automatically holds for any s-admissible pair (p̃, q̃),
i.e. any (p̃, q̃) satisfying (1.7), with p̃ ≥ p. In particular, we have

(1.9)
∥∥∥eitL(D)f

∥∥∥
Lr

t,x

≤ C‖f‖Ḣs
x
, 0 < s <

d

2
, r =

2(α+ d)

d− 2s
.

There are several examples of operators L(D) satisfying the previous assumptions,
including the cases of Schrödinger, non-elliptic Schrödinger, wave and Dirac prop-
agators, as we will show later during the introduction. We are now ready to state
our main theorem.
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Theorem 1.2. Let u = (un)n≥0 be a bounded sequence in Ḣs
x for 0 < s < d

2 . There

exist a subsequence (u′n) of (un), a sequence (hj)j≥1, h
j = (hjn)n≥0 of scales, for

any j ≥ 1, a sequence (zj)j≥1 = (tj,xj)j≥1 of cores, with zj = (tjn, x
j
n)n≥0 for any

j ≥ 1, and a sequence of functions (U j)j≥1 in Ḣs
x such that:

(1.10)

∣∣∣∣
hmn

hjn

∣∣∣∣+
∣∣∣∣
hjn
hmn

∣∣∣∣+
∣∣∣∣∣
tjn − tmn

(hjn)α

∣∣∣∣∣+
∣∣∣∣
xjn − xmn

hjn

∣∣∣∣→ +∞,

as n→ ∞, for any j 6= m;

(1.11) u′n(x) =

J∑

j=1

1

(hjn)
d
2−s

e
i

(

t
j
n

(h
j
n)α

)

L(D)
U j

(
x− xjn

hjn

)
+RJ

n(x),

where α is the one in (H3), for any J ≥ 1, with

(1.12) lim sup
n→∞

‖eitL(D)RJ
n(x)‖Lp̃

tL
q̃
x
→ 0,

as J → ∞, for any couple (p̃, q̃) satisfying the admissibility condition (1.7), with
p < p̃ <∞, and p is the one given by (H4);
for any J ≥ 1 we have

(1.13) ‖u′n(x)‖
2
Ḣs

x

=

J∑

j=1

‖U j(x)‖2
Ḣs

x

+ ‖RJ
n(x)‖

2
Ḣs

x

+ o(1), as n→ ∞.

Remark 1.1. Notice that (1.11) is slightly different to (1.2); effectively, it is suf-
ficient to act at both the sides of (1.11) with the propagator eitL(D), to obtain
the analogous of (1.2). In fact, we prefer to write (1.11) in this form, because it
respect the stationary character of our proof. As it will be clear in the sequel, the
main difference with the argument in [2], [15] is that, at each step of the recur-
rence argument which permits to extract the final sequence u′n, we work on fixed
sequences of times; arguing in this way, all the construction can be performed ex-
actly as in the stationary theorem by Gérard in [10]. This idea is suggested by the
argument which has been introduced in [7], to prove the existence of maximizers
for Sobolev-Strichartz inequalities.

Remark 1.2. Theorem 1.2 implies Theorem 1.1, in the special cases L(D) = ∆,
s = 1, d = 3, apart from (1.12); indeed, the case p = ∞ is missing in (1.12). We do

not find possible to obtain the decay of the L∞
t L

p(s)
x in total generality; on the other

hand, it is possible to prove it case by case, using each time the specific properties
of L(ξ). By the way, we stress that the decay of Lr

t,x-norm in (1.12), when r is
the one in (1.9), is typically the only information which is needed in the nonlinear
applications.

We now pass to give some examples of applications of the main theorem to other
types of propagators.

Example 1.1 (Wave propagator). The Strichartz estimates for the wave propagator
eit|D| (see [11], [12]), in dimension d ≥ 2, are the following:

(1.14)
∥∥∥eit|D|f

∥∥∥
L

p
tL

q
x

≤ C‖f‖
Ḣ

1
p
−

1
q
+1

2
x

,
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under the admissibility condition

(1.15)
2

p
+
d− 1

q
=
d− 1

2
, p ≥ 2. (p, q) 6= (2,∞).

The gap of derivatives 1
p
− 1

q
+ 1

2 ≥ 0 is null only in the case of the energy estimate

(p, q) = (∞, 2). In particular,

(1.16)
∥∥∥eit|D|f

∥∥∥
L

2(d+1)
d−1

t,x

≤ C‖f‖
Ḣ

1
2
x

d ≥ 2,

which is in fact the original estimate proved by Strichartz in [25]. More generally,
by Sobolev embedding one also obtains that

(1.17)
∥∥∥eit|D|f

∥∥∥
L

2(d+1)
d−1−2σ
t,x

≤ C‖f‖
Ḣ

1
2
+σ

x

, 0 ≤ σ <
d− 1

2
, d ≥ 2.

Theorem 1.2 applies in this case, for any dimension d ≥ 2, and 0 < σ < d−1
2 ; notice

that the case σ = 0 is not included, since in this case assumption (H4) fails. The
case σ = 0 has been recently treated and solved by Ramos in [22].

Example 1.2 (Dirac propagator). In dimension d = 3, the massless Dirac operator
is given by

D :=
1

i

3∑

j=1

αj∂j .

Here α1, α2, α3 ∈ M4(C) are the so called Dirac matrices, which are 4×4-hermitian
matrices, αt

j = αj , j = 1, 2, 3, with the explicit form

α1 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 , α2 =




0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0


 , α3 =




0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0


 ;

equivalently, αj =

(
0 σj
σj 0

)
, where σj is the jth 2× 2-Pauli matrix, j = 1, 2, 3.

Since D2 = −∆I4×4, the Strichartz estimates for the massless Dirac operator
are the same as for the 3D wave equation (see [6]):

(1.18)
∥∥eitDf

∥∥
L

p
tL

q
x
≤ C‖f‖

Ḣ

1
p
−

1
q
+1

2
x

.

Here, the admissibility condition reads as follows:

(1.19)
2

p
+

2

q
= 1, p > 2.

In particular we have

(1.20)
∥∥eitDf

∥∥
L

8
2−2σ
t,x

≤ C‖f‖
Ḣ

1
2
+σ

x

, 0 ≤ σ < 1.

Also in this case Theorem 1.2 applies; moreover, the statement also includes the
cases of more general dispersive systems. At our knowledge, this is not a known fact;
indeed, it is unclear if it might be possible to prove the same using the arguments
by Bahouri-Gérard and Keraani in [2], [15].
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Example 1.3 (Non-elliptic Schrödinger propagators). Let us consider the Schrödinger

operator L :=
∑m

j=1 ∂
2
j −

∑d

j=m+1 ∂
2
j , for d ≥ 2 and 1 ≤ m < d. The Strichartz

estimates are the same as for the Schrödinger propagator, namely

(1.21)
∥∥eitLf

∥∥
L

p
tL

q
x
≤ C‖f‖Ḣs

x
,

with the admissibility condition

(1.22)
2

p
+
d

q
=
d

2
− s, p ≥ 2, (p, q) 6= (2,∞).

In particular, one has

(1.23)
∥∥eitLf

∥∥
L

2(d+2)
d−2s

t,x

≤ C‖f‖Ḣs
x
,

for any 0 ≤ s < d
2 . The only case in which at our knowledge has been treated

is d = 2, s = 0. Indeed, the result by Rogers and Vargas in [23] contains all the
ingredients which are necessary to prove the profile decomposition for bounded
sequences in L2, with respect to the propagator eitL, in dimension d = 2. It is
a matter of fact that Theorem 1.2 applies for any d ≥ 2 and 0 < s < d

2 , but we
remark that it cannot include the case s = 0. In addition, our argument is rather
simple and does not involve any Fourier properties of the propagator, since it just
use the fact that s > 0.

The rest of the paper is devoted to the proof of Theorem 1.2.

2. Proof of Theorem 1.2

Let us start with some preliminary definitions, introduced in [10].

Definition 2.1. Let f = (fn)n≥1 be a bounded sequence in L2(Rd) and h =

(hn)n≥1, h̃ = (h̃n)n≥1 ⊂ R two scales. We say that:

• f is h-oscillatory if

(2.1) lim sup
n→∞

(∫

hn|ξ|≤
1
R

|f̂n(ξ)|
2 dξ + (

∫

hn|ξ|≥R

|f̂n(ξ)|
2 dξ

)
→ 0 as R→ ∞;

• f is h-singular if, for every b > a > 0, we have

(2.2) lim
n→∞

∫

a≤hn|ξ|≤b

|f̂n(ξ)|
2 dξ = 0 as R → ∞;

• h and h̃ are orthogonal if

(2.3) lim
n→∞

(
hn

h̃n
+
h̃n
hn

)
= 0.

The following proposition, proved in [10], permits to reduce the matters to prove
Theorem 1.2 in the case of 1-oscillating sequences.

Proposition 2.1 (Gérard [10]). Let f = (fn)n≥0 be a bounded sequence in L2(Rd).
There exist a subsequence f ′ of f , a family (hj)j≥1 of pairwise orthogonal scales and
a family (gj)j≥1 of bounded sequences in L2(Rd) such that:

• gj is hj-oscillatory, for every j;
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• for every J ≥ 1 and x ∈ Rd,

(2.4) f ′
n(x) =

J∑

j=1

gjn(x) +RJ
n(x),

where (RJ
n)n≥1 is hj-singular, for every j = 1, . . . , J and

(2.5) lim sup
n→∞

‖RJ
n‖Ḃ0

2,∞
→ 0 as J → ∞;

• for every J ≥ 1,

(2.6) ‖f ′
n‖

2
L2 =

J∑

j=1

‖gjn‖
2
L2 + ‖RJ

n‖
2
L2 + o(1), as n→ ∞.

We are now ready to prove the following result, which is the core of the proof of
Theorem 1.2.

Proposition 2.2. Assume (H1)-(H2)-(H3)-(H4). Let u = (un) ⊂ Ḣs
x be a 1-

oscillatory, bounded sequence in Ḣs
x with 0 < s < d

2 . There exist a subsequence

u′ = (u′n) of u, a family of cores (zj)j≥1 = (tjn, x
j
n)n≥0,j≥1 ⊂ R×Rd, and a family

of functions
(
U j
)
j≥1

in Ḣs
x such that:

(i) for any j 6= k, we have

(2.7)
∣∣tjn − tkn

∣∣+
∣∣xjn − xkn

∣∣→ ∞, as n→ ∞;

(ii) for all J ≥ 1 and x ∈ Rd,

(2.8) u′n(x) =
J∑

j=1

eit
j
nL(D)U j(x− xjn) +RJ

n(x),

with

(2.9) lim sup
n→∞

∥∥∥eitL(D)RJ
n(x)

∥∥∥
L

p̃
tL

q̃
x

→ 0, as J → ∞,

for any s-admissible pair (p̃, q̃), with p̃ > p, and p given by (H4). In
addition,

(2.10) ‖u′n(x)‖
2
Ḣs

x

=

J∑

j=1

∥∥U j(x)
∥∥2
Ḣs

x

+
∥∥RJ

n(x)
∥∥2
Ḣs

x

+ o(1), as n→ ∞.

Proof. Let us introduce the notation S := L∞
t L

2d
d−2s
x , and recall (1.8). The proof is

based on a construction by recurrence, which is quite different from the one used
in [2], [15].

Assume that lim infn→∞ ‖e−itL(D)un(x)‖S = 0, then (2.8) is satisfied provided
that u′n is a subsequence of un such that limn→∞ ‖e−itLu′n(x)‖S = 0, J = 0, U0 ≡ 0
and R0

n ≡ u′n; moreover in this case (2.7) and (2.10) are trivially satisfied and the
decay of the interpolated Strichartz norms (2.9) follows by interpolation between
the decay of the S-norm and the Lp

tL
q
x a priori bound given by assumption (H4).

Therefore we shall assume that

‖e−itL(D)un(x)‖S ≥ 2δ0,
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for any n ≥ 0 and some δ0 > 0. By the definition of S, there exists a sequence of
times (t1n)n≥0 ⊂ R such that

(2.11) w1
n(x) := e−it1nL(D)un(x), ‖w1

n(x)‖
L

2d
d−2s
x

≥
1

2

∥∥∥e−itL(D)un(x)
∥∥∥
S
≥ δ0.

Arguibg as Gérard in [10], we now denote by P(w1) the set of all the possible

weak limits in Ḣs
x of all the possible subsequences of (w1

n) with all their possible
translations; moreover, let

(2.12) γ(w1) := sup
{
‖ψ‖Ḣs

x
: ψ ∈ P(w1)

}
.

As a consequence, there exist a sequence of centers (x1n)n≥0 ⊂ Rd and a subsequence
of un (that we still denote un) such that

(2.13) e−it1nL(D)un(x+ x1n) = w1
n(x + x1n)⇀ U1(x) weakly in Ḣs

x,

as n→ ∞, where

(2.14) γ(w1) ≤ 2
∥∥U1

∥∥
Ḣs

x

.

Next we introduce R1
n(x) as follows

(2.15) un(x) = eit
1
nL(D)U1(x− x1n) +R1

n(x),

and by (2.13) we get

(2.16) e−it1nL(D)R1
n(x+ x1n)⇀ 0 weakly in Ḣs

x,

as n → ∞. Next notice that by combining (2.13) with (2.15) and by recalling the
definition of weak limit we deduce

(2.17)
∥∥∥e−it1nL(D)R1

n(x + x1n)
∥∥∥
2

Ḣs
x

=
∥∥∥e−it1nL(D)un(x+ x1n)

∥∥∥
2

Ḣs
x

−
∥∥U1(x)

∥∥2
Ḣs

x

+o(1),

and by the Ḣs
x-preservation (H2) implies

(2.18)
∥∥R1

n(x)
∥∥2
Ḣs

x

= ‖un(x)‖
2
Ḣs

x
−
∥∥U1(x)

∥∥2
Ḣs

x

+ o(1).

Next assume that

(2.19) lim inf
n→∞

∥∥∥eitL(D)R1
n(x)

∥∥∥
S
= 0

then (2.8), (2.10) follow by (2.15), (2.18), and (2.9) follows by interpolation between
the S-norm (that goes to zero on a suitable subsequence due to (2.19)) with the
Strichartz norm given by assumption (H4). Therefore, up to choose a subsequence,
we can assume as before that∥∥∥eitL(D)R1

n(x)
∥∥∥
S
≥ 2δ1,

for any n ≥ 0 and some δ1 > 0. As a consequence, there exists a sequence of times
(t2n)n≥0 ⊂ R such that

(2.20) w2
n(x) := e−it2nL(D)R1

n(x), ‖w2
n(x)‖

L
2d

d−2s
x

≥
1

2

∥∥∥e−itL(D)R1
n(x)

∥∥∥
S
≥ δ1.

Define as above

(2.21) γ(w2) := sup
{
‖ψ‖Ḣs

x
: ψ ∈ P(w2)

}
.
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To this we associate a new sequence (x2n)n≥0 ⊂ Rd and a subsequence of R1
n, which

we still call R1
n, such that

(2.22) e−it2nL(D)R1
n(x + x2n) = w2

n(x+ x2n)⇀ U2(x) weakly in Ḣs
x,

as n→ ∞; moreover we can assume that

(2.23) γ(w2) ≤ 2
∥∥U2

∥∥
Ḣs

x

.

Next we introduce R2
n(x) as follows:

(2.24) R1
n(x) = eit

2
nL(D)U2(x− x2n) +R2

n(x),

By (2.22) we conclude that

(2.25) e−it2nL(D)R2
n(x+ x2n)⇀ 0 weakly in Ḣs,

Moreover arguing as in (2.18) we get

(2.26)
∥∥R2

n(x)
∥∥2
Ḣs

x

=
∥∥R1

n(x)
∥∥2
Ḣs

x

−
∥∥U2(x)

∥∥2
Ḣs

x

+ o(1).

By combining (2.15) and (2.24) we obtain

(2.27) un(x) = eit
1
nL(D)U1(x− x1n) + eit

2
nL(D)U2(x− x2n) +R2

n(x),

and by combining (2.26) with (2.18) we get

(2.28)
∥∥R2

n(x)
∥∥2
Ḣs

x

= ‖un(x)‖
2
Ḣs

x
−
∥∥U1(x)

∥∥2
Ḣs

x

−
∥∥U2(x)

∥∥2
Ḣs

x

+ o(1).

The computations above describe an iterative procedure which at any step j =
0, 1, . . . permits to construct a (finite) family U1, . . . , U j ∈ Ḣs

x, a family of cores

(t1n, x
1
n)n≥1, . . . (t

j
n, x

j
n)n≥0 ∈ R× Rd, and a sequence Rj

n(x) ∈ Ḣs
x such that (up to

subsequence) un can be written as

(2.29) un(x) = eit
1
nL(D)U1(x− x1n) + · · ·+ eit

j
nL(D)U j(x− xjn) +Rj

n(x),

with the following extra properties:

(2.30) ‖e−itjnL(D)Rj−1
n (x)‖

L
2d

d−2s
x

≥
1

2

∥∥∥e−itL(D)Rj−1
n (x)

∥∥∥
S
≥ δj−1 > 0;

(2.31) e−itjnL(D)Rj−1
n (x+ xjn)⇀ U j(x) weakly in Ḣs

x;

(2.32) γ(wj) ≤ 2‖Uj‖Ḣs
x

(where the sequence (wj
n) is defined by e−itjnL(D)Rj−1

n (x)) and γ(wj) is defined
according to (2.12));

(2.33)
∥∥Rj

n(x)
∥∥2
Ḣs

x

= ‖un(x)‖
2
Ḣs

x
−
∥∥U1(x)

∥∥2
Ḣs

x

− · · · −
∥∥U j(x)

∥∥2
Ḣs

x

+ o(1);

(2.34) e−itjnL(D)Rj
n(x+ xjn)⇀ 0, weakly in Ḣs

x.

Notice that (2.29) and (2.33) prove (2.8) and (2.10). Our goal is now to prove (2.9);
it is sufficient to prove that, for any ǫ > 0, there exists J = J(ǫ) ∈ N such that, for
any n ∈ N, and for any j ≥ J(ǫ) we have

(2.35) lim sup
n→∞

∥∥∥eitL(D)Rj
n(x)

∥∥∥
S
< ǫ.
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Fix ǫ > 0; first observe that, by (2.33) the sum
∑

j≥1 ‖U
j‖2

Ḣs
x

has to converge, then

there exists J = J(ǫ) such that, for any j ≥ J(ǫ),

(2.36) γ(wj) ≤ 2
∥∥U j

∥∥
Ḣs

x

< 2ǫ

where we have used (2.32). In order to conclude (2.35) it is sufficient, by (2.30), to
prove that

(2.37) ‖e−itjnL(D)Rj−1
n (x)‖

L

2d
d−2s
x

:= ‖wj
n(x)‖

L

2d
d−2s
x

< Cǫ,

for any j ≥ J(ǫ), and some constant C > 0. This is an immediate consequence of
the inequality

(2.38) lim sup
n→∞

‖wj
n‖Lp(s)

x
≤ C lim sup

n→∞

∥∥wj
n

∥∥
2

p(s)

Ḣs
x

γ(wj)1−
2

p(s) ,

with p(s) = 2d/(d − 2s). The previous estimate has been proved by Gérard (see
[10], estimate (4.19)).

In order to complete the proof, we need to show the orthogonality of the cores
(2.7). Let us first prove it in the case k = j + 1. Notice that by (2.31) we have

(2.39) e−itj+1
n L(D)Rj

n(x+ xj+1
n )⇀ U j+1(x) weakly in Ḣs

x

which is equivalen to

e−i((tj+1
n −tjn)+tjn)L(D)Rj

n

(
x+

(
xj+1
n − xjn

)
+ xjn

)
⇀ U j+1(x).

Next assume by the absurd that the cores (zj) and (zj+1) do not satisfy (2.7), then
up to subsequence we can assume tj+1

n − tjn → t̄ and xj+1
n − xjn → x̄, which in turn

implies

e−i(t̄+tjn)L(D)Rj
n(x+ x̄+ xjn)⇀ U j+1(x).

Notice that this last fact is in contradiction with (2.34).
Next we assume that there exist a couple (k, j) such that k < j − 1 and for which
the orthogonality (2.7) for the cores (zj), (zk) is false (the case k = j − 1 has been
treated above). Moreover we can suppose that the orthogonality relation is satisfied
for the cores (zk+r) and (zj) for any r = 1, ..., j − k − 1. In fact it is sufficient to
choose k as

sup{h < j − 1|(zh) is not orthogonal to (zj)}.

Next notice that

Rk
n(x) =

j−1∑

h=k+1

eit
h
nL(D)Uh(x− xhn) +Rj−1

n (x)

(to prove this fact apply (2.29) twice: first up to the reminder Rk
n and after up to

the reminder Rj−1
n , and subtract the two identities). As a consequence we get

(2.40) e−itjnL(D)Rk
n(x+ xjn)

=

j−1∑

h=k+1

ei(t
h
n−tjn)L(D)Uh(x + xjn − xhn) + e−itjnL(D)Rj−1

n (x+ xjn).

Next notice that by the orthogonality of (zk+r) and (zj) for r = 1, ..., j − k − 1 we
get

(2.41) ei(t
h
n−tjn)LUh(x+ xjn − xhn)⇀ 0
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for every h = k+1, ..., j− 1 (here we use Lemma A.1). On the other hand we have
the following identity

e−itjnL(D)Rk
n(x+ xjn) = e−i(tjn−tkn+tkn)L(D)Rk

n(x+ xjn − xkn + xkn)

and since we are assuming that (zj) and (zk) are not orthogonal, then by com-
pactness we can assume that xjn − xkn → x̄ and tjn − tkn → t̄. In particular we
get

e−itjnL(D)Rk
n(x + xjn)− e−i(t̄+tkn)L(D)Rk

n(x+ x̄+ xkn) → 0

and since by (2.34) we have e−itknL(D)Rk
n(x + xkn) ⇀ 0, then necessarily also the

l.h.s. in (2.40) converges weakly to zero. By combining this fact with (2.41) we
deduce that

e−itjnL(D)Rj−1
n (x + xjn)⇀ 0

and it is in contradiction with (2.31).
�

Having in mind Proposition 2.1, to complete the proof of Theorem 1.2 it is now
sufficient to follow exactly the arguments given by Keraani in [15]. One should only
be careful at the moment of proving (1.12); indeed, notice that in Lemma 2.7 in [15]
it is used the fact that r = 10 is an integer number. On the other hand, the reader
should easily notice that this is not a relevant fact, and the proof can be easily
performed in the general case in which r is given by (1.9). Once the decay of the
Lr
t,x of the rest is proved, the decay of the norms in (1.12) follows by interpolation.

We omit here further details.

Appendix A.

We devote this small appendix to prove a general result, Lemma A.1, which has
been implicitly used during the proof of Proposition 2.2. Let us start with the
following proposition.

Proposition A.1. Assume that

(A.1)
∥∥∥eitL(D)f

∥∥∥
L

p
tL

q
x

≤ C‖f‖Ḣs
x
,

for some p, q ≥ 1, p 6= ∞ and some C > 0. Then
∥∥eitL(D)f

∥∥
L

q
x
→ 0, as t → ∞,

for any f ∈ C∞
0 (Rd).

Proof. Let M >> 1 such that HM
x ⊂ Lq

x, and let f ∈ HM
x . Then, by continuity in

time, for every ǫ > 0 there exists t̄ = t̄(ǫ, f) > 0 such that

(A.2) ‖eitL(D)f − f‖HM
x

≤ ǫ, ∀|t| < t̄.

Now assume by the absurd that for a sequence tn → ∞ we have

(A.3) inf
n

∥∥∥eitnL(D)f
∥∥∥
L

q
x

= δ > 0.

As a consequence, by combining the Sobolev embedding HM
x ⊂ Lq

x with (A.2) and
the fact that eitL(D) is an isometry on HM

x , we have

‖ei(tn+h)L(D)f − eitnL(D)f‖Lq
x
≤ C‖ei(tn+h)L(D)f − eitnL(D)f‖HM

x

= C‖eihL(D)f − f‖HM
x

≤
δ

2
,
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provided that |h| ≤ h(δ, f). Therefore we deduce by (A.3) that

‖ei(tn+h)L(D)f‖Lq
x
≥
δ

2
,

for any n ∈ N and |h| ≤ h̄. The last estimate is in contradiction with (A.1) since it
does not allow global summability in time. �

We can now prove the main result of the appendix.

Lemma A.1. Assume that

(A.4)
∥∥∥eitL(D)f

∥∥∥
L

p
tL

q
x

≤ C‖f‖Ḣs
x
,

for some p, q ≥ 1 and some C > 0. Let f ∈ Ḣs
x and max{|tn|, |xn|} → ∞ then

eitnL(D)f(x+ xn)⇀ 0 in Ḣs
x.

Proof. We need to consider two cases. The first possibility is that tn is bounded;
then necessarily xn goes to ∞ and it is easy to conclude. In the case tn → ∞,
the conclusion is now simple, by combining a density argument with Proposition
A.1. �
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[25] R. Strichartz, Restrictions of Fourier transforms to quadratic surfaces and decay of
solutions of wave equations, Duke Math. J. 44 (1977), 705–714.

[26] G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 4 (1976),
353–372.

Luca Fanelli: Universidad del Pais Vasco, Departamento de Matemáticas, Apartado
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