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Abstract. The role of magnetic reconnection on the evolution of the
Kelvin–Helmholtz instability is investigated in a plasma configuration with a
velocity shear field. It is shown that the rate at which the large-scale dynamics
drives the formation of steep current sheets, leading to the onset of secondary
magnetic reconnection instabilities, and the rate at which magnetic reconnection
occurs compete in shaping the final state of the plasma configuration. These
conclusions are reached within a two-fluid plasma description on the basis of
a series of two-dimensional numerical simulations. Special attention is given
to the role of the Hall term. In these simulations, the boundary conditions, the
symmetry of the initial configuration and the simulation box size have been
optimized in order not to affect the evolution of the system artificially.
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1. Introduction

Magnetic field line reconnection is a fundamental physical process in a magnetized plasma
and is able to reorganize the large-scale topology of the magnetic field and to affect the global
plasma energy balance of the system at the same time. Magnetic reconnection is driven by large-
scale plasma current inhomogeneities and plasma motions but requires that small-scale effects,
as compared to the large-scale magnetohydrodynamics (MHDs), allow for a local decoupling
between the plasma and the magnetic field evolution. Depending on the plasma regime under
consideration these ‘micro-physics’ effects may include a non-vanishing plasma resistivity,
kinetic resonances or, as is the case for the two-fluid model description adopted in this paper,
electron inertia terms in the generalized Ohm’s law. The role of these micro-physics processes,
together with the large-scale MHD driving mechanisms, in determining the rate of magnetic
reconnection is of paramount importance. In this perspective, the occurrence of ‘fast’ magnetic
field line reconnection in low collisionality or collisionless plasmas is of special importance
as it is thought to develop on timescales that do not exceed, by large factors, the dynamical
timescales of the plasma configuration as determined within the ideal MHD description.

Fast magnetic reconnection [1]–[6] is expected to occur when the large-scale plasma
dynamics leads to the formation of extremely narrow current sheets. When their width becomes
comparable to the ion skin depth di ≡ c/ωpi, with ωpi the ion plasma frequency, ions and
electrons need no longer have almost equal fluid velocities, as is the case in the MHD plasma
description. In particular, on such spatial scales ions can decouple their motion from the
evolution of the magnetic field, while electrons remain tied to the magnetic field until spatial
scales as small as the electron skin depth de are reached. Here, as mentioned above, we have
assumed that the relevant microphysics effect in the generalized Ohm’s law that breaks the
coupling between the electron and the magnetic field evolution is given by electron inertia
so that magnetic reconnection takes place only when the de-scale (de ≡ c/ωpe) is reached. In
plasma configurations with not too small values of the β parameter, defined as the ratio between
the plasma and the magnetic pressure, the wider ion decoupling region allows the ion inflow
velocity at the reconnection point to be comparable with the local Alfvén velocity, and thus
allows magnetic reconnection to occur on faster timescales [1]–[7] than predicted by a single
fluid description.

Magnetic reconnection is usually studied either as an initial value problem, in which case
a specific large-scale magnetic configuration (an ideal MHD equilibrium) with large current
gradients is considered such that a magnetic reconnection instability develops spontaneously, or
as a forced problem where a specific velocity field is imposed from the boundary on a magnetic
configuration with a sheared magnetic field. These approaches separate somewhat artificially
the reconnection process from the global evolution of the system as a whole. On the contrary,
here we are interested in studying the feedback between large- and small-scale dynamics self-
consistently. With this aim, we look for large-scale structures that are not prescribed a priori
and that develop on a timescale comparable with the small-scale magnetic field evolution. In
this case magnetic reconnection occurs naturally as a consequence of the large-scale evolution
of the system and at the same time can affect the system back and can determine its long-term
evolution [8].

The large-scale evolution of interest can be provided by the development of an ideal MHD
instability. An important example is given by the nonlinear evolution of Kelvin–Helmholtz
(K–H) vortices that form along the flank of the Earth’s magnetosphere at low latitude [9]–[12].

New Journal of Physics 11 (2009) 063008 (http://www.njp.org/)

http://www.njp.org/


3

The study of the role of magnetic reconnection on the evolution of the K–H instability is in fact
the central theme of the present paper.

The evolution of these large-scale structures is influenced by magnetic reconnection that
occurs locally both inside and between these vortices. In particular, we are interested in studying
the competition between the process of vortex pairing (which represents the ‘natural’ 2D
hydrodynamic [13, 14] and MHD [15]–[17] evolution of K–H vortices) and the onset of the
secondary magnetic field line reconnection instability driven by the current inhomogeneities
produced by the vortex winding and pairing.

The linear evolution of a large-scale K–H instability and the early evolution of the vortices
is essentially an MHD process and depends only on the initial velocity and magnetic field,
regardless of the specific small-scale physics [21]–[24].

If the value of the in-plane magnetic field parallel to the initial flow is low enough, the
K–H instability can grow during its linear phase [9] and develops into vortices that advect the
magnetic field and thus stretch and roll up the magnetic field lines [9], [18]–[21]. This large-
scale evolution is able to build up favorable conditions for reconnection to occur producing
inversion layers of the in-plane magnetic field both inside and between the vortices. Thus
magnetic reconnection acts as a secondary instability on the primary K–H instability. Since
the plasma dynamics is essentially driven by the vortex motion, the reconnection events that
are produced in these layers are usually denoted as vortex induced reconnection (VIR) [12],
[21]–[23], [25]. Magnetic reconnection allows the topology of the magnetic field to change,
which is a necessary condition for plasma mixing to occur and in this way affects the evolution
of the vortices themselves.

The role of the magnetic field on vortex dynamics has been studied numerically mostly
in the limit of one vortex only, the largest one contained in the simulation box. It has been
shown that, even if the magnetic field is weak and unable to prevent the formation of a rolled
up vortex, nevertheless the VIR process eventually leads to vortex disruption [22, 23, 26, 27].
Actually, in a homogeneous density configuration, three different regimes were found [18]–[21].
In the ‘strong field’ regime (2< MA,‖ < 4, with MA,‖ the in-plane Alfvénic Mach number) the
system is nonlinearly stable and the K–H instability cannot develop into a rolled up vortex. In the
‘weak field’ or ‘disruptive’ regime (4< MA,‖ < 20), the K–H instability develops into a rolled
up vortex that is subsequently disrupted by VIR. This disruptive process is believed to be one
of the causes of the formation of a mixing layer in the downstream region of the magnetotail.
In the ‘very weak field’ or ‘dissipative’ regime (MA,‖ > 20–30), the behavior of the vortex is
essentially hydrodynamic, the presence of the in-plane magnetic field and reconnection events
can only enhance dissipation.

The importance of fast magnetic reconnection during the development of K–H vortices
has been shown in [8, 28]. Although large-scale (as compared to the ion skin depth di) vortices
are essentially MHD structures, their motion is not only able to create favorable conditions for
reconnection to act, i.e. to generate magnetic inversion layers, but it is also able to build up
sub-di current sheets, within which processes characteristic of two-fluid dynamics can develop.
When such sub-di current layers are created, fast magnetic reconnection can occur [8, 28]. How
fast the reconnection process develops is of crucial importance for the long-term evolution of the
system: in order to change the global magnetic field topology reconnection must develop within
a ‘time window’ set by the large-scale motion, i.e. before the large-scale motion destroys the
favorable conditions that it has just created [8]. This result provides a clear cut example of the
feedback between large- and small-scale physics, as the necessary conditions for reconnection to
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occur are produced by the large-scale motion of the vortices, but the specific physical processes
that make reconnection act faster or slower determine eventually the evolution of the entire
system and the final magnetic field structure.

Rolled up vortices are not only needed for VIR to occur, but also necessary for the
development of other kinds of secondary hydrodynamic instabilities which can grow along
the vortex arms. In the presence of a density inhomogeneity the centrifugal acceleration
produced by the vortex motion can give rise to Rayleigh–Taylor (R–T) type instabilities. These
instabilities were studied in [29, 30] in a strictly perpendicular magnetic field configuration
with a density inhomogeneity along the direction of the velocity shear, chosen so as to exclude
phenomena such as VIR that are related to the in-plane magnetic field. How quickly secondary
instabilities, such as VIR or R–T instabilities, will grow is crucial since they may destroy the
structure of the vortices before they coalesce and, referring e.g. to the dynamics at the flank of
the Earth’s magnetosphere, may be the most important factor in the increase of the width of the
mixing layer [30]. Rolled up vortices, generated by the K–H instability, are the necessary seeds
for plasma transport in this region. During their nonlinear evolution three different processes
can compete in the formation of a mixing layer: the vortex pairing process [15]–[17], the vortex
disruption caused by VIR [12], [21]–[23], [25] and the vortex disruption caused by secondary
hydrodynamic instabilities, such as for example the R–T instability [29, 30].

In the present paper, we study the competition between these processes during the evolution
of five ‘unequal’ vortices. This configuration is less idealized than the one considered in
other multiple-vortex studies [8, 28], where only two ‘equal’ vortices were considered. This
new choice allows us to investigate the competition between the different processes during
subsequent pairing events that involve unequal vortices. This more general setting makes it
possible to prevent a too constrained choice of the initial configuration influencing the evolution
of the system. In order to emphasize the role of VIR in the present paper we consider a
homogeneous density plasma.

We show that, while in the presence of a sufficiently large density gradient [30] the
secondary R–T instability would be able to destroy the structure of the single vortices and
therefore suppress the pairing mechanism, the VIR instability in the ‘disruptive’ regime does
not destroy the vortices before they coalesce. Furthermore, we show that if the in-plane
equilibrium magnetic field has no inversion points, VIR acts only during the pairing process, in
agreement with multiple vortex study of [21]. Indeed, instead of disrupting a single K–H vortex,
reconnection occurs mainly as a consequence of the pairing process. This indicates the necessity
of considering multiple vortex configurations in the investigations of the development of VIR.
Finally, we show that the physical phenomena that occur at small spatial scales influence the
final magnetic topology.

We remark that some features of our results are at variance with those recently presented
in [31] where it is stated that VIR is able to suppress the pairing process and to disrupt the
vortices. The results in [31] were obtained in the limit of a vanishing perpendicular (out of the
plane) magnetic field (i.e. in the limit of vanishing guide field, in the terminology of magnetic
reconnection) within a collisionless two-fluid description. Although in a fluid framework this
limit is to be considered unphysical, we performed a similar simulation and did not observe any
disruption, while the pairing process remained effective. This discrepancy appears to be due to
the special initial conditions adopted in [31] that takes the initial amplitude of the fast growing
mode (FGM, characterized by the biggest linear growth rate) much bigger than the amplitudes
of the other modes.
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In order to explore the whole ‘disruptive’ (weak field) regime, in the numerical simulations
reported here we consider three different values of the Mach number MA,‖ = 20.0, 10.0 and 5.0.
These choices allow the K–H instability to develop into rolled up vortices. In order to study the
feedback between the large- and small-scale dynamics, we exploit the fact that the onset of the
K–H instability and the subsequent evolution of the vortices are driven by parameters, such as
the in-plane Alfvèn Mach number that refer to the large-scale plasma structure. In particular the
vortices become more rolled up with increasing Mach number, i.e. keeping the velocity field
fixed, for weaker in-plane magnetic fields. We show that, varying this parameter, we can control
whether the large-scale motion during its evolution is able or not to build up small spatial scales
during its evolution. If the in-plane magnetic tension is too high, the large-scale evolution of
the vortices is not able to develop such small scales and the system exhibits essentially MHD
behavior during all its evolution.

2. Model plasma configuration and governing equations

We start from a two-fluid description of the plasma. Since we assume quasineutrality we
can describe the plasma with the following set of two-fluid equations which we write in
dimensionless conservative form. The characteristic dimensional quantities are the mass density
nm i, the Alfvén velocity vA = (B2/4πnim i)

1/2 and the ion skin depth di ≡ c/ωpi, thus d2
e =

me/m i. By summing the electron and proton continuity equations we obtain

∂n/∂t + ∇ · (nU)= 0 (1)

with n = ni = ne the plasma density, U = (ui + d2
e ue) the plasma fluid velocity and ui,e the

ion and electron fluid velocities, respectively. In the low frequency range of interest the
displacement current can be disregarded, thus J = nui − nue = ∇ × B. By summing the electron
and proton equations of motion we obtain:

∂(nU)/∂t + ∇ ·

[
n(uiui + d2

e ueue)+ PT
¯̄I − BB)

]
(1 + d2

e )
−1

= 0, (2)

with PT = Pi + Pe + B2/2 the total pressure. We consider the isothermal closure

∂Pi,e/∂t + ∇ · (Pi,eU)= 0 thus P = Pi + Pe = nTi + nTe. (3)

By properly subtracting the electron and proton equations of motion we obtain a generalized
Ohm’s law [32](

1 + d2
e ∇

2
)

E = −ue × B − d2
e {ui × B + (1/n)∇ · [n (uiui − ueue)]} , (4)

where the term 1/n in front of ∇
2E is taken to be constant. Combined with the Faraday equation

∂B/∂t = −∇ × E,

Equation (4) describes the evolution of the magnetic field B. The term ∇ Pi,e/n in the generalized
Ohm’s law has been omitted since, if we assume a polytropic equation of state, it does not
contribute to ∇ × E.

We consider a 2D description of the plasma configuration, with the inhomogeneity
direction along x , the homogeneity direction along y and the ignorable direction along z. The
sheared velocity field and the in-plane magnetic field are directed along the y-direction, as
shown in figure 1. The magnetic field has an out-of-plane component along z. This choice is
justified since the evolution of K–H instability in the equatorial plane is only weakly affected

New Journal of Physics 11 (2009) 063008 (http://www.njp.org/)

http://www.njp.org/


6

Figure 1. Schematic view of the plasma configuration at t = 0. In this
homogeneous density configuration the solar wind and the magnetospheric
plasmas are represented using red and blue passive tracers with color intensity
proportional to the value of the velocity field represented by the black and red
arrows. The field lines of the magnetic field in the plane (initially parallel to
the flow along the y-axis) are drawn in white. The same color coding is used in
subsequent figures.

by a slow equilibrium variation along the z-direction [25]. Since we consider an initial magnetic
field with no inversion points, our equilibrium configuration is unstable only against the K–H
instability. Other kinds of instabilities (magnetic reconnection and/or the R–T instability) can
develop as secondary instabilities only during the nonlinear evolution of the primary K–H.
We consider an initial large scale, sheared velocity field given by

Ueq = (U0/2) tanh [(x − L x/2)/Lu] ŷ, (5)

where L x is the system dimension along the x-direction and Lu is the half width of the velocity
shear. As already stated, since we are primarily interested in VIR, we consider a homogeneous
density field in order to eliminate other types of secondary instabilities [29, 30]. The equilibrium
magnetic field at t = 0 is homogeneous and is taken of the form

Beq(x, y)= Beq sinα ey + Beq cosα ez, (6)

where Beq = 1.0. Note that the total pressure PT is spatially uniform at t = 0 and that the
magnetic field has no inversion points.

The values of the three dimensionless parameters, the sound and Alfvén Mach numbers, are
taken as Ms = U0/Cs = 1.0, MA,⊥ = U0/UA,⊥ = 1/cosα ' 1.0 and MA,‖ = U0/UA,‖ = 1/sinα,
where 5.06 MA,‖ 6 20.0, with U0 = 1.0, UA,⊥ and UA,‖ the z- and y-components of the
equilibrium Alfvén velocity, respectively. The sound and Alfvén Mach numbers Ms = U0/Cs,
MA,⊥ = U0/UA,⊥ control the degree of plasma compressibility, while MA,‖ = U0/UA,‖ is a
measure of the importance of the magnetic field lines tension in the x, y-plane and thus
influences both the linear and nonlinear development of the K–H instability, i.e. how much the
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K–H vortices are rolled up. We consider a configuration with a value of the plasma β parameter
(defined as the ratio of the plasma pressure over the total magnetic field pressure) of order unity.

3. Numerical procedures, simulation box and boundary conditions

The equations derived in section 2 are integrated by means of a numerical code. This code is
based on a standard third-order Adam–Bashforth method for temporal discretization. It uses
fast Fourier transform routines [33] for spatial derivative along the periodic y-direction and
sixth-order compact finite difference scheme with spectral like resolution for spatial derivative
along the inhomogeneous x-direction [34]. Numerical stability is achieved by means of filters,
a spectral filter along the periodic y-direction and a sixth-order spectral-like filtering scheme
along the inhomogeneous x-direction [34]. These choices, combined with zero resistivity and
viscosity in the model equations, allow the large-scale K–H vortices to follow an essentially
inviscid evolution and the small-scale magnetic reconnection to be driven essentially by the
finite electron mass.

Since we are interested in large-scale K–H vortices, we take Lu = 3di. This choice
corresponds to a FGM wavelength roughly 5πLu = 15πdi and thus to large scale, nearly MHD
vortices [22, 23].

The box length L y = 60π in the periodic y-direction is chosen in order to allow the K–H
instability to form five well-developed nonlinear vortices and thus to study the pairing process
between these vortices under more general conditions than the ones investigated in [8, 28]. Once
the value of L y has set the size of the final paired vortex, L x is chosen so as to be compatible
with this size. We take L x = 120.

Since we want to resolve the de-scale, we take the number of grid points along the
x-direction N x = 1024, while along the y-direction N y = 1024. In the simulations, we have
adopted a reduced electron–ion mass ratio me/m i = 1/64.

Special care is devoted to boundary conditions. Although the boundary conditions
along the periodic y-direction are straightforward (periodic boundary conditions), along the
inhomogeneous x-direction we need transparent boundary conditions in order to let sonic
and Alfvénic perturbations, generated by the dynamics induced by the K–H instability,
leave the numerical domain. In our system, K–H vortices are essentially large-scale MHD
structures [21]–[23], [25] even when the Hall term and electron inertia are included in
equation (4). Thus we assume that the system at the x-boundary, far away from the central
region, where small-scale dynamics develops, can be described using simplified ideal MHD
equations instead of two-fluid equations. Boundary conditions are thus obtained from the ideal
MHD set of hyperbolic equations for which it is possible to define the projected characteristics
along the x-direction [35]–[37], while it would not be possible instead for the two-fluid set of
equations. Once we have defined projected characteristics we know exactly which perturbations
are leaving or entering the simulation domain and thus we can build up transparent boundary
conditions. A detailed derivation of the boundary condition used are given in appendix A. We
stress that the non-reflecting boundary conditions adopted are a key feature of our numerical
code. Without these conditions we would not be able to study both the linear and the nonlinear
evolution of K–H instability in the presence of an in-plane magnetic field.
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4. Simulation results

Since we are interested in the weak field regime, we consider the following three values of
the in-plane Alfvén Mach number MA,‖ = 20.0, 10.0 and 5.0. These choices allow the K–H
instability to develop into rolled up vortices. As mentioned before, the higher the value of the
Alfvèn Mach number, the more rolled up are the vortices.

4.1. Weak magnetic tension regime

This regime, where MA,‖ = 20.0, has been studied in [8, 28] using a simulation box twice as
long as the wavelength of the FGM of the K–H instability. This choice permits the development
of two highly rolled up vortices and thus is suitable for investigating the competition between
the pairing process and the vortex disruption caused by VIR. Here, we recall the main results
presented in [8, 28] where the same equilibrium configuration and governing equations given in
section 2 were considered.

Firstly, it was shown that under these conditions the VIR process is not capable of
disrupting the vortex structures before they coalesce and that magnetic reconnection occurs
mainly during the process of vortex pairing. Secondly, it was shown that the motion of the large-
scale vortices, which are essentially MHD structures, is capable of creating favorable conditions
for reconnection to act and in particular to build up sub-di current sheets within which two-fluid
effects became effective. In these regions, ions decouple their motion from the evolution of the
magnetic field, while electrons decouple from the magnetic field only inside a smaller scale layer
determined by electron inertia. Furthermore, the decoupling of the ion and electron dynamics
allows the ion inflow velocity, at the reconnection point, to be comparable with the local Alfvén
velocity. As a result, fast magnetic reconnection [1]–[7] develops on timescales comparable to
the plasma dynamical timescale determined within the ideal MHD description.

This small-scale evolution is not simply superposed to the large-scale evolution but
influences and drives the large-scale dynamics. The large-scale motion creates, and can
subsequently destroy, the favorable condition for reconnection to occur. If magnetic
reconnection develops ‘fast’ enough, it is able to take advantage of this finite ‘time window’ and
to change the global magnetic topology. When magnetic reconnection starts to act, the evolution
of the whole system depends on the specific physical phenomena that occur at small spatial
scales and control how ‘fast’ reconnection develops. In particular fast magnetic reconnection is
able to rearrange the global magnetic topology and lets large-scale portions of the plasma enter
previously unconnected plasma regions. This interplay between different phenomena provides
a clear cut example of the feedback between the large-scale MHD system evolution and the
small-scale physics (di-scale and de-scale). Furthermore, this multiple scale behavior of K–H
vortices leads to the formation of coherent magnetic structures (magnetic islands) much larger
than the electron inertial scale layer but much smaller than the large-scale size of the vortices.

In the present paper, we consider a box setup that allows the K–H instability to develop
into more than two rolled up vortices. Thus we can observe several pairing events in the
results of the simulations described below. In figures 2 and 3, we show the magnetic field
lines projected on the (x, y)-plane and the red–blue colored plasma passive tracer, advected
by the fluid velocity field. As previously stated, these large-scale vortices are essentially MHD
structures and the magnetic field is essentially advected by the fluid velocity field, except locally
in the central region where magnetic reconnection and two-fluid dynamics can occur. This fact
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Figure 2. Plasma passive tracer and magnetic field lines in the (x, y)-plane at
t = 335, 380 (left column, top to bottom), and t = 395, 410 (right column, top to
bottom), for MA,‖ = 20.0.

is supported by the good correlation between the plasma and the magnetic structures (figure 2).
At t = 335 we see (figure 2, upper left) the vortices generated by the K–H instability. Although
the mode number corresponding to the FGM is m = 4, the competition between the m = 3, 4, 5
modes generates five unequal vortices. The nearly frozen in magnetic lines are rolled up and
compressed by the motion of the vortices. We see the formation of a central ‘ribbon’ [8] of
nearly parallel, compressed magnetic lines, which separates the blue and red plasma regions.
The following frames show that the pairing process remains effective. Gradually the five unequal
vortices merge and form one big vortex (figure 3, right-bottom), the biggest one allowed within
the simulation box. The vortex pairing process is clearly seen also in figure 4, where we plot the
time evolution of the amplitude of the first six wave number modes of the plasma velocity field
along x .

At t = 335, we observe the first pairing process between two adjacent vortices, located at
x = 60, y = 70 (figure 2, upper-left). Although the two pairing vortices are not highly rolled
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Figure 3. Plasma passive tracer and magnetic field lines in the (x, y)-plane at
t = 430, 450 (left column), and t = 550, 690 (right column), for MA,‖ = 20.0.

up, the pairing process is effective and the magnetic field lines are compressed and folded
by the vortex and merging motion. Thus magnetic reconnection can act during this process
[8, 28]. In particular reconnection occurs at x = 62, y = 65, in the region between the two
pairing vortices. Since these vortices are not highly rolled up, the magnetic field lines are not
strongly compressed, thus sub-di current sheets are not formed. In fact we do not observe any
fast magnetic reconnection events during the merging. However, magnetic reconnection is able
to inject a red plasma blob into the blue region. This process is clearly visible at t = 380, x = 65,
y = 70 (figure 2, left-bottom), when the two vortices have formed a new, double sized, paired
vortex. This is the first reconnection event observed in our simulation. It is important to note
that, at this time, magnetic reconnection has not yet occurred inside the two main highly rolled
up vortices, located at x = 60, y = 20 and x = 60, y = 160. Reconnection will occur there only
during subsequent pairing processes, when the favorable conditions for reconnection will be
generated not only by the vortex motion but also by the merging process. At t = 380, we observe
the formation of a X-point at x = 60, y = 142.5, during the second pairing process between the
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Figure 4. Time evolution of the first six Fourier components of the plasma
velocity along x , averaged along x , for MA,‖ = 20.0, m = 1 continuous, m = 2
dashed, m = 3 dash-dotted, m = 4 (FGM) dash-three dotted, m = 5 thin dashed,
m = 6 thin continuous. The m = 1, 2, 3 and 4 lines have been drawn thicker in
order to emphasize the pairing process.

two upper vortices. These merging vortices are highly rolled up, thus the magnetic field lines
have been more effectively twisted and compressed by the motion of the vortices and sub-
di current sheets are formed in the region between the two merging vortices, corresponding
to a local magnetic inversion line (figure 5, left-top). It is important to note that magnetic
reconnection occurs in the region between the vortices, i.e. where field lines are not only twisted
and compressed by the single vortex rolling up, but also by the pairing process. Since the two
vortices are unequal, a sub-di sheet is formed only on the left side of the central ribbon, thus we
observe fast magnetic reconnection only at this position. We observe an inflow plasma velocity
at the X -point that is approximately one tenth of the local Alfvén velocity Ua in the (x, y)-
plane, as expected in the case of fast magnetic reconnection [2]. We thus infer that the value
of the reconnection growth rate is γ ∼ 0.1 Ua/L ∼ 0.15, where L is the shear length of the
in-plane magnetic field at the X -point. This inferred value is compatible with the growth rate
γ ∼ d1ψ/dt observed in the simulation, where 1ψ is the difference between the value of the
magnetic flux function at the X -point and at the O-point, located at x ' 60, y ' 155.

The absolute maximum value of the current density in this sheet is in normalized units
∼1.8 and the width of the sheet is approximately 0.5di. Furthermore, the value of the in-plane
magnetic field inside the current sheet is strongly enhanced by the compressional motion of
the vortices. In particular, the value of the y-component (essentially the in-plane component,
inverted across the current sheet) and the value of the z-component (the guide field in the
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Figure 5. Left frame: the y-component (top) and the z-component (bottom)
of the magnetic field, plotted along the x-direction at y = 142.5, t = 385, for
MA,‖ = 20.0. Central frame: ion decoupling region (Di 6= 0) and magnetic field
lines in the region between the two pairing vortices at t = 385, x = 60, y = 142.
Right frame: electron (top) and ion (bottom) decoupling region (De 6= 0 and
Di 6= 0, respectively) along the x-direction at y = 142.5, t = 385.

terminology of magnetic reconnection) are comparable (figure 5, left) while initially the guide
to in-plane magnetic field ratio was more than a factor of ten. Thus, in this region, we expect
the Hall term to be comparable to the U × B term in Ohm’s law. In order to underline its
role, we define two quantities, Di = |{U × B + E}z| and De = |{ue × B + E}z|, which measure,
respectively, the ion and the electron ‘decoupling’ from the magnetic field. We show a wide
ion decoupling region, where Di 6= 0 (figure 5, central). This region extends across the X -point
over a few di lengths. In the right frames of the same figure, we plot a section at y = 142.5 of
Di (bottom) and of De (top) at t = 385 and show two separate decoupling regions [2], the ‘wider’
ion decoupling region where Di 6= 0 and De ' 0 and the inner, thinner electron decoupling
region where De 6= 0 of width of the order of a few de. Inside the ion decoupling region, of
width roughly equal to 1.5di, the magnetic field is essentially frozen in the electron motion but
the MHD frozen in law is not satisfied and the two terms U × B and J × B have approximately
the same absolute value. Inside the thinner electron region also the electrons are decoupled from
the magnetic field and magnetic reconnection can take place.

These two separate regions provide an important signature of fast magnetic
reconnection [2]. On the other hand, our results do not provide any clear evidence of the
so-called ‘Hall quadrupole’ [3], [38]–[42] in the spatial structure of Bz near the X -point. This
is most likely caused by the large-plasma compression (β ∼ 1) [6] and by the large variation
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of Bz [6, 26] which is compressed by the motion of the vortices. This result is important since
the ‘Hall quadrupole’ is often considered as the ‘fast reconnection signature’ to be retrieved in
the satellite data analysis. This signature is visible only in simplified magnetic configurations
and in the case of small plasma compression [6]. Magnetic reconnection at the X-point at
x = 60, y = 142.5 acts fast enough [8] to open the central ribbon (figure 2, right-upper).
A new ribbon is formed which no longer separates the blue and red plasma regions. In fact
we observe an ear-shaped blue blob injected into the red region at x = 55, y = 150.

At t = 410 the two lower vortices start to interact (the vortex located at x = 55, y = 70
is the product of the first pairing process). This is the third pairing process observed (figure 2,
right-bottom). At the same time we observe the formation of a new X -point at x = 65, y = 43,
during this process. Once more, the motion of the two unequal vortices is able to compress
the magnetic field lines and form a sub-di current sheet, corresponding to a local magnetic
inversion line. Also in this case the formation of two different decoupling regions indicates
that fast magnetic reconnection acts at this X -point. The intensity and width of this current
sheet, the ratio between the inflow velocity and the local Alfvén velocity in the (x, y)-plane,
are comparable with those observed at t = 380, x = 60, y = 142.5. As in the case of the second
pairing process, fast magnetic reconnection is able to open the ribbon. A new ribbon is thus
formed which no longer separates blue and red plasma regions. We observe the injection of a
red, ear-shaped blob into the blue region at x = 65, y = 30 (figure 3 upper-left). During this
third pairing process we observe the formation of two X -points inside the current sheet and thus
the generation of a magnetic island with a typical size of few di [28] at x = 62, y = 30. This
coherent magnetic structure is further advected by the fluid velocity but maintains its ‘identity’
for a long time interval, compared with its formation time.

At t = 450 the second and third pairing processes have just been completed. In figure 3
(right-upper), we show two well formed vortices which start to interact and finally merge
(figure 3 right-bottom).

4.1.1. Comparison with single vortex simulations. We can compare the previous results with
those that we obtain by simulating the evolution of the K–H instability inside a simulation
box with L y = λFGM = 15π . In this case the FGM corresponds to m = 1 and thus the K–H
instability forms only one vortex, the largest one contained in the simulations box. The first
reconnection events occur at t = 400, x = 23, y = 31 and x = 34, y = 15 (figure 6, left). At
this time the m = 1 mode has just begun to decrease its amplitude, due to nonlinear saturation,
which is near its local minimum value (figure 6, right). Subsequently the VIR process leads to
vortex disruption (figure 6, middle). This evolution is possible only because the vortex is the
biggest one allowed by the simulation box size, thus the single vortex cannot follow its ‘natural’
evolution, i.e. pairing with another vortex. In this case VIR has all the time it needs to disrupt
the vortex, and not a ‘finite time window’.

If we remove the constraint L y = λFGM the evolution of the FGM follows an inverse cascade
as shown previously. During this process, when an m mode reaches nonlinear saturation, its
amplitude is overtaken by the amplitude of the m − 1 mode (figure 4). We stress that magnetic
reconnection occurs during the saturation of the m mode and its overtaking by the m − 1 mode,
and not during the evolution of a single vortex. Moreover, reconnection occurs mainly in the
region between the two pairing vortices (figures 2 and 3) and not in the inner part of both arms
of each vortex (figure 6, left). Thus, reconnection is driven by the motion of the two vortices
during the merging process and not by the rolling up of single vortices.
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Figure 6. Left and middle frames: plasma passive tracer and magnetic field
lines in the (x, y)-plane at t = 400 and 450, respectively, for MA,‖ = 20.0 and
L y = 15π . Right frame: time evolution of the first four Fourier components of
the plasma velocity along x , averaged along x , for MA,‖ = 20.0 and L y = 15π ,
m = 1 (FGM) continuous, m = 2 dashed, m = 3 dash-dotted, m = 4 dash-three
dotted line.

4.1.2. Comparison with MHD results. Here, we discuss the crucial role of the Hall term by
running the same multiple vortex simulation parameters simply omitting the Hall term in the
generalized Ohm’s law (4) (ue × B ' U × B). This analysis is similar to the one that was
performed in the case of two vortex evolution [8].

Although the large-scale motion of the vortices is still able to generate current sheets
of comparable intensity and width, the process of magnetic reconnection occurs on a slower
timescale. In particular it does not succeed in cutting the ribbon during the second pairing
process. We can see (figure 7, upper-left) that at t = 400 the X -point located at x = 60, y =

142.5 has formed. However, since the reconnection rate is slower, the upper vortices continue
to roll up and pair (figure 7, left-bottom, right-upper). The rolling up of the vortices destroys
the favorable conditions for the reconnection instability to grow, thus magnetic reconnection is
no longer able to cut the ribbon. As a consequence, no plasma injection is observed during the
merging. The (ear-shaped) blue blob is no longer topologically connected with the red region
(figure 7, right-bottom).

On the contrary, magnetic reconnection at x = 65, y = 43, occurring during the third
pairing process between the two lower vortices (figure 7, left-bottom) is still able to cut the
ribbon and to let the red blob enter the blue region (figure 7, right-bottom). Since the Hall term
is neglected, this process is slower and the red blob needs about twice the time to enter the blue
region, but can still enter. In addition, multiple X -points are not formed during this process, thus
magnetic islands of typical size of a few di [28] are not generated.
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Figure 7. Plasma passive tracer and magnetic field lines in the (x, y)-plane at
t = 400, 410 (left column), and t = 430, 450 (right column), for MA,‖ = 20.0.
The Hall term is neglected in the generalized Ohm’s law.

This comparison shows that when the rolling up and the pairing of the vortices develop on
a timescale comparable with the reconnection time, the competition between the development
of the large-scale magnetic configuration and the evolution and the reconnection instability
determines the development of the entire system. The early evolution of the vortices is
essentially MHD and depends only on the initial velocity and magnetic field, regardless of
the specific small-scale physics included in the generalized Ohm’s law. On the contrary, as
exemplified here by the results obtained by omitting the Hall term, when magnetic reconnection
starts to act, the evolution of the whole system depends on the specific physical phenomena
(ions and electrons decoupling) that occur at small spatial scales. Large-scale dynamics builds
up the favorable conditions for reconnection to occur which in turn influences the evolution of
the whole system [8]. This is true during the second pairing process, when the plasma injection
is strongly influenced by the small-scale dynamics. On the contrary, the third pairing process is
slow enough to let the magnetic reconnection have all the time it needs to act and cut the central
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ribbon. This process generates a magnetic topology similar to that obtained in the ‘Hall’ case.
Thus, during the third pairing process, plasma injection is effective also in the slower MHD
case. However, coherent structures are not generated when the Hall term is omitted.

4.2. Intermediate magnetic tension regime

We performed a similar simulation choosing MA,‖ = 10.0. The corresponding value of the
magnetic tension allows the K–H instability to develop in fully rolled up vortices, as for the
case discussed in the previous section.

These vortices exhibit similar phenomena and trends and in particular multiple scale
behavior and strong feedback between the large- and small-scale dynamics. The vortex
motion creates, during subsequent pairing processes, the necessary conditions for magnetic
reconnection to occur and for two-fluid dynamics to develop. In particular the folding of
the central ribbon and the plasma compression allow fast magnetic reconnection to cut the
magnetic field line ribbon ‘fast’ enough and to connect the two regions of initially magnetically
unconnected plasma.

4.3. Near threshold regime

Here we take MA,‖ = 5.0. This value is close to the threshold at which the generation of rolled
up vortices by the K–H instability is suppressed. For lower values of MA,‖ magnetic tension
is strong enough to provide nonlinear stability [18]–[21] preventing the formation of rolled up
vortices. Nevertheless, for MA,‖ = 5.0, the vortices are still able to roll up the magnetic field
lines and to build up magnetic inversion layers. On the contrary the vortex motion is no longer
capable of folding the central ribbon.

At t = 305, we show (figure 8, upper-left) wave-like perturbations of the fields. At t = 370
(figure 8, left-bottom), during the nonlinear evolution, two of these perturbations develop
into rolled up vortices, while the others maintain their wave-like behavior. The wave-like
perturbation located at x = 60, y = 125 is simply absorbed, engulfed, without reconnection,
by the upper vortex. The perturbation located at x = 60, y = 80 is generated by the merging
of two ‘shorter’ wave-like perturbations and eventually develops into a rolled up vortex which
starts to interact and pair with the lower one (figure 8, right-upper). Due to the higher value of
magnetic tension the ribbon is not folded by the motion of the vortices and it does not exhibit
any inversion layer. Therefore magnetic reconnection cannot develop in this region and thus
cannot cut the ribbon and connect the two regions. Magnetic reconnection occurs only on the
right and on the left of the central ribbon (figure 8, right-bottom) and red–blue plasma blobs
do not enter the blue–red region. Furthermore, the magnetic field lines are not highly rolled up
and compressed and sub-di current sheets are not formed. Consequently we do not observe fast
magnetic reconnection and in particular we do not observe two separated magnetic decoupling
regions for ions and electrons.

At t = 500 this pairing process has been completed (figure 9, upper-left). Then, the wave-
like perturbation formed, located at x = 60, y = 80, develops into a rolled up vortex and starts
to interact with the upper vortex (figure 9, left-bottom). As was the case during the previous
pairing process, magnetic tension prevents the formation of sub-di current sheets and does not
allow the plasma motion to fold the central ribbon. Thus magnetic reconnection does not cut
the ribbon and we do not observe any plasma injection (figure 9, right-upper). Finally the two
vortices merge together (figure 9, right-bottom).
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Figure 8. Plasma passive tracer and magnetic field lines in the (x, y)-plane at
t = 305, 370 (left column), and t = 430, 480 (right column), for MA,‖ = 5.0.

Here we remark that, in this near to threshold regime, the specific physical phenomena that
occur at small spatial scales do not influence the plasma injection, i.e. the large-scale evolution.
The higher value of magnetic tension prevents the folding of the central ribbon, which is a
necessary condition for plasma injection. Reconnection occurs only around the vortex arms, on
the left and on the right of the central ribbon, i.e. inside each region of unconnected plasma. For
this reason in this regime how fast reconnection acts is not crucial.

Furthermore, the magnetic tension prevents the plasma compression and thus the formation
of sub-di current sheets during large-scale motion. Thus fast magnetic reconnection cannot
develop and the vortices maintain their MHD behavior throughout. In this regime the large-scale
motion does not create the favorable condition for plasma injection and for the development of
two-fluid dynamics.

It is important to note that the pairing process is still effective (figure 10) and, as in
the previous cases, VIR is not able to destroy the vortices before they coalesce. Magnetic
reconnection occurs mainly during pairing processes between adjacent vortices, instead of
inside a single rolled up vortex.
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Figure 9. Plasma passive tracer and magnetic field lines in the (x, y)-plane at
t = 500, 570 (left column), and t = 600, 700 (right column), for MA,‖ = 5.0.

4.3.1. Comparison with single vortex simulations and with MHD simulations. Comparing the
results obtained above with the evolution of a single vortex in the near to threshold regime leads
to the same conclusions discussed in sections 4.1.

Since the large-scale motion is not able to build up sub-di current sheets, in this regime
the Hall term in the generalized Ohm’s law (2) does not play any role. The magnetic field is
essentially frozen in the ion motion. Thus there is no difference between simulations with or
without the Hall term in the generalized Ohm’s law.

5. Conclusions

Two dimension two-fluid simulations have been performed in order to investigate further the
competition between vortex pairing [12]–[17] and vortex disruption caused by VIR [18]–[23],
[26, 27] and thus to understand the nonlinear evolution of the K–H instability better. The
model presented is suitable for investigating the generation of a mixing layer at the flank
magnetosphere at low latitude during northward periods [9]–[12].
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Figure 10. Time evolution of the first six Fourier components of the plasma
velocity along x , averaged along x , for MA,‖ = 5.0, m = 1 continuous, m = 2
dashed, m = 3 dash-dotted, m = 4 (FGM) dash-three dotted, m = 5 thin dashed,
m = 6 thin continuous. The m = 1, 2, 3 and 4 lines have been drawn thicker in
order to emphasize the pairing process.

In order to explore the whole ‘disruptive’ regime [18]–[21] the value of the in-plane
Alfvénic Mach number MA,‖ has been varied from 20.0 to 5.0, within which range the K–H
instability develops into rolled up vortices. This number refers to our simplified model which
assumes a uniform initial density and magnetic field. This choice excludes other types of
secondary HD instabilities [29, 30], which can compete effectively with the pairing process
and can disrupt the vortices before they merge [30]. Our model is chosen so as to underline the
competition between VIR and the pairing process. Magnetic reconnection is actually driven by
the motion of the vortices, since the initial magnetic field does not exhibit any inversion line,
which are built only by the evolution of the primary K–H instability.

Compared with previous studies [8, 28] that focused on the competition between pairing
process and VIR, in the present paper we consider a bigger simulation domain along the
periodicity direction. This choice allows the K–H instability, entering the nonlinear stage, to
develop more than two vortices. This allows us to study this competition during four subsequent
pairing processes between unequal vortices, a configuration that describes the evolution of the
real system better. Although the evolution of this wider configuration is rather less symmetric
compared with the evolution of the two equal vortices [8, 28], similar phenomena and trends
are recovered.

Contrary to previous single vortex studies [18]–[20], [22, 23, 26, 27], we show that in the
‘disruptive’ regime, not only is VIR not capable of disrupting vortices before they coalesce,
but also that magnetic reconnection occurs mainly during the pairing process. Magnetic
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reconnection is driven by the pairing process instead of being driven by the motion of each
single vortex.

The key point is how fast reconnection develops, compared with the large-scale
characteristic timescale. The competition between the global system and the reconnection
timescale influences the large-scale magnetic topology, and thus the final configuration.
Magnetic reconnection has a finite ‘time window’ to cut the central magnetic ribbon, which
separates two initially magnetically unconnected regions, before the large-scale motion destroys
the favorable conditions that it has just created. This ‘time window’ is crucial for the feedback
between the large-scale motion and the small-scale dynamics to take place. On the other hand,
in the framework of single vortex simulations it is not possible to investigate the interaction
between large- and small-scale dynamics. In this case, indeed, the vortex, the biggest one
allowed by the simulation box size, cannot pair with other vortices and, once it has reached
nonlinear saturation, simply becomes an ‘imposed’ structure that reconnection can only destroy,
leading to the formation of a mixing layer. Obviously this evolution is quite ‘unrealistic’,
since a possible and effective evolution of the system (vortex pairing) is not allowed to occur
because of a numerical artifact. In the multiple vortex case VIR cannot generate by itself a true
mixing layer between the magnetospheric and the solar wind plasma, which is likely generated
by subsequent pairing processes (that also drive magnetic reconnection), or by the onset of
effectively secondary hydrodynamic instabilities [29, 30].

Magnetic reconnection, which obviously occurs only locally, is able to influence the
evolution of the whole system. In particular magnetic reconnection is able to change the global
magnetic field topology and thus to ‘connect’ different regions which were ‘unconnected’
(i.e. magnetosphere and solar wind region) [8]. The favorable conditions for the reconnection
instability to grow are provided by the large-scale motion, i.e. the vortices rolling up and pairing.
The necessary condition for connecting these two regions is that the central ribbon, a region of
nearly parallel, compressed magnetic lines that separates these regions, is folded by the motion
of the vortices. In this case magnetic reconnection can act inside the current sheets formed by
the folded ribbon, cut the ribbon and connect these two regions. This process occurs during the
merging between two adjacent vortices and lets a significant portion (blob) of plasma enter the
‘opposite’ region. This necessary condition is built up by the motion of the vortices only when
the in-plane magnetic tension is low enough. In fact the central ribbon is cut and the two regions
are connected when MA,‖ = 20.0, 10.0. When MA,‖ = 5.0 the magnetic tension is too large, the
motion of the vortices is not able to fold the central ribbon and create an inversion layer for
the magnetic field. Thus magnetic reconnection cannot cut the ribbon. In this case magnetic
reconnection occurs only inside each region, inside the vortex arms and cannot connect these
two region. Thus full rolled up vortices are necessary seeds for plasma mixing.

Although large-scale physics builds up the conditions for reconnection to occur, the specific
physical phenomena that occur at small spatial scales, and drive magnetic reconnection, can
influence the final magnetic topology, see appendix B, where a comparison with the resistive
case is also made. When the pairing vortices are able to create sub-di current sheets, ions
can decouple their motion from the evolution of the magnetic field. This is caused by the
two-fluid nature of our plasma model, and is not possible in a simpler MHD description of the
plasma. Thus higher ion inflow velocity, and reconnection rates, are possible. For this reason
this process is know as fast magnetic reconnection [2]–[6], [8, 28]. In particular fast magnetic
reconnection sets up spontaneously during the pairing process, without any need of special
boundary conditions or initial conditions.
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Since magnetic reconnection develops on a timescale comparable with that of the pairing
process, how fast the reconnection occurs becomes crucial. If magnetic reconnection is fast
enough, the central ribbon can be cut and the magnetosphere and the solar wind region
connected [8]. If it is not fast enough, the evolution of the vortices can destroy the favorable
condition for reconnection instability to grow, which thus can no longer cut the ribbon and
let plasma blobs enter the ‘opposite’ region. This provides a clear cut example of feedback
between large-scale and small-scale physics and underlines the necessity of adopting a multiple
scale analysis for such large-scale structures.

While the folding of the central ribbon is a necessary condition for plasma injection, the
two-fluid behavior at small spatial scales is not. Nevertheless, when we observed fast magnetic
reconnection events (see sections 4.1 and 4.2), these processes not only allow the plasma
injection to be faster, compared to MHD simulations, but also, in some regimes, were crucial
for plasma injection, which was not observed in the corresponding MHD simulations.

During the pairing process, fast magnetic reconnection is able to generate coherent
magnetic structures (magnetic islands). The islands have a typical width ∼di, which is
comparable to the length scale of the magnetic shear layer formed between the two pairing
vortices, much larger than the inertial electron length scale de and much smaller than the full
system size. These coherent magnetic structures are further advected by the fluid velocity but
maintain their ‘identity’ for a long-time interval, compared with their formation time.

The plasma injection is a change in the global magnetic field topology related to the plasma
motion and is actually observed in the low latitude magnetopause. In fact an increase of the
solar wind plasma content in the outer magnetosphere during northward magnetic field periods
is observed [10, 43, 44].
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Appendix A. Boundary conditions

In our dimensionless variable, the MHD equations are: ∂n/∂t + ∇ · (nU)= 0, ∂U/∂t +
U · ∇U = −∇ P + (∇ × B)× B, ∂B/∂t = ∇ × (U × B), with P = Pi + Pe = nT e + nT i. Since
the ideal MHD equations are a set of hyperbolic partial differential equations [35], we can
define the projected characteristic along the x-direction as
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Here we have taken ∂/∂z = 0, ax,y,z are the three components of the Alfvén velocity, a its
absolute value, a2

⊥
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z , ξ = ax/|ax |, f and s the fast and slow magnetoacoustic velocities,
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The equation for Bx , i.e. the x-component of the Faraday equation, remains unchanged since it
does not contain the operator ∂/∂x . In our code all MHD variables (n, U, B) at the x-boundary
are advanced using these ideal MHD equations. The other physical variables (Pi,e, J, ui,e), as
before, are simply deduced using equation (3) and the definitions of U and of J in section 2.

In order to solve equation (4), we impose at the boundary E = −ue × B − d2
e {ui × B +

(1/n)∇ · [n(uiui − ueue)]}, where we retain small two-fluid corrections in order to match more
accurately the value of the electric field at the boundary, calculated using the simplified MHD
description, and its value in the inner part of the simulation box, calculated using the two-fluid
model.

These choices allow us to build transparent boundary condition in the inhomogeneity x-
direction: in the above equations ∂/∂x is calculated using only internal points, while Hedstrom’s
non-reflecting boundary conditions are imposed [35]–[37]: L+

f = 0 if ux + f < 0, L+
a = 0 if

ux + ξax < 0, L+
s = 0 if ux + s < 0, L−

s = 0 if ux − s < 0, L−

a = 0 if ux − ξax < 0, L−

f = 0 if
ux − f < 0 at the left boundary, and, correspondingly> 0 at the right boundary. In this way any
large-scale perturbation that reaches the x-boundary from inside the simulation box can leave it
without being reflected.

We stress that simpler numerical boundary conditions, which impose ∂/∂x = 0, or
∂2/∂x2

= 0 at the boundary, or which simply calculate ∂/∂x using only the internal points
without using the procedure described before, are partially reflective. Without the adoption of
non-reflecting boundary conditions we would be forced to stop our simulations even before the
end of the linear phase of the plasma evolution.

The validity of the non-reflecting boundary conditions was tested by studying the injection
and propagation of MHD travelling waves (shear Alfvén, fast and slow magnetosonic) with
different frequencies and with different equilibrium magnetic configurations. An even more
important proof or their validity is given by the fact that we do not observe any change in the
numerical results we obtain on the nonlinear system dynamics when we vary the box length
L x in the inhomogeneous direction, provided L x > L f, where L f is the size of the final paired
vortex in the x-direction.

Appendix B. Influence of ‘microscopic physics’

How ‘fast’ reconnection occurs at the inversion layers influences the final evolution of
the whole system. The specific phenomena that allow electron decoupling at the scale at
which reconnection occurs can influence the rate of the reconnection. For this reason we
consider different values of the reduced mass ratio m i/me = d−2

e and compare the collisionless
results which those obtained considering a resistive plasma model. In the resistive model the
collisionless Ohm’s law, equation (4), is replaced by a resistive Ohm’s law (without electron
inertia) either with the Hall term included (two-fluid description) E + U × B − J × B = ηJ, or
without the Hall term (single fluid description, resistive MHD) E + U × B = ηJ. We consider
values of the normalized resistivity that are compatible with the estimate η ' γ d2

e .
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All these results are obtained in the case of two vortices, similarly to [8] and are
summarized in the following table:

Reduced mass ratio 25 64 100

One-fluid ‘Slow’ ‘Slow’ ‘Slow’
Two-fluid ‘Fast’ ‘Fast’ ‘Fast’

Resistivity 0.01 0.002 0.001
Single-fluid Diffusive ‘Slow’ ‘Slow’
Two-fluid Diffusive ‘Fast’ ‘Slow’

We see that, although these results are not asymptotic, the value of the reduced mass ratio does
not influence the rate of the reconnection significantly (comparable to the large-scale motion).
On the contrary the single- or two-fluid behavior of the plasma, allowing ‘ordinary’ reconnection
or fast magnetic reconnection, is crucial.

In the resistive model, the Hall term continues to influence the reconnection rate
significantly, but the specific value of the normalized resistivity is important. If this value is too
high (η ∼ 0.01) magnetic diffusion effects become too important. We can no longer distinguish
global MHD behavior and a local magnetic reconnection since the magnetic field lines are not
well frozen in the fluid motion. For intermediate value of the normalized resistivity (η ∼ 0.002)
we obtain results similar to the collisionless model. The Hall term allows reconnection to occur
on a timescale that is comparable to that set by large-scale motion. On the contrary, if the
value of resistivity is smaller (η ∼ 0.001) the reconnection is too ‘slow’ even if the Hall term is
included in the generalized Ohm’s law and cannot change the global topology.
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