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Abstract: Alzheimer’s disease (AD) represents a progressive amyloidogenic disorder whose
advancement is widely recognized to be connected to amyloid-β peptides and Tau aggregation.
However, several other processes likely contribute to the development of AD and some of them might
be related to protein-protein interactions. Amyloid aggregates usually contain not only single type of
amyloid protein, but also other type of proteins and this phenomenon can be rationally explained
by the process of protein cross-seeding and co-assembly. Amyloid cross-interaction is ubiquitous
in amyloid fibril formation and so a better knowledge of the amyloid interactome could help to
further understand the mechanisms of amyloid related diseases. In this review, we discuss about the
cross-interactions of amyloid-β peptides, and in particular Aβ1-42, with other amyloids, which have
been presented either as integrated part of Aβ neurotoxicity process (such as Tau) or conversely with
a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin, cystatin C and
apolipoprotein A1). Particularly, we will focus on all the possible therapeutic strategies aiming to
rescue the Aβ toxicity by taking inspiration from these protein-protein interactions.

Keywords: Alzheimer’s disease; cross-interaction; amyloidosis; TTR; CysC; ApoA1; Tau; Aβ 1-42;
peptidomimetic inhibitors; foldamers

1. Introduction

Over the last decades, more than forty severe degenerative disorders have been added to a group
of pathologies called amyloidosis. All of them are characterized by the aggregation of misfolded
proteins which have been found to adopt the same amyloid β-sheet-rich architecture, as part of their
nature [1,2]. Amyloid fibril formation is generally associated to a protein misfolding, followed by
an aggregation process which continues until the formation of insoluble aggregates. The amyloid
form of these aggregates can be defined through in vitro observations by cross-β X-ray diffraction
pattern while their structure can be observed by transmission electron microscopy (TEM) or atomic
force microscopy (AFM). The formation of their ordered molecular structure can be also revealed by
fluorescence spectroscopy with thioflavine T and Congo red dyes [3].

Alzheimer’s disease (AD) belongs to this group of amyloidosis. AD is a progressive neurodegenerative
disorder associated with cognitive decline and is considered the most common form of dementia in the
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elderly [4]. In amyloid plaques, in the gray matter of the brain, the two classical lesions are the depositions
of intracellular neurofibrillary tau tangles and the extracellular deposits of aggregated amyloid-β (Aβ)
peptides [5]. Nowadays, it is widely recognized that an imbalance between production and clearance of
Aβ peptides in the brain results in accumulation and aggregation of Aβ. Aggregates of toxic Aβ in the
form of soluble Aβ oligomers, intraneuronal Aβ, and amyloid plaques injure the synapses and ultimately
cause neurodegeneration and dementia [6,7].

One of the strategies adopted to stop or reverse the progression of the disease is to modulate
or inhibit the aggregation process of Aβ, by various mechanisms: stabilization of its native state,
destabilization of its incorrectly folded state [8], bypass of the on-pathway oligomer formation,
inhibition of the fibril elongation and disaggregation of the already formed amyloid aggregates [9–12].

Several natural polyphenols have been reported to exhibit potent inhibitory action against Aβ
aggregation [13,14]. In parallel, research in this field was also oriented towards peptides which can
be classified in two different major groups. The first class is composed by peptides that are similar
in sequence to wild type proteins and they are termed as rationally designed peptides. Instead,
the second class is characterized by peptides which are identified from libraries, that may or may not
show sequence similarly to wild type, and these are termed as randomly generated peptides. Other
approaches have been exploited in the field of peptidomimetics, such as synthetic peptide derivates-β
sheet breakers and β peptide hairpins [9–12].

Overall impairment in Aβ clearance is also a major contributor to disease development [13].
Molecular chaperones represent the most important elements of the ensemble of machinery responsible
for protein homeostasis [14]. For example, apolipoprotein E (Apo-E), the major cholesterol carrier,
has an important role in modulating Aβ metabolism, aggregation and deposition [15]. Depending
on the APOE polymorphic alleles, Apo-E isoforms exhibit differential lipidation status, which affects
Aβ clearance in an isoform-dependent manner. Alternatively, Apo-E may sequester Aβ and promote
cellular uptake and degradation of Apo-E-Aβ complexes [16]. In addition, Apo-E might modulate
Aβ removal from the brain to the systemic circulation by transporting Aβ across the blood-brain
barrier [17]. The exact mechanism by which Apo-E isoforms differentially regulate Aβ aggregation
and deposition requires further investigation. More recently, it has been shown that a homozygous
APOE3ch mutation can impart resistant to the clinical onset of AD pathogenesis, probably having
beneficial effects on downstream tau pathology and neurodegeneration, even in the face of high Aβ
plaque burden [18]. Therefore, inquiring the role of this chaperone can enhance the understanding
of the Aβmisfolding-dependent aggregation process and allows to develop alternative therapeutic
strategies to treat AD. In 2013, the currently being explored approaches are well resumed and discussed
in a review published by Liu et al. [19]

Several other factors seem to contribute to the development of AD, thus questioning the amyloid
cascade hypothesis and revealing its complex process linked by multiple interconnected events that
cannot be easily explained by a single hypothesis. Among these factors, we could count lysosomal
disfunction, loss of Ca2+ homeostasis, neuroinflammation, progressive oxidative damage and problems
related to glucose metabolism [20,21]. All of them represent the pathogenic steps or pathways of the
disease and targeting or altering them might be prevent the progression of the disease.

However, although AD progression is widely recognized to be connected to Aβ1-42 aggregation,
several other processes likely contribute to the development of AD and some of them are related
to protein-protein interactions. These latter are the quintessence of physiological activities, but
also participate in pathological conditions. Amyloid formation can be considered an abnormal
protein-protein interaction process [22]. The progression of AD implicates more than one protein and
this, together with the synergistic occurrence between amyloid proteins (cross-interaction) [23], allows
to study the disease with another point of view, giving the opportunity to explore novel therapeutic
approaches. The strength of better understanding the amyloid interactome lies in the perspective to
identify key mediators of amyloidogenicity or key interactions with other amyloid proteins that could
be targeted therapeutically.
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2. Amyloid Cross-Interactions

Amyloid aggregates usually contain not only single type of amyloid protein, but also other types
of proteins. Some studies revealed that Aβ is just the major amyloid protein of the 488 proteins in
AD related amyloid plaque [24]. In Parkinson’s disease (PD)-related Lewy body, around 550 proteins
were detected, including α-synuclein, synphilin-1, tau and many others [25–27].This phenomenon can
be rationally explained by the process of protein cross-seeding and co-assembly. Moreover, several
amyloid proteins show the abilities to affect the aggregation of other amyloid proteins. For example,
islet amyloid polypeptide (IAPP) was reported to promote the α-synuclein amyloid formation, which
can explain why type-2 diabetes patients are susceptible to developing PD [28]. Some experiments
suggested that tau and α-synuclein can influence each other, accelerating their respective fibrillization
process and resulting in the formation of pathological inclusions in neurodegenerative diseases [29].
All these evidences indicated that amyloid cross-interaction is ubiquitous in amyloid fibril formation.

We can divide the amyloid cross-interaction into two categories based on their effect to progress of
diseases. One is amyloid cross-interaction with positive effect, another one is amyloid cross-interaction
with negative effect. The positive effects include inhibiting the formation of amyloid oligomers or
amyloid fibrils, reducing the toxicity of aggregates, promoting the degradation of aggregates and
promoting the dissociation of aggregates. In contrast, the negative effects include promoting the
aggregations, increasing the toxicity of aggregates and inhibiting the degradation of aggregates.
These effects are not mutually exclusive. Sometimes one amyloid protein which inhibits the amyloid
fibril formation of another amyloid protein, simultaneously reduces the toxicity of the aggregate,
like the effects that transthyretin (TTR) has on Aβ1-42 [30]. Thus, the amyloid proteins interactome
is usually complex and can involve diversified cross-interactions between one protein and different
other proteins. To date, many amyloid cross-interactions have been attracted attention and a better
knowledge of them could be helpful for further understand the pathological mechanisms behind the
amyloid related diseases.

As mentioned above, AD related amyloid plaque contains more than 400 proteins, including
Aβ, Tau, cystatin C, IAPP, α-synuclein, TTR, etc. Moreover, a great many studies revealed that
lots of amyloid proteins can cross-interact with Aβ. For example, there are synergistic amyloid
cross-interactions of Aβ and α-synuclein that promote mutually aggregations not only in vitro but
also in vivo [31–33]. The Tau protein, a major constituent of neurofibrillary tangle, also shows the
mutual influences with Aβ on aggregation and toxicity [34]. These cross-interactions between Aβ and
other amyloid proteins may play a critical role in AD progression. They provide a new strategy to
design novel molecules that mimic the cross-interaction with Aβ, although the mechanisms of these
interactions have not been completely figured out.

In this review, we discuss about the cross-interactions of Aβ1-42 with other amyloids, which
have been presented either as integrated part of Aβ1-42 neurotoxicity process (such as Tau) or
conversely with a preventive role in AD pathogenesis by directly binding to Aβ (such as transthyretin,
cystatin C and apolipoprotein A1), Figure 1. Particularly, we will focus on all the possible therapeutic
strategies set up until now with the aim to rescue the Aβ1-42 toxicity by taking inspiration from these
protein-protein interactions.
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Figure 1. A cross-amyloid network between Aβ peptide and four amyloidogenic proteins. Proteins
with intrinsic amyloidogenic potential are contoured by red lines. Green symbols: amyloid proteins
that have a positive effect against the progression of AD. Red dashes arrow: amyloid protein pathway
according to the amyloid cascade hypothesis. The details of the interactions are discussed in the review
for each protein.

3. Amyloid Proteins Displaying Cross-Interaction with Aβ1-42 Peptide

3.1. Tau Protein

Histologically AD is characterized by extracellular senile plaques of amyloid β (Aβ) and
intracellular neurofibrillary tangles of hyperphosphorylated Tau (NFT) [35–37]. Evidences suggest that
senile plaques deposits do not correlate well with the progression of the cognitive decline, whereas
Tau aggregation seems to do. In fact, higher is the amount of Tau aggregates, greater it seems to be the
cognitive impairment and the severity of symptoms [6,38–40].

Human Tau protein is located in neurons, where it participates to the axonal stability by interacting
with tubulin, promoting its assembly into microtubules and reinforcing pre-established microtubule
structures. It is encoded by a single gene, MAPT, on chromosome 17 containing 16 exons [41].
The major form in the human brain is encoded by 11 exons. Exons 2, 3, and 10 are alternatively
spliced and the transcription leads to the formation of six Tau isoforms [42,43], displaying three
or four microtubule binding repeats (3R or 4R) if exon 10 is respectively absent or present [44].
Tau is considered as an intrinsically disordered protein (IDP) because, in solution, a variety of
spectroscopic techniques including circular dichroism (CD), nuclear magnetic resonance (NMR) and
Fourier transform infrared (FTIR) spectroscopy have shown that Tau is lacking of a secondary and
tertiary structure [45–48]. Tau’s modulation of tubulin assembly and stability is regulated by its
degree of phosphorylation. In pathological conditions, such as Alzheimer’s disease (AD), Tau protein
undergoes a hyperphosphorylation, which leads to its conformational transition into β-sheet rich
structures and thus its self-assembly into large and insoluble tangles [49–51]. Neurofibrillary lesions
are made of paired helical and straight Tau filaments (PHFs and SFs), whose structures have recently
been elucidated in high-resolution through cryo-electron microscopy (EM) [52].

For several years, Aβ extracellular aggregation and Tau intracellular deposition were thought
to be two separate hallmarks of AD and it was widely accepted that the pathogenesis of the disease
could be related to only one of these two events. More recently, with the advance of knowledge and
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studies in this field, more and more evidences revealed that Tau and Aβ are strictly and mutually
interconnected in AD pathogenesis [53]. It is still debating how the aggregation of one of these two
amyloid proteins could affect the other. Genetic data, as well as autopsy and neuroimaging studies in
patients with AD, indicate that Aβ plaque deposition precedes cortical Tau pathology [54] and that the
accumulation of Aβ exacerbates Tau’s pathology [6,55,56]. Others, instead, support the idea that it is
mainly Tau that plays the major role in the etiopathology, essentially for two reasons: firstly because
Tau tangles can be found in patients’ brain even when extracellular Aβ deposits are not present [57],
and secondly because evidences proved that intracellular Tau tangles rather than Aβ deposits are
the most neurotoxic species, mainly responsible of the serious neurotoxic effects, behavioral deficits
and cognitive decline associated with the progression of the disease [38,58,59]. The observation of
co-localization of oligomeric Aβ and phosphorylated Tau in AD brain patients led some research
groups to think that a mutual cross-interaction between the two amyloid proteins might be responsible
of the pathological behavior of both proteins [60]. It is the formation of an Aβ-Tau-complex that
could prime the Aβ nucleation and the Tau hyperphosphorylation [34]. A great number of works
concerning Aβ and Tau together, both in vitro and in vivo, supports the cross-seeding theory [61,62]
or, better, the interaction and the synergistic effects [63] of these misfolded proteins. Despite this,
the mechanism by which one influences the other is still not clear, and several questions arise. To date,
three main suggested mechanism have been hypothesized: (1) Aβ species seem to interacts with kinases,
thus enhancing the phosphorylation of Tau and its detaching from microtubule with consequently
aggregation [64–68], (2) the Aβ-induced Tau phosphorylation is mediated by soluble inflammatory
factors from astrocytes [69] (3) Aβ seeds and propagates Tau’s aggregation through a direct interaction
with it [60,70,71]. In this review regarding amyloid cross-interactions, we decided to mainly focus on
the direct interaction between Aβ and Tau, highlighting what is emerged in the last years. Since a very
recent and detailed review about the in vivo intracerebral seeding of Aβ and Tau in mice [72], has just
been released, we will mainly focus on the in vitro studies aiming to deepen the knowledge about the
physicochemical aspects of this interaction. The growing interest in understanding the cross-seeded
interaction between Aβ and Tau is justified by several in vivo experiments showing that Aβ enhances
Tau pathology by increasing the formation of Tau species capable of seeding new aggregates [73–80].

In the study of Vasconcelos et al., it has been shown that pre-aggregated Aβ can directly induce
Tau fibrillization by cross-seeding in a cell-free assay and that Aβ-seeds can cross-seed Tau pathology
and strongly catalyze pre-existing Tau-aggregation in a cellular Tau-aggregation experiment. All these
results were successively confirmed by in vivo experiments and revealed the propagating potential of
heterotopic seeding of filamentous Tau-aggregates induced by Aβ along functionally connected brain
regions [77,79,81].

Immunostaining studies performed by Imamura et al. showed higher co-localized accumulation
of toxic Aβ1-42 oligomers and hyper-phosphorylated Tau protein (p-Tau) in hippocampal and
cortical neurons, indicating their co-aggregation. The formation of toxic Aβ1-42 oligomers and its
co-aggregation with p-Tau oligomers was attributed to insulin deficiency. This in vivo study conducted
on AD mouse model proved that the attenuation of insulin signaling is involved in an increase of toxic
Aβ1-42 conformer levels which promotes not only an increase in p-Tau but also a direct interaction
between the two misfolded proteins with the formation of their co-aggregates [67].

Not all types of Aβ aggregates promote Tau aggregation in the same way. Transduction of
Aβ oligomers into the cells enhances more the Tau-aggregation than Aβ-fibrils [82]. Interestingly,
the transduction of the cells with Aβ oligomers have no effect on α-synuclein seeding, suggesting that
the seeding enhancement by Aβ oligomers is specific to Tau. The mechanism behind this interaction is
currently unknown but the hypothesis of a channels/pores formation induced by Aβ oligomers does
not seem plausible because these latter should appear in a shorter amount of time (1 to 2 h) [83] respect
to the incubation time needed to prime cells and enhance Tau-aggregation. Neither the common
cross-seeding hypothesis seems to explain the Aβ-induced Tau aggregation because none of the
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Aβ-seeds were able to induce Tau aggregation earlier than the usual 24 h of incubation necessary to
enhance the Tau-aggregation [84].

Guo et al., by using western blot and ELISA experiments, demonstrated the existence of a stable
and soluble Aβ-Tau complex able to enhance Tau phosphorylation. It has been suggested that
soluble Aβ could bind to soluble non-phosphorylated Tau, promoting then phosphorylation and Aβ
accumulation. Peptide membrane arrays showed that Aβ binds to multiple Tau epitopes, especially
in exons 7 and 9, and that Tau binds to multiple Aβ peptide sequences in the mid to C-terminal
regions [34]. Surface plasmon resonance (SPR) analyses showed that Aβ binds to Tau around 1000-fold
higher than Tau by itself, suggesting the hypothesis that blocking the sites where Aβ initially binds to
Tau might arrest the simultaneous formation of tangles in AD.

Next to the hypothesis that Aβ influences Tau pathology, Wallin et al. proposed, conversely,
a potential interaction mechanism for the influence of Tau on Aβ fibrillation. By nuclear magnetic
resonance (NMR), circular dichroism (CD) spectroscopy and photoinduced cross-linking methods,
they found that Tau can prevent the in vitro Aβ1-40 fibrillation at stoichiometric Aβ/Tau ratios and to
block it at the oligomeric stage. Tau-441 does not induce any conformational change in Aβ monomers
and, conversely, prevent the formation of β-sheet rich structure [85].

Thanks to the development of a 3D AD human neuronal cell culture model displaying both
extracellular Aβ-deposits (plaques) and the concomitant presence of p-Tau in neurons and fibrillar
Tau aggregates like NFT in neurites and cell bodies [86,87], Kwak et al. provided a direct evidence
that it exists a direct correlation between Aβ species and Tau pathology in AD [88]. Particularly,
the Aβ1-42/1-40 ratio drives the Tau pathology because in the condition of a high Aβ1-42/1-40 ratio
more toxic Aβ oligomeric structures are produced. In literature it is known that Aβ1-42/Aβ1-40 mixture
rapidly forms small spherical oligomers which are more toxic than oligomeric preparation composed
of either Aβ1-40 or Aβ1-42 [89–91]. Therefore, as an alternative hypothesis, Aβ1-40 might play a
protective role and might counteract Aβ1-42 toxicity. It has been proved for example that transgenic
mice expressing high level of Aβ1-40 do not develop Aβ plaque [92] and that Aβ1-40 stabilizes Aβ1-42
monomers by competing for binding site on pre-existing Aβ1-42 aggregates, thus inhibiting further
aggregation [93]. Aβ1-40 does not seem to promote Tau phosphorylation but conversely decreases
the phosphorylation at Ser262, thus maintaining the binding of Tau to microtubules [94]. It might be
interesting, in the future, to develop alternative therapeutic approaches that selectively reduce the
Aβ1-42/Aβ1-40 ratio.

As mentioned above, it is clear that Aβ/Tau amyloid cross-interactions likely contribute to the
synaptic dysfunction involved in AD, but much more has to be still performed to better understand the
role that each single protein has on the other and which one influences more the pathological behavior
of the other.

The mechanism that triggers Tau aggregation by a direct interaction with Aβ is still a matter of
debate and different hypothesis has been proposed in the last years.

Dynamics simulations aiming to understand the mechanism behind the interaction between
Aβ1-42 and Tau have been performed by Qi et al. and showed that Aβ oligomer stretches Tau into
a more extended conformation by reducing the metastable secondary structures/hydrogen bonding/

salt-bridge networks in Tau monomers and promoting then the exposition of Tau’s fibril nucleating
motifs, VQIINK and VQIVYK [71]. Tau’s K18 and K19 constructs interact with both two conserved
patches around Tyr10 and Ile41 of Aβ1-42. Particularly, the interaction with residue Ile41 is consistent
with experimental observations that Tau pathogenesis is promoted by Aβ1-42 but not Aβ1-40.

By employing coarse-grained molecular dynamic simulation, the effect of Aβ1-40 fibrils on
the aggregation of Tau-RD (Tau’s repeat domains) has been recently investigated. Tau-RDs have
high affinity for Aβ1-40 fibrils, and the 261GSTENLK267 fragment of Tau drives Tau-RD towards the
16KLVFFA21 fragment of Aβ40 fibrils. The ability of Aβ1-40 fibrils to bind Tau-RD seems to depend
on the hydrophobic core fragment of Aβ adopting an extended conformation. Monomeric Aβ1-40,
compared to the fibril forms, rarely has this peptide fragment in an extended conformation and this



Molecules 2020, 25, 2439 7 of 33

could explain its lower affinity for Tau. They suggest that the different behavior between Aβ1-40
and Aβ1-42 in influencing the Tau aggregation could correlate with the different propensity of these
amyloids to aggregate. In that case, the major role of Aβ1-42 in spreading Tau pathology could be
ascribed to its greater tendency to self-assembly than Aβ1-40 [95].

Taking inspiration from this cross-interaction between Aβ and Tau, Mohamed et al. decided to
study the role of PHF6 fragment of Tau on the Aβ fibrillogenesis. The N-acetylated and C-amidated
PHF6 (Ac-VQIVYK-NH2) drastically promotes the aggregation of both Aβ1-40 and Aβ1-42 but at
the same time it is able to reduce cellular toxicity mediated by Aβ1-40 and Aβ1-42 in hippocampal
neuronal cell line (HT22) [96]. By employing molecular docking studies, they observed at the molecular
level that PHF6 interacts with the hydrophobic 14HQKLVFFA21 segment of Aβ in an antiparallel
fashion with the Lys undergoing polar interactions with the PHF6 backbone amides. Thanks to this
interaction the AcPHF6 hexapeptide can stabilize the β-hairpin structure of Aβ and promote rapid Aβ
self-assembly and growth to form less-toxic oligomers or fibrils.

In a recent study [97] the crystal structure of an Aβ core segment (Aβ16-26) has been determined
by Micro Electron Diffraction (ED) and, starting from these results, peptide-based inhibitors of Aβ
aggregation have been designed. The Aβ core sequence is implied not only in self aggregation
but it seems to be also involved in the cross-seeding interaction with Tau VQIINK and VQIVYK
sequences as demonstrated by previous in vitro and in vivo studies [34] and by computational
seeding models [98]. These inhibitors proved to be able to reduce the related Aβ toxicity preventing
self-aggregation and avoiding Tau cross-seeding by capping Aβ aggregates. All these results open the
hypothesis of a pathological cross-seeding via a shared epitope between Aβ and Tau [99]. This study
suggest not only that future inhibitors should target common interface region of Aβ and Tau but also
that the determination of the high-resolution structure of Aβ-Tau complex would contribute to the
understanding of the key binding residues for optimized inhibition of amyloid seeding in AD.

Finally, the cross-interaction between the two proteins could be even more complicated and could
require a third protein partner. Gomes et al. found that cellular prion protein (PrPC) may play a role in
the progression of AD pathology together with Tau and Aβ. An in vitro pull-down assay confirmed
that PrPC is able to interact with Aβ and p-Tau. Co-immunoprecipitation and proximity ligand assay
showed an association with Aβ-PrPC and Tau-PrPC both in mice and in human AD brain tissue.
PrPC may act as an important mediator of Aβ-driven effects on p-Tau pathology. PrPC behaves as
an interaction partner of soluble Aβ oligomers and intervenes in p-Tau propagation by activating,
once complexed with Aβ, a signaling pathway that increase the levels of p-Tau [100]. PrPC may
provide a novel therapeutic target for stopping p-Tau spreading and its downstream neurodegenerative
and cognitive consequences in AD.

3.2. Transthyretin (TTR)

Human transthyretin is a homo-tetrameric protein characterized by four identical subunits of
14 kDa each. The four monomers, through hydrophobic interactions, are assembled in couples of
dimers and two dimers are associated back to back to form a tetramer. The TTR tetramer assembly is
characterized by 222 molecular symmetry which forms, in the middle of the tetramer, two identical
funnel-shaped named thyroxine binding sites (T4-BS), located at a dimer–dimer interface [101]
(Figure 2A,B).

TTR is mainly synthesized by the liver and the choroid plexus of the brain, in minor amounts in
the retina [102] and in human placenta [103]. Therefore, it circulates both in human plasma and in the
cerebrospinal fluid (CSF), but at different concentrations. The TTR turnover, in the plasma, is relatively
rapid with a half-life of approximately two-three days. Under physiological conditions, TTR tetramer
transports retinol and thyroxin, as a backup carrier, both in plasma and cerebral spinal fluid [104].
In elderly people, the native TTR tetramer can became unstable favoring the TTR monomeric form
which can misfold causing the fibril formation. In aged patients, the fibrils accumulation in organs and
tissue induces the onset of senile systemic amyloidosis diseases (SSA) [105,106].



Molecules 2020, 25, 2439 8 of 33

Molecules 2020, 25, x 9 of 36 

 

(VFF epitope) is the main structural motif for the recognition and it is able to bind at the surface of 

the TTR protein, coincident with the surface binding region of EGCG [130], instead of the T4 binding 

pocket as previously assessed [121]. 

 

Figure 2. Graphic representation of TTR tetramer. A) The TTR tetramer composed by four equal 

monomers assembled by 222 molecular symmetry. The tetramer is crossed by thyroxin binding 

pockets (T4-BP). B) The TTR tetramer rotated of 90°. C) Representation of the dimer composed by two 

identical monomers. Each monomer is composed by strands D, A, G H, C, B, E and F, and a short EF 

α-helix. 

Buxbaum et al. showed a direct interaction between Aβ (18-21) residues and the thyroxine 

binding pocket of the TTR tetramer, through nuclear magnetic resonance and epitope mapping by 

isothermal titration calorimetry (ITC). Their experiments showed a reduced inhibition of Aβ 

aggregation when the T4 site is occupied by small molecules, confirming the involvement of this site 

in Aβ binding. In that case, the L82, rather than serving as an Aβ oligomer sensor, may influence the 

orientation of the side chain of W79, which usually points to the T4 binding pocket [121].  

In AD patients, the metals ions levels detected in cerebral amyloid plaques drastically grow up 

and, for example, the total copper concentration could increase up to 400 μM [131]. It has been 

Figure 2. Graphic representation of TTR tetramer. (A) The TTR tetramer composed by four equal
monomers assembled by 222 molecular symmetry. The tetramer is crossed by thyroxin binding pockets
(T4-BP). (B) The TTR tetramer rotated of 90◦. (C) Representation of the dimer composed by two
identical monomers. Each monomer is composed by strands D, A, G H, C, B, E and F, and a short EF
α-helix.

TTR tetramer is usually stable, exception when a single point mutation occurs and drastically
decreases its stability, thus promoting amyloidosis. Familial amyloid cardiomyopathy (FAC) is
a rare autosomal-dominant disease associated to the deposition of TTR amyloid plaques in the
myocardium [107] and related to the most common TTR mutation Val122Ile [108]. Familial amyloid
polyneuropathy (FAP) is another TTR amyloidosis and is usually associate to Val30Met point
mutation [106]. One therapeutic strategy against TTR amyloidosis is the tetramer stabilization
by small molecules such as bisaryl [109,110] or monoaryl [111–113] structure-based compounds or
natural molecules [114,115].

In contrast with its intrinsic amyloidogenic potential, TTR can interact with Aβ and play a
protective role in AD by sequestering Aβ and reducing protopathic stress. TTR has been described as
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the major Aβ binding protein in CSF and its interaction with Aβ inhibits the amyloid formation [116].
A direct implication of TTR in AD physiopathology have been confirmed by in vivo studies in AD
patients where TTR concentration was observed to decease both in plasma and CSF [117,118]. Moreover,
several in vivo experiments, performed in AD transgenic mice, recognized the neuroprotective effect
of TTR against Aβ amyloid deposition and toxicity [30,119–122]. The precise mechanism by which
TTR binds to Aβ remains unknown. Several hypotheses have been proposed and controversial results
have been obtained. It has been reported that TTR binds to soluble, oligomeric and Aβ fibrils [121,123]
performing its relevant role in Aβ clearance, however it is not clear which form of TTR binds to Aβ.
Some studies showed that is the TTR monomeric form which binds to Aβ [124,125]. In contrast with
this data, in vivo experiments reported that the administration of TTR tetrameric stabilizers to AD
transgenic mice led to an improvement of pathological conditions, supporting the hypothesis that
it is the TTR tetramer that interacts with Aβ peptide [123]. Recently, ThT fluorescence spectroscopy
analyses showed that both TTR tetramer and monomer bind to Aβ1-40 oligomers and inhibit the
primary and secondary nucleation processes, which limits both the toxicity of Aβ1-40 oligomers and
the ability of the fibrils to proliferate [126].

The low-density lipoprotein receptor-related protein 1 (LRP1) is one of the receptors involved in
efflux of Aβ across the blood-brain-barrier (BBB). It has been hypothesized that TTR binds to Aβ and
this established complex, through the LRP1 receptor, is transported outside of the brain towards the
liver [127]. Recently, the same authors reported that the stabilization of the TTR tetrameric structure is
essential to allow not only the scavenger of Aβ from the BBB to liver but also the regulation of LRP1
expression and activity [128].

In the next two sections we report several studies focused on TTR-Aβ interaction which have
been done in the last years. In particular, we discuss the different hypotheses regarding the mechanism
by which TTR can bind to Aβ, then we report the state of the art of the therapeutic approaches based
on TTR-Aβ interaction which are currently studied against AD.

3.2.1. β-Amyloid-Binding Sites on TTR

Each monomer of TTR contains two four-stranded β-sheets, one “inner” β-sheet of strands D, A,
G and H, and another “outer” sheet of strands C, B, E and F, and a short EF α-helix (Figure 2C).

First analyses of the binding interaction realized by tandem mass spectrometry of cross-linked
TTR-Aβ fragments showed that Aβ binds only slowly and relatively weakly to the TTR tetramer, and
that the binding is mediated primarily through Aβ aggregates rather than through Aβ monomers.
The binding is governed by a hydrophobic interaction between strand A in the inner β-sheet and the
amyloidogenic domain on Aβ, region that is sterically restricted in TTR tetramer. A second binding
region was identified in the EF helix which is highly solvent exposed and thus less restricted in the
TTR tetramer [125]. By using two other complementary methods, or rather SPOT peptide array and
single-point mutants, the same research group could affine the previously obtained results and identify
strand G and strand E through EF helix/loop as the strongest binding regions of Aβ. Binding to
TTR is primarily mediated through two bulky hydrophobic leucine at positions 82 et 110. The slight
discrepancy between the two studies is mainly due to the drawback of the cross-linking that it allows
to identify only spatially close domains containing lysine [124]. The role of each sequence in the
mechanism of binding was successively explored by studying the two L82A and L110A TTR mutants
relatively to how they mediate protection against Aβ-induced neuronal toxicity compared to wild type
TTR. It was shown that the loss of binding sites reduces TTR protection against Aβ toxicity and that
they are the Aβ soluble aggregates that bind preferentially to TTR. By circular dichroism analyses and
native gel electrophoresis, it was demonstrated that binding of Aβ could induce a change in wild-type
(wt) TTR structure, leading to destabilization of the tetramer. This dissociation might be carried by the
first interaction of Aβ with the EF helix/loop region behaving as a sensor of the presence of soluble
toxic oligomers. Successively, the dissociation allows to expose the hydrophobic inner sheet (strand G)
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and to interact with other Aβ peptide. This second interaction might scavenge the toxic oligomers and
prevent them from causing cell death [129].

A recent STD-NMR studies conducted on the interaction between TTR and Aβ (12–28) peptide
provided a structural model for the TTR-Aβ binding interaction. The central hydrophobic core of Aβ
(VFF epitope) is the main structural motif for the recognition and it is able to bind at the surface of
the TTR protein, coincident with the surface binding region of EGCG [130], instead of the T4 binding
pocket as previously assessed [121].

Buxbaum et al. showed a direct interaction between Aβ (18-21) residues and the thyroxine binding
pocket of the TTR tetramer, through nuclear magnetic resonance and epitope mapping by isothermal
titration calorimetry (ITC). Their experiments showed a reduced inhibition of Aβ aggregation when
the T4 site is occupied by small molecules, confirming the involvement of this site in Aβ binding.
In that case, the L82, rather than serving as an Aβ oligomer sensor, may influence the orientation of the
side chain of W79, which usually points to the T4 binding pocket [121].

In AD patients, the metals ions levels detected in cerebral amyloid plaques drastically grow
up and, for example, the total copper concentration could increase up to 400 µM [131]. It has been
demonstrated that Aβ peptide is highly sensitive to metal ions such as Zn2+, Cu1+,2+, Fe2+,3+, Mn2+.
These latter have been shown to have a role in Aβ fibril formation and toxicity, by inducing several
conformational changes of Aβ peptide [132–135]. It has been reported that the same cations interact
with TTR [136,137]. In 2018, it has been hypothesized that the TTR-Aβ interaction was modulated by
metal ions. Different experiments were performed using bio-layer interferometry (BLI) between TTR
and the biotinylated peptide Aβ (1–28) with various CuCl2 concentration (0–12.5 mM) and the results
showed that the affinity of TTR for Aβ (1–28) is modulated by copper [138]. Moreover, the crystal
structures of TTR obtained in presence of Cu2+ and Fe2+ showed a conformational change comparable
to that found for the TTR-rhenium complex in which the distances between L110 and L110’ increased
up to 8.5 Å in one T4-BP, while decreased in the other probably due to the rhenium binding [139].
Moreover, the monomer B in asymmetric unit changes its conformation and the E-F helix and residues
85–92 undergo a rearrangement resulting into variation of the dimer-dimer interface. Although the
BLI experiments clearly demonstrated that the TTR interaction with Aβ is mediated by Cu2+, TTR
crystals grown in the presence of CuCl2 and Aβ did not show any ordered Aβ peptides.

3.2.2. TTR-Aβ Interaction-Based Strategies to Design Anti-Aβ Agents

Three different strategies have been employed to design anti-Aβ agents based on TTR-Aβ
interactions: the epigenetic modulation of TTR, the stabilization of the TTR tetramer and the design
of TTR-derived peptide inhibitors (Figure 3). All these strategies have the aim to enhance or mimic
the TTR-Aβ interaction in order to improve the clearance of Aβ peptide and consequently avoid its
aggregation into amyloid aggregates.

Quintela et al. demonstrated that sex hormones, such as 5α-dihydrotestosterone, 17β-estradiol
and progesterone, increase TTR mRNA and protein level in the choroid plexuses, through ligand
activation of hormone receptors which dimerize and interact with specific response elements directly
binding to steroid receptor co-factors. This activation cascade promotes the expression of TTR and
therefore might have an impact on AD progression. Further studies will be required to establish
a clear connection between ovarian hormones, TTR and Aβ degradation [140–142]. In a review of
2014 [143], about amyloid-clearing proteins and their epigenetic regulation as a therapeutic target for
AD, Turner et al. cited TTR as an amyloid protein with anti-Aβ amyloidogenic effect. TTR could be
clearly considered as a transport protein involved in the Aβ clearance mechanisms in the brain whose
expression could be regulated to fight again the undesirable accumulation of Aβ toxic aggregates and
to prolong Aβ normal functioning. TTR seems to have a similar epigenetic regulation as neprilysin
(NEP), an amyloid-degrading peptidase whose expression is regulated by the APP intracellular domain
(AICD) and clearance by the histone deacetylase (HDAC). Consequently, inhibitors of HDAC might
have the advantage to up-regulate TTR expression in the brain [143].
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Ribeiro et al. initiated in 2014 the exploration of iododiflunisal (IDIF), a TTR-tetramer stabilizer,
as a new therapeutic approach, aiming to stabilize the tetramer conformation of TTR to promote its
binding to Aβ and consequently its clearance. In a first attempt, they studied the effect of an oral
administration of IDIF in transgenic mice and they observed the ability of IDIF to bind TTR in plasma
and stabilize the protein until entering the brain. Once in the brain, IDIF resulted not only in a decreased
brain Aβ level and deposition but also in improved cognitive function. This was the first in vivo
evidence that a TTR-stabilizer might be used as a therapeutic agent for AD [122]. Successively, starting
from these results, the research group continued to go deeply insight by exploring the biodistribution
features of IDIF by radiolabeled techniques [144], the thermodynamic characteristics of the formation
of binary (Aβ/TTR) and trinary (Aβ/TTR/IDIF) complexes by calorimetric studies in comparison with
tafamidis and diflunisal [145] and the structural features of the interaction by STD-NMR spectroscopy
methods [130]. In a different work, administration of resveratrol in mouse model also produced
decreased brain Aβ burden and raised plasma TTR concentration, even if the authors revealed that
TTR liver gene transcription was not altered. They hypothesized that the instability of TTR tetramer in
AD leads to accelerated clearance and lower level [146]. Much more should be still studied in order to
better understand the mechanism underlying the TTR protection in AD. The strategy of using TTR
stabilization as a therapeutic target in AD needs to be accurately evaluated taking into account that
TTR is decreased in CSF and in sera of AD patients [147] and also considering that TTR monomers
seem to bind more Aβ than do tetramers [125].

Generally, inhibition of protein-protein interactions is challenging because it requires the
modulation of typically large, relatively flexible surface area [148]. This is normally the reason
why small molecules often lack selectivity [149]. Monoclonal antibodies and other protein therapeutics
have the advantage to be selective, but they suffer from poor oral bioavailability, high cost and
susceptibility to proteolysis [150]. All these disadvantages pushed researchers to study peptides and
peptidomimetics as promising therapeutics in the field of protein-protein interactions, because they
can afford selectivity and affinity, thanks to their size in midway between small-molecules and protein
therapeutics [148]. Their relatively cheap and modulable chemical synthesis offers the opportunity to
incorporate also elements enhancing bioavailability and stability. Finally, peptidomimetic foldamers
give the possibility to mimic the secondary structure of the peptide sequence, generally involved in
the interaction [151]. Understanding protein/peptide self-assembly using structural and biophysical
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chemistry continues to offer the possibility to investigate the binding epitopes involved in the interaction
and to provide guidance for future development of therapeutics.

Aβ binds to TTR through two different binding domains: strand G in the inner β-sheet (residues
102–117), and the EF helix/loop (residues 74–83). The first example of peptides that mimics Aβ-binding
domains of TTR was reported by Murphy et al. in 2014 (Figure 4) [152]. Through a structure-activity
relationship study, they identified, for strand G, important features required for binding to TTR: the
need of a minimum length of 10 residues, the importance of the hydrophobic hexamer TIAALL as well
as C-terminal residues SPYS or SPYSYS, the relevance of hydrophobic residues isoleucine and leucine in
the N-terminal domain (I107, L110, L111) and aromatic groups in the C-terminal domain (Y114, Y116).
They identified a linear peptide (G16) able to bind Aβ and reduce its toxicity in a dose-dependent
manner, even if it increased the average size of Aβ aggregates, unlike wild-type TTR [152] (Figure 4).
Because G16 was less effective than the parent TTR at protecting neurons from Aβ toxicity, it was
thought that this was imputable to a lack of β-strand/loop/β-strand structure, typical of the Aβ-binding
domain. To cope with that, the peptide sequence has been transplanted onto a β-hairpin template
by the introduction of a β-turn inducer (DPro-LPro) and an N-to-C cyclization to further restrict
conformational restriction. The imposition of structural constraints generated a much improved
peptidomimetic of the Aβ binding epitope on TTR (cG3, Figure 3) [153]. Successively, additional
changes had the aim to improve the solubility, specificity and stability of the Aβ-inhibitor. Compound
cG3 showed a better activity compared to G16 but it was not as effective as the wild-type TTR. The
explanation was probably related to its still not enough stabilized antiparallel β-strand structure and
its tendency to self-aggregate. Improvements concerning the β-sheet tendency and hydrophobicity
were explored by TANGO algorithm which helped to identify specific mutation on the cyclic peptide
sequence able to retain or stabilize the conformational structure while minimizing the self-association.
This approach allowed to identify cG8 (Figure 4), a cyclic peptide which demonstrated in multiple
complementary techniques to cluster Aβ into large weakly associated aggregates, thus blocking Aβ in
a non-fibrillar aggregation stage and accelerating the Aβ clearance by natural mechanisms [154].
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In a study comparing protein versus peptide [155], each designed as a mimic of the Aβ-binding
domain on wild-type TTR, both mTTR (engineered protein) and cG8 (cyclic peptide) resulted effective
at inhibiting amyloid formation by either Aβ isoform, Aβ 1-40 and Aβ 1-42. The results obtained
by ThT fluorescence spectroscopy showed that mTTR and cG8 are not broad-spectrum anti-amyloid
agents, because they recognize similar epitopes that Aβ and amylin share but that α-synuclein does
not possess. Nevertheless, mTTR has the advantage to be more effective to lower concentration, having
a strong impact on both the morphology and the quantity of Aβ deposits on cell, while cG8, thanks to
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its smaller size, results in better stability against proteolysis and less interferences from nonspecific
biological materials. It is hypothesized that the greater efficacy of mTTR is attributable to a relative
stable anti-parallel two β-strand conformation that fully mimics TTR’s Aβ binding site, while cG8
shows a conformational heterogeneity [155]. These findings highlight the fact that the design of
TTR-derived anti-Aβ agents requires a correct balance between advantages and disadvantages of using
a protein versus peptide as therapeutic, and a compromise between efficacy, specificity, stability and
conformational behavior is demanding. This consideration opens the way to the use of peptidomimetic
foldamers, for example, as a new approach which might resolve a major issue in the use of peptides as
drugs, by stabilizing secondary conformations similar to natural peptides and retaining the selectivity
due to the lateral chains [156].

3.3. Cystatin C (CysC)

Human cystatin C (CysC), a protein encoded by the CST3 gene, is a member of cystatin 2 family.
CysC is the most spread cystatin in human body fluids, secreted by all nucleated cells and it is a natural
inhibitor of papain-like and legumain-like cysteine protease [157]. CysC is a basic protein composed
by 120 amino acid residues (13.3 kDa), characterized by three main domains interacting with the target
enzymes: the N-terminal disordered segment (S1-V10) and the two hairpin loops L1 (55QIVAG59) and
L2 (105PWQG108). Under physiological condition, CysC is a monomeric protein. In healthy people,
the CysC concentration in the CSF is six times higher than that of blood plasma [158], as a result of a
large expression of this protein by the brain tissue (neurons, astrocytes, endothelial, and microglial
cells) [159]. The principal physiological role of CysC is the inhibition of cathepsins B, H, K, L and S
which are acidic proteinases, lysosome-located, involved in the protein turnover and in the processing
of neuropeptides in the CNS. These cathepsins are studied in AD because it has been observed that
cathepsin-immunoreactive material is associated with senile plaques and neurofibrillary tangles [160].
Furthermore, CysC itself is a target for proteases and its function is inactivated by cathepsin D and
elastase [161].

In vitro experiments showed that a slight change in pH or temperature and the addition of small
amount of denaturing agents induce the dimerization and oligomerization of wild-type CysC [162,163].
CysC itself tends to form amyloid fibril and to precipitate with other amyloidogenic proteins such as APP
full-length, secreted APPα and its processing products Aβ peptides (Aβ1-40, Aβ 1-42) [164]. A single
point mutation of CysC (Leu68Gln) leads to hereditary cystatin C amyloid angiopathy (HCCAA) [165].
The fibril formation pathway is analogue to that suggested for other amyloidogenic proteins: a single
point mutation is responsible of a conformational change which leads to expose hydrophobic surfaces
promoting the self-association and thus the fibril deposition [166,167]. In 2010, the crystal structure
of human CysC-stab1 mutant (L47C and G69C) was solved [168]. For the first time, it was proved
that human CysC folded as monomeric protein with a canonical cystatin structure characterized by
a long α-helix running across a five-stranded antiparallel β-sheet stabilized by two hairpin loops,
L1 and L2 [168] (Figure 5A). Until then, all the crystallization experiments had led to obtain the
dimeric form of CysC as a result of a 3D domain swapping, the same structural arrangement firstly
observed in diphtheria toxin [169,170] (Figure 5B). The three-dimensional domain swapping consists in
a mechanism by which CysC conserves its monomeric secondary structure, but the protein is refolded as
a 2-fold symmetric dimer (Figure 5). The dimer is structured through the exchange of three-dimensional
‘subdomains’ between the two monomers. Some studies suggested that the swapping dimerization
could be the mechanism by which CysC forms oligomers and fibrils [163,171,172], moreover the
relationship between the CysC swapping dimerization and its fibrillization has not been clarified yet.

Several studies reported that CysC plays a protective role against several pathological
manifestations such as tumor metastasis, inflammation, viral and bacterial infections and
neurodegenerative disorders [166]. Moreover, the variation of CysC levels, in specific tissues or
body fluid, might be used as diagnostic marker to study the onset or progression of various diseases.
In 2016, Mathews and Levy have summarized, in an exhaustive review, the changes in CysC expression
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or function related to several CNS aging-dependent diseases [173]. Several studies discussed the
potential and the controversial role of CysC in AD pathogenesis.Molecules 2020, 25, x 14 of 36 
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The co-localization of CysC and Aβ has been observed in the cerebral arteries of patients affected
by cerebral amyloid angiopathy (CAA) [174], in parenchymal and vascular amyloid deposits in brains
of patients with Alzheimer disease [175] and in sporadic inclusion-body myositis (sIBM) muscle
fibers [176]. All these evidences strengthen the hypothesis that CysC might play an important role
even in AD. Controversial results have been obtained, investigating the connection between the
polymorphism CST3 gene, encoding for CysC, and AD developing. In a studied published in 2008,
it was reported that, in Mainland Chinese patients and the healthy controls no statistical difference
exists between CST3 genotype and allele frequencies [177]. In addition, in 2012 another research
group investigated the possible association between CST3 G73A polymorphism and AD. The result
showed that the CST3 G73A polymorphism is associated with AD in Caucasian populations, but not in
Asians [178]. Instead, a synergic correlation has been demonstrated between the CST3 polymorphism
and apolipoprotein E (APOE) ε4 alleles. Experimental data suggested a synergistic association among
the CST3-A allele, APOE4 and AD in elderly AD patients [179,180].

The Aβ peptide accumulation has a key role in AD pathogenesis. A strategy to decease the
cerebral Aβ level is to activate the endogenous pathways inducing Aβ degradation and scavenging.
Cathepsin B (CatB), one of the enzymes implicated in Aβ degradation, cleaves the C-terminal of
Aβ1-42 peptides decreasing the Aβ levels [181]. It was hypothesized that the reduction of CysC,
endogenous inhibitor of CatB, can reduces Aβ levels. A study reported that the genetic ablation of
CysC, in transgenic mice overexpressing human amyloid precursor protein (hAPP) with familial AD
(FAD)-linked in Swedish and Indiana mutations (hAPP-J20 mice), increases CatB activity in the brain
and drastically decreases Aβ levels [182]. This protective effect is lost in hAPP mice without CatB.
The majority of AD patients do not possess the FAD mutation, so the same experiment was carried out
on hAPP wild type (hAPPWT) showing that CysC-CatB affects Aβ levels in hAPPWT mice in a similar
manner as in hAPPFAD mice [183].

Conversely, other studies have reported neuroprotective effects of an increased CysC expression in
animal models. It was reported that transgenic mice expressing human higher CysC levels than normal
displayed a drastic decrease in Aβ fibril deposition [184]. Moreover, CysC overexpression showed to
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reduce the AD plaque formation in hAPP-transgenic mice [185]. In another study the CatB-deficient
mice were analyzed and the CysC overexpression decreased the total amyloid plaque deposit [182].

In summary, CysC showed a controversial role in AD: on one side it seems to regulate the Aβ
levels directly binding to Aβ and inhibiting its aggregation, on the other its being a substrate for
protease CatB seems to be competitive for Aβ degradation.

β-Amyloid-Binding Sites on CysC

Sastre et al. were the first to show that the association of CysC with Aβ causes an inhibition of
fibril formation. During their ELISA affinity assay, they found that the monoclonal antibody 6E10,
which binds to residues 1–17 of Aβ, abolished the CysC binding to Aβ-coated plates, thus suggesting
that the binding site within Aβ is within the amino-terminal domain of the peptide [164]. Successively,
proteolytic excision mass spectrometry analyses, conducted by Przybylski et al. [186], revealed that the
CysC binding site is in the central region of Aβ within residues 17–28 which is critically important for
the Aβ structure and aggregation. This sequence contains the hydrophobic core of the Aβ peptide
(LVFFA) and the β-turn for fibril formation located within residues 25–28. This region of Aβ interacts
with the C-terminal β-hairpin motif of CysC within the L2 loop and β5 strand comprising residues
101–117. A structure model of CysC-Aβ complex (Figure 6A) obtained by molecular docking simulation
showed that, while the initial Aβ structure changed during the simulation and did not have a large
influence on the structure and stability of the complex, CysC structure (residues 101–117) was kept
stable and seems to have the major impact on the hydrophobic and electrostatic interactions. Residues
Tyr-102, Val-104 and Trp-116 interact with Phe-19, Phe-20 and Val-24 on Aβ peptide, while Gln-107
and Thy-109 establish hydrogen bonds with the carbonyl group of Phe-19 and Asp-23 [186]. The same
research group characterized structures and affinities of both Aβ and CysC not only by enzyme-linked
immunosorbent assay-like assay, surface plasmon resonance and nano-ESI-FTICR-MS but also by
making Ala-scan analysis of CysC 101–117 fragment in order to study the importance of each residue
in the interaction binding. By this latter, they found that the substitution of the previous important
residues discovered by simulation by an Ala did not decrease or abolish the Aβ-CysC complex. Rather
residues Gln-107, Gly-108, Ser-113, Lys-114 and Ser-115 showed to be more involved in the complex
stabilization. Deletion of the C-terminal amino acids in the CysC 101-117 fragment resulted to affect
strongly the affinity and revealed the need not only of hydrophobic but also electrostatic interactions in
the formation of the complex. Structural studies by circular dichroism and NMR conducted on CysC
101–117 fragment demonstrated the absence of a well-defined structure with a weak tendency to bend
in the middle part of the sequence [187]. The Aβ-binding CysC sequence could be the basis for the
design of potential inhibitors of amyloid β-aggregation process but much more attention should be
taken on the conformational requirements for CysC-epitope binding to Aβ.

Recently, all-atom molecular dynamic simulations and rigid body protein-protein docking
underlined the important roles of hydrogen bonding and hydrophobic interactions in the stability of
the complexes between Aβ and CysC and thus the importance of noncovalent forces in biomolecular
interactions of therapeutic significance. During all the simulation, Aβ explores different conformational
rearrangements with a major secondary structure element being an α-helix, contrary to CysC whose
secondary structures revealed a relative rigidity with a preserved β-sheet as representative structure
(Figure 6B) [188]. These latter findings showed that the possible mechanism of the CysC β-hairpin
domain might be a stabilization of an α-helix intermediate conformation of Aβwhich might contribute
to its monomer-state stabilization and so to its metabolic degradation.

The first example of CysC-derived Aβ aggregation inhibitors have been showed by Przybylski et
al. [186] Using an in vitro assay of Aβ aggregation, they found that CysC 101–117 peptide was able to
reduce the formation of Aβ aggregates with a time- and concentration-dependent inhibitory effect [186].
More recently, two CysC fragments have been found to play the role of a steric zipper motif which could
enhance the conformational change of CysC and very easily form complementary β-sheet structures,
involved during the formation of amyloid deposits: the loop L1 region and the C-terminal fragment.
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Particularly, Ala-52 to Asp-65 fragment has been proved to have high fibrillization propensity and
potentially to be able to form a steric zipper. In the protein structure (3GAX), this fragment is located
in the first hairpin and consists of sequences of β-strands 2 and 3 and the loop L1 which connects these
strands [189]. At the moment, nothing is known about the implication of the C-terminal fragment on
the amyloid behavior of CysC but much more should be studied about this fragment because of its
characteristic β-harpin conformation and the fulfilling conditions for being an effective steric zipper,
probably the one that can recognize the α-helix intermediate conformation of Aβ.
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3.4. Apolipoprotein A1 (ApoA1)

Apolipoprotein A1 (ApoA1) is the main component of high-density lipoprotein (HDL), playing
an important role in lipid transport, constitution and metabolism of HDL cholesterol [190–193]. It is a
plasma protein composed of 243 amino acids, encoded by exons 3 and 4 of the APOA1 gene, with
a global weight of 28 kDa [194]. Human ApoA-1 is synthesized as preproapoA-1, a 267 amino acid
precursor apolipoprotein, which undergoes intracellular co-translational proteolytic cleavage into
proapoA-1 and successively proapoA-1 is cleaved to mature plasma ApoA1 in human plasma [195,196].
Its mature form is essentially expressed in the small intestine and in the liver [190,197]. About 95% of
the protein is bound to mature HDL but a few ApoA1 circulates in a lipid-free form [198].

In vivo, ApoA1 has been identified as an amyloidogenic protein among other apolipoproteins [199].
The N-terminal fragment, essential for the stabilization of the secondary structure of ApoA1 [200],
is generally highly conserved in apolipoprotein-derived amyloidosis and seems to have an important
role in the formation of amyloid fibrils [190,201–204], in particular in those amyloidosis affecting
patients with chronic inflammatory disorders (secondary or reactive amyloidosis) [205]. The C-terminal
domain is the minimal lipid-associating domain of ApoA1 and allows binding to lipids with high
affinity [206,207]. Lysine and arginine residues in this region are responsible for this strong affinity
because they can bury into the membrane the hydrophobic part of their side chains [208,209]. While the
C-terminal fragment is anchored into the membrane and therefore difficult to access, the N-terminus,
on the other side, results to be more accessible for the interactions with other possible components.

In plasma, as previously mentioned, ApoA1 circulates in a lipid-free, lipid-poor, and lipid-bound
form, therefore it has a flexible and adaptable structure. The adaptable nature of ApoA1 hampered
high resolution structural studies. To date, two different human ApoA1 truncate structures are present
in the PDB data bank (PDB code: 1AV1 [200] and 3R2P [210]). The first ApoA1 crystal structure,
deposed in 1997 (code 1AV1), corresponds to a ∆(1–43) truncated mutant of human ApoA1. Due to the
low resolution (4 Å) no detailed structural information can be extrapolated. Although, four-helical
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horseshoe-shaped molecules, assembled in the crystal to form a tightly associated elliptical ring, are
visible. This crystal structure did not furnish any data about the N-terminal 43 residues [200]. In a
study published in 2011, the structure of native ∆(185–243)ApoA1 (code 3R2P, resolution at 2.2-Å) was
obtained, thus giving the information about the N-terminal residues (residues 3–43). One molecule
of ∆(185–243)ApoA1 is composed by 80% of helix and forms roughly a half-circle (Figure 7A). Each
monomer generates a homodimer interacting with its symmetry-related molecule with a semi-circle
architecture (Figure 7B) [210].Molecules 2020, 25, x 17 of 36 
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ApoA1-induced amyloidosis often trigger asymptomatic hepatopathy and nephropathy [211].
The hereditary one, the most frequent form, involves mutants of ApoA1 responsible of a systemic
amyloidosis [212,213]. Besides this hereditary form, ApoA1 amyloidosis can be found as a non-
hereditary form, characterized by the wild-type protein deposition [214].

So far, among the 50 ApoA1 variants described [193], about half of them are known to be
associated with a decreased plasma level of HDL-ApoA1. These ApoA1 variants have undeniable
interest because they may affect lecithin-cholesterol acyltransferase (LCAT) activity and promote the
formation of amyloidosis [190]. Indeed, patients presenting mutations of the ApoA1 gene are more at
risk of developing ApoA1 hereditary amyloidosis [215]. These mutations are clustered in 2 principal
regions of the protein: residues 26–90 in the N-terminal part and residues 154–178. Hereditary ApoA-I
amyloidosis is characterized by deposition of the N-terminal 80-100-residue fragments as amyloid fibrils
in peripheral organs. Mutation seems to perturb the native protein structure, making it more susceptible
to proteolysis and thereby to the release of the N-terminal amyloidogenic fragment [216,217].

The G26R mutation has been associated to hereditary amyloidosis leading to renal failure [213,218].
Recently, Mizuguchi et al. studied the role of the N-terminus (1-83) of this variant in the onset of
amyloidogenesis. Using ThT method and atomic force microscopy, they showed that the fragment
14-22 is essential for the fibril formation, while fragments 32–40 and 50–58 have a role in the nucleation
process. Using circular dichroism, they also showed that the fragment 14–22 allows β-transition
and fibrilization [216]. Studies with electron paramagnetic resonance spectroscopy [219], X-ray
crystallographic studies [220] and hydrogen-deuterium exchange mass spectroscopy [221] showed
that the G26R mutation induces helix destabilization of the protein in the N-terminal domain leading
to a transition of residues 14-58 to a β-sheet conformation (Figure 7) [216]. In mature amyloid
fibrils, ApoA1 N-terminal fragments are assembled in a parallel, in-register β-sheet structure and the
protofilaments of ApoA1 present a β-strand-loop-β-strand structure [205,217].

Immunohistochemical studies revealed the presence of ApoA1 in senile plaque [222], suggesting
a potential cross-interaction with amyloid β peptides. Indeed, Koudinov et al. demonstrated that
ApoA1-containing HDL particles can bind to circulating Aβ peptide, as revealed by SDS PAGE and
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immunoblot analysis [223,224]. Notably, a correlation between the decreased levels of plasmatic ApoA1
and the occurrence and severity of AD has been showed [225].

Vollbach et al. studied the impact of different polymorphisms of ApoA1 on AD, in particular in
the promoter region of ApoA1, the sequence of DNA initiating transcription. Some presumed effects
of polymorphism in this region impact serum levels of ApoA1 or the function of the protein. These
polymorphisms are then shown to be involved in the physiopathology of AD. For example, the G/A
substitution at position 75 pb is implicated in an elevated risk for AD [226].

A lot of naturally occurring ApoA1 variants have so far been identified, impacting levels of HDL
and amyloidosis of the protein. ApoA-1-Milano (ApoA1M) was the first natural variant of ApoA1
identified, with a cysteine replacing an arginine in the 173 position [209,227–229]. ApoA1 and ApoA1M
have been shown to be both able to prevent the cytotoxicity induced by Aβ1-42 in brain endothelial
cells [230]. In transgenic mice, the chronic intravenous treatment with ApoA1M resulted in a decrease
the level of cerebral soluble, insoluble and membrane-bound forms of Aβ1-42 and Aβ1-40 [230].

ApoA1 has a positive effect on Aβ, preventing fibril formation and attenuating Aβ toxicity [231].
The binding of ApoA1 to Aβ1-40 have been shown to contribute to maintain Aβ in solution, thus
preventing its deposit within the brain in some pathological conditions. ApoA1 levels are also found
to be significantly lower in AD patients compared to controls [223] whereas high levels of ApoA1
are associated in lowering risks of dementia [232]. There might be an important correlation between
Alzheimer’s disease and a decrease of ApoA1 levels in plasma [233]. Besides, men with high levels of
LDL cholesterol, meaning low levels of HDL and ApoA1, are more at risk to develop AD [234].

An increased dissemination of Aβ1-42 deposition has been observed in KO ApoA1 and KO
ABCA1 mice, with ABCA1 as an ATP binding cassette regulating the cholesterol efflux from cells to
ApoA1. Moreover, an increase of plasma levels of Aβ1-42 and an aggravation of memory deterioration
impacting negatively dendrite architecture have been also identified in KO ApoA1/ApoE mice,
suggesting an important role of more than one apolipoprotein in the Aβ1-42 clearance [235].

By using a blood-brain barrier (BBB) model, an increased Aβ efflux from the basolateral side of
the BBB has been shown when ApoA1 is in a discoidal HDL form. On the contrary, there is no effect on
the efflux when ApoA1 is in a spheroidal HDL or in the plasma pool. ApoA1 in a discoidal HDL can
cross BBB and reduce fibrils amount and extension by remodeling Aβ fibrils [236].

Conversely, it should be notice that ApoA1 might have an indirect role in the pathogenesis of AD.
In fact, a study using AD mouse models showed that cognitive deficits in memory and learning could
be limited by circulating ApoA1 overexpression despite the concomitant deposition of Aβ plaques.
These results seem to suggest an indirect role of ApoA1, which would rather reduce neuroinflammation
and cerebral amyloid angiopathy than directly bind to Aβ [237].

ApoA1 is assumed to be an amyloid protein able to decrease the Aβ fibrilization by affecting
in vitro the morphology of the fibrils [23,231]. ApoA1 prevents the formation of high molecular weight
aggregates of Aβ1-42 and decreases Aβ1-42 toxicity in primary brain cells. The inhibition of Aβ1-42
aggregation is ApoA1 concentration-dependent [238].

Furthermore, by in vitro assays (ThT fluorescence spectroscopy, SDS-PAGE and immunoblot),
Radosveta et al. found ApoA1 to have a strong affinity for the amyloid precursor protein (APP) and for
Aβ1-40 (Kd = 6 nM) and to be able to inhibit the β-sheet formation and the Aβ-induced cytotoxicity
(IC50 = 580 nM) [231]. ApoA1 interferes with Aβ-induced lipid peroxidation and, in the presence of
ApoA1, Aβ aggregates are less neurotoxic than pure Aβ fibrils [201].

All this evidence supports a beneficial role of ApoA1 on Aβ aggregation and toxicity, thanks to a
direct interaction and the formation of a complex between ApoA1 and Aβ. However, the mechanism
of this protective effect has not been yet clearly elucidated. It is evident that it might be interesting
to study this cross interaction with Aβ1-42. Although the crystallographic structure of ApoA1 has
already been investigated [200], the crystal information of the Aβ-ApoA1 complex is still missing.

Considering the interesting properties of ApoA1 on Aβ regulation, the next step would be deeply
exploring the ApoA1-Aβ complex and the corresponding binding epitopes, in order to design peptides
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mimicking this interaction, as observed for TTR and CysC. Therapeutic approaches inspired by ApoA1
have been developed primarily to increase levels of ApoA1 in order to treat atherosclerosis and acute
coronary syndrome. Among them we can count HDL infusion and mimetics, recombinant LCAT,
ApoA1M infusions and ApoA1 transcriptional upregulators [239–241]. Now, few of them have been
explored to study a possible correlation between the increased level of ApoA1 and the improvement of
dementia in AD patients.

The only exception is represented by the ApoA1 transcriptional up-regulator RVX-208, developed
by Resverlogi. It has been demonstrated that this compound leads to an increase of circulating levels of
ApoA1 [242,243]. Interestingly, RVX-208 has been inserted into phase 1a clinical trial for the treatment
of AD and showed the ability to increase the Aβ1-40 efflux from the brain [244].

Furthermore, reconstituted HDL (ApoA1 + soy phosphatidylcholine) [245] were tested on mice
to study if they could lower plasma levels of Aβ. In treated mice a reduction of soluble Aβ1-42 and
Aβ1-40 within 24h has been observed but no effects were observed on Aβ and on inflammation after
chronic treatment [246].

As mentioned above, ApoA1 can modulate Aβ aggregation and neurotoxicity and the Aβ-binding
domain in ApoA1 might constitute a novel framework for the design of inhibitors of Aβ toxicity.

Thus, the interest in the identification of homologous peptides of the N-terminal Aβ1-42 binding
domain is growing. The sequence 42-GNLLTLD-48 has been identified as a homologous sequence
present in the N-terminal part in many mammalians’ apolipoproteins. The sequence 42-LNLKLLD-48
is the corresponding sequence in Homo sapiens. The results of ThT binding assays showed that an
incubation of this heptapeptide with Aβ blocked the formation of Aβ/ApoA1 complexes, confirming
that this sequence in the N-terminus of ApoA1 might be the binding site for Aβ [201].

Another possible approach for the treatment of AD could be increasing the levels of HDL, thus
consequently the levels of ApoA1. Analogs of the amphipathic α-helical structure of ApoA1 have been
already developed for other therapeutic purposes. These peptides have an impact on metabolism
and biological activities of HDL [243]. The 18-amino-acids long peptide DWLKAFYDKVAEKLKEAF
(18A) was designed to mimic an ApoA1 α-helix and was found to associate with liposomes and to
displace ApoA1 from HDL [207–209]. Clinical studies investigating these kinds of peptides have
been performed on patients with coronary heart disease [247]. Thus, increasing plasma levels of
ApoA1/HDL would be a new interesting strategy for the improvement of the cognitive function in
Alzheimer’s disease, although a direct evidence of this is still missing.

4. Conclusions

In this review, we highlighted the therapeutic potentiality of Aβ1-42 cross-interactions with
other amyloid proteins. Among the several amyloid proteins interacting with Aβ, we chose four of
them which in literature have been considered the most interesting for developing new therapeutic
approaches for AD. We showed that Aβ/Tau amyloid cross-interactions likely contribute to the synaptic
dysfunction involved in AD, but much more must be still performed to better understand the role and
influence that each single protein has on the other. We advised that future inhibitors should target
common interface region of Aβ and Tau and the determination of the high-resolution structure of
Aβ-Tau complex would contribute to the understanding of the key binding residues for optimizing the
inhibition of amyloid seeding in AD.

Furthermore, we illustrated the three different strategies which have been employed to enhance
or mimic the TTR-Aβ interaction in order to improve the clearance of Aβ peptide and consequently
avoid its aggregation into amyloid aggregates. This part was the occasion to underline the great
challenge required for modulate protein-protein interactions and the important role of peptides and
peptidomimetics as promising therapeutics in the field of the cross-interactions, because they can
afford selectivity and affinity and, especially for peptidomimetic foldamers, they give the possibility to
mimic the secondary structures, generally involved in the interaction.
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Even the Aβ-binding CysC sequence could be the basis for the design of potential inhibitors
of amyloid β-aggregation process. In this review we could highlight a possible mechanism by
which a CysC β-hairpin domain might be stabilize an α-helix intermediate conformation of Aβ, thus
contributing to its monomer-state stabilization and so to its metabolic degradation. Finally, evidences
support a beneficial role of ApoA1 on Aβ aggregation and toxicity, thanks to a direct interaction and
the formation of a complex between ApoA1 and Aβ. However, the mechanism of this protective
effect has not been yet clearly elucidated. It is evident that it might be interesting to study this cross
interaction with Aβ1-42 and the exploration of the Aβ-binding domain in ApoA1 might constitute
a novel framework for the design of inhibitors of Aβ toxicity.

The amyloid cross-interactions seem to have a positive effect on the stabilization of the native
state and destabilization of incorrectly folded state of amyloids. Thus, by taking inspiration from
the heterobifunctional PROTAC approach [248,249] and with the purpose of boosting the positive
interaction between two amyloid proteins, two covalently linked protein-binding molecules or
peptidomimetics can be designed in this type of protein-protein interaction and exploit as a new
therapeutic strategy. The formation of a stable ternary complex between the two amyloids, close
together through the PROTAC construct, should improve the approach of the two proteins and allow
the natural positive effect of the cross-interaction.

In conclusion, cross-interactions between Aβ and other amyloid proteins have been shown to
concern potentially therapeutic interventions against AD. This review allowed to emphasize the role of
the cross-interactions in the modulation of AD but also to open the idea that cross-interactions might
also modulate amyloidosis in other pathologies.
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