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Abstract 

Using a one-sector, discrete-time Ramsey model, we analyze and compare the implications 
for welfare, capital accumulation, and speed of convergence to the steady state of two 
classes of utility functions that represent Gorman preferences, namely homothetic and 
Stone-Geary preferences. For identical economies, we show that the preference structure 
does not affect only the capital dynamics and social welfare but also the speed of 
convergence to the steady-state equilibrium. 
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1 Introduction 
 

 

In this paper we analyze the role of preferences in a standard neoclassical Ramsey 

framework, which represents the workhorse model of modern macroeconomic theory. 

This is a perfectly competitive general equilibrium setup in which the utility function 

representing consumer preferences characterizes the economy’s demand side while the 

production function describing producers’ behavior the supply side. Focusing on the 

demand side, our main objective is to investigate, using a one-sector discrete time 

framework, the implications for welfare, capital accumulation and convergence speed to 

the steady-state of two classes of utility functions that represent Gorman preferences, 

namely homothetic and Stone-Geary preferences. 
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As is well known, a key condition characterizing the optimal solution of the one-

sector Ramsey model is that the gross marginal productivity of capital equals the gross 

discount rate at the steady-state, that is, 𝑓 (𝑘 ) = , where 𝑓(∙) is the production 

function and 𝛽, the discount factor. Both steady-state capital stock and consumption do 

not depend on preferences, although preferences may affect the transition dynamics of 

these variables to the steady state. Sundaram (1996, p. 300), for example, states for this 

model that the stationary states of capital stock and consumption are “…independent of 

the properties of the utility function, and depend only on the properties of the technology 

𝑓(∙) and the discount factor 𝛽”. This author emphasizes that this is true only for the 

steady state values of the capital stock and consumption and, in his footnote 5 (p. 300), 

he admits that the trajectories by which the stock of capital and consumption converge to 

their stationary states “…do depend on the utility function”. 

Based on these facts, the main motivation for investigating the role of preferences 

on welfare, capital dynamics and speed of convergence to the steady state is twofold: first, 

criticisms of the traditional use of homothetic preferences in growth models (see, for 

example, Matsuyama 1992); and second, there is great interest in empirical studies on 

convergence between economies (see, for example, Barro and Sala-i-Martin 1992). In 

addition, both homothetic and Stone-Geary (non-homothetic) preferences are widely used 

in economic analysis and, to the best of our knowledge, there is no previous work 

comparing their implications under the Ramsey framework. 

The Engel curves are straight lines for goods with Marshallian demand functions 

generated from utility functions that represent these types of preferences (homothetic and 

Stone-Geary preferences). Both types of preferences, homothetic and Stone-Geary, are 

part of a larger class of preferences called Gorman preferences, that is, preferences that 

admit indirect utility functions of the Gorman form. In economies with Gorman 

preferences the quantities demanded can be aggregated, that is, the aggregate variable 

does not depend on income distribution and we can treat aggregate demand as if it were 

generated by a representative consumer.4 In this sense, for a one-sector economy, we can 

rely on the welfare changes of this fictitious individual consumer as a measure of social 

welfare, that is, a measure of well-being of the whole economy. 

Despite its analytical convenience, the use of homothetic preferences in economic 

growth models has received a number of criticisms. One of these is related to the fact that 

                                                           
4 See, for example, Chipman (2006) for a discussion on aggregation in demand theory. 
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this class of preferences implies income elasticity of demand equal to one for all types of 

goods (see, for example, Matsuyama 1992), while there is empirical evidence that food 

and luxury goods, for example, have income elasticity of demand different from one. 

Another critique concerns the constant intertemporal elasticity of substitution of 

homothetic preferences. Chari and Kehoe (2006), for example, attribute the policy 

arguments against capital taxation to the homotheticity of preferences over consumption 

at different periods. In order to overcome these criticisms, several papers have adopted 

non-homothetic specification for preferences. 

Stone-Geary preferences are a classic example of non-homothetic preferences 

widely used in the economic literature. This class of preferences has been used in recent 

growth literature to address several issues, both theoretical and empirical.5 Unlike ours, 

some of these works seek to analyze the effects on economic growth of structural changes 

in models with two or more sectors, such as Kongsamut et al. (2001), Irz and Roe (2005), 

and Matsuyama (1992). Kongsamut et al. (2001) develop a three-sector standard growth 

model with utility specification embedding different income elasticities consistent with 

both the Kaldor facts and the dynamics of sectoral labor reallocation. Irz and Roe (2005) 

use a two-sector Ramsey model with utility assumed to take the Stone-Geary form to 

investigate the relationship between agricultural productivity and economy-wide growth, 

showing that the level and growth rate of agricultural productivity influence the speed of 

capital accumulation. Matsuyama (1992) addresses the role of agricultural productivity 

in a two-sector growth model in which preferences are of Stone-Geary class and the 

engine of growth is learning-by-doing in the manufacturing sector.  

Authors who work with one-sector growth models and Stone-Geary preferences, 

but with goals different from ours, include, for example, Álvarez-Peláez and Díaz (2005), 

Chatterjee and Ravikumar (1999), and Steger (2000). Álvarez-Peláez and Díaz (2005) 

investigate quantitatively the effects of economic growth on inequality focusing on the 

importance of differences in saving rates across households. Chatterjee and Ravikumar 

(1999), in turn, study the effects of a minimum consumption requirement on both 

economic growth rate and evolution of wealth distribution. Steger (2000) is the closest in 

spirit to our work, because it addresses both the transition path and convergence in his 

analysis. However, unlike ours, Steger (2000) uses a linear model of endogenous growth 

                                                           
5 For empirical evidence on non-constant intertemporal elasticity of substitution associated with non-
homothetic preferences, see, for example, Atkeson and Ogaki (1996) or Crossley and Low (2011). 
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and approaches convergence differently.6 We notice that none of these works compare 

the implications of different preferences structures (homothetic versus Stone-Geary 

preferences) in a way comparable to ours. 

Regarding the speed of convergence between economies, there is an extensive 

empirical literature on this topic (see, for example, Barro and Sala-i-Martin 1992; and de 

la Fuente 1997). A recurring hypothesis in these empirical works is to test whether less 

developed economies grow at faster rates than developed economies. Unlike this 

literature, we take a theoretical approach to the speed of convergence between economies. 

In this sense, the main contribution of this paper is thus to clarify and to show theoretically 

how different classes of Gorman preferences (homothetic and Stone-Geary preferences) 

may affect the dynamics of capital, social welfare as well as the convergence speed to the 

steady-state in economies with identical structures. 

In order to isolate and compare the effects of these two classes of Gorman 

preferences, we consider one-sector economies in which there is no uncertainty sharing 

the same characteristics (that is, same production technology and same market structure, 

same initial capital stock and discount factor), and differing solely with respect to the 

preferences structure. Using general specifications for utility functions that admit income 

elasticity of demand equal to or less than one and a set of fairly mild assumptions, we 

show that: i) the optimal level of savings (capital stock) under homothetic preferences is 

at least as large as the optimal level of savings under Stone-Geary preferences; ii) the 

social welfare is strictly higher under homothetic preferences; and iii) economies with 

homothetic preferences converge more quickly to the steady state when compared with 

economies with Stone-Geary preferences. 

The paper proceeds as follows. Section 2 presents the model and the assumptions 

used throughout the paper. In section 3 we analyze the role of preferences on capital 

dynamics, convergence speed to the steady-state, and social welfare, deriving our main 

results. Finally, in section 4, as usual, we present some concluding remarks and propose 

directions for future research. 

 

 

 

                                                           
6 We analyze global convergence in an exogenous one-sector growth model from the linearization of the 
policy function around the steady state while Steger (2000) analyzes convergence/divergence in a context 
of endogenous growth. 
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2 Model and Assumptions 
 

2.1 The model 

 

We consider two closed economies that differ only with respect to their preferences and 

that are inhabited by consumers who live forever. We denote by 𝑁  the same number of 

consumers of both economies at each period 𝑡. The population of these economies, by 

assumption, grows at the same rate 𝑛, that is, 𝑁 = (1 + 𝑛) 𝑁 , where 𝑛 = ∆𝑁 /𝑁  

and 𝑁  is the same number of consumers of both economies in period 0. There is a single 

good in both economies that may be consumed or invested. The consumption of one 

consumer, at each period 𝑡, is denoted by 𝑐 . The representative consumer of each 

economy wants to maximize the total utility over her lifetime, that is, 

𝑚𝑎𝑥𝑁 ∑ 𝛽 (1 + 𝑛) 𝑢 (𝑐 ), 𝑗 = 𝑎, 𝑏, 

where 𝛽 ∈ (0,1) is the discount factor and 𝑢 : 𝑅 → 𝑅, 𝑗 = 𝑎, 𝑏, is the instantaneous 

utility function. The subscript 𝑗 refers to the preference type, with "𝑎" being Stone-Geary 

preferences and "𝑏", homothetic preferences. At each period 𝑡, the level of consumption 

𝑐  of each economy is subject to the constraint: 

𝑁 𝑐 + 𝐼 ≤ 𝐹(𝐾 , 𝑁 ), 

where 𝐼  is the total investment at each period 𝑡, 𝐹 is the aggregate production function, 

𝐾  is the total capital stock at each period 𝑡, and 𝑁  is the number of workers at each 

period 𝑡 (here we are assuming that consumers and workers are physically identical and 

that the entire population of both economies work). The capital accumulation in both 

economies is given by the equation: 

𝐾 = 𝐾 (1 − 𝛿) + 𝐼 , 

where 𝛿 ∈ (0,1] is the depreciation rate of the capital stock. Making the assumption that 

the production function exhibits constant returns to scale and letting 𝑘 = 𝐾 /𝑁  be the 

capital stock in per capita values, the constraint between consumption and investment for 

both economies, for each period 𝑡, becomes: 

𝑐 + 𝑘 (1 + 𝑛) ≤ 𝐹(𝑘 , 1) + (1 − 𝛿)𝑘 . 

Assuming, for simplicity, that 𝑁 = 1, 𝑛 = 0, 𝛿 = 1, and defining the function 𝑓 

by 𝑓(𝑘 ) = 𝐹(𝑘 , 1), the Ramsey growth model for both economies will have the 

following compact form: 

𝑚𝑎𝑥 ∑ 𝛽 𝑢 (𝑐 ), 𝑗 = 𝑎, 𝑏       (1) 



6 
 

subject to the constraints: 

𝑐 + 𝑘 ≤ 𝑓(𝑘 ), ∀𝑡,        (2) 

𝑐 ≥ 0, 𝑘 ≥ 0, ∀𝑡,        (3) 

and 𝑘 ≥ 0 is given. As defined above, the subscript 𝑗 refers to the preference type, with 

"𝑎" being Stone-Geary preferences and "𝑏", homothetic preferences. 

As mentioned in the Introduction, we consider two classes of Gorman preferences, 

homothetic and Stone-Geary (non-homothetic), that is, classes of preferences in which 

each individual’s utility function has an indirect utility function of the Gorman form. 

These preferences imply linear Engel curves and are characterized by an aggregation 

property such that the consumption that emerges by aggregating individual consumption 

of agents with different incomes can be treated as if it were generated by a representative 

agent. Although aggregate consumption does not depend on income distribution, it 

depends on income levels if preferences are quasi-homothetic such as those of Stone-

Geary and, in such case, this implies that the marginal propensity to consume is not 

constant along transition paths.7 We adopt the following general specification for utility 

functions that represent these preferences:  

(a) 𝑢 (𝑐 ): [𝑐̅, ∞) → 𝑅, 𝑢 = 𝑢 (𝑐 − 𝑐̅),  𝑐̅ > 0  (Stone-Geary) 

(b) 𝑢 (𝑐 ): [0, ∞) → 𝑅, 𝑢 = 𝑢 (𝑐 ),   𝑐̅ = 0  (Homothetic) 

Note that, when we have 𝑐̅ > 0, the utility function 𝑢 (𝑐 ): [𝑐̅, ∞) → 𝑅, 𝑢 =

𝑢 (𝑐 − 𝑐̅), is really non-homothetic because, in this case, it is impossible to find a 

monotone transformation of a homogeneous function and get as a result a homothetic 

utility function. This positive parameter also implies that the intertemporal elasticity of 

substitution in period 𝑡 is no longer a constant. There are two classic types of restrictions 

that we can impose on preference relations in order to get indirect utility functions of the 

Gorman form: homotheticity and quasi-linearity. Recall that a preference relation is 

homothetic if the slope of indifference curves along any ray from the origin remains 

constant; all indifference curves have the same shape because they are “radial blow ups” 

of each other. On the other hand, a preference relation is quasilinear if there is one good, 

called the numeraire, which shifts the indifference curves outward as consumption of it 

increases, without changing their shape.8 

                                                           
7 One of the reviewers of this journal drew our attention to this point. A more detailed discussion of this 
point can be found, for example, in Bertola et al. (2005) or Pollak (1971). 
8 For more details on homothetic and quasilinear preferences and their respective representations as utility 
functions, see, for example, Rubinstein (2012). 
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Classic examples of utility functions that represent homothetic preferences include 

the constant elasticity of substitution (CES) utility function and those that are derived 

from it, such as the Cobb-Douglas, logarithm and linear utility functions. Stone-Geary 

utility functions can be obtained from both homothetic and quasilinear preferences.9 For 

example, in order to define them from homothetic preferences, suppose there are 𝐽 goods 

and let 𝑠 = (𝑠 , … , 𝑠 ) be a vector of 𝐽 parameters, which may be either positive, negative 

or zero. Stone-Geary preferences can be represented by the following utility function: 

𝑢 𝑥 , … , 𝑥 = ∏ 𝑥 − 𝑠 , 

where 𝛼 > 0 for all 𝑗 and ∑ 𝛼 = 1. Note that this utility function is a simple extension 

of the Cobb-Douglas utility function. We can think of Stone-Geary preferences as simply 

Cobb-Douglas preferences expressed relative to the vector of parameters 𝑠 = (𝑠 , … , 𝑠 ) 

rather than relative to the usual origin. Under this perspective, the Cobb-Douglas utility 

function is a special case of the Stone-Geary utility function when the terms 𝑠 , … , 𝑠  are 

all equal to zero. 

Since we consider economies with a single sector that produces a single good that 

can be consumed or invested, the Stone-Geary utility function could take, for example, 

the following functional form: 𝑢(𝑐) = (𝑐 − 𝑐̅) /(1 − 𝜎), where 𝑐 ≥ 𝑐̅ ≥ 0 denotes 

consumption and 𝜎 > 0, or 𝑢(𝑐) = √𝑐 − 𝑐̅, where 𝑐 ≥ 𝑐̅ ≥ 0. If 𝑐̅ = 0, we obtain the 

associated homothetic utility functions.10 In order to get results as general as possible, we 

work with general functional form for both the utility functions and the production 

function. It is only required that these functions meet certain conditions, such as 

continuity, convexity, differentiability and Inada conditions. However, we illustrate the 

main results obtained with numerical examples that use specific functional forms for both 

utility functions and production function. 

 

 

 

 

                                                           
9 It is possible to obtain a Stone-Geary utility function from a positive monotone transformation of a 
quasilinear utility function. For example, let the quasilinear utility function 𝑢(𝑥 , 𝑥 ) = 𝑣(𝑥 ) − 𝑥 , where 
𝑥  is the numeraire and 𝑣(𝑥 ) is a concave function. Fix the numeraire 𝑥 = �̅� and let 𝑣(𝑥 ) = 𝑥. Now, the 
quasilinear utility function is given by 𝑢(𝑥, �̅�) = 𝑥 − �̅�. By doing 𝑤(𝑥, �̅�) = 𝑙𝑜𝑔(𝑥 − �̅�) we get as a result 
a Stone-Geary utility function.  
10 Since we assume that the utility functions satisfy the Inada conditions (see Assumption 4), we consider 
only non-negative values for the parameter 𝑐̅. 



8 
 

2.2 The Assumptions 

 

We present below a set of assumptions that the preferences and production function must 

satisfy and whose main objective is not only to guarantee the existence of solution to the 

intertemporal optimization problem (1) - (3) but also to allow the characterization of this 

solution. These assumptions are standards in the economic literature of economic growth 

and can be found in textbooks such as Sundaram (1996) and Stokey and Lucas with 

Prescott (1989). The basic difference here, compared to textbooks, is the introduction of 

the 𝑐̅ ≥ 0 parameter in the model structure. 

In this sense, to avoid internal inconsistencies in the models analyzed, we assume 

from now on and in the rest of this paper that 𝑘 ≥ 𝑐̅ ≥ 0 and 𝑐̅ ≤ 𝑘 , where 𝑘 > 0 is 

the steady state capital stock. The basic assumptions related to the utility functions and 

production function are as follows: 

 

Assumption 1 For 𝑗 = 𝑎, 𝑏, 𝑢 (𝑐 ) is continuous in its domain and is strictly increasing 

with 𝑢 (𝑐̅) = 0 and 𝑢 (0) = 0. 

 

If Assumption 1 is satisfied, at the optimum, the constraints will be binding. Thus, 

the initial intertemporal optimization problem (1) – (3) is equivalent to the following: 

𝑚𝑎𝑥 ∑ 𝛽 𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅), 𝛽 ∈ (0,1), 𝑗 = 𝑎, 𝑏   (4) 

subject to the constraints: 

0 ≤ 𝑐̅ ≤ 𝑘 ≤ 𝑓(𝑘 ), ∀𝑡,       (5) 

and 𝑘 ≥ 𝑐̅ ≥ 0 is given. As defined above, the subscript 𝑗 refers to the preference type, 

with "𝑎" being Stone-Geary preferences (𝑐̅ > 0) and "𝑏", homothetic preferences (𝑐̅ =

0). Note that only consumption exceeding the minimum level, 𝑐̅ > 0, generates utility for 

consumers with preferences of group (a). 

We say that an infinite sequence of capital stocks 𝑘 = (𝑘 , 𝑘 , … , 𝑘 , … ) is feasible 

from 𝑘 ≥ 𝑐̅ ≥ 0 if it satisfies: 

0 ≤ 𝑐̅ ≤ 𝑘 ≤ 𝑓(𝑘 ), ∀𝑡. 

 

Assumption 2 The production function f is continuous and non-decreasing in its domain 

with f(0)=0, and there is 0
_

k  such that kkf )(  for all
_

kk  .  
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This characterization of the production process is used, for example, in Sundaram 

(1996, p. 301). The final part of Assumption 2 is to be understood as some sort of 

decreasing marginal return. For simplicity, we assume that there is no technical progress 

and that the technology is identical for both economies (with Stone-Geary and homothetic 

preferences). Based on Assumptions 1 and 2 one can prove that the intertemporal 

optimization problem (4) – (5) has solution, that is, there are optimal trajectories for both 

capital stock and consumption that satisfy the constraints imposed on the model.11 

Let 𝑘 = (𝑘 , 𝑘 , … , 𝑘 , … ) be the optimal sequence of capital stocks from 𝑘 ≥ 𝑐̅ ≥

0 of the intertemporal optimization problem (4) – (5). The associated optimal 

consumption path 𝑐 is given by 𝑐 = 𝑓(𝑘 ) − 𝑘 − 𝑐̅, ∀𝑡, with 𝑐̅ = 0 for the economy 

with homothetic preferences. From the optimal sequence of capital stocks we can define 

the following value function: 

𝑣 (𝑘 ) = 𝑚𝑎𝑥 ∑ 𝛽 𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅), 𝑗 = 𝑎, 𝑏, 

with 𝑐̅ > 0 for Stone-Geary preferences (𝑗 = 𝑎) and 𝑐̅ = 0 for homothetic preferences 

(𝑗 = 𝑏). According to this definition, the value function represents the maximized value 

of discounted utility flows from consumption over the planning horizon (from zero to 

infinity) subject to the constraint set and also represents a measure of well-being in our 

model economies.  

As is well known, the value function satisfies the Bellman equation: 

𝑣 (𝑘) = max
∈[ ̅, ( )]

𝑢 [𝑓(𝑘) − 𝑘 − 𝑐̅] + 𝛽𝑣 (𝑘 ) , 𝑗 = 𝑎, 𝑏,       (6) 

with 𝑐̅ = 0 for homothetic preferences and 𝑐̅ > 0 for Stone-Geary preferences.  

The next assumptions, although restrictive, allow a detailed characterization of the 

optimal solution of the intertemporal optimization problem (4) - (5). In order to get some 

result on the effects of alternative preferences on capital dynamics, convergence speed to 

the steady-state and social welfare we have to impose some additional restrictions on 

preferences. Considering that that there are many possibilities for functional forms for 

both homothetic and Stone-Geary preferences and the necessity to make comparisons, we 

adopt the following restrictive assumption. 

 

                                                           
11 For proof of the existence of optimal trajectories of consumption and capital stock for the intertemporal 
optimization problem (4) – (5), see, for example, Sundaram (1996) or Stokey and Lucas with Prescott 
(1989). 
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Assumption 3 The utility functions 𝑢 (𝑐 ) = 𝑢 (𝑐 − 𝑐̅), 𝑗 = 𝑎, 𝑏, and 𝑐 ≥ 𝑐̅ ≥ 0, ∀𝑡, 

are strictly concave in their domain and have the same functional forms, except by the 

shift parameter 𝑐̅, where 𝑐̅ > 0 for 𝑗 = 𝑎 and 𝑐̅ = 0 for 𝑗 = 𝑏. 

 

This assumption is to be understood as follows: if the utility function that represents 

homothetic preferences is given, for example, by 𝑢 (𝑐 ) = 𝑐 , 𝑐 ≥ 0, ∀𝑡, the 

associated utility function that represents Stone-Geary preferences is given by 𝑢 (𝑐 ) =

𝑐 − 𝑐̅, 𝑐 ≥ 𝑐̅ > 0, ∀𝑡. As will be seen just below, this assumption is fundamental to 

understand the differences imposed on the optimal solution in response to changes in the 

structure of preferences. Sundaram (1996) shows, under Assumptions 1 – 3 and the fact 

that the utility function is strictly concave in its domain (part of Assumption 3), that the 

optimal path of capital stock is monotonic and unique. 

The next two assumptions complete the set of assumptions that are necessary not 

only to guarantee the existence and characterize the optimal solution of the standard 

model of economic growth, but also to derive our main results. 

 

Assumption 4 The utility functions 𝑢 (𝑐 ) = 𝑢 (𝑐 − 𝑐̅), 𝑗 = 𝑎, 𝑏, are 𝐶  in the interior 

of their domain with 𝑢 (𝑐̅) = ∞ for 𝑗 = 𝑎 and 𝑢 (0) = ∞ for 𝑗 = 𝑏. 

 

Assumption 5 The production function is 𝐶  in the interior of its domain and is strictly 

concave on 𝑅  with 𝑓 (0) > 1/𝛽. 

 

 The Inada conditions, 𝑢 (𝑐̅) = ∞, 𝑢 (0) = ∞, and  𝑓 (0) > 1/𝛽, ensure that the 

optimal solution is interior, that is, the representative consumer will try to maintain strictly 

positive consumption levels in all periods. This property and those of differentiability of 

utility and production functions allow characterizing the solution through Euler 

equations, that is, the optimal solution (sequence of optimal capital stocks) satisfies the 

following relation: 

 𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅) = 𝛽𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅)𝑓 (𝑘 ), 𝑗 = 𝑎, 𝑏, ∀𝑡. (7) 

From the solution of the Bellman equation emerges the policy function 𝑘 = 𝑔 (𝑘), 

𝑗 = 𝑎, 𝑏 (see, for example, Sundaram,1996). Under the above assumptions it can be 
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shown that the value function is continuous, non-decreasing, concave, and 𝐶 , and that 

the policy function is continuous, 𝐶 , and non-decreasing.12 

In deriving our main results, we take as given the following results discussed above 

for the intertemporal optimization problem (4) - (5) obtained under Assumptions 1 - 5. 

These results are summarized below. 

(i) Given 𝑘 ≥ 𝑐̅ ≥ 0, there exists a unique optimal solution to the 

intertemporal optimization problem (4) - (5), that is, each model (𝑗 = 𝑎 or 

𝑗 = 𝑏) has a single optimal solution. 

(ii) The optimal sequences of capital stocks of both economies (with homothetic 

and Stone-Geary preferences) converge to the same steady state 𝑘 , which 

can be obtained from the expression 𝛽𝑓 (𝑘 ) = 1, since both economies 

have the same technology and same discount factor 𝛽. 

(iii) When 𝑘 ≥ 𝑐̅ ≥ 0, the unique optimal solution of each economy (with 

homothetic or Stone-Geary preferences) is interior and satisfies its 

associated Euler equation (7). 

(iv) The policy function of each economy (with homothetic or Stone-Geary 

preferences) is continuous, 𝐶 , and non-decreasing. 

 

3 Main Results 
 

The analysis developed below seeks to show that preferences are important in explaining 

differences between economies with similar structures. That is, if two economies differ 

only with respect to their consumers' preferences, they may exhibit differences with 

respect to capital dynamics, convergence speed to the steady-state and social welfare. 

What is striking about our results is that they are obtained with preferences belonging to 

the same class, Gorman preferences, that is, preferences that have common properties and 

differ basically with respect to the importance given to the consumption good, determined 

by a shift parameter that imposes a minimum consumption requirement. 

In our first result we show that if two economies differ only with respect to 

consumer preferences (one has homothetic preferences and the other Stone-Geary 

preferences), the optimal trajectories of capital stocks to the single steady state will be 

distinct. This result is accepted by many authors (see, for example, Sundaram 1996, p. 

                                                           
12 For more details on the differentiability of both value function and policy function, see, for example, 
Araujo (1991). 
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300), but, as far as we know, there is no formal proof of it comparing these two types of 

preferences in a standard economic growth model as we do in this paper. This result is 

important because it has implications for both the convergence speed to the single steady-

state and the social welfare of these economies. 

 

Proposition 1 Under Assumptions 1 – 5, if 𝑘 ≠ 𝑘 ≥ 𝑐̅ ≥ 0, the optimal sequences of 

capital stocks of both economies (with homothetic and Stone-Geary preferences) from 𝑘  

to the single steady-state capital stock 𝑘  will be different. 

Proof See Appendix A 

 

The main implication of Proposition 1 is that if two economies differ only with 

respect to consumer preferences (homothetic versus Stone-Geary) their optimal capital 

stock trajectories to the steady-state will be distinct if 𝑘 ≠ 𝑘 ≥ 𝑐̅ ≥ 0.  Note that this 

result is valid even if we assume that 𝑘 > 𝑘 ≥ 𝑐̅ ≥ 0 or 𝑘 < 𝑘 ≥ 𝑐̅ ≥ 0 with 𝑐̅ ≤

𝑘 . These distinct optimal trajectories will be referred to as 𝑘 = (𝑘 , 𝑘 , … , 𝑘 , … ), in 

the case of Stone-Geary preferences, and 𝑘 = 𝑘 , 𝑘 , … , 𝑘 , … , in the case of 

homothetic preferences. Since we know from Proposition 1 that these trajectories are 

distinct, we can now investigate other properties of them, such as the convergence speed 

to the steady state and social welfare of each economy. 

The next proposition shows that the preferences also affect the convergence speed 

to the steady state. Our measure of convergence speed is derived by linearization of the 

policy function around the steady-state (Ortigueira and Santos 1997), that is, we base our 

analysis on the policy functions 𝑘 = 𝑔 (𝑘), 𝑗 = 𝑎, 𝑏, where 𝑗 = 𝑎 represents Stone-

Geary preferences and  𝑗 = 𝑏, homothetic preferences. Following Krusell (2004), we use 

the first derivative of the policy function at the steady-state, 𝑔 (𝑘 ), as a measure of the 

rate of convergence and we use as proxy for this derivative the smallest eigenvalue that 

emerges as solution of the second order difference equation obtained from the 

linearization of the Euler equation (7). One parameter of this difference equation, the 

negative inverse of absolute risk aversion, will allow us to differentiate the convergence 

rates between economies with Stone-Geary preferences and those with homothetic 

preferences. 

As is well known, the higher the curvature of the utility function the higher the 

absolute risk aversion (see, for example, Rubinstein 2012). Given the utility function 
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𝑢(𝑐), its risk measure is given by the expression 𝐴(𝑐) = −𝑢 (𝑐)/𝑢 (𝑐). Note that 

Assumption 3, adopted above, gives a more pronounced curvature for the utility function 

of the economy with Stone-Geary preferences when compared with the utility function 

of the economy with homothetic preferences. Figure 1 illustrates this fact. Note also that, 

for low consumption levels, the difference between utility levels is larger and tends to 

narrow as consumption levels increase. 

 

Fig. 1 Utility functions of economies with Stone-Geary (𝑢 ) and homothetic preferences 

(𝑢 ) 

 

As an example, consider the utility function 𝑢 (𝑐) = √𝑐 − 𝑐̅, 𝑗 = 𝑎, 𝑏, evaluated at 

the steady state consumption 𝑐 = 𝑐  and their associated absolute risk aversion measures 

𝐴 (𝑐) = −𝑢 (𝑐 )/𝑢 (𝑐 ), 𝑗 = 𝑎, 𝑏, with 𝑗 = 𝑎 for Stone-Geary preferences and  𝑗 = 𝑏 

for homothetic preferences. Clearly, 𝐴 (𝑐 ) = 1/2(𝑐 − 𝑐̅) > 1/2𝑐 = 𝐴 (𝑐 ), that 

is, an economy with Stone-Geary preferences (𝑐̅ > 0) has a greater absolute risk aversion 

than an economy with homothetic preferences (𝑐̅ = 0). Another example would be the 

utility function given by 𝑢 (𝑐) = 𝑐 /(1 − 𝜎), 0 < 𝜎 < 1, 𝑗 = 𝑎, 𝑏. Again, at the steady 

state, one has 𝐴 (𝑐 ) = 𝜎/(𝑐 − 𝑐̅) > 𝜎/𝑐 = 𝐴 (𝑐 ).13  

The shape of the policy functions 𝑘 = 𝑔 (𝑘), 𝑗 = 𝑎, 𝑏, plays an important role in 

the convergence speed to the steady state and these functions have the following 

properties under the Assumptions 1 - 5: (i) 𝑔 (𝑘) ≥ 0, 𝑗 = 𝑎, 𝑏; this property follows 

from the fact that  𝑓(𝑘) − 𝑘 ≥ 𝑐̅ ≥ 0, 𝑓(0) = 0, and 𝑓(𝑘) > 0 with 𝑘 > 0;  (ii) they are 

                                                           
13 Note that the logarithmic utility function 𝑢(𝑐) = 𝑙𝑛𝑐 and the exponential utility function 𝑢(𝑐) = 1 −
exp (−𝑐) cannot be used as examples because they violate at least one of the Assumptions adopted in this 
paper. The logarithmic function, for example, is unbounded below and the exponential utility function 
violates the Inada condition. 
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single-valued for all 𝑘; (iii) they are non-decreasing; (iv) they are continuous; (v) in the 

steady-state, we have 𝑘 = 𝑔 (𝑘 ) for both policy functions, 𝑗 = 𝑎, 𝑏, where 𝑘  is the 

steady-state capital stock; (vi) they are 𝐶 ; and (vii) there exists 𝑘 such that 𝑔 (𝑘) ≤ 𝑘 

for all 𝑘 < 𝑘, 𝑗 = 𝑎, 𝑏, and 𝑘 exceeds (𝑓 ) (1/𝛽).14 In Figure 2 we plotted two policy 

functions taking into account these properties.  

 

Fig. 2 Two policy functions with different speeds of convergence 

 

As we can see in Figure 2 both policy functions cross the 45-degree line only once, 

because under the Assumptions 1-5 each optimal sequence of capital stocks is unique and 

both converge to the same steady-state 𝑘 . In this figure, the sequence of capital stocks 

represented by Curve 1 will approach the steady state faster (that is, in “a smaller number 

of steps”) than Curve 2 and therefore Curve 1 will have a faster convergence speed. We 

can measure this convergence speeds by looking at their slopes at the steady state, that is, 

we can linearly approximate these curves around the steady state using first-order Taylor 

expansions (Krusell 2004). In this sense, taking the first-order Taylor series expansion of 

the policy functions we get 

𝑘 = 𝑔 (𝑘) ≈ 𝑔 (𝑘 ) + 𝑔 (𝑘 )(𝑘 − 𝑘 ), 𝑗 = 𝑎, 𝑏, or 

𝑘 − 𝑘
  

= 𝑔 (𝑘 ) (𝑘 − 𝑘 )
 

  

The interpretation is as follows: the closer to zero is the derivative 𝑔 (𝑘 ), 𝑗 =

𝑎, 𝑏, the faster the convergence will be, that is, the gap is significantly reduced each 

                                                           
14 For more details on the properties (ii)-(v) of the policy functions, see, for example, Sundaram (1996, p. 
301-305); for the property (vi), see Araujo (1991); and for the property (vii), see Krusell (2004). 
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period. In practice, 𝑔 (𝑘 ) is found by linearizing the Euler equation (7) to obtain a 

second-order difference equation in 𝑘 . The smaller of the two eigenvalues of this 

equation is used as a proxy for convergence speed analysis (see, for example, Krusell 

2004, p. 43-49). Define 𝑘 = 𝑘 − 𝑘 . Taking derivatives of the Euler equation (7) with 

respect to 𝑘 , 𝑘  and 𝑘 , evaluating them at the steady-state 𝑘 , and using the fact 

that 𝛽𝑓 (𝑘 ) = 1, we get the expression: 

𝑢"(𝑐 )𝑘 − 𝑢"(𝑐 ) +
"

+ 𝑢 (𝑐 )
"

( )
𝑘 +

"
𝑘 = 0. 

After dividing through by 𝑢"(𝑐 ), we arrive at the following second-order 

difference equation: 

𝑘 − 1 + +
( )

( )

( )

( )
𝑘 + 𝑘 = 0, 𝑗 = 𝑎, 𝑏. 

Note that the only difference between an economy with Stone-Geary preferences 

(𝑗 = 𝑎) and an economy with homothetic preferences (𝑗 = 𝑏) is given by the parameter 

𝑢 (𝑐 ) 𝑢"(𝑐 ), 𝑗 = 𝑎, 𝑏, which is the negative inverse of the absolute risk aversion. The 

magnitude of this parameter will be used to show that a Stone-Geary preference economy 

will converge more slowly to the steady state than an economy with homothetic 

preferences. Recall that all other parameters of this difference equation, by hypothesis, 

are identical for both economies. 

Let 

𝜑 𝑟 = 𝑟 − 1 + + 𝑟 + , 𝑗 = 𝑎, 𝑏. 

Note that 

         𝜑(0) = > 0 and 𝜑(1) = − < 0, 𝑗 = 𝑎, 𝑏. 

Since 𝜑(∙) is a continuous function of 𝑟  by the Mean Value Theorem there exists 

one (root) eigenvalue positive and smaller than 1. The other eigenvalue must also be 

positive and larger than 1 since lim
→

𝜑 𝑟 = +∞ > 0 (Krusell, 2004). As already 

mentioned, the difference in the speed of convergence between economies with Stone-

Geary preferences and those with homothetic preferences will depend basically on the 

magnitude of the expression 𝑢 (𝑐 ) 𝑢 (𝑐 ), 𝑗 = 𝑎, 𝑏, that will affect, in a differentiated 

way, the magnitude of the roots of the characteristic equation 𝜑 𝑟 = 0. 

To see this, consider the following quadratic equation: 
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𝑟 − 𝑝 𝑟 + 𝑞 = 0, 𝑗 = 𝑎, 𝑏.        (8) 

Adding 𝑝 2⁄  and subtracting 𝑞 from both sides of this equation, we get 

𝑟 − 𝑝 /2 = 𝑝 /2 − 𝑞  or  𝑟 = ± − 𝑞. 

Suppose, without loss of generality, that 𝑝 < 𝑝 . The resulting real roots satisfy 

the following inequalities: 𝑟 > 𝑟  and 𝑟 < 𝑟 , where the subscript 1 refers to the 

lowest roots. The second inequality, 𝑟 < 𝑟 , follows from the fact that 

𝑟 = + − 𝑞 < + − 𝑞 = 𝑟 , 

since we are assuming that 𝑝 < 𝑝 . The first inequality, 𝑟 > 𝑟 , follows from a 

property of the roots of a quadratic equation (equation (8)) that must satisfy 𝑟 ∙ 𝑟 = 𝑞. 

Since 𝑞 is fixed for both quadratic equations and 𝑟 < 𝑟 , this implies that 𝑟 > 𝑟 . 

These facts are used to show that economies with Stone-Geary preferences converge more 

slowly to the steady state when compared with economies with homothetic preferences. 

We just have to show that that the smallest root of the quadratic equation 𝜑 𝑟 = 0, 𝑟 ∈

(0,1), with Stone-Geary preferences (𝑗 = 𝑎) is bigger than the smallest root of this 

equation with homothetic preferences (𝑗 = 𝑏), that is, 𝑟 > 𝑟 .  

To see this, let 𝑝 = 1 + + , 𝑗 = 𝑎, 𝑏, and 𝑞 = . We know from the analysis 

of absolute risk aversion made above that 𝑢 (𝑐 ) 𝑢⁄ (𝑐 ) > 𝑢 (𝑐 ) 𝑢 (𝑐 )⁄ . Note 

that the expression 𝑢 (𝑐 ) 𝑢 (𝑐 ), 𝑗 = 𝑎, 𝑏, is negative and in absolute values we have 

|𝑢 (𝑐 ) 𝑢 (𝑐 )⁄ | < |𝑢 (𝑐 ) 𝑢 (𝑐 )⁄ |. When we multiply 𝑢 (𝑐 ) 𝑢 (𝑐 ), 𝑗 = 𝑎, 𝑏, 

by the same negative expression 𝑓 (𝑘 ) 𝑓 (𝑘 )⁄  we get as a result that 𝑝 < 𝑝 . Based 

on the discussion of the roots of the quadratic equation made above, we conclude that 

𝑟 > 𝑟 . These facts and arguments prove the following Proposition: 

 

Proposition 2 Under Assumptions 1–5, economies with Stone-Geary preferences 

converge more slowly to the steady state equilibrium when compared with economies 

with homothetic preferences. 

 

The result of Proposition 2 shows that, for economies converging to the same steady 

state, those with Stone-Geary preferences converge at slower rates when compared to 

economies with homothetic preferences. Given the optimal sequences of capital stocks 
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𝑘 = (𝑘 , 𝑘 , … , 𝑘 , … ), in the case of Stone-Geary preferences, and 𝑘 =

𝑘 , 𝑘 , … , 𝑘 , … , in the case of homothetic preferences, and the fact the 𝑘 ≥ 𝑐̅ ≥ 0 

and 𝑐̅ ≤ 𝑘 , the result of Proposition 2 also implies that 𝑘 ≤ 𝑘 , ∀𝑡, from 𝑘  to 𝑘 , 

assuming that 𝑘 < 𝑘 , since the policy functions are non-decreasing.15  Although there 

is no consensus in the empirical economic literature on the speed of convergence between 

economies, the theoretical result of Proposition 2 is consistent with the hypothesis that 

less developed economies (at least those with subsistence consumption) tend to converge 

to the steady-state at slower rates than developed economies.16 

Our theoretical results should be used with caution when linking them with the 

existing empirical literature on convergence. Indeed, these results were obtained under 

very restrictive assumptions of two closed economies that differ only with respect to the 

preferences structure. Real economies differ not only with respect to preferences, but also 

with respect to several other factors such as the ability to absorb new technologies and 

participation in global markets. These other factors were completely ignored in our 

models of economic growth. However, there is consensus in the literature (see, for 

example, Steger 2000) that the requirement for minimum consumption actually affects 

the process of economic growth. 

The intuition behind Proposition 2 is simple: part of the capital that could be used 

in the production process is diverted to ensure a minimum level of consumption, 𝑐̅ > 0, 

in economies with Stone-Geary preferences. Hence, an economy with Stone-Geary 

preferences tends to save less capital in each period when compared to an economy with 

homothetic preferences, except at the steady state equilibrium, where both economies 

save the same amount of capital stock 𝑘 . It is interesting to note that if the utility 

functions were exponential, that is, 𝑢 (𝑐) = 1 − 𝑒𝑥𝑝(𝑐̅ − 𝑐), 𝑐̅ ≥ 0, 𝑗 = 𝑎, 𝑏, the 

convergence speed of both economies would be equal. However, as we noted in footnote 

13, the exponential utility function violates Inada condition and because of this there is 

no guarantee that the intertemporal optimization problem (4) - (5) will have an optimal 

interior solution that is fundamental to our analysis. 

In order to illustrate the magnitude of the difference between the optimal capital 

dynamic paths under homothetic and Stone-Geary preferences, we arbitrarily use the 

following functional forms for production function and utility functions 𝑓(𝑘) = 𝑘 , 

                                                           
15 Obviously, if 𝑘 > 𝑘 , this inequality is reversed, that is, 𝑘 ≥ 𝑘 , ∀𝑡. 
16 See, for example, Barro and Sala-i-Martin (1992) or de la Fuente (1997) for empirical evidence of this 
hypothesis. 
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𝑢 (𝑐) = √𝑐 − 𝑐̅, 𝑗 = 𝑎, 𝑏, respectively, and we set parameter values as follows: 𝛼 = 0.33, 

𝛽 = 0.95, and 𝑐̅ = 0.0124, but it is possible to show that the results are qualitatively 

identical under different parametrizations satisfying the assumptions earlier introduced. 

Given this parameterization and solving for the steady state capital stock, we get 𝑘 =

0.177 and the corresponding optimal consumption are 𝑐 = 0.3753 and 𝑐 = 0.3877. 

Figure 3 depicts the policy functions under homothetic (𝑗 = 𝑏) and Stone-Geary (𝑗 = 𝑎) 

preferences, clearly showing that they differ and that the optimal capital stock of the 

economy with homothetic preferences converges more rapidly to the steady state.17 

 

Fig. 3 Policy functions of economies with homothetic (𝑗 = 𝑏) and Stone-Geary (𝑗 = 𝑎) 

preferences 

 

 From the parameterization used, we can extract several indicators that confirm our 

theoretical results. For example, the relationship between the negative inverse of absolute 

risk aversion between economies with Stone-Geary and homothetic preferences at the 

steady-state is given by 𝑢 𝑢 = −0.75064 > −0.77544 = 𝑢 𝑢⁄⁄  and the common 

parameter 𝑓 (𝑘 ) 𝑓 (𝑘 )⁄  is equal to −3.785307. The quadratic equation of the 

economy with Stone-Geary preferences is given by 𝑟 − 4.894003 ∙ 𝑟 + 1.0526 = 0 

and the quadratic equation of the economy with homothetic preferences is given by 𝑟 −

4.987878 ∙ 𝑟 + 1.0526 = 0. The corresponding roots are 𝑟 = 0.225467; 𝑟 =

                                                           
17 The Matlab codes that allowed the creation of Figures 3 and 4 were adapted from McCandless (2008, 
p.67-68) and are in the Appendix B of this paper. 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
Poliy Functions

k

gj
(k

)

 

 

j=a

j=b



19 
 

4.668537 (Stone-Geary preferences) and 𝑟 = 0.220806; 𝑟 = 4.767072 (homothetic 

preferences) and, as expected, 𝑟 > 𝑟 . 

Our next result compares social welfares (measured by the value functions) between 

economies with Stone-Geary preferences (𝑗 = 𝑎) and those with homothetic preferences 

(𝑗 = 𝑏). Our proof is based on the optimal trajectories of consumption that is given by 

𝑐 = 𝑓 𝑘 − 𝑘 − 𝑐̅, 𝑗 = 𝑎, 𝑏, ∀𝑡, with 𝑐̅ = 0 for the economy with homothetic 

preferences. We show that 𝑣 (𝑘 ) < 𝑣 (𝑘 ). 

 

Proposition 3 Under Assumptions 1-5, the neoclassical growth model (4)-(5) exhibits 

different optimal paths for consumption and capital stock, according to the type of 

preferences used, and these optimal solutions satisfy 𝑣 (𝑘 ) < 𝑣 (𝑘 ) with 𝑘 ≥ 𝑐̅ ≥ 0 

and 𝑐̅ ≤ 𝑘 .  

Proof See Appendix A 

 

Proposition 3 states that the preferences structure affects the dynamic of both the 

capital stock and consumption, implying thus that social welfare will also differ according 

to the type of preferences. In particular, social welfare (measured by the value function) 

will be highest under preferences of group (b) and lowest under preferences of group (a). 

This is due to the strictly higher consumption of the representative consumer in the 

economy with homothetic preferences when compared to the economy with Stone-Geary 

preferences. This difference in consumption is more evident in the steady state. Therefore, 

the strictly higher level of consumption in the economy with homothetic preferences will 

imply a higher level of welfare in this economy. 

The difference between levels of welfare in the two economies will depend only on 

the magnitude of the shift parameter 𝑐̅ ≥ 0 that represents the minimum consumption 

requirement. If 𝑐̅ → 0, then 𝑣 (𝑘 ) → 𝑣 (𝑘 ). Note that, for a fixed 𝑐̅ > 0, when 

consumption increases, the difference between utilities (that represent homothetic and 

Stone-Geary preferences) tends to decrease. With Proposition 1 and 2 we have shown that 

if two economies have the same technology and the same discount factor, their respective 

social welfares, capital dynamics and convergence speed to the steady-state can differ in 

response to changes in representative agent preferences.  

Figure 4 illustrates the welfare (values functions) of economies with Stone-Geary 

and homothetic preferences obtained using our previous parameterization. Note that the 
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difference in welfare levels between economies is sharper than in the case of policy 

functions (Figure 3). This result clearly illustrates that economies with identical 

structures, differing only with respect to the structure of preferences, have distinct levels 

of well-being. In particular, economies with homothetic preferences have higher welfare 

levels than an economy with Stone-Geary preferences. 

 

 
 
Fig. 4 Value functions of economies with Stone-Geary and homothetic preferences 
 

4 Conclusions 
 

In this paper we analyze the effects on welfare, dynamics of capital and convergence to 

steady state in the Ramsey model under two classes of Gorman preferences: homothetic 

vs. Stone-Geary (non-homothetic). We show that preferences can affect not only welfare 

and the optimal path of capital accumulation but also the speed of convergence to the 

steady state of economies with similar structures. Therefore, even if two economies have 

the same production technology and the same discount factor and initial capital stock, 

they may experience different welfare and capital accumulation patterns as well as 

convergence speed to the steady-state whenever consumers have different preferences. 

For future research we would like to investigate the effects on the dynamic of capital and 

speed of convergence to the steady-state of other preference classes and/or consider 

multisectoral models.  
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Appendix A Proof of Propositions 1 and 3 
 

Proof of Proposition 1 Suppose not, that is, suppose that the optimal sequences of capital 

stocks of both economies from 𝑘  to the single steady-state capital stock 𝑘  are identical. 

These optimal capital stock sequences must satisfy their respective Euler equations (7), 

that is, for any 𝑡, 𝑡 + 1, and 𝑡 + 2, we have: 

𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅) = 𝛽𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅)𝑓 (𝑘 ) 

for the economy with Stone-Geary preferences (𝑐̅ > 0), and 

𝑢 (𝑓(𝑘 ) − 𝑘 ) = 𝛽𝑢 (𝑓(𝑘 ) − 𝑘 )𝑓 (𝑘 ) 

for the economy with homothetic preferences (𝑐̅ = 0). Since these economies, by 

Assumption, have the same technology and same discount factor, their identical optimal 

capital stock trajectories must satisfy: 

𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅)

𝑢 (𝑓(𝑘 ) − 𝑘 )
=

𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅)

𝑢 (𝑓(𝑘 ) − 𝑘 )
=∙∙∙=

𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅)

𝑢 (𝑓(𝑘 ) − 𝑘 )
= 

=
𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅)

𝑢 (𝑓(𝑘 ) − 𝑘 )
=∙∙∙=

𝑢 (𝑓(𝑘 ) − 𝑘 − 𝑐̅)

𝑢 (𝑓(𝑘 ) − 𝑘 )
 

This result is true only if the optimal trajectories of capital stocks are constant. As we are 

admitting that the optimal capital stock trajectories of both economies are identical, this 

occurs only when 𝑘 = 𝑘 . Since, by hypothesis, 𝑘 ≠ 𝑘 , we get a contradiction which 

proves that Proposition 1 is true.      □ 

 
Proof of Proposition 3 The first part of this Proposition follows from Propositions 1 and 

2. For the second part, we must show that 𝑣 (𝑘 ) = ∑ 𝛽 𝑢 (𝑐 − 𝑐̅) <

∑ 𝛽 𝑢 (𝑐 ) = 𝑣 (𝑘 ), where 𝑐 = (𝑐 , 𝑐 , … , 𝑐 , … ) represents the optimal 

consumption trajectory of the economy with Stone-Geary preference, and 𝑐 =

𝑐 , 𝑐 , … , 𝑐 , …  represents the optimal consumption trajectory of the economy with 

homothetic preferences. Our proof is by contradiction. Suppose not, that is, the optimal 

consumption trajectories of both economies are such that 𝑐 − 𝑐̅ ≥ 𝑐 , ∀𝑡, which implies 

𝑣 (𝑘 ) ≥ 𝑣 (𝑘 ). For 𝑡 = 0 and assuming that 𝑘 = 𝑘 = 𝑘 , we must have 𝑓(𝑘 ) −

𝑘 − 𝑐̅ = 𝑓(𝑘 ) − 𝑘 , which implies that 𝑘 < 𝑘 , since 𝑐̅ > 0, and 𝑘 = 𝑘 − 𝑐.̅ For 

the next period, since the production function is non-decreasing (by Assumption 2) and 

strictly concave (by Assumption 5), we have that 𝑓(𝑘 ) < 𝑓 𝑘  and the relation 

𝑓(𝑘 ) − 𝑘 − 𝑐̅ = 𝑓 𝑘 − 𝑘  implies that 𝑘 < 𝑘  and 𝑘 = 𝑘 − 𝑐̅ − 𝑓 𝑘 −

𝑓(𝑘 ) , widening the distance between 𝑘  and 𝑘 . This pattern is repeated in the next 
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period. It follows by induction that the entire optimal sequences of capital stocks follow 

this pattern, i.e., 𝑘 < 𝑘 , ∀𝑡, with 𝑘  moving away from 𝑘  when 𝑡 tends to infinity. 

This result contradicts a fundamental property of the optimal solution of the intertemporal 

optimization problem (4) - (5) that the optimal capital stock sequences of both economies 

must converge to the same steady state, that is, 𝑘 . Note in particular that, at steady state, 

𝑐 ( ) = 𝑓(𝑘 ) − 𝑘 − 𝑐̅ < 𝑓(𝑘 ) − 𝑘 = 𝑐 ( ), since 𝑐̅ > 0, that is, at the steady-

state the optimal consumption of a Stone-Geary preference economy is strictly lower than 

the optimal consumption of a homothetic preference economy. The contradiction 

obtained and the fact that 𝑐 ( ) < 𝑐 ( ) establish the desired result, that is, 

          𝑣 (𝑘 ) = ∑ 𝛽 𝑢 (𝑐 − 𝑐̅) < 𝑣 (𝑘 ) = ∑ 𝛽 𝑢 (𝑐 ).   □ 

 
 

Appendix B Matlab codes used to create figures 3 and 4 
 
 
B1. Main program 
 
global v01 v02 beta alpha cbar s k0 kt 
hold off 
hold all 
% set initial conditions 
v01=zeros(1,100); 
v02=zeros(1,100); 
k0=0.002:0.002:0.2; 
beta=0.95; 
s=2; 
cbar=0.0124; 
alpha=0.33; 
numits=200; 
% begin the recursive calculations 
for k=1:numits 
    for j=1:100 
        kt=j*0.002; 
   % find the maximum of the value functions 
        ktb1=fminbnd(@valfun3,0.002,0.2); 
        vtb(j)=-valfun3(ktb1); 
        ktb(j)=ktb1 
        kta1=fminbnd(@valfun4,0.002,0.2); 
        vta(j)=-valfun4(kta1); 
        kta(j)=kta1 
    end 
    v01=vtb; 
    v02=vta; 
end 
hold off 
% plot the policy functions 
y=1*k0 
plot(k0,kta,'--k',k0,ktb,'-k',k0,y,'.k') 
axis([0 0.2 0 0.2]) 
title('Poliy Functions') 
xlabel('k') 
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ylabel('gj(k)') 
legend({'j=a','j=b'},'Location','southeast') 
% plot the value functions 
%plot(k0,vta,'--k',k0,vtb,'-k') 
%title('Value functions') 
%xlabel('k') 
%ylabel('vj(k)') 
%legend({'j=a','j=b'},'Location','southeast') 
 
 
B2. Subroutine (valfun.m) to calculate value functions 
 
i) Economy with homothetic preferences 
 
function val=valfun3(k) 
global v01 v02 beta alpha cbar s k0 kt 
% smooth out the previous value function 
ggb=interp1(k0,v01,k,'linear'); 
% calculate consumption with given parameters 
ccb=kt^alpha-k; 
if ccb<=0 
    val=-88888-80000*abs(ccb) 
else 
    % calculate the value of the value function at k 
    val=ccb^0.5+beta*ggb; 
end 
val=-val; 
 
 
ii) Economy with Stone-Geary preferences 
 
function val=valfun4(k) 
global v01 v02 beta alpha cbar s k0 kt 
% smooth out the previous value function 
gga=interp1(k0, v02,k,'linear'); 
% calculate consumption with given parameters 
cca=kt^alpha-k-cbar; 
if cca<=0 
    val=-88888-80000*abs(cca); 
else 
    % calculate the value of the value function at k 
    val=(cca-cbar)^0.5+beta*gga; 
end 
val=-val; 
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