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Abstract: Following a related review dating back to 2003, the present review discusses in detail the
various synthetic, structural and reactivity aspects of metal species containing one or more carbamato
ligands, representing a large family of compounds across all the periodic table. A preliminary
overview is provided on the reactivity of carbon dioxide with amines, and emphasis is given to recent
findings concerning applications in various fields.
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1. Introduction

Carbon dioxide is a an easily available and non-toxic chemical, and at the same time, it is implicated
in environmental, energy and sustainability issues [1–4]. Thus, the last two decades have witnessed
an unprecedentedly intense effort of academic and industrial research in two main directions, i.e.,
to exploit CO2 as a C1 synthon for organic synthesis [5–11] and to develop more and more efficient
systems able to capture and store CO2 [12,13]. The former goal is challenging for a variety of reactions,
and a wide number of metal catalysts have been proposed to access valuable organic compounds and
materials via CO2 fixation strategies, which, however, require harsh conditions (high temperature and
CO2 pressure) in several cases [14,15]. It is worthy to note that, differently to other small molecules
such as its relative carbon monoxide, carbon dioxide is a “bad” ligand for transition metals; therefore,
examples of simple coordination compounds are relatively rare [16–21] and, accordingly, metal catalysts
working in CO2 activation routes usually exert their action without the intermediacy of metal-CO2

adducts. The “weak point” in the apparently unscratchable robustness of carbon dioxide is the
susceptibility to nucleophilic attacks at the carbon atom [22–24]. Thus, a range of nucleophilic reagents,
including neutral N-heterocyclic carbenes [25,26], are known to react with CO2 even under mild
conditions, and some chemistry at transition metal centers is provided by the possibility of CO2

insertion into the bond between a metal atom and a suitable anionic ligand, e.g., alkyl, allyl, alkoxide
and hydride [27–32]. In this context, amines are key reactants towards carbon dioxide, and indeed
carbon dioxide/amine systems have been intensively investigated in the field of capture/storage [33–35]
and exploited for the incorporation of the CO2 moiety within organic structures [36–39]. Furthermore,
CO2 is also prone to insertion reactions into a variety of metal-amide bonds, generating a carbamato
ligand; however, metal complexes containing carbamato ligands are easily available through diverse
synthetic routes not requiring the use of pressurized CO2. It is remarkable that the preliminary
formation of a magnesium-carbamato adduct generated from a lysine residue is widely exploited by
the universal Rubisco enzyme to incorporate CO2 in biomolecules [40,41]. Notably, metal carbamates
(either homoleptic or not) have been reported for a wide number of elements throughout the periodic
table and, due to this systematicity and their intriguing properties that will be described below, the
chemistry of metal carbamates has seen a significant advance in the recent times. This review follows up
a previous review on the same topic published in 2003 by Calderazzo, Pampaloni and coworkers [42];
herein, we will summarize fundamental concepts regarding the reactivity of CO2 with amines, then
we will discuss synthetic, structural and reactivity aspects of metal carbamates and their potential in
various applications, with a particular focus on the findings appeared in the literature after 2003.

2. The Reactivity of Carbon Dioxide with Amines and other N-Donors

An overview of the reactivity of CO2 with amines is depicted in Scheme 1. When the lone pair on
the nitrogen atom attacks the carbon atom of CO2, a zwitterionic Lewis acid/base adduct can be formed.
At this step, a hydrogen atom can migrate from nitrogen to oxygen, affording the elusive carbamic
acid. The detection of this species is extremely difficult [43–46] and its isolation rare [47]. The fate of
the carbamic acid depends on the nature of the amine and the reaction environment. Most frequently,
a second equivalent of N-donor can act as a Brønsted base affording an ammonium carbamate salt.
In some cases, deprotonation of a carbamic acid may be operated by a second basic group present in
the structure of the employed amine (e.g., diamine), affording a zwitterionic carbamate. Furthermore,
the deprotonation can be forced when an external base, B, is added to the system, producing a
“B-inium” carbamate.

In principle, ammonia and primary amines hold the potential to undergo respectively three and two
carbonations per molecule; this kind of reactivity was proposed for ethylamine and cyclohexylamine
in acetonitrile in the presence of penta-alkylguananidines, based on a 15N-NMR study [48], but no
other data have been reported as of today.



Molecules 2020, 25, 3603 3 of 58

Molecules 2020, 25, x FOR PEER REVIEW 3 of 59 

 

 
Scheme 1. Overall reactivity of CO2/amine systems. 

In agreement with the aim of this review, this section intends to summarize concepts reported 
in the previous review [42] and to provide information about recent developments in the study of 
CO2/amine systems. The first part describes the carbonation of amines in aqueous solution and the 
most recent progress in this field achieved by using natural α-amino acids (Section 2.1). Next, the 
isolation and characterization of pure carbamate salts will be discussed (Section 2.2). Finally, recent 
advances in the stabilization of CO2 adducts by using amidine/guanidine ‘superbases’ [49] and the 
CO2/amine/superbase system is presented (Section 2.3). 

2.1. CO2/Amine Equilibria in Aqueous Solution 

The CO2/amine system is finely governed by parameters such as the nature of the solvent, 
temperature and solution pH. Thus, the concentration of carbamate in solution strictly depends on 
the experimental conditions. Many reactions involving amines and CO2 have been performed in 
water, where the competition between the formation of the carbamato species and that of 
carbonate/bicarbonate anions must be taken into account (Scheme 2). Despite this complication, 
kinetic and thermodynamic aspects have been widely investigated [35,50,51], also in view of the 
search for optimal substrates and conditions for industrial CO2 capture. 

 
Scheme 2. Equilibria involving carbon dioxide and amines in aqueous solution. 

A collection of thermodynamic parameters concerning the carbonation of amines in water is 
compiled in Table 1, including data from the most recent studies [42,52–58] and relevant to amino 
acids [59–63]. Additional data, including kinetic constants, are provided in Table S1 (Supplementary 
Information). 

In most of the cases, either using ammonia, primary or secondary amines, the equilibrium 
constants regulating the hydrolysis of carbamate to bicarbonate (KHYD in Scheme 2) are lower than 1, 
while equilibrium constants for the formation of carbamate (KCBM in Scheme 2) are > 103. The only 
exception to this trend (KHYD >> KCBM) was observed for aniline [64], while the formation of 
carbamato salts derived from diisopropylamine [65], di-sec-butylamine [66] and 
2-amino-2-methyl-1-propanol (AMP) [52] was not assessed. Piperazine may form a bis-carbamate, 
but the generation of the second carbamato unit is unfavorable (KHYD > KCBM) [53]. 

Scheme 1. Overall reactivity of CO2/amine systems.

In agreement with the aim of this review, this section intends to summarize concepts reported
in the previous review [42] and to provide information about recent developments in the study of
CO2/amine systems. The first part describes the carbonation of amines in aqueous solution and the
most recent progress in this field achieved by using natural α-amino acids (Section 2.1). Next, the
isolation and characterization of pure carbamate salts will be discussed (Section 2.2). Finally, recent
advances in the stabilization of CO2 adducts by using amidine/guanidine ‘superbases’ [49] and the
CO2/amine/superbase system is presented (Section 2.3).

2.1. CO2/Amine Equilibria in Aqueous Solution

The CO2/amine system is finely governed by parameters such as the nature of the solvent,
temperature and solution pH. Thus, the concentration of carbamate in solution strictly depends on the
experimental conditions. Many reactions involving amines and CO2 have been performed in water,
where the competition between the formation of the carbamato species and that of carbonate/bicarbonate
anions must be taken into account (Scheme 2). Despite this complication, kinetic and thermodynamic
aspects have been widely investigated [35,50,51], also in view of the search for optimal substrates and
conditions for industrial CO2 capture.
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A collection of thermodynamic parameters concerning the carbonation of amines in water is
compiled in Table 1, including data from the most recent studies [42,52–58] and relevant to amino
acids [59–63]. Additional data, including kinetic constants, are provided in Table S1 (Supplementary
Information).

In most of the cases, either using ammonia, primary or secondary amines, the equilibrium
constants regulating the hydrolysis of carbamate to bicarbonate (KHYD in Scheme 2) are lower than 1,
while equilibrium constants for the formation of carbamate (KCBM in Scheme 2) are >103. The only
exception to this trend (KHYD >> KCBM) was observed for aniline [64], while the formation of carbamato
salts derived from diisopropylamine [65], di-sec-butylamine [66] and 2-amino-2-methyl-1-propanol
(AMP) [52] was not assessed. Piperazine may form a bis-carbamate, but the generation of the second
carbamato unit is unfavorable (KHYD > KCBM) [53].
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Overall, KCBM and KHYD values outline the absence of a clear correlation with the Brønsted
basicity (pKb) of the amine function [42]. Among other factors, the Lewis basicity of the corresponding
amide, R2N−, appears to play a significant role in the stabilization of the ammonium carbamate.

In the last decades, the capture of CO2 has attracted the interest of the scientific community,
and the possibility of storing and releasing carbon dioxide using non-toxic or even natural products
represents an intriguing prospect [12,67–70]. In this context, the use of amino acids as adsorbers
for PCC (post-combustion capture) of CO2 has been intensively investigated [51,71]; nevertheless,
thermodynamic and kinetic studies on the carbonation of amino acids did not receive adequate attention.
Equilibrium constants for the formation (KCBM) and hydrolysis (KHYD) of amino acid carbamates were
extrapolated from experimental data collected on sodium or potassium aminocarboxylates in aqueous
solution (Table 1). In particular, Jensen and Faurholt [61] reported that β-alanine reacts with CO2

approximately 1.5 times faster than α-alanine, and its carbamate is more stable toward hydrolysis.
The formation and hydrolysis constants of lysine carbamate were recently calculated [63]. The presence
of a second amino group on the side chain of lysine allows the formation of two carbamato moieties,
but the second carbonation occurs under high CO2 loading, making the hydrolysis predominant.

Table 1. Carbamate formation rate (k) and equilibrium (KCBM) constants at 18 ◦C in water (Reaction:
2NHRR′ + CO2 � [NH2RR′][O2CNRR′]). Carbamate hydrolysis equilibrium constants (KHYD) at
18 ◦C in water (Reaction: NRR′CO2

− + H2O� HCO3
− + NHRR′). More data available in Table S1.

Amine pKb
[a] KCBM KHYD Ref.

NH3 4.76 2.3 × 103 4.4 × 10−1 [42]
NH2Me 3.38 4.0 × 106 6.0 × 10−3 [42]
NHMe2 3.22 1.6 × 106 2.2 × 10−2 [42]
NH2Et 3.19 2.0 × 106 1.8 × 10−2 [42]
NHEt2 3.51 7.4 × 104 2.4 × 10−1 [42]
NH2

iPr 3.37 3.6 × 105 6.3 × 10−2 [42]
NHiPr2 3.17 None - [42]
NH2

sBu 3.44 3.8 × 105 4.9 × 10−2 [42]
NHsBu2 - None - [42]
NH2Ph 9.30 8.1 × 10−3 3.6 [42]

Piperidine 2.95 7.9 × 105 8.1 × 10−2 [42]
3-MPD 3.12 6.9 × 106 6.2 × 10−3 [58]
4-MPD 3.06 5.9 × 106 8.3 × 10−3 [58]

Pyrrolidine 3.16 1.9 × 107 2.0 × 10−3 [54,55]
MEA 4.42 6.0 × 104 1.9 × 10−2 [42]
DEA 4.98 2.1 × 103 1.5 × 10−1 [42]

1-AP [b] 4.75 9.6 × 103 1.1 × 10−1 [54]
2-AP [b] 4.75 4.0 × 103 2.5 × 10−1 [52]
MPA [b] 4.18 2.5 × 105 1.5 × 10−2 [52]
AMP [b] 4.73 None - [52]

4-PIPDM [b] 3.71 2.7 × 105 4.1 × 10−2 [54,55]
4-PIPDE [b] 3.65 3.0 × 105 4.2 × 10−2 [55]

Morpholine [b] 5.78 1.4 × 103 6.8 × 10−2 [54,55]
Thiomorpholine [b] 5.57 9.3 × 102 1.6 × 10−1 [54,55]

Piperazine 4.50 5.5 × 104 3.2 × 10−2
[53]

8.67 2.6 × 10−1 4.6 × 10−1

MPIPZ 4.96 5.1 × 103 1.2 × 10−1 [54]
4-AMTHP [b] 4.37 1.9 × 105 1.3 × 10−2 [56]
Taurine [b],[c] 5.19 7.1 × 103 5.1 × 10−2 [57]

Amino acids
Glycine[d] 4.49 4.4 × 104 4.2 × 10−2 [59]

Sarcosine [b],[d] 4.22 3.3 × 104 1.0 × 10−1 [60]
α-Alanine [d] 4.40 1.8 × 104 1.1 × 10−1 [61]
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Table 1. Cont.

Amine pKb
[a] KCBM KHYD Ref.

β-Alanine [d] 3.86 1.9 × 105 3.1 × 10−2 [61]
Proline [c] 3.57 5.4 × 105 2.8 × 10−2 [62]

Lysine [b],[c] 4.44 [e] 1.7 × 104 1.2 × 10−1
[63]

3.24 [f] 6.3 × 104 5.1 × 10−1

More data on alkyl- and aryl-amines are reported in Table S1. [a] pKb values are from ref. [42,52–59,62,63].
For a list of pKb see ref. [72,73]. (Kw = 10−14.27); [b] Measured at 25 ◦C; [c] Potassium salt; [d] Sodium salt;
[e] Deprotonation of the α-amino group; [f] Deprotonation of the amino group on the lateral chain; 3-MPD =
3-methylpiperidine, 4-MPD = 4-methylpiperidine, MEA = monoethanolamine, DEA = diethanolamine, 1-AP =
2-amino-1-propanol, 2-AP = 1-amino-2-propanol, MPA = 3-amino-1-propanol, AMP = 2-amino-2-methyl-1-propanol,
4-PIPDM = 4-piperidinemethanol, 4-PIPDE = 4-piperidineethanol, MPIPZ = 1-methylpiperazine, 4-AMTHP
= 4-aminomethyltetrahydropyran.

2.2. Amine/CO2 Interaction: Isolation and Characterization of Carbamato Salts

The previous considerations are valid for aqueous solutions, and are not extensible to other
solvents, including the use of the amine itself as solvent. In fact, bulky amines are not reactive to CO2 in
water, whereas the same amines may be able to generate the corresponding carbamate under anhydrous,
non-competitive conditions [47]. The uptake of CO2, measured under anhydrous conditions and at
atmospheric pressure in neat amines NHR2 (R = Bu, iPr, Cy), corresponds to a CO2/amine molar ratio
of approximately 0.5, as expected for the formation of the ammonium carbamate [NH2R2][O2CNR2].
Under such conditions, pure alkylammonium alkylcarbamates of several primary and secondary
amines were isolated as colorless solids [42].

Since 2003, many other alkylammonium alkylcarbamates of cyclic amines [74–77], substituted
amines [78–82] and diamines [83–85] have been isolated and characterized by IR and NMR spectroscopy,
and by X-Ray diffraction in a number of cases. Noteworthy, some of these carbamates were obtained
upon air exposure, revealing the capability of the respective amines of trapping CO2 from the
environment [74–76,81–84]. All the compounds cited above show intense bands due to C=O vibrations
in the IR spectral region between 1650 and 1400 cm−1.

In the course of a study on the crystallization of amines assisted by 1,5-dichloro-trans-9,10-
diethynyl-9,10-dihydroanthracene-9,10-diol (DDDA), Mondal and Bhunia [75] found that
cyclohexylamine (Scheme 3a), cycloheptylamine and piperidine undergo aerial carbonation affording
the corresponding ammonium carbamate. Interestingly, no carbonation was observed for
cyclopentylamine, even in the presence of DDDA. This result was attributed to the envelope
conformation of cyclopentylamine, which is more rigid respect to the chair conformations of
other cycloamines.

The first examples of chiral ammonium carbamates derived from chiral primary amines were
described by Neda et al. [80], as obtained by the treatment of amino derivatives of quincorine and
quincoridine with carbon dioxide in diethyl ether (Scheme 3b). The isolated colorless solids are stable
for several days in solution at ambient temperature and thermally stable until 120 ◦C in a solid state.
Above this temperature, the compounds lose carbon dioxide re-converting into amines, and the overall
procedure represents a convenient purification method of quincorine and quincoridine. As previously
discussed, AMP carbamate (AMP = 2-amino-2-methyl-1-propanol) has a very low formation constant
in water and its hydrolysis is rapid, thus, only traces of this compound were detected by NMR in
aqueous solution (see Table 1 and related discussion). On the other hand, when neat AMP was exposed
to air for five days, AMP carbamate was recovered as a white solid (Scheme 3c). It survives in air for a
limited time (max. 10 days) [82]. The crystal structure reveals asymmetric units composed of AMPH+

and AMP carbamate, both involved in intermolecular hydrogen bonds. Notably, aerial CO2 capture
was also observed for “amino bile acids” [81], probably enhanced by the presence of OH groups in the
structure (Scheme 3d). In general, synthesis and crystallization of carbamates are usually facilitated for
precursors containing hydrogen bonding groups [74–76,79,82].
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Scheme 3. Structures of alkylammonium alkylcarbamate derived from cyclohexylamine (a) [75],
2-amino-2-methyl-1-propanol, AMP (b) [82], quincoridine (c) [80], C24 amine derivative of
chenodeoxycholic acid (d) [81].

In theory, a diamine/CO2 system should lead to either a zwitterionic carbamate, a diammonium
dicarbamate salt or a mixture of both species (Scheme 1) [86,87]. In addition to the two polymorph
structures of the zwitterionic ethylenediamine carbamate [+NH3(CH2)2NHCOO−] [86], only few
crystallographic data are available for this class of compounds [79,83–85], in particular when compared
to the number of structurally characterized ammonium carbamates (see [42] and references above).
The diamine/CO2 system described above has been recently investigated [85], and both the zwitterionic
carbamate (Scheme 4a) and the ammonium dicarbamato species were isolated as crystalline materials
from water and a 1:1 water/ethanol mixture (Scheme 4b); the “classical” ammonium carbamate was
also obtained (Scheme 4c). In summary, the stability of ammonium carbamates benefits from the
presence of sterically hindered or non-flexible substituents on the amine, and this feature may find
application for the capture of carbon dioxide from the environment.
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2.3. Stabilization of Carbamates by Superbases

The interaction of a tertiary alkylamine or pyridine with CO2 is expected to lead to a zwitterionic
Lewis acid-base adduct (Scheme 1). However, this type of compounds has never been experimentally
observed, even for N-donors bearing a significant nucleophilicity (e.g., DABCO, quinuclidine,
4-dimethylaminopyridine) [88]. In the light of the mechanistic implications for CO2 activation,
considerable efforts have been directed to the exploration of the topic in the last 15 years. These studies
have outlined that zwitterionic CO2 adducts may increase their stability when the N-donor is an
amidine or guanidine (Scheme 5). Indeed, amidines and guanidines, the most famous representatives of
each category being 1,5-diazabiciclo(5.4.0)undec-7-ene (DBU) and 1,1,3,3-tetramethylguanidine (TMG),
are labeled as “superbases” (SB), in that they possess higher Brønsted basicity respect to common
alkylamines [49]. Delocalization of the positive charge within the NC(N) system may compensate
unfavorable energetics for charge separation in the zwitterion [24].
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Scheme 5. Structures of commonly employed amidines/guanidines “superbases” (SB) and
reaction with CO2 affording a zwitterionic carbamate. DBU = 1,5-diazabiciclo(5.4.0)undec-7-ene;
DBN = 1,5-diazabicyclo[4.3.0]non-5-ene; TMG = 1,1,3,3-tetramethylguanidine; TBD =

1,5,7-triazabicyclo[4.4.0]dec-5-ene; MTBD = 7-methyl-1,5,7-triazabicyclo(4.4.0)dec-5-ene; SB =

superbase (general structure).

The first experimental evidences of SB-CO2 adducts were collected analyzing the
solid materials obtained from the reactions of 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD),
1,5-diazabicyclo[4.3.0]non-5-ene (DBN) and related systems with carbon dioxide in acetonitrile [89,90].
A 13C-NMR signal occurring at circa 150 ppm was attributed to the NCO2 moiety, whereas a signal
around 160 ppm is related to the co-presence of bicarbonate ions. Unambiguous identification of the
zwitterionic carbamates TBD-CO2 and DBN-CO2 (Scheme 6) was later provided by single crystal X-ray
diffraction [91,92].
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Scheme 6. Synthesis of TBD-CO2 and DBN-CO2, and view of the X-ray structure of TBD-CO2 (H atoms
omitted, hydrogen bond evidenced as cyano line) [91,92].

The TBD-CO2 adduct is stable in the solid state up to 70 ◦C under CO2 atmosphere and for over
1 month at ambient temperature under Ar. This remarkable stability is ascribable to a hydrogen
bonding interaction in the solid state, involving a carbamato oxygen and the neighboring N-H unit.
Accordingly, DBN-CO2 is less stable and must be conserved under CO2 atmosphere.

However, both TBD-CO2 and DBN-CO2 have to be prepared and subsequently manipulated
under rigorously anhydrous conditions, being extremely sensitive to moisture. As a matter of fact,
several attempts to isolate CO2 adducts of amidines or guanidines were hampered by the presence
of adventitious water in the reaction systems, leading to the crystallization of the corresponding
bicarbonates (Scheme 7) [89,91,93–95]. This reactivity, common to ordinary alkylamines, is probably
enhanced by the higher Brønsted basicity of the “superbases”.
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Some amidines and guanidines do not form zwitterionic carbamates, despite being effective in
activating CO2, most notably DBU [92,96,97]. A DBU-CO2 adduct has been frequently proposed as an
intermediate in CO2-transfer reactions [93,98–100], but DBU does not form a carbamate even under a
CO2 pressure of 57 bar in anhydrous conditions [96]. Instead, DBU immediately reacts with traces of
moisture under CO2 atmosphere to afford the bicarbonate [DBUH][HCO3].

Electronic and steric effects may play a crucial role in the stabilization of zwitterionic carbamates,
as recently demonstrated by the preparation and X-ray characterization of a series of CO2 adducts of
N-heterocyclic imines (Scheme 8) [92]. Some of these derivatives display remarkable thermal stability
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(up to 70 ◦C under Ar) and resistance towards hydrolysis. In these compounds, the carbamato group
is perpendicular to the N-heterocyclic ring, at variance to other SB-CO2 adducts (e.g., TBD-CO2,
DBN-CO2) that are planar molecules. This conformation promotes π-delocalization in the NCO2

fragment, as indicated by the shortening of the N-C bond, while the positive charge is stabilized by the
aromaticity of the five-membered imidazolium ring. A collection of bond angles and distances is given
in Table S2.
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and view of the crystal structure of the CO2 adduct of 1,3-di-tert-butyl-N-methyl-1,3-dihydro-2H-
imidazol-2-imine (R = R′ = tBu; R” = Me) as a representative example. Drawing based on published
structural data, H atoms omitted for clarity [92].

Amidines and guanidines are capable of activating CO2 not only by direct interaction (i.e.,
formation of zwitterionic adducts) but also indirectly, e.g., in combination with alkylamines. In such
reactions, the superbase behaves as a Brønsted base and the amide, generated upon deprotonation
of the amine, acts as a Lewis base, resulting in the formation of amidinium/guanidinium carbamates
(Scheme 9). Amidinium/guanidinium carbamates [SBH][R2NCO2] are considerably more stable with
respect to related alkylammonium alkylcarbamates [R2NH2][R2NCO2], by virtue of the higher pKa
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Spectroscopic evidences (15N-NMR) that DBU, TMG and related systems favor the formation
of carbamates of primary and secondary amines in organic solvents were presented almost 30 years
ago [48,102,103]. The in situ formed carbamates were used for the synthesis of carbamato esters.
However, more recently, such concept gained increasing attention for its broader implications. In a series
of papers between 2005–2008, it was reported that equimolar mixtures of amidines and NH/OH donors,
such as alcohols [104], primary alkylamines [105], α-aminoalcohols [106] orα-aminoesters [107], rapidly
react with CO2 at ambient pressure quantitatively yielding the respective amidinium alkylcarbonate or
carbamate. Most of these amidinium salts are liquids at ambient temperature (or low-melting solids)
and their formation can be reversed by heating or by bubbling an inert gas through the liquid phase.
Hence, these systems have been classified as “switchable ionic liquids,” with CO2 as the element of
reversibility. Later, the substrate scope has been extended to the use of guanidines (TMG, TBD) as
superbases and secondary alkylamines or α-aminoacids as NH donors [108–115]. These reactions
can be carried out by exposing a neat superbase/N-donor 1:1 mixture to CO2 atmosphere or by using
classical inert organic solvents. In principle, either two components of the superbase/amine/CO2

system can be preliminarily mixed and then allowed to react with the third component, as exemplified
by the case of morpholine (Scheme 10) [112,114].
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Scheme 10. Three different syntheses of a guanidinium carbamate of morpholine.

It appears that the sensitivity to hydrolysis as well as the overall stability (and associated
“switchable” properties) of amidinium/guanidinium carbamates is very much dependent on the
superbase/amine combination. In some cases, the “water tolerance” has been referred to the persistence
of the (ionic) liquid phase after exposure of the system to air/moisture, even though the formation of
bicarbonates was readily observed (Scheme 11a) [105,107].
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Scheme 11. Hydrolysis of amidinium/guanidinium carbamates (SB = superbase) (a); synthesis of
(2-amminoethyl)guanidine carbamate (b).

It is noteworthy that (2-ammoniumethyl)guanidinium dichloride reacts with Ag2CO3 directly in
water, affording the corresponding guanidinium carbamate in high yield (Scheme 11b) [116]. This is a
rare example of indirect generation of a carbamate (i.e., not using CO2) and where the superbase and
the amine belong to the same molecule. An extensive network of H-bonding is present in the solid
state structure, presumably contributing to the stabilization of the system (vs. bicarbonate formation).

The high proton affinity of superbases can stabilize carbamates formed by NH-donors more acidic
(and thus less Lewis basic) than alkylamines. In this setting, 1:1 mixtures of amidines/guanidines
and azoles or pyrrolidone react in a Brønsted acid/base fashion, forming “protic ionic liquids” (PILs)
(Scheme 12). These systems are capable of absorbing significant amounts of CO2 (generally ≤ 1
equivalent) and spectroscopic data (IR, 13C-NMR) agree with the formation of carbamates [117–121].Molecules 2020, 25, x FOR PEER REVIEW 10 of 59 
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In conclusion, the study of the interaction of superbases with CO2 has led to the isolation of unique
zwitterionic carbamato adducts and has highlighted new pathways for CO2 activation. Importantly, the
synergistic role of amidines/guanidines in combination with ordinary alkylamines (or other NH-donors)
allows the stabilization of a wide range of carbamates and enables their use for stoichiometric and
catalytic CO2 transfer reactions.

3. Synthesis, Structure and Reactivity of Metal Carbamates

Carbamato ligands, as previously defined [42], are monoanionic species with general formula
R2NCO2

(−) (R = H, alkyl or aryl group), resulting from the combination of carbon dioxide with
ammonia or most frequently primary/secondary amines. Such anions usually behave as O-donors
towards metal centers, giving rise to metal carbamato complexes (Scheme 13a). In the present review,
we will adopt a general definition of carbamato ligands, which includes those derived from other
N-donors (e.g., pyridines and related systems) and also dianionic carbamyldiide species, RN(−)CO2

(−)

(Scheme 13b).
Carbamates are versatile ligands, offering a wide variety of coordination modes to metal centers,

as recognized in solid state structures. The most frequent coordination modes are those wherein the
carbamato ligand is bonded to a metal center in monodentate (M/1) or chelating (C/1) fashion or is
bridged between two metal centers (B/2). Other possibilities (C/3, C/5, B/3, B/4 and B/5) arise from
binding additional metal(s) per oxygen atom. Special coordination modes are available to dianionic
carbamyldiide ligands, involving the nitrogen atom in the coordination (D/1 and D/2).
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Over 380 publications describing the preparation and/or application of circa 1000 metal carbamato
complexes have appeared in the literature hitherto, some of them described in 2003 [42]. Herein,
we will present a concise but comprehensive description of the preparative methods, structures and
reactivity of metal carbamato complexes, with specific reference to the most recent results and novelties.

The first Section 3.1 gives an overall description of the preparative routes and structural aspects
of homoleptic metal carbamato complexes, i.e., coordination compounds possessing only carbamato
ligands within their coordination sphere. The second Section 3.2 describes the synthetic methodologies
employed to introduce (a) carbamato ligand(s) on a generic metal scaffold, thus covering ‘heteroleptic’
metal complexes. The third Section 3.3 is dedicated to the dynamics and reactivity of carbamato
complexes, taking homoleptic complexes as prototypical examples. The final Section 3.4 focuses on
spectroscopic and crystallographic data related to carbamato ligands and their coordination modes.
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3.1. Homoleptic Carbamato Complexes

Homoleptic carbamato complexes have been reported for a great number of metallic
(or semimetallic) elements in the periodic table (Scheme 14). The vast majority of such derivatives are
neutral species, complemented by few anionic complexes, and can be represented with the general
formula [M(O2CNR2)n]m

0/−, where m represents the nuclearity of the system. Homoleptic carbamato
complexes are generally associated to the most common oxidation state for M; moreover, they have also
been reported for the same metal in different oxidation states (e.g., Ce, Ti, Nb, Ta, Sn). Their distribution
in the periodic table reflects a preference for ‘hard’ oxophilic metal centers, being carbamates effective
O-donor ligands. However, it has to be considered that a more extended coverage of metals and
oxidation states is achieved including a suitable ligand in the coordination sphere, e.g., as for mixed
chlorido-carbamato or amino-carbamato complexes (see Section 3.2) [42].
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Preparative methods. The main synthetic routes to homoleptic metal carbamato complexes are
outlined in Scheme 15. They encompass different reactivities, often relying on the in situ generation
of the carbamato ligand from the amine/CO2 system. The possibility and convenience to use one
method or another depend on the availability and reactivity of the required metal precursor as well as
solubility issues. The various methods are described below, with selected examples taken from the
recent literature.Molecules 2020, 25, x FOR PEER REVIEW 12 of 59 
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The first method entails the carbonation of a metal amide (Scheme 15a). Indeed, [Ti(O2CNMe2)4],
the first carbamato complex to be reported, was obtained by exhaustive carbonation of the
N,N-dimethylamido complex of titanium(IV), Ti(NMe2)4 [122]. Since then, the M(NR2)n/CO2 route
has been successfully employed in the preparation of homoleptic complexes of the main group
metals [42,123], early transition elements [124–131], uranium(IV) and thorium(IV) [132]. In 2010,
Kennedy et al. applied this methodology to obtain Li+, Na+ and K+ 2,2,6,6-tetramethylpiperidine
(TMP) carbamates [133]. A few years ago, the same method was applied to synthesize homoleptic
cerium carbamates [Ce3(O2CMe2pz)3]4 and [Ce(O2CMe2pz)4] (Me2pz = 3,5-dimethylpyrazole) from
the respective amides [Ce(Me2pz)3]4 and [Ce(Me2pz)4]2 (Scheme 16a) [134]. These compounds are
peculiar in that they contain only ligands of the same type (hence they are ‘homoleptic’) but one
nitrogen atom of the pyrazole ring is also involved in coordination (vide infra).

Concerning p-block metals, carbonation of metal amides was recently used to obtain
[Bi(O2CNiPr2)3]4 from Bi(NiPr2)3 [135] and [Sn(O2CNMe2)2]2 from Sn(NMe2)2 [136] (Scheme 16b,c).
Most notably, these complexes represent the first examples of structurally characterized bismuth
carbamate and homoleptic Sn(II) carbamate, respectively.
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The instability of some metal N,N-dialkylamides and the difficulties in their preparation,
particularly with aryl or complex alkyl groups, prompted the development of alternative synthetic
methods. Thus, in 1978, Calderazzo et al. reported the synthesis of uranium(IV) N,N-dialkylcarbamates,
[U(O2CNR2)4], starting from the corresponding anhydrous metal chloride as precursor and NHR2

saturated with CO2 as the carbamato source [137]. Since then, the R2NCO−/Cl− metathetical
reaction (Scheme 15b) has been employed for the synthesis of a vast number of metal carbamates,
including heteroleptic derivatives (see Section 3.2), and can be regarded as the most general synthetic
method [42,138]. In the case of secondary amines, the reaction is conveniently carried out in toluene or
aliphatic hydrocarbons, wherein the insoluble dialkylammonium chloride byproduct can be easily
filtered off, leaving a solution of the metal carbamato product.

Recent examples of homoleptic carbamates obtained by ligand substitution from the respective
metal chlorides include [Ti(O2CNPyr)4], being the first pyrrolidine-based metal carbamate
(Scheme 17a) [139], [Cu(O2CN(allyl)2)2] [140], [NH2

iPr2][B(O2CNiPr2)4] and [B2(O2CNiPr2)6] [141]
and [In(O2CNEt2)3] [142].

Drawbacks along the MCln/R2NH/CO2 route may occur in the case of poorly soluble, unreactive
metal chlorides, and can be overcome by employing metal bromide or metal chloride adducts with
labile ligands, such as MCln(DME)m or MCln(THF)m, as precursors. For instance, MnCl2(THF)1.6

and FeCl2(THF)1.5 were used in the syntheses of [M(O2CNEt2)2]6 and [M(O2CNiPr2)2]n (M = Fe,
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Mn) [143]. In the case of lanthanides, the use of LnCl3(ether)x allowed straightforward preparation of
[Ln(O2CNiPr2)3]4 (Scheme 17b) and [Ln(O2CNBu2)3] (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb,
Lu) [23,144–147].

When high valent metal centers and amines bearing alkyl chains longer than C2 are involved,
activation of the amine and reduction of the metal may be observed. Thus, during the purification
of Nb(O2CNEt2)5 from hot heptane, the pale yellow mixture turned blue with evolution of CO2 and
Nb(O2CNEt2)4 was isolated in high yield. The analogous thermal treatment of Nb (O2CNMe2)5

afforded only small amounts of reduction product after 48 h at circa 100 ◦C [131]. In agreement with
the generally observed higher stability of the higher oxidation states going down a group of transition
elements, Ta(O2CNEt2)5 does not undergo appreciable reduction to Ta (IV) under the same conditions.

The observed thermal behavior of M(O2CNR2)5 parallels that of the Nb(V) and Ta(V) amides,
M(NR2)5: these species are stable at ambient temperature in the case of tantalum [148], but easily reduce
to the +4 oxidation state in the case of niobium [149], the reduction extent increasing on increasing the
length of the alkyl group. Both steric and electronic effects play an important role [149].

Even bare aquo-complexes can be used as precursors for the preparation of homoleptic complexes
by ligand substitution [150]. In this regard, Armelao, Belli Dell’Amico and co-workers reported,
in 2014, an innovative method for the preparation of [Ln(O2CNBu2)3]n (Ln = Nd, Eu, Tb) [151]. In this
procedure, the preformed ammonium carbamate in heptane was used to extract the metal ion from
an aqueous solution of Ln3+ (obtained by dissolving Ln2O3 in HCl). The rapid formation of the
carbamato complex and the balanced lipophilicity provided by the amine allowed its extraction in
the organic layer while retaining the [R2NH2]Cl co-product in the aqueous phase. The extraction
method was later extended to Ce(III) [152], Tm(III) [153] and Y(III) [154] carbamato complexes and to
the hetero-trimetallic derivative [Tm3/4Tb3/4Eu3/4(O2CNBu2)12] [153].

In some cases, homoleptic complexes can be prepared directly from the elemental metal and the
R2NH/CO2 system in coordinating solvents (e.g., THF, acetonitrile) (Scheme 15c). This methodology is
effective for alkali, alkali-earth metals [155,156] and zinc [157]. Clearly, these reactions may proceed
through the formation of the metal amide in situ. A recent example of this reactivity is represented
by [Zn(O2CNHiBu)2], obtained by treating a suspension of Zn powder in 2-methoxyethanol with a
stoichiometric amount of [iBuNH3][O2CNHiBu] [158]. In this context, we also mention the preparation
of the non-homoleptic [Cu(O2CNMe2)(Me2NH)2] from copper metal and [NMe2H2][O2CNMe2], in
the presence of O2 as external oxidant [157].

Alternative precursors of homoleptic complexes are metal oxides [159], alkoxides [159], metal
alkyls, Grignard reagents [160–162] and MnCp2 [163] (Scheme 15d). All these species react with amines
and CO2 under different conditions, by combining an acid/base reaction with the coordination of the in
situ generated carbamato ligand.

In this regard, silver carbamates can be prepared from a suspension of Ag2O, treated with
amine under CO2 atmosphere [159]. This method has not a general applicability, due to unfavorable
thermodynamics, but it is not unique to Ag2O. Both the neutral polymeric [Zn(O2CNMe2)]n and
the dimeric anionic carbamate [Me2NH2][Zn2(O2CNMe2)5] were isolated from the reaction of
ZnO with [Me2NH2][O2NMe2] in MeCN [164]. However, the same reactions did not work with
other dialkylamines.

Concerning metal alkyls, lithium N,N-dialkylcarbamates were recently prepared starting from
nBuLi and CO2 in the presence of diisopropylamine or pyrrole [165]. A related reaction was reported
with NaH, providing a more convenient pathway to Na(O2CNEt2) compared to the use of sodium
sand [166]. Additionally, in these cases, intermediacy of the in situ formed metal amide is conceivable.

Finally, a preformed carbamato complex can be exploited to obtain homoleptic derivatives
(Scheme 15e). This is related to trans-metalation procedures [167] or redox reactions, the latter possibly
accompanied by ligand transfer (e.g., reduction of NbV, TaV or TiIV to lower-valent derivatives of NbIV,
TaIII and TiIII, respectively) [131,167–170] (Scheme 15e).
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Structural aspects. Homoleptic metal carbamates exhibit a wide range of nuclearities in the
solid state, ranging from monometallic complexes to oligomeric and even polymeric structures.
The aggregation is realized by bridging coordination of the carbamato moieties, as well as metal-metal
bonding in some cases, and can be regulated by the nitrogen substituents, with bulkier groups
usually favoring a lower degree of aggregation. For instance, [Ti(O2CNR2)4] (R = Me, Et, iPr,
pyrrolidine; Scheme 17a) and [Nb(O2CNR2)5] (R = Me, Et; Scheme 17c) are examples of mononuclear
complexes featuring only chelating (C/1) or chelating (C/1) and monodentate (M/1) carbamates,
respectively [130,171–174]. On the other hand, homoleptic diethyl or dimethyl carbamato derivatives
of W(III), Mo(II) and Sn(II) (Scheme 16c) are dinuclear, featuring bridging ligands (B/2) and the first
two complexes also M-M bonding [136,175,176]. The structure of [Bi(O2CNiPr2)3]4 is tetrameric,
each Bi being coordinated by one chelating (C/1), one bridging (B/2) and one bridging-chelating
(C/2) carbamato groups in a distorted pentagonal bipyramidal environment (Scheme 16b) [135].
Instead, N,N-diisopropyl carbamates of Ln(III) (Ln = Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb, Lu) are
isostructural and exhibit a tetrameric structure with C2 symmetry and heptacoordinated metal centers
(Scheme 17b) [23,145–147]. In these complexes, the carbamato ligands adopt three different coordination
modes, binding one (C/1), two (B/2) or three (B/3) metal centers, respectively. From the collection of
all the presented structures, Belli Dell’Amico et al. highlighted a parabolic trend in the decrease of
Ln-O bond distances over the lanthanide series [145]. The only exception to this structural motif is
represented by the Ce(III) derivative, showing a less symmetrical structure in which it is possible to
observe five different coordination modes (C/1, C/2, B/2, B/3, B/4) [144]. This particular arrangement
leads to a packing in which the metal atoms are not completely surrounded by the ligands, allowing
the favorable oxidation to Ce(IV) by means of O2 (vide infra). Hexanuclear structures are adopted by
Mg(II), Mn(II) and Co(II) diethyl carbamates [42].

In some cases, the nuclearity of homoleptic complexes in the solid state has not been determined
and a polymeric structure was suggested, based on the insolubility in non-coordinating solvents (e.g.,
benzene or toluene). This feature is common to several alkali metal carbamates [156,177], including
those of bulky 2,2,6,6-tetramethylpiperidine [133]. On the other hand, the lithium diisopropyl
derivative [(LiO2CNiPr2)12(iPr2NCOOH)2] is a dodecanuclear cluster decorated with a rare carbamic
acid ligand [47,84,178], whose formation has been ascribed to adventitious hydrolysis [165].

Unusual coordination environments have been recognized for cerium 3,5-dimetylpyrazole
(Me2pz) carbamates, also due to the chelation of the metal center by the non-carbonatated pyrazole
nitrogen [134]. The structure of [Ce(O2CMe2pz)3]4 comprises a 9-coordinate Ce(III) atom displaying
three different coordination modes for the ligands (M/1, C/2, B/3), while the corresponding Ce(IV)
complex (Scheme 16a) and the anionic Ce(III) derivative [Bu4N][Ce(O2CMe2pz)4] are mononuclear
based on 8-coordinate cerium center.
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3.2. Heteroleptic Carbamato Complexes

Heteroleptic metal carbamato complexes are those including additional ligands in the coordination
sphere. Such classification encompasses many derivatives that are closely related to the parent
homoleptic compounds, such as mixed chlorido-carbamates or amino/amido-carbamates (vide infra).
These can be viewed as intermediate products along the preparative routes that (in principle or in
practice) lead to the homoleptic congeners. On the other hand, a large number of complexes presents a
single carbamato unit. These include most organometallic derivatives or coordination compounds
featuring very sophisticated, multidentate ligands. In such cases, the carbamato ligand is ancillary
with respect to the properties and reactivity of the compound itself.

Given the vast and heterogeneous amount of information, the present discussion will provide
an overview of the various synthetic methods available for the introduction of a carbamato ligand
(Scheme 18), with selected examples taken from the most recent literature. This approach will highlight
the applicability and limitations of each method along the periodic table.
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been recently reported [133,180–186]. The simplest cases are represented by homoleptic metal amido 
complexes undergoing selective carbonation, leading to mixed amido-carbamato derivatives. For 
instance, Cotton et al. reported the partial carbonation of Ti(III) amido, resulting in dimeric 
amido-carbamato compounds, showing diamagnetic behavior due to anti-ferromagnetic coupling 
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Scheme 18. Main synthetic routes for the assembly of a carbamato ligand on metal complexes:
(a) carbonation of an M−N bond, (b) chloride (or another anionic ligand) substitution, (c) coupled
ligand substitution/proton transfer reaction, (d) coupling of a hydroxido (or oxido) ligand with organic
isocyanates, (e) reaction of an amine with a metal carboxyl complex and (f) ligand transfer route.

Carbon dioxide insertion into M−N bonds (Scheme 18a). The reaction of an alkylamido group with
CO2, leading to the generation of a carbamato ligand, has found widespread use for s-block [42] and early
d-transition metals [125,126,128–130,179]. In this regard, new fascinating examples have been recently
reported [133,180–186]. The simplest cases are represented by homoleptic metal amido complexes
undergoing selective carbonation, leading to mixed amido-carbamato derivatives. For instance,
Cotton et al. reported the partial carbonation of Ti(III) amido, resulting in dimeric amido-carbamato
compounds, showing diamagnetic behavior due to anti-ferromagnetic coupling [180] (Scheme 19a).

On the other hand, the insertion of CO2 into M−N bonds was only sparingly applied to lanthanides,
actinides and late transition metals [132,187–189] in the beginning. The scenario changed over the last
15 years, as several carbamato complexes obtained by this methodology were reported, and especially
organometallic species. These include late d-block metals such as iridium [190,191], nickel [192–197],
palladium [198,199], gold [200] and zinc [201–204], f-block metals cerium [134] and uranium [205–209]
and p-block metals tin [210] and gallium [211,212]. Furthermore, in situ-formed amide complex of Zn(II)
and alkyl-amide of Mg(II) were mixed under carbon dioxide atmosphere to afford a heterobimetallic
Zn/Mg alkyl-carbamato derivative [213]. Selected cases are represented in Scheme 19b–d, including a
rare type of a primary carbamato ligand in the U(IV) derivative [Cp*(COTTIPS2)U(O2CNH2)] [206].
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The generally accepted mechanism [214,215] for low-valent d-transition metals involves a direct
nucleophilic attack of the metal-coordinated nitrogen to carbon dioxide, with the generation of an
intermediate N-bound carbamato/carbamic acid moiety. Subsequent rearrangement provides the
typical O-coordinated carbamato ligand [187,188,191,192,216]. A further confirmation was recently
reported for Mo(0) and W(0) complexes bearing a diphosphino amide pincer ligand (Scheme 20) [185].
In this case, the geometry of the ligand forces the nitrogen atom to remain coordinated after CO2
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Some of the late transition metal complexes featuring a monodentate carbamate are quite
unstable towards decarboxylation, either in solution or in the solid state, especially under
vacuum [190–192,198,200]. Among other factors, the relatively strong metal-nitrogen bond may
contribute to the reversibility of the CO2 insertion process.

The insertion of CO2 into M−N bonds has also been reported for Sc(III) [217], Ti(IV) [218–220],
Ni(II) [221], Pd(II) [222] and Ir(III) [223,224] imido complexes. The dianionic carbamyldiide ligand
thus generated usually remains coordinated to the metal via N,O (Scheme 21a). Additionally, in this
case, a mechanism involving the direct nucleophilic attack of nitrogen to carbon dioxide appears to be
favored over a [2 + 2] cycloaddition [185,222]. The cyclic metallacarbamato ligand may undergo further
reactions, i.e., a second CO2 insertion to produce a bis-carbamato (azadicarboxylato) ligand [220,221]
or proton abstraction from another ligand, affording an ordinary carbamato ligand [224].

Formation of exotic polyanionic carbamato ligands was observed by addition of CO2 to a
nitrido-bridged diuranium(IV) complex [225,226], and to zirconocene and hafnocene dinitrogen
complexes [227,228] (Scheme 21). These systems are prone to double CO2 insertion, either on the same
or on different nitrogen atoms [229].
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Scheme 21. Insertion of CO2 into different M−N bonds: (a) general reactivity scheme for a
metal imido complex with CO2 and crystal structures of [Ni(ditbpe)(κ2N,O-O2CNXyl)] (b) and
[Ti(η-C5H4Me){(O2C)2N(-2,6-C6H3Me2)}{PhC(SiMe3)2}] (c); double carbonation of a diuranium
bridging nitride ligand (d); metal dinitrogen metallocene complexes of zirconium (e) and hafnium (f).
Drawings based on published data [220,221,225,227,228], H atoms omitted for clarity.



Molecules 2020, 25, 3603 18 of 58

Ligand substitution reactions (Scheme 18b). Partial ligand substitution along the
MCln/CO2/R2NH pathway gives access to mixed species such as metal chlorido-carbamates or
amino-chlorido-carbamates [42]. For instance, the reaction of ZnCl2 with Et2NH/CO2 in THF afforded
[Zn2(µ-O2CNEt2)3Cl(Et2NH)], displaying a paddlewheel structure with bridging (B/2) carbamato
ligands [230]. A very recent example of partial substitution from a metal chloride is the reaction of
TiCl4 with one equivalent of preformed [TMG][O2CNEt2] (TMG = tetramethylguanidine), leading to
the trinuclear [TiCl2(O2CNEt2)2]3 [109]. Interestingly, the co-product is not the expected guanidinium
chloride but the hexachlorometalate [TMG]2[TiCl6] (probably formed via addition of chlorides to
unreacted TiCl4), which can be easily removed by filtration.

More in general, metal chlorido complexes can be used as precursors for the installation
of carbamato unit(s) [166,171,231–233]. In this setting, treating TiCp*2Cl, VOCl3 and NbOCl3
with pre-carbonated amines respectively allowed the isolation of [TiCp*2(O2CNEt2)] [234],
[VO(NMe2)(O2CNMe2)2] [166] and [NbO(O2CNEt2)3]2 [171] (Scheme 22a). Similarly,
ruthenium(II) complexes mer-[RuCl(O2CNiPr2)(PPh3)3] and [Ru(O2CNiPr2)2(PPh3)2] were prepared
by chloride/carbamate exchange from [RuCl2(PPh3)3] and the chloro-bridged dimer [Ru2Cl5(PPh3)4]−,
respectively (Scheme 22b) [231].
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Scheme 22. Metal carbamato complexes obtained by Cl−/R2NCO2− exchange: reactions of TiCp*2Cl, 
V(V) and Nb(V) oxido-chlorides with amines/CO2 and X-ray structure of [NbO(O2CNMe2)3]2 (a); 
preparation of mer-[RuCl(O2CNiPr2)(PPh3)3] and [Ru(O2CNiPr2)2(PPh3)2] from Ru(II) chloride 
precursors and X-ray structure of the former (b). Drawings based on published data (H atoms 
omitted for clarity) [171,231]. 

Other metal compounds, such as Dy(III) [235], Fe(II) [236], Cu(II) [237–241], Ni(II) [239] and 
Zn(II) [240–243] perchlorates, nitrates and sulfates, uranyl diacetate [244] or [Pd(MeCN)4]2+ [245] 
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Scheme 22. Metal carbamato complexes obtained by Cl−/R2NCO2
− exchange: reactions of TiCp*2Cl,

V(V) and Nb(V) oxido-chlorides with amines/CO2 and X-ray structure of [NbO(O2CNMe2)3]2 (a);
preparation of mer-[RuCl(O2CNiPr2)(PPh3)3] and [Ru(O2CNiPr2)2(PPh3)2] from Ru(II) chloride
precursors and X-ray structure of the former (b). Drawings based on published data (H atoms
omitted for clarity) [171,231].

Other metal compounds, such as Dy(III) [235], Fe(II) [236], Cu(II) [237–241], Ni(II) [239] and
Zn(II) [240–243] perchlorates, nitrates and sulfates, uranyl diacetate [244] or [Pd(MeCN)4]2+ [245] were
used as starting materials for the preparation of carbamato derivatives. The reactions are usually carried
out in polar organic solvents (MeOH, MeCN) in the presence of amines, polyamines or aza-macrocyclic
ligands under CO2 atmosphere (Scheme 23a). Most importantly, some cases of CO2 fixation directly
from ambient air have been reported [233,235,237–239,241,244,246,247].
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The combination of two different salts allowed the preparation of heterobimetallic 3d/4f carbamato
compounds, also in a one-pot fashion (Scheme 23b) [246,247]. Such compounds aroused great interest
within the scientific community for their magnetic properties.
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solvents (e.g., THF, Et2O), which are often found incorporated in the final complex [165,248]. For 
instance, the reaction of MeMgBr with N-methylaniline and CO2 in THF leads to the dimer 
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particular, [Me2NH2]3[Mg8(CO3)2(O2CNMe2)15] converted into [Mg8(CO3)2(O2CNMe2)12] (n = 0) by 
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Scheme 23. Synthesis and views of the X-ray crystal structures of: (a) a Zn(II) macrocyclic carbamate
obtained from [13]aneN4 (1,4,7,10-tetra-azacyclotridecane), Zn(ClO4)2 and CO2; (b) a heterobimetallic
Ni/Gd complex with bridging morpholine carbamato ligands. Drawing based on published data
(H atoms omitted for clarity) [242,246].

Coupled ligand substitution/proton transfer reactions (Scheme 18c). In principle, a metal
complex bearing a ligand that can be removed upon protonation by amines (or in situ formed
carbamic acids/ammonium carbamates) can be a precursor for the installation of a carbamato ligand.
Organolithium compounds, Grignard reagents and other d-block and p-block alkyls can be employed
to this purpose, hence the generation of the carbamate may proceed through the intermediacy of
a metal-amide unit [42]. These reactions are usually conducted in coordinating solvents (e.g., THF,
Et2O), which are often found incorporated in the final complex [165,248]. For instance, the reaction
of MeMgBr with N-methylaniline and CO2 in THF leads to the dimer [Mg(O2CN(Me)Ph)(THF)2Br]2,
where magnesium shows a trigonal bipyramidal coordination geometry [248] (Scheme 24a).

The use of metal oxides or oxido/alkoxido complexes as precursors, although less frequent, may
also be included in this category [42]. For instance, octanuclear carbonato-carbamates of general
formula [Me2NH2]n[Mg8(CO3)2(O2CNMe2)(12+n)] (n = 0–3) were obtained by treating magnesium
oxide with [Me2NH2][O2CNMe2] in toluene, the value of n depending on the reaction conditions. In
particular, [Me2NH2]3[Mg8(CO3)2(O2CNMe2)15] converted into [Mg8(CO3)2(O2CNMe2)12] (n = 0) by
heating under vacuum [249]. A basic example of the present synthetic procedure is provided by a Bi(III)
complex with an amino-alkoxido ligand [250]: carbonation of the pendant amino group is followed by
intramolecular proton transfer and ligand slippage, yielding the carbamato moiety (Scheme 24b).
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Scheme 25. General reaction of a Pt(IV) (bis)hydroxo species with alkyl/aryl isocyanate affording a 
Pt(IV) (bis)carbamate and view of the X-ray crystal structure of cis,cis,trans-[PtCl2(NH3)2(O2CNCF3)2]. 
Drawing based on published data [260]. 

Reaction of an amine with a metal carboxyl complex (Scheme 18e). Another type of synthesis 
comprises the reactions of amines (or N-donors in general) with a metal carboxyl complex, i.e., 
bicarbonate [269], formate [270,271], carbonate ester [272] or a CO2 adduct directly [273]. As an 
example, the intramolecular attack of an amine group belonging to a tetradentate pyridylamine 
ligand onto a Zn(II)-HCO3 species resulted in carbamate generation [269] (Scheme 26a). In this 
regard, a novel synthetic approach consisting in the addition of amines to a Pt(IV)-carbonate ester 
has been recently proposed (Scheme 26b). This method offers the opportunity for preparing a 

Scheme 24. Synthesis and views of X-ray structures of: (a) dinuclear Mg carbamate from Grignard
reagent; (b) Bi(III) carbamato complex from carbonation of amino-alkoxide ligand. Drawings based on
published data (H atoms omitted for clarity) [248,250].

Reaction of hydroxido(oxido) ligands with organic isocyanates (Scheme 18d). The reaction
of a M–OH (or M=O) moiety with an organic isocyanate represents a further possibility to build
a carbamato ligand. In the past, only a few metal carbamato complexes were obtained by this
route, namely Hg(II) [251], Os(II) [252] and Pt(IV) [253] derivatives. Recently, the family of metal
carbamates generated in this way have greatly expanded, including lanthanide compounds [254,255],
Ti(IV)-oxido [220], Re(I)-carbonyl [256], Co(III)-pentamine [257] and Ni(II) pincer complexes [258,259].
Moreover, this method has gained increasing importance in the preparation of Pt(IV) compounds
(Scheme 25). More precisely, coupling of a Pt(IV) (bis)hydroxo species with an alkyl or aryl isocyanate
affords the corresponding (bis)carbamate. Following optimization [260], allowing the reaction to be
conducted in dimethylformamide and not in neat isocyanate, more than 60 different Pt(IV) species
were thus prepared, arousing interest as possible anticancer agents (see Section 5) [261–268].
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Scheme 25. General reaction of a Pt(IV) (bis)hydroxo species with alkyl/aryl isocyanate affording a
Pt(IV) (bis)carbamate and view of the X-ray crystal structure of cis,cis,trans-[PtCl2(NH3)2(O2CNCF3)2].
Drawing based on published data [260].

Reaction of an amine with a metal carboxyl complex (Scheme 18e). Another type of synthesis
comprises the reactions of amines (or N-donors in general) with a metal carboxyl complex, i.e.,
bicarbonate [269], formate [270,271], carbonate ester [272] or a CO2 adduct directly [273]. As an
example, the intramolecular attack of an amine group belonging to a tetradentate pyridylamine ligand
onto a Zn(II)-HCO3 species resulted in carbamate generation [269] (Scheme 26a). In this regard,
a novel synthetic approach consisting in the addition of amines to a Pt(IV)-carbonate ester has been
recently proposed (Scheme 26b). This method offers the opportunity for preparing a number of Pt(IV)
carbamato derivatives, including some related to secondary amines, thus extending the scope provided
by the hydroxide/isocyanate coupling [272].



Molecules 2020, 25, 3603 21 of 58

Molecules 2020, 25, x FOR PEER REVIEW 21 of 59 

 

number of Pt(IV) carbamato derivatives, including some related to secondary amines, thus 
extending the scope provided by the hydroxide/isocyanate coupling [272]. 

(a) 

   
 

(b) 

   

Scheme 26. Metal carboxyl complexes as precursors of metal carbamates. (a) Formation and view of 
the X-ray crystal structure of a Zn(II) carbamate complex containing a N,N,N,N-tetradentate ligand, 
via intramolecular amine/HCO3 reaction. Drawing based on published data (H atoms omitted for 
clarity) [269]. (b) Reaction of cis,cis,trans-[PtCl2(NH3)2(OH)X] with 
bis(2,5-dioxopyrrolidin-1-yl)carbonate followed by amine addition to the activated ester. 

Other methods. Within the plethora of organometallic complexes, another strategy for the 
installation of a carbamato ligand relies upon the in situ generation of suitable unsaturated 
fragments [274–276]. For instance, reductive elimination of benzene from a phenyl Ir(III) 
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A peculiar ligand-assisted addition of CO2 was reported for a Fe(II) compound containing a 
pyridyl-amine ligand. In this case, carbonation of the amino group belonging to a bidentate ligand 
resulted in the formation of an eight-membered pyridyl-carbamate. The reaction is readily reversible 
by heating [278]. 

The formation of a heterodinuclear Fe/In carbonyl-carbamato complex was reported starting from 
an iron carbonyl-carbamoyl precursor by reaction with InMe3. The oxygen transfer to the carbamoyl 
ligand forming the carbamate is possible due to the decomposition of a second carbamoyl unit [279]. 

Ligand transfer routes (Scheme 18f). Over the years, the trans-metalation reaction has been 
extensively employed for the targeted synthesis of various metal carbamates, especially 

Scheme 26. Metal carboxyl complexes as precursors of metal carbamates. (a) Formation and view of
the X-ray crystal structure of a Zn(II) carbamate complex containing a N,N,N,N-tetradentate ligand,
via intramolecular amine/HCO3 reaction. Drawing based on published data (H atoms omitted
for clarity) [269]. (b) Reaction of cis,cis,trans-[PtCl2(NH3)2(OH)X] with bis(2,5-dioxopyrrolidin-1-
yl)carbonate followed by amine addition to the activated ester.

Other methods. Within the plethora of organometallic complexes, another strategy for the
installation of a carbamato ligand relies upon the in situ generation of suitable unsaturated
fragments [274–276]. For instance, reductive elimination of benzene from a phenyl Ir(III) trispyrazolyl
borate compound generated a 16e− intermediate capable of incorporating CO2 as a carbamate, with the
aid of an ancillary metallapyridine ligand (Scheme 27) [274]. A closely related example is represented
by the addition of indole-1-carboxylic acid on a formally 16e− Cp*Ir(III) amido complex [277].
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Scheme 27. Synthesis and view of the X-ray crystal structure of Ir(Tp) carbamate. Drawing based on
published data (H atoms omitted for clarity) [274].

A peculiar ligand-assisted addition of CO2 was reported for a Fe(II) compound containing a
pyridyl-amine ligand. In this case, carbonation of the amino group belonging to a bidentate ligand
resulted in the formation of an eight-membered pyridyl-carbamate. The reaction is readily reversible
by heating [278].

The formation of a heterodinuclear Fe/In carbonyl-carbamato complex was reported starting from
an iron carbonyl-carbamoyl precursor by reaction with InMe3. The oxygen transfer to the carbamoyl
ligand forming the carbamate is possible due to the decomposition of a second carbamoyl unit [279].

Ligand transfer routes (Scheme 18f). Over the years, the trans-metalation reaction has
been extensively employed for the targeted synthesis of various metal carbamates, especially
organometallics [42]. Typically, this method exploits silver or alkali metal carbamates as transfer
reagents, taking advantage of the precipitation of the metal halide side-product (e.g., NaCl, LiCl, AgCl,
AgBr) as the driving force of the reaction (Scheme 28a) [109,133,159,166,212,280]. Attempts to realize
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trans-metalation based on other combinations of metals may result in carbamato ligand transfer [42] or
in the formation of a hetero-bimetallic product [281,282].

Another type of ligand transfer reaction can be performed by mixing equimolar amounts of a metal
halide and its corresponding homoleptic carbamate, selectively affording a mixed halido-carbamato
complex (Scheme 28b) [109,172].
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by ligand transfer reactions: (a) [Au(PPh3)(O2CNEt2)] obtained by trans-metalation with silver
carbamate; (b) combination of Group 4 metal halides and their homoleptic carbamates, affording mixed
halido-carbamato complexes and structure of [Ti3Cl6(O2CNEt2)6]. Drawings based on published data
(H atoms and Et groups in the Ti complex omitted for clarity) [109,159].

3.3. Dynamics and Reactivity of Metal Carbamato Complexes

Carbamato ligand dynamics. Metal carbamates may manifest a dynamic behavior, through the
occurrence of processes summarized in Scheme 29. Homoleptic metal carbamato complexes have been
widely investigated from this perspective.
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(d) transamination reaction.

Carbamato ligands in metal complexes are usually able to exchange their position
and their coordination modes in solution, as demonstrated by variable temperature
NMR measurements [127,138,248,283–285]. For instance, the two carbamato ligands in
[Mg2Br2(µ-O2CNMePh)2] are fluxional, rapidly shifting from bridging (B/2) to bridging-chelating (C/2)
mode down to 0 ◦C, when the exchange turns slow on the NMR time scale [248].

The fluxionality of the carbamato ligand, jointly with the possibility of turning from bidentate
to monodentate coordination, permits the entrance of additional ligands in the metal coordination
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sphere. The possible subsequent decrease in nuclearity of the metal system may lead to dissolution
of the otherwise insoluble metal carbamate. The first observation of such a behavior was reported
in 1988 by Calderazzo et al. [286]. Some Cu(II) N,N-dialkylcarbamates, obtained by the typical
CuCl2/amine/CO2 route in heptane, were no longer soluble in the same solvent following their isolation
in the solid state. The authors suggested that the initial solubility could be ascribed to the coordination
of one or more amine molecules, present in excess in the reaction mixture. Other examples of metal
N,N-dialkylcarbamates changing their solubility in the presence or absence of amines were later
reported [143,287,288]. Analogous equilibria can also explain the solubility of metal carbamates in
coordinating solvents [42]. In this regard, THF or TMEDA adducts were recently isolated growing
crystals of lithium carbamates [133,165].

Another aspect related to the dynamics of metal carbamato complexes in solution is their ability to
interchange the carboxyl unit with external CO2 while maintaining their structures intact [42,125,127].
This property was confirmed in 2005 by McCowan and Caudle by 13CO2 uptake experiments on
zinc derivatives [289]. Furthermore, metal carbamates might be susceptible to transamination,
exchanging the internal R2N group with that coming from an external amine. This feature was
exploited for the preparation of [Al(O2CNEt2)3] [290], [Nd(O2CNEt2)3] [145], [Eu(O2CNBn2)3] and
[Sm(O2CNBn2)3] [151], taking advantage of the volatility of the outgoing amine and/or the lower
solubility of the metal carbamato product.

Reactivity with electrophiles. Metal carbamato complexes can be quite reactive towards
electrophilic agents. Indeed, carbamato ligands are generally prone to electrophilic attack on the
nitrogen or oxygen atom(s). In all cases, the M–O(carbamate) bond(s) is detached, but products vary
depending on the type of electrophilic agent, i.e., organic electrophiles or protic species (Scheme 30).

The reactivity with carbon-based electrophiles has been widely studied [42]. The addition of the
electrophile to the oxygen atom(s) forms a carbamato ester, while addition to the nitrogen leads to a
derivatized amine with release of gaseous CO2, Scheme 29a.
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On these grounds, O-addition compounds are kinetic products but they are synthetically relevant
since their formation represents a net incorporation of carbon dioxide. For instance, stoichiometric
reactions with alkyl halides or acyl halides afford the corresponding urethanes and carbamic-carboxylic
anhydrides (Scheme 31) [42]. In general, the regioselectivity of these reactions (O vs. N addition) is
variable depending on the system. Urethanes can undergo a second alkylation giving the ammonium
salt, while the carbamic-carboxylic anhydride, in the presence of Cu(II) and Fe(III), decomposes affording
the corresponding amide via CO2 elimination. On the other hand, the use of an N-alkylcarbamate in
combination with acyl chlorides gives a mixture of isocyanate and carboxylic acid (Scheme 31). A recent
example of this reactivity is supplied by the formation of organylsilylurethanes RnSi(O2CNR′2)(4-n)

from the reaction of Sn(IV) tetracarbamates with organylchlorosilanes (RnSiCl(4-n)) [291].
In summary, the carbamato ligand in transition metal complexes is a versatile platform to carry

out diverse metal-mediated organic transformations, constituting the conceptual basis for the use of
metal carbamates in catalysis. The organic chemistry of carbamato ligands will be covered in more
detail in Section 4, with a focus on catalytic processes.
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Conversely, the addition of H+ from any protic source usually determines the disruption of the
carbamato moiety, with the consequent release of the amine and CO2. On thermodynamic grounds,
the formation of gaseous carbon dioxide (∆G◦f = −394.4 kJ/mol at 25 ◦C) is the driving force for these
degradation reactions.

Water is the simplest protic species and hydrolytic reaction(s) have been observed with reference
to almost all the categories of carbamato complexes. Therefore, the presence of water is normally
undesired, and moisture sensitivity is the “Achille’s heel” of many metal carbamates [42].

Hydrolysis of metal carbamates in the presence of an excess of water generally leads to the metal
oxide (or hydroxide) (Scheme 32a). Some of these oxides, or mixed metal oxides, find relevance in the
field of material chemistry, a topic that will be discussed in Section 5. Notwithstanding, the reactivity of
carbamato complexes with water can be modulated for preparative purposes, avoiding the exhaustive
hydrolysis of the metal-carbamato linkages. Thus, the reactions with a carefully controlled amount of
water in organic solvents is exploited for the synthesis of well-defined mixed ligand complexes, such
as oxido-carbamato species (Scheme 32b).
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As a representative example, the octa-titanium complex [Ti(µ-O)(O2CNEt2)2]8 [NH2Et2][O2CNEt2]
was generated by hydrolysis of [Ti(O2CNEt2)4] in 1,2-dimethoxyethane using a metal/water ratio
of 1 [292]. The structure of the complex shows a chain of almost co-planar titanium atoms
encapsulating a diethylammonium cation, while the carbamato anions are located outside the cycle
(Scheme 33a). Instead, [Nb(O2CNEt2)5] treated with circa 1 eq. of water in toluene afforded a product
of presumable formula [Nb2O3(O2CNEt2)4], being reminiscent of the structurally characterized
[Ta2(µ-O)3(O2CNEt2)4]4 based on IR and NMR spectra [171].
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Controlled hydrolysis of [M(O2CNR2)2]n (M/H2O ratio 4:1) and [ZnR’(O2CNR2)]4 in toluene
or THF produced the tetranuclear oxido-carbamate [Zn4(µ4-O)(O2CNR2)6] (R = Me, Et, iPr, iBu;
Scheme 33b) and octanuclear [M4(µ4-O)(O2CNiPr2)6]2 (M = Fe, Zn) [143,164,202,203,283]. In the
case of [Zn4(µ4-O)(O2CNMe2)6], the reaction can be reversed by protonating the oxido ligand with
[Me2NH2][O2NMe2], which is rather uncommon [143]. A related tetranuclear cage structure is
displayed by [La4(µ4-O)(O2CNiPr2)10], being the first lanthanide µ-oxido carbamato complex obtained
by controlled hydrolysis of the corresponding homoleptic derivative [146]. The bismuth species
[Bi8O6(O2CNiPr2)12] was serendipitously crystallized from a solution of the homoleptic [Bi(O2CNiPr2)3]
upon prolonged air exposure [135].

In some cases, the interaction of metal carbamates with dioxygen is an equivalent to the hydrolytic
treatment, except for the additional oxidation of the metal centers. For instance, the reaction of
[Ce(O2CNiPr2)3]4 with dioxygen proceeded with Ce(III) to Ce(IV) oxidation and moderate structure
rearrangement to give the µ-oxido derivative [Ce4(µ3-O)2(O2CNiPr2)12]. The same reaction was also
performed in the solid state [144]. Oxygenation of the homoleptic Fe(II) carbamate or controlled
hydrolysis of the homoleptic Fe(III) carbamate led to theµ-oxido Fe(III) carbamate [Fe2(µ-O)(O2CNR2)4]
(R = Et, iPr) [143]. Conversely, [Mn(O2CNiPr2)2]n is air stable in the solid state, although its complete
conversion to the Mn(III) derivative [Mn4O3(O2CNiPr2)6] is viable in the presence of water; this result
suggests that the preliminary formation of µ-oxido moieties might trigger the subsequent oxidation of
the metal center.
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N,N-diethylcarbamate anion omitted for clarity); (b) [Zn4(µ4-O)(O2CNiBu2)6] (H atoms omitted for
clarity); (c) [NH2Bu2]2[Tb4(CO3)(O2CNBu2)12] (Bu groups and ammonium cation omitted for clarity).
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Hydrolysis of rare earth carbamato complexes often results in the formation of a carbonate
(Scheme 32c,d) [293]. Indeed, the extraction method described above related to homoleptic
lanthanide complexes (Section 3.1) proceeds to the formation of mixed carbonato-carbamato species,
[NH2Bu2]2[Ln4(CO3)(O2CNBu2)12] (Ln = Tb, Sm, Eu, Tm) (Scheme 33c), in case the separated organic
phase is not promptly dried. This is probably ascribable to the quite fast reaction of carbamato ligands
with residual traces of water [151,153]. Compounds [NH2Bu2]2[Ln4(CO3)(O2CNBu2)12] can be further
converted into [Ln4(CO3)(O2CNBu2)10] (Ln = La, Sm) upon evaporation under vacuum [146,151].
Complexes [Ln2(CO3)(O2CNiPr2)4] (Ln = Nd, Eu, Gd) were obtained by controlled hydrolysis (M/H2O
ratio = 2) of the corresponding homoleptic metal carbamates [146]. Accordingly, the exhaustive
hydrolysis of some lanthanide carbamates (Ln = Ce, Nd, Eu, Gd, Tb) and [Y(O2CNBu2)4] led to the
carbonates M2(CO3)3 and not the oxides [146,152,154].

The reactivity of metal carbamato complexes with other protic species (HX) can be used to install
different ligands (X−) on the metal center. These include alcohols, β-diketonates and hydrogen halides,
providing access to metal alkoxides, diketonates and halometallates (Scheme 31) [42]. For instance,
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reactions of the tin alkylcarbamates [SnR′n(O2CNR2)(4-n)] in neat alcohol (R”OH) at high temperature
produces the corresponding alkoxystannanes [SnR′n(OR”)(4-n)] in moderate to high yields [294].
Homoleptic lanthanide carbamates were recently reported to react with pentafluorophenol in the
presence of 1,10-phenanthroline to form [Ln(OC6F5)3(phen)3] (Ln = Nd, Tb) [295]. A further example is
given by the β-diketonato complex [Tb(dbm)3], which was obtained upon reaction of [Tb(O2CNBu2)3]
with dibenzoylmethane (Hdbm) [153]. A new entry into this category is represented by terminal
alkynes: [Sn(O2CNEt2)]4 reacts with phenylacetylene in refluxing toluene, to afford the homoleptic
Sn(IV) alkynyl derivative [Sn(CCPh)4] [296].

Silanol groups (≡Si−OH) on the surface of silica and other similar oxides also offer a reactive site
for metal carbamates, leading to the derivatization of such materials with metal carbamato fragments
(see Section 5 for details).

Reactivity with nucleophiles. In contrast to the reactivity of carbon dioxide, the CO2 moiety
within a carbamato ligand is not susceptible to nucleophilic attack and this feature enables specific
modifications to the coordinative sphere of metal carbamato complexes. For instance, carbonylation [42],
hydrogenation [231] and ligand exchange reactions using methyl lithium or pyridines [278,297] have
been performed without affecting the integrity of the carbamato ligand(s).

The reactions of the tetrameric Zn alkylcarbamates [ZnR′(O2CNR2)]4 (R = iPr, iBu; R = Me, Et)
with various N-donors provide a striking example of the versatility of the coordinated carbamato
fragment. In fact, pyridine addition gives the dinuclear [ZnMe(O2CNR2)(py)]2 with switching of
the carbamato coordination from triply (B/3) to doubly bridging (B/2) [201]. Differently, addition of
diamines or guanidines gives the mononuclear complexes [Zn(N)(N)(O2CNR2)2], featured by chelating
(C/1) or monodentate (M/1) carbamates, according to the electronic properties of the N-ligand [298,299].

3.4. Crystallographic and Spectroscopic Features of Carbamato Ligands

A collection of crystallographic data for metal carbamato complexes published from 2004 to
2020 is reported in Table S3 (ESI). We selected C−O and C−N distances, as well as the O−C−O
angle (Scheme 34a), as diagnostic structural parameters to be discussed with respect to the different
coordination modes (see Scheme 13 for the M/C/B/D nomenclature adopted). Clearly, this analysis
does not include the electronic/geometric effects exerted by different metal centers as well as the nature
of substituents on the nitrogen atom.
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The majority of carbon-nitrogen bond distances within carbamato ligands are distributed within
the range 1.33–1.41 Å (Scheme 34b), suggestive of a substantial delocalization of the nitrogen lone
pair on the CO2 moiety. Remarkably, such N→ CO2 interaction is not significantly influenced by the
denticity of the carbamato ligand (compare B/2, B/3, B/5 and C/1, C/2, C/3, C/5).

Conversely, the C−O distances and the O−C−O angle are affected by the ligand coordination
mode. As expected, the CO2 angle is smaller in chelating carbamates (‘C’ series in Scheme 13; 120 ± 2◦),
compared to the other bonding situations (123−126 ◦ range) (Scheme 34c). The two C–O bond
lengths are quite different in monodentate carbamato ligands (‘M’ series in Scheme 13), averaging
1.29 ± 0.02 Å and 1.23 ± 0.02 Å; this feature reflects a prevailing double bond character of the C–O
bond not involved in coordination. The difference between the two types of C–O distances (∆dC-O,
Scheme 34d) is reduced to a few pm for chelating (C/1) and, particularly, bidentate bridging ligands
(B/2; ∆dC-O = 0.01 ± 0.01 Å). Binding to an additional metal center breaks the symmetry of the system
and ∆dC-O increases (compare C/1 with C/2 and B/2 with B/3).



Molecules 2020, 25, 3603 28 of 58

Dianionic carbamyldiide ligands (D/1 and D/2 modes in Scheme 13) possess crystallographic
features that are markedly different from those of ordinary carbamato ligands. For instance, in the
N,O-chelating mode (D/1), the two C−O bond lengths (1.32–1.37 Å and 1.22–1.24 Å) reveal a net double
and single bond character, whereas a rather small O–C–O angle (≈116◦) is observed when both oxygen
atoms are involved in coordination (D/2).

From a spectroscopic point of view, diagnostic features of carbamato ligands are the 13C-NMR
resonance and the IR absorptions related to the NCO2 moiety. A collection of solution NMR and
solid-state IR data for metal carbamato complexes, along with the coordination mode(s) of the
carbamato ligand in the solid state, can be found in Table S4 (ESI). Trends emerging from the analysis
of structurally-characterized compounds, with due caution, can be a guidance for the characterization
of further compounds.

The 13C-NMR chemical shift of the carbamyl carbon in metal carbamato complexes is typically
around 160 ppm. In cases where a single coordination mode was determined, signals ascribable to
monodentate carbamates (M/1 mode) were reported in the 156−164 ppm range. Signals belonging to
chelating (C/1) and bridging (B/2) carbamato ligands fall in the upper half of this interval and even
beyond (up to 170 ppm) (Scheme 35a). However, it has to be considered that the number and the
position of the 13C-NMR resonances in solution systems might not be discriminating where multiple
coordination modes are adopted. Indeed, quite often only an average value is observed at ambient
temperatures, due the rapid exchange between carbamato ligands in solution [210]. In such cases,
13C-NMR measurements at low temperatures provide distinct chemical shifts for the carbamates in
the different coordination fashions [138,284]. The few spectroscopic data available for carbamyldiide
ligands, in the chelating N,O mode (D/1), show a downfield-shifted 13C-NMR signal (165–175 ppm).
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Scheme 35. Selected spectroscopic data for metal carbamato complexes and their distribution according
to the coordination mode: 13C-NMR chemical shift of the carbamyl carbon (a) and highest IR band
ascribable to the NCO2 moiety (b). Data refer to Table S4 (ESI).

Metal carbamato complexes generally show multiple medium/strong IR bands in the
region 1300−1700 cm−1, which are ascribable to stretching vibrations of the NCO2 moiety [42].
The highest-frequency IR band has been typically assigned to the C=O stretching/CO2 antisymmetric
stretching, in analogy to metal-carboxylates [300,301]. However, the involvement of the N atom in the
π-system makes the signal assignment far less clear-cut than in metal carboxylates [242]. As previously
pointed out [42], the position of the IR bands may give some indications on the coordination mode of
the carbamate. In this regard, the wavenumber of the highest IR absorption versus the coordination
mode, for compounds having a univocal association between the two, can be visualized in Scheme 35b.
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Monodentate ligands (M/1) are featured by an intense absorption generally ranging from 1600 to
1660 cm−1, and occasionally higher. Conversely, lack of a band above 1600 cm−1 has been interpreted
in terms of an absence of terminal ligands, although in some cases hydrogen bonding involving the
uncoordinated oxygen atom may reduce the wavenumber below 1600 cm−1 [42]. On the other hand,
chelating (C/1) and bidentate (B/1) ligands display their highest-frequency band in the 1535–1600 cm−1

range, associated to a second strong band around 1490–1530 cm−1. However, the positions of these
absorptions do not allow a clear distinction between the two coordination modes [42].

4. Catalysis with Metal Carbamates

Despite that carbamato complexes have been known for more than 50 years [122] and their
reactivity has been widely studied during this time, a systematic investigation on their catalytic
behavior began only recently. As a matter of fact, homoleptic carbamates and related systems possess
a number of properties that make them attractive candidates for applications in catalysis: in particular,
they are easily available from relatively cost effective and nontoxic chemicals all across the periodic
table, and exhibit a considerable structural diversity (Section 3). Basically, two aspects mentioned above
constitute the key to the interest in the potential use of metal carbamato complexes as catalysts. First,
the formation of the carbamato unit is a way to fix CO2, which is also exploited in nature with reference
to some Ni(II) [302] and Zn(II) [303–305] enzymes. Trapped CO2 can be used as a C1 synthon in organic
synthesis, and the stoichiometric reactions of metal carbamates with organic electrophiles can lead to
CO2 incorporating products (Section 3.4). This result can be achieved even using the metal species in a
catalytic amount, with the carbamato ligand(s) playing an active role in the process. The second aspect
has a broader significance, and is related to the possible generation of a vacant site on the metal center,
due to both the flexibility of the carbamato ligand adapting from bi- to monodentate coordination, and
to its ability to behave as a leaving group, following the interaction with proton-active substances.

In this section, the relevance of carbamato complexes as catalytic precursors and/or intermediates in
organic reactions will be discussed, starting from CO2 activation reactions. The proposed mechanisms
will be outlined, in order to highlight the presumable role of the carbamato ligand in the catalytic cycle.

4.1. CO2 Activation Routes

The formation of carbamato complexes is considered a key step in metal-mediated reactions such
as the CO2/aziridine coupling [306–308] and the CO2 cycloaddition to propargyl amines [113,309–312]
or aminoalcohols [306]. The production of oxazolidinones (cyclic carbamates) via CO2/aziridine
coupling is one of the most widely investigated carbon dioxide fixation processes, and many species
have been evaluated as catalytic precursors, such as Al(III) [313], Cr(III) [314] and Co(III) [315] salen
complexes, and Cu(II) [316] and Zn(II) [317] porphyrin complexes. Regarding the cycloadditon of
CO2 to propargylamines, catalysts based on late transition metals are privileged since they offer
the possibility to activate the alkyne reactant via η2-coordination [113,318]. The synthesis of cyclic
carbamates starting from amino-alcohols and CO2 is a less explored route if compared with the other
ones, and a limited number of catalysts have been studied in this regard, based on cesium, silicon and
tin [319–321].

The generally accepted mechanisms for these reactions are outlined in Scheme 36a–c. In all cases,
the intermediate generation of a carbamato ligand is postulated upon interaction of the N-donor and
CO2 with the metal center. Afterwards, electrophilic attack on the oxygen atoms (Scheme 36a,b),
combined with a nucleophilic attack on the carbon atom (Scheme 36c), generates the product.
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In addition to the above mentioned reactions, Jiang et al. reported the involvement of Cu(II)
and Cu(III) carbamates in the oxidative coupling of arylboronic acids [322] and in the cyclization of
enynes [323] from amines and CO2. In order to support the hypothesis of an in situ formed Cu(II)
carbamate, the catalytic activity of [Cu(O2CNBn)2(NHBn2)2] was evaluated, providing moderate to
good results in term of product yields.

An interesting case of CO2 activation was reported in 2016 by Norris et al. The authors described
the role of carbon dioxide in the evolution of H2 from water using a Ru(II) complex. In this particular
system, CO2 works as a co-catalyst in association with the ruthenium complex, generating a carbamate
as a reaction intermediate (Scheme 37) [270].
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Although the formation of a metal carbamate represents a generally accepted step in many
carbon dioxide activation reactions, the direct use of carbamato complexes as catalytic precursors is
a recent approach. Thus, a systematic screening of the catalytic activity of homoleptic carbamates
of silicon, tin and some d-transition metals for the CO2/epoxide coupling reaction was performed,
in conjunction with tetrabutylammonium bromide as a co-catalyst, under solvent-free and ambient
conditions [134,290,324]. Then, Ag(I), Cu(I) and Cu(II) carbamates were tested as catalysts for
the carboxylation of terminal alkynes [325] and in the cycloaddition reaction of CO2 to propargyl
alcohols [326] (Scheme 38).
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Interestingly, [Fe(O2CNR2)3] (R = Et, iPr, Bn) revealed a promising catalytic activity for the
production of cyclic carbonates from CO2 and epoxides [324]. It is remarkable that an inexpensive
catalyst, based on a nontoxic metal element and working at ambient temperature and CO2 pressure, is
an appealing requisite in terms of sustainability [327]. The catalytic mechanism was elucidated by
NMR and DFT analyses, suggesting the occurrence of an unusual dynamic CO2 pre-activation, possibly
responsible for the activity of the complex in mild conditions (Scheme 39). The CO2 pre-activation
occurs through the preliminary incorporation of the CO2 reactant in a carbamato ligand, followed by
transfer to the organic substrate and ready restoring of the carbamato unit guaranteed by external
CO2. A similar pathway was recently proposed by Bayer et al., studying the CO2/epoxide coupling by
means of dimethylpirazolate cerium amides and cerium carbamates [134].
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In summary, metal carbamates are easy-to-synthesize complexes and their ligands can adapt
their coordination mode or can be protonated to form a vacant site on the metal center. Moreover,
carbamato ligands themselves represent a pre-activation form of carbon dioxide and can exchange
the CO2 fragment within the ligand with external carbon dioxide (see Section 3.3), suggesting some
potential in the dynamic activation of this molecule. All these characteristics, combined with the
possibility of employing a nontoxic metal center, delineate metal carbamates as potential catalytic
systems useful in CO2 activation reactions and deserving of further studies and progress.

4.2. Other Catalytic Processes

Polymerization. The first study concerning the catalytic activity of metal carbamates in a
polymerization reaction was reported in 2009 [328]. More precisely, [Nb(O2CNR2)5] (R = Me, Et) were
employed in the ring opening metathesis polymerization (ROMP) of norbornene in the presence of
methylaluminoxane (MAO). Interestingly, such niobium catalysts are very active in chlorobenzene
and especially [Nb(O2CNEt2)5] was tagged as the most active niobium catalyst ever reported for
norbornene-ROMP. The increased steric hindrance around the metal center in the ethyl derivative is
believed to favor α-hydrogen elimination and thus to accelerate the reaction.

Subsequently, [TiCl2(O2CNMe2)2] [139], [Ti(O2CNR2)4] (R = Me, Et, Pyrr) [139,172,329],
[Nb(O2CNR2)5] (R = Me, Et), [Nb(O2CNEt2)4] and [Nb(O2CNEt2)3] [280] were studied in ethylene
and propylene (homo)polymerization and ethylene/1-hexene copolymerization. Notably, the catalytic
activities of these carbamato complexes were higher compared to those of the respective metal halide
precursors. Concerning the ligand framework, the steric hindrance of the alkyl group enhances the
catalytic performance in ethylene polymerization (Et > Me), presumably by inhibiting the formation of
inactive polymetallic species. On the other hand, in propylene polymerization, an increase of steric
hindrance around the metal center results in a drop of catalytic activity, imputable to the easier attack
of the incoming monomer when the N-alkyl group is small [139].

Group 4 metal tetrakis-carbamato complexes, i.e., [M(O2CNR2)4] (M = Ti, Zr, Hf; R = Et, iPr),
were also studied as catalysts in the ring opening polymerization (ROP) of rac-lactide [330]. As already
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observed for other catalytic processes, the titanium compounds showed a lower activity compared to
that of zirconium and hafnium and the best results were obtained with the most sterically hindered
R group. The polymerization mechanism was enlightened by IR and NMR studies, revealing
two different pathways depending on the catalyst type. For zirconium and hafnium derivatives,
rac-lactide coordination to the metal center occurs following α-hydrogen elimination promoted by
the basic character of the carbamato ligand (Scheme 40a). Conversely, in the case of Ti(IV), a radical
polymerization mechanism is operative, triggered by an initial electron interchange between the
carbamato ligand and the rac-lactide molecule (Scheme 40b).
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Other catalytic processes. To the best of our knowledge, the first investigation on the catalytic
activity of a metal carbamate was reported by Belli Dell’Amico et al. in 2004 [231]. Thus, Ru(II)
carbamates of formula [Ru(O2CNiPr2)2(PPh3)2] and [RuCl(O2CNiPr2)(PPh3)3] were tested in the
1-octene H2 hydrogenation at atmospheric pressure, in toluene at ambient temperature. The catalysts
were recovered unchanged at the end of the process, suggesting that the required alkene coordination
during the catalytic cycle is ensured by a simple coordination switch of the carbamato unit(s) from
chelating to monodentate.

In other cases, transition metal catalysts have been reported to work via intermediate formation
of carbamato ligands [331,332]. For instance, the conversion of cyclobutanes to Z-enol carbamates
catalyzed by Cp2Zr(CH2=CH2) was postulated to pass through a Zr(IV) carbamate [331]; additionally,
a potassium carbamate was detected as an intermediate in the catalyzed Lossen rearrangement of
hydroxamic acids to isocyanate [332].

5. Other Applications

Metal carbamato complexes have been investigated in several research areas beside catalysis,
especially during the last decade. In material chemistry, the viable degradation of easily-accessible d/f
metal homoleptic carbamato complexes has been exploited to obtain nanostructured metal oxides,
whereas silver carbamato complexes have been used as precursors to nanomaterials. In addition, both
homoleptic and heteroleptic carbamates have been employed to functionalize the shell of silica and
other oxides, taking advantage of the controlled reactivity with surface hydroxyl groups. These and
other aspects will be detailed in the following, focusing on the reactivity of the carbamato moiety and
the properties of the complexes relevant to each application.
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Metal carbamates as precursors to nanostructured metal oxides. Over the last 15 years, carbamato
complexes have been widely investigated for the preparation of nanostructured metal oxides, arousing
interest for their electric, magnetic, optical and catalytic properties. The formation of a metal oxide
from a metal carbamate basically takes place via either thermal degradation or exhaustive hydrolysis.
The thermal degradation of homoleptic carbamates or oxido-carbamates under inert atmosphere
usually proceeds quantitatively at temperatures below 500 ◦C with fragmentation of the organic
groups, cleanly affording a metal oxide. The fate of the carbamato ligands during the pyrolytic process
depends on the system; in general, multiple products have been detected in the gas phase, including
CO2 and the dialkylamine [42,240,333,334] (Scheme 41a). In some cases, the preferential formation of
alkyl isocyanates and alkenes has been recognized (Scheme 41b–d) [335,336].
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Homoleptic N,N-dialkylcarbamato complexes, or oxido-carbamates, can be easily sublimed under
reduced pressure, a fact that can be justified on the basis of their molecular structure and lack of strong
intermolecular interactions (e.g., H-bonds) in the solid state [334]. Therefore, such compounds are
ideal precursors for the Chemical Vapor Deposition (CVD) technique. Moreover, the use of a single
component as oxide precursor (“single source CVD,” or SSCVD) is advantageous with respect to
classical CVD methods requiring at least two reagents for the gas-phase reaction.

According to the SSCVD methodology, the metal N,N-dialkylcarbamate is volatilized at 150–200 ◦C
under high vacuum (1–5 × 10−6 torr), or under an N2 flow, and then it is thermally decomposed on a
silicon wafer (or another substrate material) around 500 ◦C. The gap between the two temperatures
provides a suitable working window. Hence, thin films of ZnO [336–339], Al2O3 [335] and Bi2O3 [135]
have been prepared from [Zn4O(O2CNEt2)6], [Al6(O2CNiPr2)12] or [Bi(O2CNiPr)3]. Similarly,
heterobimetallic Zn/Mg carbamates of general formula [ZnxMg4−xO(O2CNiPr2)6] were useful to
prepare ZnxMg(1−x)O thin films [340,341]. The use of a bimetallic precursor is convenient respect to the
co-deposition from two distinct compounds, because the sublimation occurs at a defined temperature,
leading to a ratio between the two metals in the mixed oxide that is given by the precursor composition.
Metal oxide films obtained through SSCVD can be as low as 200 nm thick and present a smooth surface,
low carbon contamination, high density and a single preferred crystallite orientation.

The same principles can be applied to the preparation of metal oxide nanoparticles by thermal
decomposition of metal carbamates at 200–300 ◦C and ordinary pressure. Thus, pyrolysis of
[ZnEt(O2CNR2)]4 and [M(O2CNR2)4] (M = Zr, Hf, Nb; R = Me, Et, iPr) gives ZnO, ZrO2, HfO2

and Nb2O5 nanoparticles [203,334], whereas Zn/Co and Zn/Mn heterobimetallic carbamates have
been employed to obtain Znx(Co, Mn)(1−x)O mixed oxide nanoparticles [281,282]. In these cases, the
excessive volatilization of the metal carbamate is a possible disadvantage [334].

Operating in the condensed phase, the transformation of a metal carbamate into its oxide can be
realized by thermal degradation but also by reaction with protic species (Section 3.3). For instance,
thin films of Al2O3 were deposited from solvothermal decomposition of [Al6(O2CNiPr2)12] in dry
benzene [342]. Additionally, hybrid procedures are known, involving a thermally-assisted degradation
in the presence of protic species such as alcohols, oleic acid or hydrogen peroxide in organic solvents, to
afford ZnO or CuO nanoparticles [158,343,344]. Among the reactions with protic species, the hydrolytic
route is the privileged one and has been optimized to access various oxide nanoparticles. In order to
control the reaction and to obtain a finely dispersed powder, a water/THF mixture is conveniently added
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to a solution of the metal carbamate in toluene or heptane under inert atmosphere. For compounds
based on Y, Ce and other lanthanides, exhaustive hydrolysis produces the metal carbonate, which can
be subsequently calcined to give the oxide (Scheme 42a) [152,154]. When the hydrolysis is carried out
in the presence of additional metal precursor(s) (as a carbamate, or a hydrolysable species in general),
a mixed carbonate is obtained with a composition regulated by the relative amounts of the reactants.
Upon further thermal treatment, mixed metal oxide nanoparticles with a desired composition, such as
Ce1.65Tb0.35O3.82, Ce1.80La0.20O3.90, La2CuO4, Y3Al5O12 and Y2.98Nd0.02Al5O12, are finally produced
(Scheme 42b) [146,154,297].

Molecules 2020, 25, x FOR PEER REVIEW 35 of 59 

 

nanoparticles with a desired composition, such as Ce1.65Tb0.35O3.82, Ce1.80La0.20O3.90, La2CuO4, Y3Al5O12 
and Y2.98Nd0.02Al5O12, are finally produced (Scheme 42b) [146,154,297]. 

 
Scheme 42. General protocol for the preparation of oxides from metal carbamates applied to the 
preparation of CeO2 (a) and mixed La/Cu oxide (b) nanoparticles. Py* = substituted pyridine. 

Silver carbamates as precursors to silver metal nanoparticles. Silver carbamato complexes 
possess a peculiar chemistry. In fact, owing to the relatively low stability of Ag2O (∆G°f = −11.2 
kJ/mol at 25 °C), this is essentially the only metal oxide that can be used as precursor to homoleptic 
carbamates (see Section 3.1) (Scheme 43a). On the other hand, Ag2O is thermally unstable upon mild 
heating (Scheme 43b), and therefore, the hydrolytic thermolysis of silver carbamates generates 
metallic silver (Scheme 43c). Likewise, elemental silver is recovered from the reactions of silver 
carbamates with mild reducing agents (Scheme 43d) [159]. The deposition of silver is usually fast 
and quantitative, accompanied by the formation of volatile side products. 

 
Scheme 43. Hydrolysis (forward reaction) or preparation (backward reaction) of a silver carbamate 
(a); thermal decomposition of silver oxide (b); hydrolytic thermolysis (c) or reduction (d) of a silver 
carbamate. 

On account of these considerations, commercial alcoholic solutions of silver N-alkylcarbamates 
are used to access silver metal nanoparticles (AgNP). The decomposition is most commonly carried 
out by hydrolytic thermolysis with conventional or microwave heating or, in some cases, by using 
H2 or hydrazine as a reducing agent. The generated silver nanoparticles can be adsorbed on various 
matrices such as polymers (PVA, PMMA, PET), graphene, thiol-modified carbon nanotubes or 
fabrics (cotton, silk). The resulting silver-coated materials have been investigated for their 
conductive properties [345–348] and/or antibacterial/antimicrobial activity [349–355]. In addition, if 
the reduction is performed in the presence of ethyl cellulose, a silver paste is obtained, and this can 
be deposited on a suitable substrate and sintered to provide a silver conductive film [356–358]. 

The synthesis of silver nanoparticles (and related nanocomposites) by thermolysis of silver 
carbamates is preferable respect to more traditional protocols (i.e., reduction of AgNO3 with NaBH4 
or sodium citrate), in that it does not require any reducing agent and thus avoids the presence of 
undesired inorganic species in solution. Moreover, the colloidal AgNP dispersion is stabilized by the 
ammonium carbamate co-product acting as surfactant (vide infra), and the spherical particles exhibit 
a rather narrow size distribution [352,357]. 

Metal carbamates as precursors for surface functionalization. Metal carbamato complexes are 
prone to react with a variety of protic species; these reactions are thermodynamically driven by the 
release of CO2 (Section 3.3). Alkyl and aryl silanols, although possessing a relatively mild Brönsted 
acidity, promptly react with metal carbamates affording the corresponding siloxide derivatives 
(Scheme 44a) [42,359]. This reactivity is replicated on the surface of silica due to the presence of 
{≡Si–OH} groups. The ensuing “grafting reaction” consists in the protonation of the carbamato 
moiety, with consequent release of CO2 and the amine, and binding of the metal atom to the silica 

Scheme 42. General protocol for the preparation of oxides from metal carbamates applied to the
preparation of CeO2 (a) and mixed La/Cu oxide (b) nanoparticles. Py* = substituted pyridine.

Silver carbamates as precursors to silver metal nanoparticles. Silver carbamato complexes possess
a peculiar chemistry. In fact, owing to the relatively low stability of Ag2O (∆G◦f = −11.2 kJ/mol at
25 ◦C), this is essentially the only metal oxide that can be used as precursor to homoleptic carbamates
(see Section 3.1) (Scheme 43a). On the other hand, Ag2O is thermally unstable upon mild heating
(Scheme 43b), and therefore, the hydrolytic thermolysis of silver carbamates generates metallic silver
(Scheme 43c). Likewise, elemental silver is recovered from the reactions of silver carbamates with
mild reducing agents (Scheme 43d) [159]. The deposition of silver is usually fast and quantitative,
accompanied by the formation of volatile side products.
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Scheme 43. Hydrolysis (forward reaction) or preparation (backward reaction) of a silver carbamate
(a); thermal decomposition of silver oxide (b); hydrolytic thermolysis (c) or reduction (d) of a
silver carbamate.

On account of these considerations, commercial alcoholic solutions of silver N-alkylcarbamates
are used to access silver metal nanoparticles (AgNP). The decomposition is most commonly carried
out by hydrolytic thermolysis with conventional or microwave heating or, in some cases, by using
H2 or hydrazine as a reducing agent. The generated silver nanoparticles can be adsorbed on various
matrices such as polymers (PVA, PMMA, PET), graphene, thiol-modified carbon nanotubes or fabrics
(cotton, silk). The resulting silver-coated materials have been investigated for their conductive
properties [345–348] and/or antibacterial/antimicrobial activity [349–355]. In addition, if the reduction
is performed in the presence of ethyl cellulose, a silver paste is obtained, and this can be deposited on a
suitable substrate and sintered to provide a silver conductive film [356–358].

The synthesis of silver nanoparticles (and related nanocomposites) by thermolysis of silver
carbamates is preferable respect to more traditional protocols (i.e., reduction of AgNO3 with NaBH4

or sodium citrate), in that it does not require any reducing agent and thus avoids the presence of
undesired inorganic species in solution. Moreover, the colloidal AgNP dispersion is stabilized by the
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ammonium carbamate co-product acting as surfactant (vide infra), and the spherical particles exhibit a
rather narrow size distribution [352,357].

Metal carbamates as precursors for surface functionalization. Metal carbamato complexes are
prone to react with a variety of protic species; these reactions are thermodynamically driven by the
release of CO2 (Section 3.3). Alkyl and aryl silanols, although possessing a relatively mild Brönsted
acidity, promptly react with metal carbamates affording the corresponding siloxide derivatives
(Scheme 44a) [42,359]. This reactivity is replicated on the surface of silica due to the presence of
{≡Si–OH} groups. The ensuing “grafting reaction” consists in the protonation of the carbamato moiety,
with consequent release of CO2 and the amine, and binding of the metal atom to the silica as a siloxide
unit (Scheme 44b). Despite a possible molar excess of surface silanols (vide infra), a limited number
of carbamato ligands per metal complex are involved in the process, and solid-state spectroscopic
measurements (IR, NMR, EPR) agree in that the final metal fragment retains its nuclearity and the
geometry of the residual ligands [131,234,360,361]. In other words, the grafting reaction allows the
chemical implantation of tailored metal fragments over the surface of silica.

Recently, the study of the reactivity of homoleptic N,N-dialkylcarbamates with silica has been
extended to Cu(II), Nb(III), Nb(V), Ta(V), Tb(III) and Eu(III) derivatives [131,153,362,363]. Silica grafting
has been also realized with non-homoleptic complexes of group 4 and 5 metals, wherein the
carbamato ligands are the most reactive ones [166,234,290]. Even magnetite nanoparticles [364]
and silica/zirconia [362] have been decorated with metal carbamates.

The protocol for the chemical implantation is commonly performed by suspending silica in a
solution of the selected metal carbamate in toluene or heptane for a prolonged time (from several hours
to days) (Scheme 44c). The reaction is conducted under inert atmosphere with anhydrous solvents and
pre-dried silica, to limit the useless consumption of carbamato units by traces of water. A preliminary
assessment of the silanol content of silica is useful to establish the minimum OH/metal ratio needed for
a quantitative reaction, and thus, to avoid the waste of metal complex in solution.
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The outcome of the grafting process is strongly dependent on the nature of the metal precursor.
Indeed, multiple carbamato ligands within the same metal complex or additional basic ligands, i.e.,
cyclopentadienyls [234], may be involved in the reaction. The process can be featured by a variable
selectivity, thus generating different metal fragments on the oxide surface. The average number of
reacted carbamato ligands per metal center can be estimated by measuring the volume of CO2 released
during the grafting process. Alternatively, a gas-volumetric titration of the final material provides the
number of residual carbamato ligands.

Silica-grafted metal carbamato species have been investigated for their catalytic properties
compared to the homogeneous congeners [290]. In addition, the grafted carbamato complex
may undergo subsequent chemical modifications. For instance, noble metals such as Cu,
Pd and Pt can be chemically or thermally reduced to give the respective silica-supported metal
nanoparticles [361,362,365]. Another post-functionalization strategy entails the introduction of
additional ligands by replacement of the residual carbamates, and for instance this method has
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been adopted to introduce chiral β-diketonates on lanthanide-grafted carbamates for chiroptical
luminescence applications [153,363].

Platinum carbamates as anticancer agents. Carbamato complexes of Pt(IV) have been considered
as potential anticancer agents (Scheme 45a), and synthetic details have been discussed in Section 3.2.
Platinum(IV) carbamato complexes with simple organic substituents on the nitrogen revealed a
considerable cytotoxicity against various cancer cell lines, comparable or superior to that of the
reference Pt(II) drug cisplatin [260,262,263]. A C16 aliphatic chain (fatty acid-like) was introduced
through the carbamato ligand to enhance cellular uptake [263,264,266,366–368]. Following a different
approach, the incorporation of a maleimide fragment enabled specific interactions with proteins (e.g.,
addition to thiol residues) for compounds showing a promising anticancer activity in vivo [261,268,369].
The conjugation with suitable targeting groups, to enhance the pharmacological performance, can be
achieved via modification of either the axial carboxylato co-ligand [367,370] or the carbamato ligand
itself [272,371,372]. Remarkably, all of these Pt(IV) complexes are stable for several hours or even days
in physiological aqueous solutions [260,261,263,272]. However, the reduction to Pt(II) by biological
reductants triggers the release of the carbamato ligand, which is subsequently hydrolyzed to amine
and CO2 (Scheme 45b) [272]. Thus, the synthetic design of a Pt(IV)-carbamato complex represents a
strategy for a controlled and simultaneous release of a cytotoxic Pt(II) compound and (a) biologically
active molecule(s) carrying an amino group into cells.
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Metal carbamates for CO2 capture. The formation of metal carbamates from gaseous CO2 and a
metal amine complex has direct implications in the CO2 capture and storage (CCS) technology [373–377].
In particular, amine-functionalized metal organic frameworks play an important role in the development
of new solid sorbent materials [378].

The most intriguing results are related to recently-synthesized magnesium and manganese
MOFs based on hydroxybenzoate ligands, and surface-derivatized with 1,2- and 1,3-diamines
(Scheme 46) [376,379]. These systems reveal an extremely high affinity for CO2 with respect to
other gases, even under atmospheric pressure (Pco2 = 0.39 atm), and are characterized by a peculiar
step-shaped isotherm for CO2 uptake, allowing complete adsorption/desorption cycles in a narrow
temperature range.

Contrary to the expected carbonation of the dangling amino group, spectroscopic and X-ray
diffraction data agree in indicating the joint formation of a metal carbamato linkage and protonation of
the diamine (“ammonium carbamate”) [376]. The use of a diamine, instead of a monoamine, provides
cooperativity to the system, in that one end of the ligand undergoes reversible CO2 insertion while
the other functions as a proton relay, stabilizing the adjacent unit via H-bonding/ion pairing. Such
combination of Lewis/Brønsted acid-base reactivity resembles the one acting in amine/superbase
systems (see Section 2.3). The synthesis of diamine-appended MOFs was extended to other transition
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metals (Fe, Co, Ni, Zn) and the related CO2 uptake isotherm varies according to the relative
metal-amine/metal-carbamate bond strengths. Further adjustments can be accomplished by changing
the N-substituents on the diamine [380,381], eventually supplying chirality [382].
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Other applications. Some metal carbamato complexes have been investigated as additives to
modify the physico-chemical properties of liquid systems. In this regard, bis-carbamates based on
N,N-di(propylamino)dodecylamine produce under alkaline conditions a stable sodium bis-carbamate
that is able to act as a surfactant [383,384]. This system is “switchable,” as it can be reversed by
heating or bubbling N2. Moving to non-aqueous systems, homoleptic N,N-dialkylcarbamates of
group 4 and 5 metals have been dissolved in bis(trifluoromethylsulfonyl)imide-based ionic liquids
under anhydrous conditions [385]. These complexes showed a surprising solubility in such highly
polar media, considering their neutral, nonpolar nature [131]. Spectroscopic measurements and DFT
calculations outlined that the coordination sphere of the metal was preserved upon dissolution, paving
the way to metal electrodeposition or catalytic processes.

Finally, some heterobimetallic, polynuclear Zn/Dy and Zn/Gd complexes featuring carbamato
ligands have been investigated for their low-temperature magnetic properties [247,386].

6. Conclusions

The carbamato unit deriving from the basic combination of a non-tertiary amine with carbon
dioxide can be effectively entrapped in molecular complexes of metal (or semimetal) elements across
the periodic table. The synthetic procedures are generally straightforward and do not need high
pressure equipment, thus allowing the easy access to both homoleptic and hybrid metal species.
Several coordination modes are viable for the carbamato ligand, and the interconversion from bi- to
monodentate coordination has been often observed, suggesting a versatile character. The reactivity
of the metal-coordinated carbamato moiety is reversed respect to that of carbon dioxide; thus, metal
carbamates are unreactive towards nucleophilic addition, but they may readily decompose upon
treatment with electrophilic (protic) reagents, leading to the liberation of carbon dioxide and the amine.
The peculiar and attracting features of this numerous and variegate class of metal compounds render
them intriguing candidates in the perspective of various applications, and there has been a significant
advance in recent years especially in the fields of catalysis and material chemistry. More specifically,
the catalytic potential of metal carbamates appears promising and deserving of further and deeper
developments in CO2-fixation organic routes; indeed, the possible dynamic exchange between the
carbamato [CO2] fragment and external CO2 may constitute an unusual way for the pre-activation of
carbon dioxide, accelerating the overall catalytic process. On the other hand, the facile degradation of
the carbamato unit upon contact with acidic groups is a potent tool for the targeted synthesis of metal
nanoparticles, films of metal oxides and for the controlled decoration of solid materials with metal
units (including lanthanides and heterogeneous systems) providing special properties.
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