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Abstract

Tapered beams are widely employed in efficient flexure dominated structures.
In this paper, analytical expressions are derived for the six Cauchy stress
components in untwisted, straight, thin-walled beams with rectangular and
circular cross sections characterised by constant taper and subjected to three
cross-section forces. These expressions pertain to homogeneous, isotropic,
linear elastic materials and small strains. In fact, taper not only alters stress
magnitudes and distributions but also evokes stress components, which are
zero in prismatic beams. A parametric study shows that increasing taper
decreases the von Mises stress based fatigue life, suggesting that step-wise
prismatic approximations entail non-conservative designs.
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Nomenclature

Symbol Unit Description

A m2 area of cross section
A∗ m2 area of hatched cross section
b m half width of box girder cross section
br, bθ, bz N/m3 body forces in cylindrical coordinates
c m chord length
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C Basquin’s constant
e m eccentricity
E Pa Young’s modulus
Fy, Fz N shear and axial forces
FL
y , F

L
z N shear and axial forces at z = L

F 0
y , F

0
z N shear and axial forces at z = 0

h m half height of box beam cross section
h0 m half height of box beam cross section at z = 0
Ix m4 second moment of area of cross section
J2 Pa2 second deviatoric invariant
L m beam length
mx N distributed couple per unit length
Mx Nm bending moment
ML

x Nm bending moment at z = L
M0

x Nm bending moment at z = 0
n Basquin’s constant
N number of cycles to failure

Ñ normalised number of cycles to failure (cone over cylinder)
O origin of reference system
py, pz N/m distributed loads per unit length
R m radius of conical beam cross section
R0 m radius of conical beam cross section at z = 0
R set of the real numbers
S∗x m3 first moment of area of hatched cross section
t m thickness of conical beam wall
tf m thickness of box beam flange
tp m projected wall thickness
tw m thickness of box beam web
V m3 volume
x, y, z Cartesian coordinates
1, 2, 3 local reference axes
α rad angle of taper
η m local abscissa
θ rad polar angle
ν Poisson’s ratio
σij Pa stress tensor components
σvM Pa equivalent von Mises stress
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σnorm
vM normalised von Mises stress (cone over cylinder)

σα
vM normalised von Mises stress (negative over positive angle)

1. Introduction

The reduction of mass and the consequent savings in manufacturing costs
are an increasingly important and compelling aspect of structural optimisa-
tion. A well-established means to increase the stiffness-to-mass ratio of beam
type structures is the introduction of lengthwise geometrical variations. The
probably most widely employed expedient – in this paper denoted as taper –
refers to a variation of the cross-section height and/or width along the beam
axis according to the governing internal force distribution. Some promi-
nent examples of tapered beams are bridge girders at intermediate supports,
frame/truss structures for industrial halls and hangars, aircraft wings, wind
turbine towers, and wind turbine rotor blades [1, 2, 3].

In a beam with a straight centreline and variable cross section, the angle
of taper, α, can be defined as the angle enclosed by the local tangent plane
to the beam lateral surface and the beam axis i.e. the lengthwise gradient
of the lateral surface with respect to the beam axis. In general, the angle of
taper will be a pointwise function. In the simplest case – herein referred to
as constant taper – the angle of taper does not change along the beam axis
[4].

It is well-known in literature that beams with variable cross sections show
a significantly different behaviour in contrast to prismatic beams. Variable
cross-section beams exhibit a non-trivial stress distribution in particular the
shear stresses evoked are counter intuitive and hardly predictable by the
classical theory for prismatic beams [5, 6].

The effects of taper on the shear stress distribution in simple planar non-
prismatic beams were already investigated by Timoshenko [7]. Bleich [8]
derived a closed-form solution showing that in tapered beams shear stresses
are induced not only by shear forces, but also by axial forces and bending
moments. Unfortunately, Bleich was misled by the analogy with prismatic
beams and referred to the centreline as the locus of maximum shear stresses.
Later, Paglietti and Carta [9] demonstrated that the maximum shear stress
does not necessarily occur at the elastic centre of the cross-section.

Atkin proposed a different approach based on classical elasticity, defining
proper stress functions for specific aeronautical problems [10, 11]. Subse-
quently, Krahula [12] compared the predictions of Bleich’s formula – even
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though not citing directly [8] but referring to Timoshenko and Gere [13] –
and the solution of a two-dimensional elasticity problem for a tapered can-
tilever beam loaded by a concentrated shear force at its free end. Elasticity
theory has been used to model tapered beams also by Knops and Villaggio
[14], and more recently by Trahair and Ansourian [15].

The behaviour of tapered beams under bending and torsion was exten-
sively investigated by Lee and Szabo [16] and Lee et al. [17].

Chong et al. [18] showed by means of simplified mechanical models that
the shear stress in the webs of I- and box girders strongly depends on both
the sign of the taper, i.e. the positive or negative slope, and the direction of
the shear force.

With the rise of structural optimisation in the past decades, research
increasingly focused on the development of computationally efficient semi-
analytical numerical methods for tapered elastic 2D beams with solid rect-
angular cross sections. Hodges et al. [19, 20] and Rajagopal [21] developed
the variational-asymptotic method, which is capable of providing a full elas-
ticity solution in terms of stresses, strains, and displacements for 2D beams
with constant taper subjected to shear and axial forces, and bending mo-
ments. Balduzzi et al. [22] derived a non-prismatic planar beam element
from a 2D elastic solution. More recently, Balduzzi et al. [23] extended the
approach also to multilayer planar non-prismatic beams.

Taglialegne [6] derived an exact analytical elastic solution for a tapered
planar beam subject to shear and axial forces, and bending moment based
on the solution of the wedge proposed by Michell [24] and Carothers [25].
Bennati et al. [4, 26] showed that the shear stress distribution – also numeri-
cally predicted by Balduzzi et al. [22] – may be a satisfactory approximation
of the exact solution.

It is noteworthy to mention that the optimisation of tapered beams com-
prising of complex thin-walled single- or multi-cellular hollow sections gained
a lot of attention, especially in the industry. Topology optimisation tech-
niques rely on computationally efficient stress analysis tools which usually
exclude the use of computationally demanding 3D finite element models.
As a remedy, the so-called cross-sectional analysis tools, such as BECAS
[27] and VABS [28], have been developed for the efficient analysis of slender
beam-type structures. However, many cross-sectional analysis tools as well
as beam elements intended for the use of modelling tapered hollow sections
approximate the tapered beams to step-wise prismatic beams.

This paper provides analytical expressions for the six Cauchy stress ten-
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sor components occurring in tapered beams with thin-walled rectangular and
circular cross-sections, shortly referred to in the following as tapered box beam

and thin-walled conical beam, respectively. The derivation is carried out in the
hypothesis of homogeneous, isotropic, linear elastic material behaviour and
first-order Euler-Bernoulli beam theory. First, an extension of Jourawski’s
formula for shear stresses is deduced for straight and untwisted beams with
doubly-symmetric variable cross sections, subjected to distributed loads pro-
ducing axial force, shear forces, and bending moment (in a symmetry plane
of the cross section). The deduction assumes that Navier’s formula yields a
good approximation of the normal stresses in variable cross-section beams
with moderate taper angles. (for a deeper discussion of this issue the reader
is referred to Boley [29]). Subsequently, the extended Jourawski’s formula
is specialised to the tapered box beam and thin-walled conical beam, under
the assumed absence of distributed loads. The remaining stress components
are obtained through the assumption of plane stress in the thin cross-section
walls by integration of the Cauchy equilibrium differential equations.

The analytical solutions are validated against 3D finite element analyses
for constant-taper cantilever beams clamped at one end (the root section)
and loaded at the free end (the tip section). The numerical results show that
already small taper angles (in the order of few degrees) not only considerably
alter the stress distributions obtained from prismatic beam theory, but can
evoke stress components which are zero otherwise. The potential implications
of the effects of taper on beam designs have to date not been investigated
to the best knowledge of the authors. Therefore, the analytically derived
solutions were used in a comprehensive parametric study to shed light on
the effect of constant taper on the von Mises stress and consequently on the
fatigue life of thin-walled conical beams.

2. Analytical solution

2.1. Extended shear formula

A variable cross-section beam of length L, having a straight centreline and
a doubly symmetric cross section (Fig. 1) is considered. A global Cartesian
reference system Oxyz is fixed with the origin O located in the centre of one
of the end sections; the x- and y-axes are aligned with the principal cross-
section axes of inertia (coincident with the symmetry axes) where the z-axis
is coincident with the beam centreline. Here, it is stipulated that the beam is
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(a) (b)

Figure 1: (a) Beam with variable cross section subjected to distributed axial and transverse
loads, and bending couple. (b) Generic cross section with two axes of symmetry.

not twisted, i.e. that the principal directions of inertia of each cross section
are parallel to the x- and y-axes.

The beam is subjected to distributed loads, py(z) and pz(z), acting in the
y- and z-directions, respectively, and to a distributed bending couple, mx(z).
With the above assumptions, the internal forces acting on each cross section
will be the shear force, Fy(z), axial force, Fz(z), and bending moment, Mx(z).
Local equilibrium demands that:

dFz(z)

dz
+ pz(z) = 0,

dFy(z)

dz
+ py(z) = 0,

dMx(z)

dz
+mx(z) = Fy(z)

(1)

(a) (b)

Figure 2: (a) Infinitesimal beam segment of length dz. (b) Cross section with generic
chord of length b and local abscissa η.

Global equilibrium of the beam requires also concentrated forces F 0
y =

Fy(0), F
0
z = Fz(0), and M0

x = Mx(0) to be applied at z = 0 and FL
y = Fy(L),
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FL
z = Fz(L), and ML

x = Mx(L) at z = L.
In a prismatic beam, under the assumptions that plane cross sections re-

main plane after deformation and that the material is homogeneous, isotropic,
and linearly elastic [30], Navier’s formula furnishes the normal stresses on
cross sections notably:

σzz =
Fz

A
+

Mx

Ix
y (2)

where A and Ix respectively are the area and second moment of area with
respect to the x-axis of the cross section. Here and in the following, the
dependency upon z will be omitted if not strictly necessary.

Here, it is assumed that Navier’s Eq. (2) holds also for beams of variable
cross section. The validity of this assumption has been investigated by Boley
[29], where a good approximation is obtained for moderate taper angles: for
example, if α = 10 deg, the error is around 7.5%.

Firstly, the infinitesimal segment of a variable cross-section beam slice
between two cross sections located at z and z + dz as shown in Fig. 1(a), is
considered. Figure 2(a) illustrates the uniform and linearly variable normal
stress distributions respectively induced by the axial force and bending mo-
ment acting on the infinitesimal beam segment. Secondly, a generic straight
chord of length c is introduced, which subdivides the cross section into two
complementary parts. Furthermore, a local abscissa denoted as η aligned
orthogonal to the chord direction is introduced as shown in Fig. 2(b). Con-
sequently, the infinitesimal beam segment itself turns out to be subdivided
into two parts. The ensuing focus is put on the ‘hatched’ part associated
with the side of positive η. The corresponding cross-section area is denoted
as A∗.

In order to determine an expression for the shear stresses acting on the
cross section in the direction orthogonal to the chord, σzη, the equilibrium
of the ‘hatched’ part of the beam segment is imposed depicted in Fig. 3.
Assuming that the axial loads, pz, are uniformly distributed on the cross
section, the equilibrium in the z-direction can be written as:

∫

A∗(z)

σzz dA+σzη
c+ (c+ dc)

2
dz−

z+dz
∫

z

∫

A∗(z)

pz
A

dA dz =

∫

A∗(z+dz)

(σzz+dσzz) dA

(3)
Following Taglialegne [6], Eq. (3) can be expanded and higher-order
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infinitesimal terms neglected. Hence,

σzη =
1

c

∫

A∗

dσzz

dz
dA+

1

c

pz
A

∫

A∗

dA (4)

Figure 3: Equilibrium in the z -direction of the ‘hatched’ part of the infinitesimal beam
segment of length dz

By substituting Eqs. (1) and (2) into (4), after simplification, the general
solution for the cross-section shear stress component is obtained:

σzη =
1

c

[

Fz
d

dz

(

A∗

A

)

+ (Fy −mx)
S∗x
Ix

+Mx
d

dz

(

S∗x
Ix

)]

(5)

where S∗x is the first moment of area of the ‘hatched’ part of the cross section
with respect to the x-axis.

It is worth noting that Eq. (5) can be considered as a generalisation of
a similar formula derived by Bleich [8] for a beam with constant width and
variable height for the specific case that dFz/ dz = 0.

2.2. Vertically tapered box beam

The extended shear formula Eq. (5) can be specialised to the vertically
tapered box beam shown in Fig. 4. The cantilever beam studied in this
paper is exemplary. However, the assumed support conditions do not pose
any restriction to the validity of these specialised equations. The cross-section
width, 2b, is constant, while the cross-section height, 2h(z), varies linearly
with the z-coordinate according to:

h(z) = h0 − z tanα (6)

where h0 denotes the half height of the root section and α is the angle of
taper. The thicknesses of the flanges, tf , and webs, tw, are assumed to be
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constant along the z-coordinate and small with respect to the cross-section
dimensions. According to the defined geometry, the Cartesian coordinates of
the thin wall mid-surface vary within the following limits:

x ∈ [−b, b] ⊆ R (7)

y ∈ [−h(z), h(z)] ⊆ R (8)

z ∈ [0, L] ⊆ R (9)

(a) (b) (c)

Figure 4: (a) Side and (b) front views of a thin-walled vertically tapered cantilever box
beam of length L and taper angle α. (c) Arbitrary cross section, where the projected
flange thickness, tp, and web thickness, tw, are highlighted.

The flange thickness projected in the cross-section plane is

tp =
tf

cosα
(10)

Hence, the cross-section area and second moment of area with respect to
the x-axis are respectively:

A = 4 [b tp + tw h(z)] (11)

Ix = 4

[

b tp h(z)
2 +

1

3
twh(z)

3

]

(12)

Utilising symmetry, the solution can be reduced to a quarter of the cross
section. In what follows, the stress fields are evaluated separately in the half
flange and half web of the positive quadrant, x ≥ 0 and y ≥ 0.
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2.2.1. Stress components in the flange

The half flange defined by 0 ≤ x ≤ b and y = h(z) is considered. Here,
the normal stress component is directly determined by substituting Eq. (11)
and (12) into (2):

σf
zz =

1

4

[

Fz

b tp + tw h(z)
+

3Mx

3b tp h(z) + tw h(z)2

]

(13)

Figure 5: Hatched portion of cross section on the flange.

The area and first moment of area with respect to the x-axis of the
‘hatched’ portion of cross section on the flange (see Fig. 5) with η = b − x,
can be written as follows:

A∗ = x tp (14)

S∗x = x tp h(z) (15)

Subsequently, by substituting Eqs. (11), (12), (14), and (15) into (5),
with c = tp, the shear stress component on the flange is obtained:

σf
zx = −1

4
x

{

Fz tw tanα

[b tp + tw h(z)]2
+

3Fy

3b tp h(z) + tw h(z)2

+
3Mx tanα [3b tp + 2tw h(z)]

h(z)2 [3b tp + tw h(z)]2

}

.

(16)

To determine the remaining stress components, first a local coordinate
system 123 is defined such that the 2-axis is parallel to the x-axis and the
3-axis is the outward normal to the flange as illustrated in Fig. 6.
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Figure 6: Quarter of an infinitesimal segment of the vertically tapered box beam with
global, xyz, and local, 123, reference systems.

The stress components in the local and global reference systems can be
related by introducing a rotation matrix as follows:





σf
11 σf

12 σf
13

σf
21 σf

22 σf
23

σf
31 σf

32 σf
33



 =





0 − sinα cosα
1 0 0
0 cosα sinα









σf
xx σf

xy σf
xz

σf
yx σf

yy σf
yz

σf
zx σf

zy σf
zz









0 1 0
− sinα 0 cosα
cosα 0 sinα





(17)
Accordingly, under the assumption of a plane stress state in the flange, the
local stress component condition σf

31 = σf
32 = σf

33 = 0 must hold. Conse-
quently, Eqs. (17) yield:

σf
yy = σf

zz tan2 α (18)

σf
xy = −σf

zx tanα (19)

σf
yz = −σf

zz tanα (20)

The last unknown stress component is obtained by integrating the first
Cauchy equilibrium equation, Eq. (A.1):

σf
xx = −

x
∫

0

∂σf
zx

∂z
dx+ σf

xx

∣

∣

x=b
(21)

where σf
xx

∣

∣

x=0
represents an integration constant which can be determined

after deduction of the solution for the stresses in the web.
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2.2.2. Stress components in the web

In the following the half web, defined by x = b and 0 ≤ y ≤ h(z), is con-
sidered. The normal stress component is directly determined by substituting
Eq. (11) and (12) into (2):

σw
zz =

1

4

[

Fz

b tp + tw h(z)
+

3Mx y

3b tp h(z)2 + tw h(z)3

]

(22)

Figure 7: Hatched portion of cross section on the web

On the web, the ‘hatched’ portion of cross section includes the half flange
and a part of the web, with η = y, as illustrated in Fig. 7. The area and
moment of inertia with respect to the x-axis are respectively:

A∗ = b tp + tw [h(z)− y] (23)

S∗x = b tp h(z) +
tw
2

[

h(z)2 − y2
]

(24)

By substituting Eqs. (11), (12), (23), and (24) into (5), with c = tw, the
shear stress component on the web is obtained as follows:

σw
yz =−

Fz

4

tw y tanα

[b tp + tw h(z)]2
+

3Fy

8 tw

2b tp h(z) + tw [h(z)2 − y2]

h(z)2 [3b tp + tw h(z)]

+
3Mx

8 tw

tanα

[3b tp + tw h(z)]2 h(z)3
{

6b2 t2p h(z) + 2b tp tw
[

2h(z)2 − 3y2
]

+ t2w h(z)
[

h(z)2 − 3y2
]}

(25)

The webs are assumed to be in a plane-stress state. Consequently, σw
xx =

σw
xy = σw

xz = 0. The last unknown stress component is obtained by integration
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of the second Cauchy equilibrium equation, Eq. (A.2):

σw
yy = −

y
∫

0

∂σw
yz

∂z
dy + σw

yy

∣

∣

y=h
(26)

where σw
yy

∣

∣

y=0
is an integration constant.

2.2.3. Equilibrium conditions on edges

The solution for the stress distribution in the box beam is already com-
pletely determined, except for the two integration constants, σf

xx

∣

∣

x=0
and

σw
yy

∣

∣

y=0
. The latter can be calculated by imposing the equilibrium of an in-

finitesimal edge portion of length dz connecting the flange and web as shown
in Fig. 8. Neglecting higher-order infinitesimal terms, equilibrium in the
x-direction gives:

tf σf
xx

∣

∣

x=b

dz

cosα
+ tw σw

xy

∣

∣

y=h
dz + tw σw

zx|y=h tanα dz = 0 (27)

and equilibrium in the y-direction gives:

tf σf
xy

∣

∣

x=b

dz

cosα
+ tw σw

yy

∣

∣

y=h
dz + tw σw

yz

∣

∣

y=h
tanα dz = 0. (28)

(a) (b)

Figure 8: Stresses acting in the (a) x- and (b) y-directions on an infinitesimal edge portion
between the flange and web of the box beam.
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By substituting Eqs. (21) and (26) into (27) and (28) respectively, results
in:

σf
xx =

b
∫

0

∂σf
zx

∂z
dx− tw

tf

(

cosασw
xy|y=h + sinασw

zx|y=h

)

(29)

σw
yy =

h
∫

0

∂σw
yz

∂z
dy − tanασw

yz|y=h −
tf

tw cosα
σf
xy|x=b (30)

Due to the complexity of the mathematical expressions involved, it is
convenient to solve Eqs. (29) and (30) numerically at each cross section to
determine the values of the integration constants and complete the determi-
nation of the stress distribution in the beam.

2.3. Thin-walled conical beam

Figure 9 shows a thin-walled conical cantilever beam. The radius defining
the wall mid-surface can be written as:

R(z) = R0 − z tanα (31)

where α is the taper angle and R0 is the root radius. The polar angle, θ, is
assumed counterclockwise from the x-axis.

(a) (b) (c)

Figure 9: (a) Side and (b) frontal views of a thin-walled conical cantilever beam of length
L and taper angle α. (c) Arbitrary cross section, where the projected wall thickness tp is
highlighted.

The wall thickness, t, is assumed to be constant with the z-coordinate and
small with respect to the cross-section radius. The projected wall thickness,
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cross-sectional area and second moment of area with respect to the x-axis
respectively are:

tp =
t

cosα
(32)

A = 2 π tp R(z) (33)

Ix = 2

∫ π

0

tp sin2 θ R3(z) dθ = π tpR
3(z) (34)

The normal stress on the cross section is directly obtained by substituting
Eqs. (33) and (34) into (2) with y = sin θ R(z):

σzz = Fz
cosα

2π tR(z)
+Mx

cosα sin θ

π tR(z)2
(35)

Figure 10: Hatched portion of conical cross section

The area and first moment of area of the ‘hatched’ part of the conical cross
section defined by η = θ R(z) and illustrated in Fig. 10, are respectively given
by:

A∗ =

∫ π/2

θ

tp R(z) dθ = (π − θ) tpR(z) (36)

S∗x =

∫ π/2

θ

tp sin θ R2(z) dθ = tp cos θ R2(z) (37)

The circumferential shear stress is determined by substituting Eqs. (33),
(34), (36), and (37) into (5), with c = tp:

σzθ = Fy
cosα cos θ

π tR(z)
+Mx

sinα cos θ

π tR(z)2
(38)
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Figure 11 shows the three different coordinate systems (CSYS) defined in
a conical beam segment: the global CSYS, xyz, the cylindrical CSYS, rθz,
and the local CSYS, 123. The latter is oriented such that the 12-plane is
tangent to the thin wall mid-surface with the 2-axis opposite to θ and with
the 3-axis pointing in the outer normal direction.

Figure 11: Global coordinates x, y, z, cylindrical coordinates r, θ, z, and local coordinates
1, 2, 3 in a conical beam.

Thus, the stress tensor components in the cylindrical and local reference
systems can be related as follows:





σrr σrθ σrz

σθr σθθ σθz

σzr σzθ σzz



 =





− sinα 0 cosα
0 −1 0

cosα 0 sinα









σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33









− sinα 0 cosα
0 −1 0

cosα 0 sinα





T

(39)
Under the assumption of plane stress in the wall, the local stress compo-

nents σ31, σ32, and σ33 are identically null. Consequently, Eqs. (39) produce
a set of three linear equations for the unknowns σrr, σrθ, and σrz:











σ31 = 2σzr cos 2α− (σrr − σzz) sin 2α = 0

σ32 = σrθ cosα + σθz sinα = 0

σ33 = σrr cos
2 α + σzr sin 2α+ σzz sin

2 α = 0

(40)

The solution of the linear set of equations is:

σrr = σzz tan
2 α (41)

σrθ = −σθz tanα (42)

σzr = −σzz tanα (43)
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Finally, the hoop stress component, σθθ, is immediately derived from the
first of the local equilibrium equations for a hollow thin conical element,
whose derivation is presented in Appendix A. Substituting Eqs. (43) and
(42) into (B.5) leads to σθθ = 0 for all the loading conditions considered.

3. Numerical analysis

The analytical solutions of the two described geometries were compared
with finite element models for verification. Two cantilever beams, namely the
rectangular beam and the conical beam, were modelled inside the commercial
finite element package Abaqus 2017 [31]. The mesh topology of these models
is depicted in Fig. 12.

A control section perpendicular to the beam z-axis at the mid-span cross
section was used for validation. Following Saint-Venant’s principle the con-
trol section was chosen sufficiently far away from the root and tip sections in
order to avoid boundary effects affecting the far-field solutions derived. The
geometrical properties of the two models are listed in Table 1.

Table 1: Geometrical properties of the rectangular and conical beam models.

Beam Mid-span cross section
L α tf tw t 2 h 2 b 2R
[m] [deg] [mm] [mm] [mm] [m] [m] [m]

Rectangular 10.0 4.0 10.0 10.0 - 1.0 1.0 -
Conical 10.0 4.0 - - 10.0 - - 1.0

Homogeneous, isotropic, linear elastic material properties for steel were
assigned with an elastic modulus of E = 210GPa and a Poisson’s ratio of
ν = 0.3. The models were discretized by enriched eight-noded solid elements
(Abaqus element type C3D8R) as given by Tab. 2. The wall was discretised
with two elements through the thickness.

A convergence study of different mesh densities was performed and the
numerical results presented are obtained from sufficiently discretized models.

The kinematic (rigid) coupling constraints applied to the nodes of both
ends of the beam, were coupled to a master node located in the elastic centre
of the cross sections. The model was loaded at the master node located at
the tip through application of concentrated forces, FL

y , F
L
z , and/or bending

moment, ML
x . Table 3 lists the single load cases used in this study. All six
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Table 2: Mesh discretisation and model size parameters of the two numerical models. The
fourth and fifth columns refer to the largest and smallest transverse element sizes measured
in the cross-section plane. The rectangular model has a higher mesh density because of
the higher resolution required at the corners.

# of el. # of nodes max el. size [m] min el. size [m]
Rectangular 134 400 202 104 49.25× 10−3 5.00× 10−3

Conical 128 000 216 720 27.14× 10−3 5.43× 10−3

(a) (b)

Figure 12: 3D finite element model of (a) the tapered rectangular beam, and (b) the cone.
In both figures the loads and the boundary conditions are applied at a reference point,
which is linked through a rigid coupling constraint to the tip or root cross section. In
Figure (a) the detail of the mesh refinement at the corner is illustrated.

degrees of freedom of the master node of the root section were restrained
such that the beam was fully clamped. A direct solution strategy was used
(Abaqus linear perturbation). Results were extracted in global coordinates
along node-paths located in the wall mid-surface at the control cross section.

4. Results

4.1. Stress analysis

The six components of the stress field produced by the axial and shear
loads, and bending moment were evaluated via both the analytical solutions
derived in Section 2 and the numerical finite element analysis for the two
geometries previously described. Because of symmetry in the x and y di-
rection, the stresses were evaluated along the center line of a quarter of the
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Table 3: Load cases applied to both models in order to investigate the effect of taper under
shear-bending, pure axial force and pure bending, and cross-section forces at mid-span.
The applied bending moment is comparable to the resulting shear bending.

Case Tip loads Internal forces at the mid-span
Fy [N] Fz [N] Mx [Nm] Fy [N] Fz [N] Mx [Nm]

Shear 1000 - - 1000 - −5000
Extension - 1000 - - 1000 -
Bending - - 5000 - - 5000

control cross section. In Figures 13 - 20, the label An indicates the stresses
evaluated through the analytical solutions, whereas the label Num indicates
the FE results. Moreover, the deviation between the numerical and the an-
alytical results is given by the Normalised Mean Square Error (NMSE) [32]
in Tables 4, 5, and 6.

4.1.1. Vertically tapered box beam

The plots concerning the rectangular beams show the stresses evaluated
along the mid-surface of half flange (0≤x≤ b) and half web (0≤ y≤h). Fig-
ures 13, 15, and 14 depict the stresses distribution along the flange, while
Fig. 16 and 17 along the web. The stress components σxx, σxy, and σxz

are zero along the web and have therefore been omitted. The stress singu-
larity induced by the sharp corner in the FE models can be noted in Figs.
15, 14, and 16 when x and y approach 0.5m. The singularity effect of the
corner is not considered in the analytical expressions which explains the de-
viations between the latter and the numerical predictions when approaching
the corner.

4.1.2. Thin-walled conical beam

Figures 18, 19 and 20 compare the five analytically and numerically ob-
tained stress components in cylindrical coordinates. The stresses were evalu-
ated in the first quadrant, 0≤ θ≤ π/2, utilising the cross section symmetry.
Moreover, the numerical stress field was extracted after transformation from
global Cartesian to cylindrical coordinates in Abaqus. The numerical results
of the hoop stress component are not reported, since it is equal to zero along
the cross section wall.
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Figure 13: (a) σxx and (b) σzz stress distributions along the flange.
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Figure 14: (a) σyy and (b) σyz stress distributions along the flange.

4.2. Parametric study

In order to highlight the impact of the taper on design applications, a
parametric study of the taper affecting the equivalent stress of a beam under
different loads condition is presented. Since a linear isotropic material is
considered, the equivalent stress is evaluated through the von Mises criterion,
σvM =

√
3 J2, where J2 is the second deviatoric stress invariant [13]. It

considers all stress components and it is invariant with respect to rotation
of the coordinates system: in this way the global stress tensor could directly
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Figure 15: (a) σxy and (b) σxz stress distributions along the flange.

Table 4: NMSE along the flange of a vertically tapered beam. It was evaluated after
excluding the three points closer to the cross section corner, where a singularity occurs.

Flange σxx σxy σxz

Fz 1.31×10−5 6.76×10−6 7.33×10−6

Fy 1.35×10−4 7.43×10−5 7.47×10−5

Mx 9.88×10−5 7.70×10−5 1.85×10−5

σxx σxy σxz

Fz 2.77×10−5 9.66×10−5 2.61×10−6

Fy 1.05×10−5 2.00×10−5 5.92×10−6

Mx 1.75×10−4 5.91×10−4 1.65×10−5

Table 5: NMSE along the web of a vertically tapered beam. It was evaluated after
excluding the three points closer to the cross section corner, where a singularity occurs.

Web σzz σyz σyy

Fz 1.11×10−5 7.37×10−6 1.84×10−4

Fy 4.30×10−6 1.32×10−6 2.16×10−6

Mx 3.80×10−5 1.44×10−5 2.31×10−5

be used without the necessity of transformation into the local material stress
tensor. The parametric study compares a thin-walled cylinder of radius 2R =
1m to a set of thin-walled cones having a fixed control section of radius
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Figure 16: (a) σzz and (b) σyz distributions along the web.
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Figure 17: σyy stress distribution along the web.

Table 6: NMSE along a quarter of a conical beam.

σzz σrz σzθ σrθ σrr

Fz 1.31×10−5 4.07×10−6 – – 1.97×10−6

Fy 2.70×10−3 2.79×10−3 3.08×10−3 3.06×10−3 2.85×10−3

Mx 2.70×10−3 2.58×10−3 2.56×10−3 2.56×10−4 1.97×10−6

2R = 1m. The loads are introduced through the eccentricity, which is
defined as the ratio between the bending moment and the shear force at
the cross section. The study also includes cones with negative taper, as the
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Figure 18: (a)σrz and (b) σrr stress distributions along a quarter of a cone.
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Figure 19: (a) σtz and (b) σrt stress distributions along a quarter of a cone.

one shown in Fig. 21: the analytical solution derived in Section 2 is still
valid and only the stress components which are function of sinα and tanα
change when the taper is negative. The variables of this study are chosen
as the taper angle, α ∈ [−15 deg; 15 deg], and the eccentricity parameter
e ∈ [−15m; 15m]. Furthermore, the von Mises criterion, here employed in
cylindrical coordinates, is used to evaluate the variation of the number of
cycles in fatigue, when the taper effects are not neglected. The number of
cycles to failure N can be determined by employing the well-known Basquin

23



θ [deg]
0 10 20 30 40 50 60 70 80 90

σ
zz

 [
M

P
a]

×10
6

-1

-0.5

0

0.5

1

1.5
An
Num F

y

Num F
z

Num M
x

Figure 20: σzz stress distribution along a quarter of a cone.

Figure 21: Conical cantilever beam tapered by a constant negative angle, α ∈ [0 deg; 15
deg].

law [33]. The material used in this study is steel, whose Basquin’s constants,
defined from the ultimate tensile strength and the endurance limit of the
material, are C = 4.56× 1030, and n = −9.84 [34].

4.2.1. Von Mises stress

The von Mises stresses were evaluated along the control cross section for
0≤ θ≤ π/2, and the maximum stress was subsequently normalised with the
maximum von Mises stress in the cylindrical beam.

Figure 22 (a) shows the variation of the normalised von Mises stresses
within the eccentricity for two different taper angles, 0.5 deg, 15 deg. Four
zones are highlighted in the legend. Zone 1 presents constant lines: the
von Mises stresses are not a function of the eccentricity and they increase
quadratically with the taper angle, as shown by the continuous line in Fig.
22 (b). In zone 2 only negative eccentricities are involved and the von Mises
stresses augment when e→ 0. The sensitivity of the von Mises stress towards
the eccentricity is proportional to the taper angle. The dashed line in Fig.
22 (b) shows that in a cone with a taper angle of α = 15 deg, an eccentricity
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Figure 22: (a) Normalised von Mises stresses variation (conical over cylindrical) with
eccentricity for different taper angles; (b) Normalised von Mises stresses variation (conical
over cylindrical) with α for different eccentricities.

e = −1m causes an increase of 20% of the equivalent stress. Between zone 2
and zone 3 a local maximum occurs. Zone 3 includes positive and negative
eccentricities and in here the equivalent stresses decrease to a local minimum
at e = 0.5m. In the range 0 ≤ e ≤ 0.5m, the taper reduces the von Mises
stress in the cylinder, as shown by the point-dashed line in Fig. 22 (b).
Finally, in zone 4 the von Mises stresses increase again.

4.2.2. Fatigue life

The aforementioned maximum equivalent stresses were employed to in-
vestigate the relation between the taper angle variation and the fatigue be-
haviour. In this case, the number of cycles to failure was evaluated for the
set of cones previously defined and then normalised to the number of cycles
to failure in the respective cylindrical beam. Since the number of cycles to
failure is inversely proportional to the equivalent stress [33], in Fig. 23 (a)
the same four zones can be distinguished. Zone 1 is not a function of the
eccentricity and the normalised number of cycles decreases with the increase
of the taper, as shown by the continuous line in Fig. 23 (b). Zone 2 extends
in the negative eccentricities and presents a decrement of Ñ with the eccen-
tricity. As expected, the smaller the taper is, the smaller the eccentricity
has to be to affect Ñ . For example, in Fig. 23 (b), for e = −0.2m and
α = 5 deg, Ñ decreases already of approximately 10%. In zone 3, Ñ moves
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Ñ

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

15 deg

0.5 deg

1

2

3

4

(a)

α, [deg]
0 3 6 9 12 15

Ñ
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Figure 23: (a) Normalised number of cycles to failure variation with the eccentricity for
different taper angles; (b) normalised number of cycles to failure variation with the taper
angle for different eccentricities.

from a local minimum in the negative eccentricity zone, to a local maximum
at e = 0.5m. In the range 0 ≤ e ≤ 0.5m the number of cycles to failure
significantly increases. Figure 23 (b) shows that Ñ doubles when e = 0.2m
and α = 5 deg. Finally, Ñ decreases in zone 4 .

4.2.3. Negative taper

Lastly, the effects of the sign of the taper on the maximum equivalent
stress that occur in a cross section of a conical beam were studied. The
normalised parameter σα

vM was defined as ratio between the maximum von
Mises stress in a negatively and a positively tapered beam. In Fig. 24
(a) the variation of the equivalent stress with the eccentricity is shown for
α = ±0.5 deg and α = ±15 deg and four different zones are distinguished in
the legend. In zone 1, the sign of the taper does not affect the maximum von
Mises stress. Zone 2 extends in the negative eccentricities. In here, a positive
taper causes a higher stress than the same negative taper. For example, Fig.
24 (b) shows that for e = 0.5m, a taper α = 5 deg produces a von Mises
stress 20% higher than α = −5 deg. Furthermore, the less pronounced the
taper is, the smaller the eccentricity has to be to have the sign affecting the
equivalent stress. Zone 3 extends from the local maximum in the negative
eccentricities to the local minimum in the positive eccentricities, passing by
σα
vM = 1 where the eccentricity is zero. Negative tapers have a worst effect
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Figure 24: The parameter σα
vM shows the effects of negative α in comparison with positive

α. (a) Its variation with α is shown for different eccentricities; (b) Its variation with e is
shown for different α.

when positive eccentricities occur. Zone 4 has the same properties as zone 2,
but it refers to positive eccentricities and negative tapers.

5. Discussion

Although the analytical solutions presented in this article are an approxi-
mation due to the adoption of Navier’s equation (i.e. strictly speaking Navier
does not hold in tapered cross-sections), good agreement was found between
the analytically and numerically predicted stress components. It is notewor-
thy that the validity of the provided solutions is restricted to moderately
tapered cross sections in sufficiently slender beams where the axial stress
component σzz follows a quasi-linear distribution.

In the case of the vertically tapered box beam, all six Cauchy stress
components are induced in the flange. Figure 13 a shows the σxx parabolic
distribution with zero magnitude at the corners i.e. x = ±b, and maximum
at x = 0: shear load and bending result in a concave distribution whereas
axial loading causes a convex distribution. The σzz component is not a
function of the taper angle, therefore it has the same distribution as in a
classic prismatic beam. Interestingly, the components σyz and σyy in the
flange are proportional to the σzz component and has, therefore, a constant
distribution, as shown in Figs. 14. In Figure 15 b, the component σxz is not
only induced by the shear load, as in a prismatic beam, but also by bending
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moment and axial load. In all cases, the stress exhibits a linear distribution
with a zero transition at x = 0. The in-plane shear stress component σxy in in
Fig. 15 a presents a similar behaviour. It is worth noting that the maximum
stress varies with the sign of the applied forces. In the web of a vertically
tapered beam it was found that only the components σzz, σyz and σyy are
non-zero. The normal stress in Fig. 15 a has the same linear distribution as
evident in the prismatic case. The out-of-plane shear stress component σyz

in Fig. 15 b, follows a quadratic distribution under shear load and bending
moment, and a linear distribution under axial load. In a tapered beam
under shear load, σyz follows the classic concave quadratic distribution, with
its maximum at y = 0; conversely, the application of a bending moment can
result in a convex stress distribution. In the latter case, it is possible that the
shear stress distribution attains its maximum at y = ±h. Figure 15 shows
that the axial and shear loads induce a convex quadratic σyy distribution
whereas bending causes a concave cubic stress distribution.

In the case of a conical beam only the hoop stress component σθθ is zero.
The axial stress component σzz in a conical has the same distribution than in
a cylindrical beam as stipulated in the derivation. Both the shear stress σzr

and the through thickness σrr in Fig. 18 are proportional to the axial stress
component σzz. In contrast to the cylindrical beam, the shear stress σzθ, and
σrθ, are functions of all the three cross section forces. Their distributions are
trigonometric and both of which attain their maximum at θ = 0 and their
zero values at θ=± π/2, as shown in Fig. 19.

The parametric study shows that neglecting the taper leads to an over-
or underestimation of the stresses in the cross section. The equivalent stress
always increases when a cylindrical beam is tapered, except in the range 0 <
e < 0.5m, as shown in Fig. 19 a. As previously mentioned, the study is based
on the comparison between the maximum equivalent stress that occurs in a
conical beam and the one in a cylindrical beam. It is important to highlight
that, when the eccentricity approaches zero, the maximum von Mises stresses
occur at different locations of the cross sections in the cylindrical beam and
in the cone, resulting in the four behaviours of the equivalent stress ratio
highlighted in Fig. 22. In zone 1, the maximum von Mises stress occurs at
θ = 90 deg; consequently, in the set of Eqs. (35) - (43) all the terms which are
multiplied by cos θ vanish, and the ratio of the equivalent stresses between
cone and cylinder are no longer a function of the eccentricity. In zone 2, the
maximum equivalent stress occurs at θ = 0 deg in the conical beams and
θ = 90 deg in the cylinder for negative e; otherwise for positive e. Lastly,
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the drop in zone 3 is caused by the maximum equivalent stress occurring at
θ = 0 deg in both conical and cylindrical beams. The maximum von Mises
stress moves from θ = 90 deg to θ = 0 deg in zone 4.

Eventually it can be concluded that neglecting the taper effects leads to
an overestimation of the number of cycles to failure, except for the known
range 0 ≤ e ≤ 0.5m. When a conical beam has a negative taper, both σrθ

and σzθ are affected since they are functions of sin θ. The sign of the taper,
together with the loading direction leads to critical designs. In particular,
when a negative eccentricity is applied, a negative taper halves the equivalent
stress caused by the equivalent positive taper; vice-versa when a positive
eccentricity is applied. Nonetheless, the equivalent stress is not affected by
the orientation of the taper in zone 1.

6. Conclusions

The following conclusions can be drawn from the analytical stress solu-
tions and the parametric studies conducted:

i The introduction of taper into beams can potentially evoke all six stress
components already at seemingly small taper angles.

ii In principle all three cross section forces are highly coupled to the stress
components in tapered beams. That is to say, a decoupling of shear
force from bending and axial force as in prismatic beams is not per-se
admissible in tapered beams.

iii Application of prismatic solutions such as Jourawski’s shear stress for-
mula to tapered beams can lead to results which are significantly at
variance with the real stress states. In contrast to the widely and erro-
neously established assumption in engineering practice, the stress state
in tapered beams cannot be obtained by pure stress tensor transforma-
tion of the prismatic solution into a local coordinate system.

iv Ignoring the taper can lead to an underestimation of the von Mises
stress representing a non-conservative assumption. In the present study
of a conical cantilever beam – considering static loading conditions –
the von Mises stress increased less than 1% for α ≤ 8 deg and exceeded
10% for α ≥ 25 deg.
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v Ignoring the taper can lead to a significant overestimation of the fatigue
life. In the present study of a conical beam the number of cycles to
failure decreased by 10% for α = 5 deg and decreased by 40% for α = 25
deg.

vi The analytical solutions and the parametric study in this article were
based on isotropic material properties. However, it is deemed that
additional stress components similarly to those presented will also be
evoked in tapered beams with anisotropic material behaviour, such as
fibre reinforced composites. Bearing in mind that composite materials
are highly susceptible to failure owing to inter-fibre stress components,
emphasises the importance of an accurate prediction of the stress com-
ponents especially in tapered beams.

Possible future developments of the present work include the derivation of
closed-form solutions in terms of strains and displacements for the analysed
cases, as well as the solution for stresses in horizontally tapered and doubly
tapered box girders. Moreover, the extended Jourawski’s formula could be
further extended to beams with non-symmetric or non-homogeneous (e.g.
laminated) cross sections.
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Appendix A. Cauchy’s equilibrium equations in Cartesian coordi-

nates

The well-known Cauchy’s differential equations expressing local equilib-
rium in Cartesian coordinates are [30]:

∂σxx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
= 0 (A.1)

∂σyx

∂x
+

∂σyy

∂y
+

∂σyz

∂z
= 0 (A.2)

∂σzz

∂x
+

σzy

∂y
+

σzz

∂z
= 0 (A.3)

Appendix B. Cauchy equilibrium equations for a thin-walled con-

ical element

The volume of an infinitesimally small thin-walled cone element (Fig.
B.25) can be obtained – under consideration of small angles dθ – by the
trapezoidal equation as follows:

dV =
1

2
tf [r dθ + (r + dr) dθ]

dz

cosα
= r tp dθ dz (B.1)

f

Figure B.25: Infinitesimally small element of a thin-walled cone.
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Translatory equilibrium is imposed in the three main directions as follows.
In the r direction:

− σrz r tp dθ + (σrz + dσrz) (r + dr) tp dθ

− (σθθ + dσθθ) tp sin
dθ

2
dz + (σrθ + dσrθ) tp cos

dθ

2
dz

− σθθtp sin
dθ

2
dz − σrθtp cos

dθ

2
dz + brr tp dθ dz = 0 (B.2)

In θ direction:

− σθθ tp cos
dθ

2
dz + σrθ tp sin

dθ

2
dz + (σθθ + dσθθ) tp cos

dθ

2
dz − σθzr tp dθ

+ (σrθ + dσrθ) tp sin
dθ

2
dz + (σθz + dσθz) (r + dr) tp dθ + bθ r tp dθ dz = 0

(B.3)

In z direction:

− σzzrtp dθ + (σzz + dσzz) (r + dr) tp dθ

− σθz tp dz + (σθz + dσθz) tp dz + bz r tp dθ dz = 0 (B.4)

After some manipulation of the set of Eqs. (B.2), (B.4) and by using
Eq. (B.1) the Cauchy equilibrium equations for a conical beam in cylindrical
coordinates are the following:

1

R

(

−σθθ + σrz
dR

dz
+

∂σrθ

∂θ

)

+
∂σrz

∂z
+ br = 0 (B.5)

1

R

(

σrθ + σθz
dR

dz
+

∂σθθ

∂θ

)

+
∂σθz

∂z
+ bθ = 0 (B.6)

1

R

(

σzz
dR

dz
+

∂σθz

∂θ

)

+
∂σzz

∂z
+ bz = 0 (B.7)
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