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Abstract

This paper establishes a distributed fault-tolerant control framework for E-sail relative motion at Sun-Earth
artificial Lagrange points, capable of accounting for unexpected E-sail actuator fault like effectiveness loss and
bias error. The E-sail relative motion problem is formulated on the linearized dynamics, and the steering control
is conducted by suitably adjusting the sail attitude and sail lightness number. The proposed control strategy
facilitates the E-sail relative distances to evolve within a bounded range and to synchronously converge to the
desired values, while collision avoidance of the relative motion is ensured as well. In particular, the locally shared
information among the E-sails is assumed to be characterized by their relative distances only, thus extending
the existing results where the inter-sail communication capability is static. The concept of distributing multiple
E-sails in cluster flight is useful for the deep-space formation missions such as the DARWIN mission, in which
a multi-point measurement of the space environment is required. Illustrative examples show the validity of the
proposed method in a typical mission scenario.
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Nomenclature

a = propulsive acceleration vector [ mm/s2]
E = set of edges
G = communication topological graph
H = healthy indicator matrix
I = identity matrix
N = number of E-sails
n = normal vector
O = zero matrix
O = origin of reference frame
r = position vector (with r = ‖r‖), [ au]
t = time, [ days]
T = rotating reference frame
u = control input vector
V = potential function
V = set of vertices
W = weighted adjacency matrix (with entries [wij ])
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x̂, ŷ, ẑ = unit vectors of rotating reference frame
β = sail lightness number

ε = actuator fault (with ε , [εθ, εφ, εβ ]
T
)

θ, φ = attitude angles, [ rad]
µ = normalized mass of Earth
ρ = position vector relative to artificial Lagrange point, [ km]
υ = vertex of topological graph
ω = angular velocity vector (with ω = ‖ω‖), [ rad/day]

Subscripts

0 = artificial Lagrange point
i = i-th E-sail
⊕ = Earth
� = Sun

Superscripts

T = transpose
· = time derivative
∧ = unit vector

1. Introduction

In recent years, much effort has been devoted to the study of an Electric Solar Wind Sail (E-sail), which
is able to generate a continuous low-thrust by momentum exchange with the incoming ions from the solar
wind, without the need of any reaction mass nor any propellant consumption [1]. The peculiarity of such
an advanced propulsive concept promotes the feasibility of complex space missions [2, 3, 4, 5, 6], especially
when a spacecraft is to be placed for a long time in the nearby of collinear libration points in the Sun-Earth
system [7]. In fact, the instability of the resulting orbits requires suitable station keeping maneuvers to be
implemented [8, 9].

Recent exemplary missions are the LISA Pathfinder, whose Lissajous orbit around the Lagrangian point
L1 was chosen in order to reach a region with a constant illumination from the Sun and free of gravitational
and magnetic disturbances from Earth, and by the Deep Space Climate Observatory (DSCOVR) mission,
whose orbit around L1 closely follows that of Advanced Composition Explorer (ACE) mission in support of
real-time solar wind monitoring. By exploiting the essential feature of a propellantless propulsion system,
an E-sail may be effectively used to create (and maintain) an artificial point Sunward of L1 (referred to as
AL1), to increase, for example, the advanced warning capabilities of solar plasma storms [7]. More recently,
the concept of E-sail formation flying has been proposed with the aim of redistributing the mission payload
among multiple spacecraft and increasing the reference (characteristic) acceleration of each E-sail in the
formation [10, 11, 12].

To simplify the mission analysis phase, an E-sail is often modelled as an ideal system, capable of providing
a precise propulsive acceleration as a function of given attitude angles and tether voltage [13]. Such a
requirement could hardly be met in practice for various reasons. First, the onboard sensing capabilities are
limited, and a high accuracy actuation is very difficult, especially for an E-sail-based spacecraft with a small
payload mass [14]. Second, due to the large flexible structure of a grid of thin and long tethers, the E-sail
is vulnerable to different types of faults, such as attitude determination and control errors [15]. Third, the
plasma properties of the solar wind are highly fluctuating and unpredictable, and often exhibit a chaotic
behavior [16], thus giving rise to thrust amplitude uncertainties [17]. These involved problems necessitate
the development of fault-tolerant control strategies that are able to compensate for the E-sail thrust errors.

In this respect, the aim of this paper is to present a distributed fault-tolerant control framework for
E-sail relative motion at Sun-Earth artificial Lagrange points via local interaction only. A suitable potential
function is incorporated in the control strategy, such that the relative distances among the E-sails evolve
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within a limited range and synchronously converge to their desired values, while avoiding possible inter-sail
collisions. Unlike the existing studies in which the communication topology of the E-sail relative motion is
fixed and remains constant, the E-sail sensing capability is now uniquely determined by the relative distances
in the formation and therefore admits a time-varying property, which is a more reasonable assumption in a
realistic situation. In particular, a robust adaptive fault-tolerant consensus protocol is developed, capable
of compensating unpredictable actuator uncertainties of the E-sails, thus extending the previous results in
which only the formation tracking problem was considered [11].

This paper is organized as follows. The next section illustrates the generation of an AL1 point by means
of an E-sail, whose nominal plane is assumed to maintain a radial (that is, Sun-facing) orientation. Such
AL1 point is then taken as the reference point to derive the equations of relative motion and to develop an
adaptive fault-tolerant control law aimed at guaranteeing consensus and collision avoidance in the presence
of actuator failures. The proposed method is shown to be effective by means of an illustrative example.
Some concluding remarks are finally included in the last section.

2. Problem formulation

2.1. Artificial Lagrange points with radial thrust

Consider the motion of an E-sail-based spacecraft S in a Sun-Earth circular restricted three-body system,
described in a synodic reference frame T (O; x̂, ŷ, ẑ); see Fig. 1. The origin O of T is located at the Sun-
Earth’s center-of-mass, the (x̂, ŷ) plane coincides with the ecliptic, the x̂ axis points to the Earth, and the
ẑ axis is positive in the direction of the angular velocity vector ω. For convenience, the total mass of the
primaries, the Sun-Earth distance, and the universal gravitational constant are all normalized to unity.

Denoting the O-S vector with r, the E-sail equation of motion in the synodic reference frame can be
written as [18]

r̈ + 2ω × ṙ =
∂ Ω

∂ r
+ a (1)

where a is the propulsive acceleration vector, and Ω is a potential function defined as

Ω ,
1

2
(ω × r) · (ω × r) +

(
1− µ
r�

+
µ

r⊕

)
(2)

where µ is the normalized Earth’s mass [18], while r� = ‖r�‖ and r⊕ = ‖r⊕‖ are the Sun-spacecraft and
the Earth-spacecraft distances, respectively. Using the recent thrust model by Huo et al. [19], according to
which the E-sail shape is modelled as a rigid disk containing all of the tethers, the propulsive acceleration
vector can be written in a compact, analytical, form as

a =
β (1− µ)

2 r2�
[r� + (r� · n̂) n̂] (3)

where n̂ is the unit vector normal to the sail nominal plane in the direction opposite to the Sun, and β is the
lightness number defined as the ratio of the E-sail characteristic acceleration a⊕ to the solar gravitational
acceleration at a reference distance r = l , 1 au, viz.

β ,
a⊕

(1− µ) /l2
(4)

In particular, the characteristic acceleration a⊕ is the maximum value of the propulsive acceleration magni-
tude ‖a‖ when r = l, while the normal unit vector n̂ can be written in terms of the classical sail attitude
angles θ and φ (see Fig. 1) as

n̂ = [cos θ cos φ, cos θ sin φ, sin θ]
T

(5)

where θ ∈ [−π/2, π/2] rad is the angle between n̂ and the (x̂, ŷ) plane, and φ ∈ [−π/2, π/2] rad is the
angle measured counterclockwise from x̂ to the projection of n̂ onto the (x̂, ŷ) plane.

In this paper, the artificial collinear points are obtained, as a function of the sail lightness number, with
the assumption that the E-sail is subject to a purely radial thrust, that is, â = r̂� ≡ n̂. The radial case
is of particular interest since the sail attitude may be maintained in a passive way, so that the control
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Figure 1: E-sail outline in a Sun-Earth circular restricted three-body system.

problem is significatively simplified [20]. The following analysis concentrates on artificial points around the
first Lagrange point (referred to as AL1 points), since the other artificial collinear points can be studied in
a similar way.

In this context, consider an E-sail with a lightness number β = β0, and select an AL1 point on the x̂
axis (with a coordinate x0) such that the conditions ṙ = 03, r̈ = 03 and r = r0 = x0 x̂ are met in Eq. (1).
Accordingly, from Eqs. (1)–(3), it may be verified that x0 satisfies the scalar equation

x0 −
1− µ

(x0 + µ)
2 +

µ

(x0 + µ− 1)
2 +

β0 (1− µ)

x0 + µ
= 0 (6)

whose numerical solution x0 = x0(β0) is shown in Fig. 2. Note that the (axial) position of AL1 shifts
sunward as β0 is increased.

2.2. E-Sail-based spacecraft relative motion

Assume now that a formation of N ≥ 3 E-sail-based spacecraft moves in the vicinity of the reference
AL1 point of axial coordinate x0. Note that such an AL1 point does not necessarily coincide with the actual
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Figure 2: Location of AL1 point as a function of the lightness number β0.

position of a generic spacecraft in the formation.
Let ρi , ri − r0 denote the position vector of the i-th spacecraft (subscript i) from the reference AL1

point (subscript 0). Bearing in mind Eq. (1), the equation of relative motion in the synodic reference frame
T can be written as

ρ̈i + 2ω × ρ̇i =
∂ Ωi
∂ ri

− ∂ Ω0

∂ r0
+ ai − a0 (7)

where a0 is the propulsive acceleration vector required to maintain the reference AL1 point.
Taking into account that the relative distances ‖ρi‖ between each spacecraft in the formation structure

and the reference AL1 point is considerably smaller than the Sun-spacecraft distance, two terms in Eq. (7)
can be linearized to first order as

ai ' a0 +
∂ a0

∂ r�0

ρi +
∂ a0

∂ [θ0, φ0]
[∆ θi, ∆φi]

T
+
∂ a0

∂ β0
∆βi (8)

∂ Ωi
∂ ri

' ∂ Ω0

∂ r0
+
∂2 Ω0

∂ r20
ρi (9)

where ∆ θi , θi − θ0 and ∆φi , φi − φ0 are the relative attitude angles, ∆βi , βi − β0 is the relative
lightness number, and the partial derivatives are

∂ a0

∂ r�0

=
β0 (1− µ)

2 r2�0

[
n̂0 n̂

T

0 − 2 r̂�0
r̂T

�0
− 2 (r̂�0

· n̂0)
(
n̂0 r̂

T

�0

)
+ I3

]
(10)

∂ a0

∂ β0
=

(1− µ)

2 r�0

[r̂�0
+ (r̂�0

· n̂0) n̂0] (11)

∂2 Ω0

∂ r20
=

(1− µ)

r3�0

(
3 r̂�0

r̂T

�0
− I3

)
+

µ

r3⊕0

(
3 r̂⊕0

r̂T

⊕0
− I3

)
+ diag (1, 1, 0) (12)

∂ a0

∂ [θ0, φ0]
=
∂ a0

∂ n̂0

∂ n̂0

∂ [θ0, φ0]
(13)
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in which I3 ∈ R3×3 is the identity matrix, and

∂ a0

∂ n̂0
=
β0 (1− µ)

2 r�0

[
n̂0 r̂

T

�0
+ (r̂�0

· n̂0) I3
]

(14)

∂ n̂0

∂ [θ0, φ0]
=

− sin θ0 cos φ0 − cos θ0 sin φ0
− sin θ0 sin φ0 cos θ0 cos φ0

cos θ0 0

 (15)

In particular, since the reference AL1 point is maintained assuming a Sun-facing orientation, the two attitude
angles are θ0 = φ0 = 0, and r̂�0

≡ n̂0 = [1, 0, 0]
T
. Finally, the linear differential equation of the spacecraft

relative motion is obtained by substituting Eqs. (8)–(15) into Eq. (7), and the result is

ρ̈i + 2Mv ρ̇i + Mp ρi = M0 ui (16)

where ui , [∆ θi, ∆φi, ∆βi]
T

denotes the control input vector of the i-th spacecraft, and the ∆ symbol
represents a variation with respect to the value required to maintain the reference AL1 point, and the
matrices

Mv ,

0 −1 0
1 0 0
0 0 0

 , Mp , diag (Mp1 , Mp2 , Mp3) , M0 ,
1− µ

2 (x0 + µ)

 0 0 2
0 β0 0
β0 0 0


(17)

in which

Mp1 = − 2 (1− µ)

(x0 + µ)
3 −

2µ

(x0 + µ− 1)
3 +

β0 (1− µ)

(x0 + µ)
2 − 1, Mp2 = −Mp1 + 3

2
,

Mp3 = −Mp1 + 1

2
(18)

In this context, the formation control is achieved by suitably adjusting the attitude angles and the lightness
number of the E-sail.

3. Distributed fault-tolerant control

The relative motion of the spacecraft formation is now studied with the aim of obtaining a distributed
collision-free dynamics based on a consensus control, which relies on a local information exchange between
each vehicle of the formation structure. Consensus refers to a group of agents that will reach an agree-
ment (or some common value) with a suitable control law by negotiating with their neighbors [21, 22]. In
particular, bearing in mind basic concepts from graph theory, the information interaction is characterized
by an undirected (bidirectional) topological graph in which the triplet G = (V, E ,W) consists of a finite
non-empty vertex set V , {υ1, . . . , υN}, an edge set E , {(υ1, υ2) , . . . , (υN−1, υN )} ⊆ V×V, and a weighted
(symmetric) adjacency matrix W = [wij ] ∈ RN×N . In this context, a generic edge (υi, υj) ∈ E indicates a
bidirectional path and the mutual transmission of state data between the vertices υi and υj . The generic
entry of the weighted adjacency matrix W is wij = wji > 0, ∀ (υj , υi) ∈ E with i 6= j, and wii = 0.

When modeling the communication topology of the spacecraft relative motion, each sail (or agent) is
characterized by a vertex, while the data flow between any pair of E-sails is represented by a weighted
edge. A collision avoidance in the presence of an actuator fault may be obtained with the aid of an artificial
potential function embedded in a variable structure control, as is now discussed in detail.

3.1. Artificial potential function for collision avoidance

For an E-sail with a bulky flexible structure, comprised of a number of very long tethers (whose length may
reach some kilometers), the possibility of inter-sail collisions is a serious hazard, which must be accounted for
in the development phase of the control system. The problem is further complicated by the fact that a real-
time knowledge of the actual formation topology is usually determined by the relative distances between the
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agents. A possible communication link loss, due to a local drift in the relative motion between two agents,
may therefore lead to a severe variation or even to a connectivity fail of the network topology. For this
reason, it is meaningful to develop a collision-free control scheme for the relative motion, while keeping the
network topology connected.

To this end, it is necessary to introduce first a potential function that is usually used in flocking (or
swarm tracking) algorithms [23], whose aim is to ensure that the relative motion evolves within a prescribed
safe region and eventually converges to its desired value δ?ij , viz.∥∥ρi − ρj∥∥ ∈ [δmin, δmax] ∩ lim

t→+∞

∥∥ρi − ρj∥∥ = δ?ij , ∀ (υj , υi) ∈ E (19)

where δmax is the maximum sensing (or communication) range and δmin is the minimum safe distance. The
potential function Vij for each pair of E-sails is defined as follows:

1) As long as
∥∥ρi (0)− ρj (0)

∥∥ ≥ δmax, Vij is a differentiable nonnegative function of
∥∥ρi − ρj∥∥ such that

i) Vij is symmetric, that is, Vij = Vji, and ∂ Vij/∂ ρi = −∂ Vij/∂ ρj ;
ii) Vij arrives at its unique minimum when

∥∥ρi − ρj∥∥ is equal to the desired value δ?ij , with maxi,j δ
?
ij ≤

δmax;
iii) Vij → +∞ as

∥∥ρi − ρj∥∥→ δmin, with mini,j δ
?
ij ≥ δmin;

iv) ∂ Vij/∂
(∥∥ρi − ρj∥∥) = 03 if

∥∥ρi − ρj∥∥ ≥ δmax;
v) Vii ≡ c, where c ∈ R+ is an arbitrary constant.

2) When, instead,
∥∥ρi (0)− ρj (0)

∥∥ < δmax, Vij is defined as above with the only exception that condition

iv) is replaced by Vij → +∞ as
∥∥ρi − ρj∥∥→ δmax.

The connectivity maintenance mechanism of Vij guarantees the persistent existence of the initial con-
nectivity patterns of the topological graph G. If Ni ⊆ V denotes the neighbour set of the i-th spacecraft in
the relative motion system, then j ∈ Ni (t) when

∥∥ρi − ρj∥∥ ≤ δmax at time t, while j /∈ Ni (t) otherwise.
Note that the definition of Vij admits the incorporation of a new vertex υj into the neighbor set Ni when
j /∈ Ni (t−) and j ∈ Ni (t+), ∀ j ∈ V. Accordingly, the initial topological graph G (0) is always a subgraph
of G (t) for any t > 0, i.e., G (0) ⊆ G (t). In other words, the initial edge in the graph will never be lost when
using such an artificial potential function.

For illustrative purposes, two different artificial potential functions, V
(1)
ij and V

(2)
ij , are now compared.

Their derivatives are given by

∂ V
(1)
ij

∂ ρi
=



03 if
∥∥ρi − ρj∥∥ > δmax

ρi−ρj

‖ρi−ρj‖ cos
[

π
δmax−δ?ij

(∥∥ρi − ρj∥∥− δmax+δ
?
ij

2

)]
if δ?ij <

∥∥ρi − ρj∥∥ ≤ δmax

ρi−ρj

‖ρi−ρj‖
‖ρi−ρj‖−δ?ij
‖ρi−ρj‖−δmin

if δmin <
∥∥ρi − ρj∥∥ ≤ δ?ij

(20)

∂ V
(2)
ij

∂ ρi
=


ρi−ρj

‖ρi−ρj‖
‖ρi−ρj‖−δ?ij

(‖ρi−ρj‖−δmax)
2 if δ?ij <

∥∥ρi − ρj∥∥ ≤ δmax

ρi−ρj

‖ρi−ρj‖
‖ρi−ρj‖−δ?ij
‖ρi−ρj‖−δmin

if δmin <
∥∥ρi − ρj∥∥ ≤ δ?ij (21)

A possible way to guarantee that the initially existing network patterns never collapse for any t > 0, is

choosing the artificial potential function to coincide with V
(1)
ij if

∥∥ρi (0)− ρj (0)
∥∥ ≥ δmax and with V

(2)
ij

otherwise, as is suggested in Ref. [23]. An example of the artificial potential functions V
(1)
ij and V

(2)
ij is

shown in Fig. 3, in which the desired spacecraft relative distance is δ?ij = 80 km, the maximum sensing
radius is δmax = 100 km, and the minimum safe distance is δmin = 50 km.

3.2. Inclusion of E-sail actuator fault

Equation (3) provides a thrust model of an ideal E-sail, in which the attitude angles {θ, φ} and the
lightness number β are the control variables. By virtue of the previously defined artificial potential function
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Figure 3: Potential functions V
(1)
ij and V

(2)
ij with δmax = 100 km, δmin = 50 km, and δ?ij = 80 km.

Vij , the basic consensus-based algorithm [24] is given by

ui = M−10

2Mv ρ̇i + Mp ρi −
∑
j∈Ni

wij
(
ρ̇i − ρ̇j

)
−
∑
j∈Ni

∂ Vij
∂ ρi

 (22)

Using the candidate Lyapunov function [24]

V =
1

2

N∑
i=1

ρT

i ρi +
1

2

N∑
i=1

∑
j∈Ni

Vij (23)

The distributed control law represented by (22) has been proved well suited to the multi-agent system with
ideal actuators (without fault).

In practice, however, an E-sail-based spacecraft is subjected to unpredictable position errors when im-
mersed in a fluctuating solar wind environment [17], and it may also suffer from attitude control errors, which
would induce a discrepancy between the actual control command ũi and its required (nominal) value ui. In
that case, the actual output including the actuator fault of the i-th spacecraft can be modeled as [25, 26]

ũi = Hi ui + εi (24)

where the healthy indicator matrix Hi , diag (Hθi , Hφi , Hβi) ∈ (O3, I3] reflects the loss of actuator effec-
tiveness, and O3 ∈ R3×3 is the zero matrix. The unknown bias fault εi of the control input is defined as
εi , [εθi , εφi

, εβi
]
T
. The various types of actuator faults [26] are summarized in Table 1.

Without loss of generality, the effectiveness loss and bias fault will be both considered in the following
analysis, i.e. Hi ∈ (O3, I3) and εi 6= 03. Accordingly, Eq. (16) can be slightly modified to adapt the E-sail
relative dynamics in the presence of an actuator fault as

ρ̈i + 2Mv ρ̇i + Mp ρi = M0 Hi ui + M0 εi (25)

The uncertain part of the actuator fault in Eq. (25) is assumed to be bounded and such that ‖M0 εi‖ ≤ ξi1,
where ξi1 ∈ R+ is an unknown parameter.
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Table 1: Types of actuator faults

Type Hi εi
Healthy I3 03

Effectiveness loss (O3, I3) 03

Bias I3 6= 03

Effectiveness loss & bias (O3, I3) 6= 03

A distributed control strategy involving an adaptive parameter updating scheme will now be designed for
the relative motion system described by Eq. (25), in such a way that an autonomous collision-free consensus
is obtained even in the presence of an E-sail actuator fault. To proceed, first introduce the auxiliary variable

si , ρ̇i + σ
∑
j∈Ni

∂ Vij
∂ ρi

(26)

where σ ∈ R+, and the low-pass filter

εi χ̇i = −χi + σ
∑
j∈Ni

∂ Vij
∂ ρi

(27)

whose bandwidth is εi ∈ R+. Equation (27) suggests that if εi is a very small quantity, then σ
∑
j∈Ni

∂ Vij/∂ ρi '
χi. In addition, since

∥∥∥∑j∈Ni
∂ Vij/∂ ρi

∥∥∥ is bounded, it is reasonable to assume that
∥∥∥σ d

d t

(∑
j∈Ni

∂ Vij

∂ ρi

)∥∥∥ '
‖χ̇i‖ ≤ ξi2 when εi � 1, where ξi2 ∈ R+ is the unknown parameter. In principle, ξi2 may be found once the
potential function Vij is fixed, however elaborate mathematical manipulations are often necessary when the
expression of Vij is involved. Therefore, the unknown parameter ξi2 is obtained through a low-pass filter
rather than using an analytical approach.

The distributed fault-tolerant control protocol, used for an E-sail collision-free motion described by
Eq. (25), is proposed in the form

ui = (M0 Hi)−1
[
−

2∑
k=1

ξ̂ik sign (si)−Ki si − ‖2Mv ρ̇i + Mp ρi‖ sign (si)

]
(28)

where Ki ∈ R3×3 is a symmetric positive definite matrix, and ξ̂ik is the estimated value of ξik. Because ξ̂ik
is not known a priori, an adaptive parameter updating law is designed in the form

˙̂
ξik = −γ2ik ξ̂ik + ηik ‖si‖ (29)

γ̇ik = −κik γik (30)

where {ηik, κik} ∈ R+ with k = 1, 2. The control strategy is a consequence of the following theorem.
Theorem 1: Assume that the topological graph G characterizing the E-sail relative motion is ini-

tially connected, and that the relative distance between any pair of E-sails is beyond the safe region, i.e.,∥∥ρi(0)− ρj(0)
∥∥ > δmin. Using the control law given by Eqs. (26)–(30), the E-sail relative distances ulti-

mately converge to their local minima and any inter-sail collision is avoided as long as Ki − 1
4 I3 > O3, with

i = 1, . . . , N .
Proof: Consider the candidate Lyapunov function:

V = σ

N∑
i=1

∑
j∈Ni

Vij +

N∑
i=1

1

2
sT

i si +

N∑
i=1

2∑
k=1


(
ξik − ξ̂ik

)2
2 ηik

+
γ2ik ξ

2
ik

8κik ηik

 (31)
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Substituting Eqs. (25)–(30) into Eq. (31), the derivative of V is

V̇ = σ

N∑
i=1

∑
j∈Ni

V̇ij +

N∑
i=1

sT

i

[
−2Mv ρ̇i −Mp ρi + (M0 εi + di) + σ

d

d t

∑
j∈Ni

∂ Vij
∂ ρi

 (32)

−
2∑
k=1

ξ̂ik sign (si)−Ki si − ‖2Mv ρ̇i + Mp ρi‖ sign (si)

]

+

N∑
i=1

2∑
k=1

[
ξik − ξ̂ik
ηik

(
γ2ik ξ̂ik − ηik ‖si‖

)
− γ2ik ξ

2
ik

4 ηik

]

After some algebraic manipulations, it can be verified that

V̇ ≤ σ
N∑
i=1

∑
j∈Ni

V̇ij −
N∑
i=1

sT

i Ki si (33)

From Eq. (26), the following relationship holds

σ

N∑
i=1

∑
j∈Ni

V̇ij = σ

N∑
i=1

∑
j∈Ni

∂ Vij
∂ ρi

ρ̇i (34)

=

N∑
i=1

σ ∑
j∈Ni

∂ Vij
∂ ρi

si − σ ∑
j∈Ni

∂ Vij
∂ ρi


Let qi ,

∑
j∈Ni

∂ Vij

∂ ρi
, and observe that with the aid of Eq. (34), Eq. (33) can be rewritten in the form

V̇ ≤
N∑
i=1

[σ qT

i (si − σ qi)]−
N∑
i=1

sT

i Ki si (35)

= − [sT, qT]

 K −σ2 I3N

−σ2 I3N σ2 I3N

 [sT, qT]
T

where q , [qT
1 , . . . , q

T

N ]
T
, s , [sT

1 , . . . , s
T

N ]
T
, and K , diag (K1, . . . ,KN ). From Eq. (35), it follows that

V̇ ≤ 0 if Ki − 1
4 I3 > O3.

Note that V > 0 and V̇ ≤ 0, hence {Vij , si} ∈ L∞. Because Vij is bounded, a possible collision may occur
only when Vij → +∞. This means that the inter-sail collision avoidance is guaranteed, i.e.,

∥∥ρi − ρj∥∥ > δmin,

∀ t ≥ 0. It can also be verified that V̈ ∈ L∞ and V̇ is uniformly continuous. From Barbalat’s lemma [27], we
get V̇ → 0 as t→ +∞, and hence, according to Eq. (35), si → 03 and qi → 03. From the definitions of qi
and Vij , it can be concluded that the potential function Vij converges to its local minimum, which amounts
to stating that

∥∥ρi − ρj∥∥→ δ?ij . 2

4. Mission application

A mission scenario consisting of four E-sail-based spacecraft (i.e. N = 4), moving around a reference
AL1 point placed at x0 = 0.966, is now analyzed to illustrate the performance of the proposed distributed
fault-tolerant control system. In particular, according to Eq. (6) the lightness number required to maintain
the reference AL1 point is β0 = 0.1. The potential functions used for connectivity maintenance and collision
avoidance are described by Eqs. (20)–(21) and reported in Fig. 3. The desired relative distance among the
E-sails is δ?ij = 80 km, the maximum sensing radius of each E-sail is δmax = 100 km, and the minimum
safe distance is δmin = 50 km. The initial relative positions of the four E-sails with respect to the reference
AL1 point are ρ1 (0) = [10, 35, 37]

T
km, ρ2 (0) = [−10, −36, 38]

T
km, ρ3 (0) = [−10, 37, −37]

T
km,

10



ρ4 (0) = [10, −36, −35]
T

km, and the initial relative velocities are assumed to be zero, i.e. ρ̇i (0) = 03.
It can be verified that, with these initial conditions, the initial edge set of the E-sail relative motion is
E (0) = {(υ1, υ2) , (υ1, υ3) , (υ2, υ4) , (υ3, υ4)}, which implies a connected communication topology.

In the numerical simulations, the dimensionless parameter in Eq. (26) is chosen as σ = 10−4, and the
feedback gain matrix in Eq. (28) is Ki = 100 I3. The parameters ηik and κik in Eqs. (29)–(30) are ηik = 0.8

and κik = 1, while the initial estimations of ξ̂ik and γik are ξ̂ik (0) = 10−6 and γik (0) = 10−3, respectively.
Assume that only 60% of the required control input can be provided by the actuator of each spacecraft, that
is, the healthy indicator matrix Hi = 0.6 I3, and the actuator bias fault εi randomly fluctuates within a small

cubic space, i.e.
{
εi | εi ∈

[
−10−3, 10−3

]2
deg×

[
−10−5, 10−5

]}
. In addition, all external perturbations

such as Earth’s oblateness and lunar attraction are not taken into account, because the magnitude of their
induced acceleration is of fourth or higher order.

The instantaneous positions at t = {0; 6} day of the four E-sails are illustrated in Fig. 4, showing that
the developed control law given by Eqs. (26)–(30) allows the four E-sails to be perfectly synchronized with
negligible final errors. When there exists a communication link (solid line in Fig. 4) between the i-th and
j-th E-sail, i.e., ∀ (υj , υi) ∈ E , the time histories of the relative distances are given in Fig. 5, in which the
relative distance

∥∥ρi − ρj∥∥ successfully converges to the desired values δ?ij within about 6 days. By contrast,
neither a communication link exists (dashed line in Fig. 4) between the 1-st and 4-th E-sail nor the 2-nd
and 3-rd E-sail during the whole process, i.e. (υ1, υ4) /∈ E (t)∩ (υ2, υ3) /∈ E (t), ∀ t > 0, therefore, the relative
distances ‖ρ1 − ρ4‖ and ‖ρ2 − ρ3‖ finally tend to some possible values within the range

(
δmax, 2 δ?ij

)
, as is

confirmed by Fig. 6. In fact, the lower bound δmax and upper bound 2 δ?ij is naturally determined by the
artificial potential function Vij designed in Eqs. (20)–(21). Fig. 7 reports the corresponding E-sail velocities
ρ̇i between any pair of E-sails for a time span of 6 days, implying that all of the E-sail velocities gradually
tend to zero at the same speed. Note that the initial connectivity patten is well maintained, and no edge
is lost during the transition phase. The control input ui of each E-sail is illustrated in Fig. 8. Despite
the intrinsic chattering phenomenon due to the variable structure control, the consensus-based distributed
architecture is able to achieve a collision-free coordination for the E-sail relative motion in the presence of
actuator errors.
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Figure 4: Initial and final configurations of four E-sails.

Because the fault-tolerant control system in Eq. (28) is distributed and behavior-based, a stable E-sail
relative motion with a tetrahedron configuration is expected to turn out in a self-organized way. In particular,
when the number of E-sail increases, different types of spatial configurations such as Bravais lattices are
likely to occur, as is discussed in Ref. [28].

For comparison, consider now the ideal case in which the actuator of an E-sail-based spacecraft is fully
functional. In this case, the healthy indicator matrix Hi = I3, and the bias fault ε = 03, see Table 1.
The control law represented by Eq. (22) for the ideal case is thus accordance with that of the degenerated
form in the presence of actuator fault, see Eq. (28). The relative distances between each pair of E-sails are
illustrated in Fig. 9, while the required control input ui is shown in Fig. 10. In contrast with the results
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Figure 5: Relative distances with actuator fault for (υj , υi) ∈ E (t).
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Figure 6: Relative distances with actuator fault for (υj , υi) /∈ E (t).

given by Figs. 5–8, the control law given by Eq. (22) with an ideal actuator allows a faster convergence rate
and negligible steady errors.
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Figure 7: Velocity variations of a four-sail formation.

5. Conclusions

In this paper, the problem of E-sail relative motion around artificial (collinear) Lagrange points has
been investigated. A distributed fault-tolerant control scheme, relying on a consensus protocol that exploits
local measurable information only, has been developed to account for unpredictable E-sail actuator fault.
In particular, the artificial potential functions comprised of a connectivity maintenance mechanism have
been designed in a proper way, such that the E-sail relative distances converge to their desired values, while
the inter-sail collision avoidance is guaranteed. The well-defined potential functions allow a time-varying
information exchange topology that is uniquely determined by the relative distances among the E-sails.

Illustrative examples have shown that the fault-tolerant control strategy enables consensus for E-sail
relative motion around artificial Lagrange points, despite of a more oscillating behavior compared with that
in the ideal case. The proposed method facilitates the design of future advanced formation missions that
involve, for instance, a swarm of E-sails in the presence of a strongly fluctuating solar wind environment.

In theory, some unfavorable circumstances could arise, for example, when one E-sail is just behind
another along the solar wind propagation direction. In that case, the rear E-sail would be in the plasma
wake of the other one, and the thrust necessary for relative motion control would be unavailable. That
kind of problem, however, has not been considered in this paper, since such a situation might occur along
very limited time intervals only. A natural extension of this work is the study of consensus protocols in the
presence of more practical constraints, when very-large-distance cluster missions are considered. In those
cases, other problems such as time delays should be taken into account by suitably designing the overall
control scheme.
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Figure 8: Control input ui with actuator fault.
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