Journal Pre-proof

Tracking metal evolution in arc magmas: Insights from the active volcano of La Fossa, Italy

Simone Costa, Paolo Fulignati, Anna Gioncada, Marco Pistolesi, Delphine Bosch, Olivier Bruguier

PII:
S0024-4937(20)30486-2
DOI:
https://doi.org/10.1016/j.lithos.2020.105851
Reference:
LITHOS 105851

To appear in: LITHOS

Received date: $\quad 30$ May 2020
Revised date: 18 September 2020
Accepted date: 17 October 2020

Please cite this article as: S. Costa, P. Fulignati, A. Gioncada, et al., Tracking metal evolution in arc magmas: Insights from the active volcano of La Fossa, Italy, LITHOS (2020), https://doi.org/10.1016/j.lithos.2020.105851

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
© 2020 Published by Elsevier.

Tracking metal evolution in arc magmas: insights from the active

 volcano of La Fossa, ItalySimone Costa ${ }^{1,2}$, Paolo Fulignati ${ }^{2}$, Anna Gioncada ${ }^{2}$, Marco Pistolesi ${ }^{2}$, Delphine Bosch ${ }^{3}$ and Olivier Bruguier 3
${ }^{1}$ Dipartimento di Scienze della Terra, Università di Firenze, via La Pira, 450121 Firenze, Italy
${ }^{2}$ Dipartimento di Scienze della Terra, Università di P

Tracking metal evolution in arc magmas: insights from the active

volcano of La Fossa, Italy

Simone Costa ${ }^{1,2}$, Paolo Fulignati ${ }^{2}$, Anna Gioncada ${ }^{2}$, Marco Pistolesi ${ }^{2}$, Delphine Bosch ${ }^{3}$ and Olivier Bruguier ${ }^{3}$
${ }^{1}$ Dipartimento di Scienze della Terra, Università di Firenze, via La Pira, 450121 Firenze, Italy
${ }^{2}$ Dipartimento di Scienze della Terra, Università di Pisa, via S. Maria, 5356126 Pisa, Italy
${ }^{3}$ Géosciences Montpellier, Université de Montpellier, CNRS, Plare L. Bataillon, 34095 Montpellier, France

Abstract

The mineralization potential of arc magmas depenc. . nong other factors, on the timing of sulfide melt saturation relative to magma differer 'ati n and to exsolution of a magmatic fluid phase. In fossil mineralized or barren systems, uıterstanding the evolution of metals along the magma differentiation path is often hindered by lete magmatic processes and hydrothermal alteration. To better understand the process of metal evolution "caught in the act" in crustal reservoirs, we analyzed magmatic sulfides anc m elt inclusions found within eruptive products from the active arc volcano, La Fossa (Vulcain island, Italy), for the basalt to rhyolite compositional spectrum. We found that, in case of sulfide-undersaturated and volatile-rich arc basalts, metals are scarcely subtracted by degassing during ascent to shallow crustal reservoirs and reach the highest abundances in intermediate magmas (250 ppm Cu). At sulfide saturation the sulfide melt has 34-66 $\mathrm{wt} \% \mathrm{Cu}$, leading to a dramatic decrease in chalcophile metals dissolved in the silicate melt. After fractionation of only $0.2-0.3 \mathrm{wt} \%$ of sulfide in the solid assemblage, the exsolved sulfide is a monosulfide solid solution (pyrrhotite) containing $<3 \mathrm{wt} \% \mathrm{Cu}$. Metals that do not partition in sulfides $(\mathrm{Pb}, \mathrm{Zn})$ increase their concentrations during magmatic evolution until they are sequestered by a Cl-rich aqueous fluid phase exsolved at the rhyolitic stage. The absolute and Cu -normalized

isa, via S. Maria, 5356126 Pisa, Italy
${ }^{3}$ Géosciences Montpellier, Université de Montpellier, CNRS, Place E. Bataillon, 34095 Montpellier, France

Abstract

The mineralization potential of arc magmas depends, among other factors, on the timing of sulfide melt saturation relative to magma differentiation and to exsolution of a magmatic fluid phase. In fossil mineralized or barren systems, understanding the evolution of metals along the magma differentiation path is often hindered by late magmatic proc ssis and hydrothermal alteration. To better understand the process of metal evolution "caucht in the act" in crustal reservoirs, we analyzed magmatic sulfides and melt inclusions found rin n eruptive products from the active arc volcano, La Fossa (Vulcano Island, Italy), for t'ie var alt to rhyolite compositional spectrum. We found that, in case of sulfide-undersatur. ${ }^{\text {te }}$ and volatile-rich arc basalts, metals are scarcely subtracted by degassing during ascent to shallow crustal reservoirs and reach the highest abundances in intermediate magmas $95(\mathrm{r} \mathrm{pm} \mathrm{Cu})$. At sulfide saturation the sulfide melt has 34-66 $\mathrm{wt} \% \mathrm{Cu}$, leading to a dramatic de rease in chalcophile metals dissolved in the silicate melt. After fractionation of only $0.2-0.3 w+\%$ of sulfide in the solid assemblage, the exsolved sulfide is a monosulfide solid solutio. (pyrrhotite) containing $<3 \mathrm{wt} \% \mathrm{Cu}$. Metals that do not partition in sulfides $(\mathrm{Pb}, \mathrm{Zn})$ increase their concentrations during magmatic evolution until they are sequestered by a Cl-rich aqueous fluid phase exsolved at the rhyolitic stage. The absolute and Cu -normalized concentrations of metals in sulfide inclusions are similar to sulfides accessories in magmatic rocks associated with world-class porphyry Cu systems. Our results demonstrate that the mechanisms governing metal evolution inferred for the magmatic stage in porphyry Cu environments can be also tracked at an active arc volcano, using eruptive products as snapshots of the magmatic evolution. Arc volcanoes can thus be viewed as ideal active analogues when studying these crucial processes for the formation of porphyry Cu deposits.

Keywords: metal evolution, magmatic sulfides, melt inclusions, Vulcano, magmatic-hydrothermal system, magma fertility

1. Introduction

Metal evolution in arc magmas is difficult to constrain due to the luis of volatiles and the loss of metals during crystallization and because, in most cases, mat as become saturated in sulfides at some stage during their evolution (Audétat and Simon, $2 n_{1}$). Indeed, due to the strong affinity of chalcophile and siderophile elements (e.g., Platinum-Gru •n Elements, Cu, Au, and Ag) for the sulfide phase, sulfides exsolved from silicate masn. s 'ead to severe metal depletion in the residual silicate melt (Park et al., 2015).

A primary control on metal evolution arc magmas is exerted by: 1) the timing of sulfide saturation relative to magmatic diffare tition and volatile exsolution; 2) the amount of metal segregated into magmatic sulfidc - 3) the amount of sulfide formed; 4) and whether sulfides are 'irretrievably lost' or may ins ${ }^{\text {ter }}$ d release metals again at later stages (Halter et al., 2005; Wilkinson, 2013; Mungalı t aı., 2015; Zhang and Audétat, 2017; Chang and Audétat, 2018; Hao et al., 2019; Park et al., 2015, 2019; Bai et al., 2020). The combined role of these factors has proven difficult to resolve, largely because of the complexity in measuring the metal content of the magmas during their evolution (Park et al., 2019). Information mostly derives from the roots - sulfidebearing cumulates - of their plumbing system or from the mineralized bodies (Chang and Audétat, 2018; Chen et al., 2020). As magmatic-hydrothermal ore deposits can be considered the extinct equivalent of active magmatic systems (Hedenquist and Lowenstern, 1994), the investigation of these processes in the products of active arc volcanoes, particularly with the support of data from silicate melt inclusions, can provide pivotal information on metal budget and ore genetic models
associated with arc-related magmas. A significant advantage in studying active volcanic systems is the lack of hydrothermal alteration or mineralization overprints, as shown by recent works for magmatic sulfide saturation studies (Nadeau et al., 2010; Fulignati et al., 2018; Georgatou et al., 2018; Zelenski et al., 2018; Georgatou and Chiaradia, 2020). Despite that, very few works have tackled the investigation of metal evolution through the processes of magma differentiation, sulfide exsolution and fluid exsolution at active volcanoes or across the wide compositional spectra of magma types (Timm et al., 2012; Park et al., 2013, 2015; Cox et al., 2019).

La Fossa volcano (Italy) is an ideal site to study mineralizing nro ${ }^{\text {a }}$ sses beneath arc volcanoes, being characterized by an active magmatic-hydrothermal sy, te. (Fulignati et al., 1998; Boyce et al., 2007) and providing evidence of sulfide melt-silicate me.t immiscibility (Fulignati et al., 2018). Here we use melt inclusions, magmatic sulfides and hest ..inerals to track the evolution of metals for the entire basalt to rhyolite compositional ip. tram. The suite belongs to a shoshonitic to potassic series in a subduction setting, simi. ar $\quad \mathrm{s}$ part of the magma types found in association with porphyry Cu deposits (Sillitoe, 2010; Aukétat and Simon, 2012). Moreover, we compare our results to metal contents in sulfides from mag. n.tic systems associated with ore deposits, showing that strong analogies exist between retal evolution in active arc volcanoes and those reported for porphyry Cu environments.

2. Geological background

La Fossa is the active volcanic center of Vulcano Island, in the Aeolian archipelago, a continental volcanic arc located in southern Tyrrhenian Sea (Fig. 1a, b). The volcanic activity of the island started at 130 ka with high-K calcalkaline (HKCA), shoshonitic (SHO) and, recently, potassic (KS) magmas (De Astis et al., 2000), showing the entire range in composition from basalt to rhyolite (Fig. 1c, d). The plumbing system of La Fossa is polybaric, dominated by fractional crystallization, crustal assimilation and magma mixing processes (Peccerillo et al., 2006; De Astis et al., 2013;

Costa et al., 2020). These occur in a shoshonitic to latitic magma chamber at about 15 km deep, fed by shoshonitic basaltic magmas, and in shallower and smaller trachytic to rhyolitic reservoirs at 5-2 km deep (De Astis et al., 2013; Fulignati et al., 2018; Costa et al., 2020). Basaltic magmas have been only erupted at about 50 ka . They are $\mathrm{H}_{2} \mathrm{O}$-rich (water up to $5 \mathrm{wt} \%$; Le Voyer et al., 2014) and oxidized. La Fossa has been quiescent since AD 1890, with a high temperature fumarolic field fed by magmatic and hydrothermal fluids (Paonita et al., 2013). A similar hydrothermal system was active in the past, as testified by hydrothermally altered lithics found in the eruptive products of recent (post-1000 AD) eruptions (e.g. Breccia di Commenda eruption, Fulignati et al., 1998; Gurioli et al., 2012; Rosi et al., 2018).

3. Materials and analytical methods

Samples were selected to ensure that the e. tirf range of magma types, from basalt to rhyolite, was included in this study. They were analyze. for the composition of their sulfide (SIs) and melt (MIs) inclusions hosted within phenocrvots. Samples were preferentially selected from explosive eruptions, targeted to ensure qu nching of melt inclusions to a glass with the eruption. This minimizes the potential for nu ${ }^{-t-n t r a p m e n t ~ c r y s t a l l i z a t i o n ~ o f ~ m i c r o l i t e s ~ i n ~ t h e ~ t r a p p e d ~ m e l t ~ o r ~}$ crystallization of the host mueral on the inclusion walls. They include scoriaceous lapilli of La Sommata and Vulcanello, of basaltic and shoshonitic composition, respectively. The latitic, trachytic and rhyolitic samples are represented by the Palizzi eruptive period of La Fossa and consist of dark grey coarse ash of Pal A (latite) and Pal C (latite, trachyte), pumiceous lapilli of Pal D (trachyte) and Pal B (rhyolite), and the Palizzi lava flow (trachyte) (see De Astis et al., 2013 and Di Traglia et al., 2013 for further information on volcanic stratigraphy). Lapilli were crushed and crystals were hand-picked under a stereomicroscope, embedded in epoxy resin mounts and polished. Slices of the Palizzi lava flow sample were also prepared in epoxy resin mounts for petrographic investigations and microanalyses. The polished resin mounts were first studied under
reflected light with a petrographic microscope at the Dipartimento di Scienze della Terra at the Università di Pisa. Melt and sulfide inclusions were identified for the analytical follow-up. To avoid post-entrapment modifications of the melt composition due to melt crystallization or leakage, the selected melt inclusions are entirely glassy (no microlites) and lack large vapor bubbles or other evidence of only partial enclosing by the host crystal. Shrinkage bubbles are absent or small in Vulcanello MIs while they are common in La Sommata basalt and in Palizzi trachyte; bubbles may host traces of volatile elements escaped from melt, but the observation that they are apparently empty means that we can consider their metal content negligible Bured on the inspection of MIs under back-scattered electron (BSE) microscopy and on th - 11 najor element composition, postentrapment crystallization of the host on the inclusion walls an also be considered negligible with respect to chalcophile metals. This is in agreement with pre ious estimates ($<2 \mathrm{wt} \%$) of olivine host crystallization for Vulcanello MIs (Fusillo et a^{1}., $n^{1} 5$), corresponding to a variation of the Cu content within analytical uncertainty.

After carbon-coating, backscattered elect $\neg \eta$ images and the major element chemical composition of sulfide and melt inclusions were nhta n d with a Quanta 450 Field Emission-Scanning Electron Microscope (FE-SEM) (15 kV ac elerating voltage, 10 mm working distance and 0.1 nA) equipped with Bruker microanalytical EL. \mathbb{C} ystem QUANTAX installed at the Centro Interdipartimentale di Scienza e Ingegneria der : 1atrriali (CISIM) at the Università di Pisa. Major and minor element compositions for each melt inclusion were also characterized using an electron probe microanalyzer (EPMA) JEOL JXA-8200, operating in wavelength dispersive mode with a defocused beam of 5 $\mu \mathrm{m}(15 \mathrm{kV}$ accelerating voltage and 5 nA beam current) at the Dipartimento di Scienze della Terra at the Università di Milano.

The bulk major element compositions of the texturally non-homogeneous sulfide inclusions were reconstructed using spot analyses on the various sulfide phases present within each exposed sulfide inclusion. The reconstructed bulk composition was calculated dependent on the relative area percent of each sulfide phase, in the BSE images. Area percentages were determined using the image
processing software package ImageJ (Image Processing and Analysis in Java, http://rsb.info.nih.gov/ij/) and the 2D images were segmented by manual thresholding. The uncertainty on the reconstructed bulk composition, involving both instrumental analytical error and manual image thresholding error, was evaluated to be $<10 \%$.

Trace element analyses of melt and sulfide inclusions and of host minerals were performed in situ by laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) at Géosciences Montpellier (Université de Montpellier, AETE-ISO regional facility of the OSU OREME), with a pulsed 193 nm ArF excimer laser (Analyte G2 from Teledyno) ${ }^{\text {(uupled to a Thermofinnigan }}$ Element XR mass spectrometer. For the analyses of host ini.rals, the laser was operated at a repetition rate of 8 Hz using spot sizes of 85 and 110 !'tu and a $6 \mathrm{~J} / \mathrm{cm}^{2}$ energy density. Total analysis time was 120 s with the first 80 s used for the ba^{1} ground measurement and the last 40 s for sample ablation. Synthetic glass NIST 612 v.s. used for external calibration. For melt inclusions, the laser was operated at a repetı: ${ }^{:}$. rate of 6 Hz using spot sizes of 10 to $20 \mu \mathrm{~m}$ and a 6 $\mathrm{J} / \mathrm{cm}^{2}$ energy density. Total analysis time was 120 s with the first 80 s used for background measurement and the last 40 s for $\mathrm{sran} \mathfrak{\sim l}$ ablation. Synthetic glass NIST 610 was used for external calibration. For minerals and glass inclusions the accuracy of the analyses was monitored using the standard glass BIR-1 and $\mathrm{s}:(1$, of each mineral/glass, used as internal standard. For sulfide inclusions, only those wher ${ }^{\circ}$ their exposed diameter was $>15 \mu \mathrm{~m}$ were analyzed. The beam spot sizes were 5 to $10 \mu \mathrm{~m}$. Only two non-homogeneous (polymineralic) sulfide inclusions were sufficiently large to be analyzed; the laser spot was tuned to approximate the "bulk" composition of the sulfide inclusion, without distinguishing among the single sulfide phases. The laser was operated at a repetition rate of 6 Hz using and a $6 \mathrm{~J} / \mathrm{cm}^{2}$ energy density with a total analysis time of 240 s (200 s for background measurement and 40 s of sample analysis). The Synthetic standard MASS-1 was used for external calibration. FeO (measured FeO , in the case of homogeneous sulfide inclusions, and FeO reconstructed with the above described procedure, in the case of nonhomogeneous polymineralic sulfide inclusions) was used as an internal standard. Data reduction for
the mineral, melt and sulfide inclusion was performed with the software package Glitter (http://www.glitter-gemoc.com). Detection limits, results of reference materials and control standard analysis are provided in the Supplementary Material S1.

4. Results

4.1. Sulfide inclusions

Based on their textures (polymineralic and homogeneous), tro vpes of sulfide inclusions (Type 1 SIs, polymineralic and Type 2 SIs, homogeneous) were ia ntified in the Vulcano products. Both types are spherical when found in glass, and spherical $\mathrm{o}^{\circ} \mathrm{o}$, nid to elongated in shape when enclosed in host phenocrysts, with shape partially defined l y ur ounding crystal growth (Fig. 2a).

Type 1 SIs (17 inclusions) are between 1. nd $20 \mu \mathrm{~m}$ in diameter (mostly $<10 \mu \mathrm{~m}$) and consist of two or three Cu -rich sulfide phases each ($\overbrace{\mathrm{I}} \mathrm{g} .2 \mathrm{a}$). These SIs are hosted in clinopyroxene, magnetite and feldspars (Fig. 2b). The composition rf Type 1 sulfides (Table 1), when plotted in a $\mathrm{Cu}-\mathrm{Fe}-\mathrm{S}$ diagram at $1000^{\circ} \mathrm{C}$ (Fig. 2c), spar. from bornite solid solution (bnss) to the sulfide liquid field (SL). The reconstructed bulk compositin of these unmixed SIs ranges from $66 \mathrm{wt} \%$ to $34 \mathrm{wt} \% \mathrm{Cu}$ in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{S}$ diagram (Fig. 2c, 1race elements were measured up to $493 \mathrm{ppm} \mathrm{Ni}, 131 \mathrm{ppm} \mathrm{Co}, 1145$ ppm $\mathrm{Zn}, 397 \mathrm{ppm} \mathrm{As}, 208 \mathrm{ppm} \mathrm{Se}, 354 \mathrm{ppm} \mathrm{Ag}$ and 2020 ppm Pb (Table 2) within the two Type 1 SIs analyzed (which contained 65 and $46 \mathrm{wt} \% \mathrm{Cu}$).

Type 2 SIs (59 inclusions) are $5-60 \mu \mathrm{~m}$ in diameter with a mean size of $20 \mu \mathrm{~m}$ and homogeneous textures (Fig. 2a); they occur in clinopyroxene, olivine, Ti-magnetite, plagioclase, sanidine, biotite and glass and prevail in mafic phases and glass. Type 2 SIs plot, at $1000^{\circ} \mathrm{C}$, in the pyrrhotite field (mss , monosulfide solid solution), with Cu content up to $2.6 \mathrm{wt} \%$ (Fig. 2c; Table 1). If compared to Type 1 SIs, they show markedly higher Ni and Co contents, up to 3495 ppm and 4248 ppm , respectively, similar Zn and lower Pb (up to 385 ppm), with Ag and Se , in the tens of ppm range.

The only SI found in a rhyolite is pyrrhotite with $0.4 \mathrm{wt} \% \mathrm{Cu}$, characterized by very low Zn, Pb and Ag and higher Mo contents (Tables 1 and 2).

Type 1 and Type 2 SIs are common accessories in trachytes, whereas they are extremely rare in latites (only Type 1 SIs) and in rhyolites (only Type 2 SIs), where just a couple of SIs were found after the inspection of several dozens of crystals. They are absent in basalt-shoshonite rocks. The two types of SIs never coexist in the samples of the same eruption. The entire dataset of analyses of the sulfides and hosts are reported in Tables 1 and 2 and Supplementary Material S1.

Some differences can be found when comparing the host mineral $n m_{1} \bigcirc$ ositions for Type 1 and Type 2 SIs. Clinopyroxene (the most frequent host for both types cis; Fig. 2b) shows higher $\mathrm{Cu}, \mathrm{Cr}, \mathrm{V}$ and Ni contents for Type 1 sulfides compared to T_{vp}, 2, for a similar Mg \# range (see Supplementary Material S1). This is confirmed also wh \sim n comparing the entire clinopyroxene analytical dataset (Supplementary Material S1) fc: \llcorner - $/$ /ulcano products hosting Type 1 and Type 2 SIs.

4.2. Melt inclusions

The composition of glassy MIs in slivine, clinopyroxene, plagioclase, sanidine and biotite found in the products of explosive c.rpuons of basaltic, shoshonitic, latitic, trachytic and rhyolitic magmas is assumed to be representative of the magmas spanning the whole La Fossa magmatic differentiation path (Fig. 1c, Table 3 and Supplementary Material S1). The differentiation trend involves the fractionation of olivine, clinopyroxene, Ti-magnetite, labradorite to andesine plagioclase and, in evolved magmas, sanidine, minor oligoclase and biotite (Gioncada et al., 1998). Ti-magnetite joins the fractionating assemblage early, as shown by the decrease of Fe with Mg (Fig. 1d), while apatite joins later in intermediate terms.

The Cu content of MIs reaches the highest values at intermediate compositions (Zr around 160-200 ppm, at the latite-trachyte transition) and, when the highest Cu contents are considered, defines a
trend that increases with magmatic differentiation from basalt ($\sim 50 \mathrm{ppm}$) to latite and trachyte ($\sim 250 \mathrm{ppm}$), and then abruptly drops to $<60 \mathrm{ppm}$ (Fig. 3a). Low Cu values have also been measured in some intermediate composition MIs. Conversely, Pb concentration in MIs increases from basalt (5 ppm) to trachyte (35 ppm) and remains constant in rhyolites (Fig. 3b).

The average metal concentrations measured in Type 2 SIs (Table 2) and in coexistent MIs (Table 4) allow the sulfide phase/silicate melt partition coefficients for Cu (1184), $\mathrm{Ni}(352), \mathrm{Zn}$ (1.25), V (3.17), Pb (1.77) to be calculated. The sulfide phase/silicate melt partition coefficients for the same metals in Type 1 sulfides, mostly lacking coexistent melt inclusiv.s, are determined assuming the average Cu content of latitic-trachytic melt inclusions (Tabl $\rightleftharpoons 4$) and are 1538 for $\mathrm{Cu}, 154$ for Ni , 1.32 for $\mathrm{Zn}, 1.8$ for V and 76 for Pb .

5. Discussion

5.1. Evolution of metals in the magmas

The petrographic features and the , hemical compositions of MIs and SIs found in Vulcano eruptive products allow the evolution ni netals in the magmatic system of an active arc volcano to be tracked from basalt to rhyo. ${ }^{+}$e. This system is fed by sulfide-undersaturated, $\mathrm{H}_{2} \mathrm{O}$-rich and oxidized basaltic magmas. The first appearance of SIs indicates that sulfide saturation occurs late, during magma evolution, at the latite-trachyte transition. Accordingly, the fO_{2} value decreases from basalts (NNO-NNO+1) to intermediate magmas (trachyte magma Δ NNO -1 to -2; Fulignati et al., 2018). This is potentially due to the combined effects of lower temperatures, the fractionation of Fe bearing minerals and the volatile loss during differentiation (Scaillet and Pichavant, 2005; Scaillet and MacDonald, 2006; Richards, 2015). At Vulcano island, sulfide saturation is unrelated to the sudden onset of magnetite crystallization ("magnetite crisis", Jenner et al., 2010), because magnetite fractionation starts early, while sulfide saturation is late.

Magmatic sulfide inclusions could be trapped either as a liquid (SL) or as a solid, which can be either a monosulfide solid solution (mss) or an intermediate solid solution (iss), having a composition close to pyrrhotite and chalcopyrite, respectively (Parat et al., 2011). For most metals, the partition coefficient between sulfide and silicate melt strongly depends on the nature of the sulfide phase (mss, iss, or SL; Li and Audétat, 2015). Thus, determining the nature of the sulfide phases at the time of trapping is important to constrain the metal budget of the magmatic system (Rottier et al., 2020 and references therein). By plotting both Type 1 and Type 2 SIs analyses on the ternary diagram of the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{S}$ system (at $1000^{\circ} \mathrm{C}$), the reconstruntei Type 1 SIs compositions fall in the liquid field, whereas Type 2 SIs fall in the pyrrothite ($/ m^{\circ} s$) field, suggesting that the latter were trapped as a solid phase. This evidence is supported by comparing their sulfide phase-silicate melt partition coefficients (for $\mathrm{Cu}, \mathrm{Ni}, \mathrm{Pb}, \mathrm{Zn}$), calrali \cdot d from measured concentrations and
 melt with $950^{\circ} \mathrm{C}, \Delta \mathrm{FMQ}-0.77$ and $\mathrm{FeO} 4 . . \mathrm{w}^{+} / \%$. The comparison shown in Figure 4 demonstrates a good match for both the Type 1 and thi Type 2 SIs (these elements were selected because they could be reliably quantified in both magı 2 ic sulfide and silicate melt inclusions, and because their partition coefficient is markedly 'ifferent for mss versus SL). The different partition coefficients SL/SM and mss/SM are also in agreement with the measured Ag and Pb contents, which are considerably higher in Typ 1 sIs than in Type 2 SIs.

The Cu behavior in the silicate melt confirms late sulfide saturation (Fig. 3a). In fact, Cu concentration in MIs increases from basalt to latite melts, which are sulfide-undersaturated, and then rapidly decreases within a narrow compositional interval ($\mathrm{Zr} 180-200 \mathrm{ppm} ; \mathrm{SiO}_{2} 58-60 \mathrm{wt} \%$) once sulfide saturation is reached, due to the stripping of Cu by Cu -rich sulfide melt. The scattered Cu concentrations, including very low values in the intermediate composition MIs range, might suggest that: (i) incipient sulfide saturation was achieved in some parts of the reservoir (at the contact with wall rock thanks to temperature decrease, fractional crystallization or silica assimilation?) although not revealed by sulfide trapping; (ii) Cu was episodically lost to a S -rich
vapor phase from mafic magmas. Events of refilling by Cu-poor, S-rich and sulfide undersaturated magma could furthermore enhance the heterogeneity in the Cu content of an intermediate composition reservoir. This is particularly crucial because, in order to represent the entire basalt to rhyolite differentiation range, we analyzed samples that do not necessarily represent the evolution in a single reservoir but rather come from multiple, possibly independent magma batches with variable age.

The evolution of Cu and Pb in the silicate melt has been modeled with fractional crystallization, starting from a mean value of the La Sommata basaltic MIs and in 'luding a sulfide phase in the fractionating assemblage at the latite-trachyte stage (Fig. 3a, 1, . For this study, we neglected crustal assimilation processes. The model employs bulk distribu ${ }^{+ \text {ion }}$ coefficient for Zr, Cu and Pb ,
 literature and the relative proportions of crystall $\mathrm{Z}_{1} \cdot \sigma$ phases for Vulcano (Costa et al., 2020; see Supplementary Material S1 for details ó th. model). The sulfide phase/silicate melt partition coefficients for Pb and Cu were calculand according to Li and Audétat (2015) (Supplementary Material S1).

The models provide a robust $\mathrm{ex}_{\hat{1}}{ }^{\prime}$ anation of the Cu behavior in the silicate melt. The fractional crystallization models predicı t^{\prime} at $0.2-0.3 \mathrm{wt} \%$ of sulfide melt fractionated along with clinopyroxene + plagioclas ${ }^{\wedge}+1 \mathrm{i}-$ magnetite + olivine + biotite + sanidine. This is sufficient to cause a sharp drop in the Cu content of silicate melt at the latite to trachyte transition. Because Type 1 and Type 2 SIs were never found to coexist, we suggest that the first sulfides formed at the highest Cu content are correspondingly Cu-rich (Type 1 SIs), whereas those exsolved from the Cu -depleted trachytic magma are the Cu-poor Type 2 SIs (Cu-bearing mss) found in trachyte and rhyolite (Fig. 3a). This reconstruction is in agreement with the composition of clinopyroxene crystals in the latites and trachytes. Clinopyroxene composition testifies that, in the latite-to-trachyte transition, the Cu depleted trachytic magma is slightly more evolved (that is, having a lower Cr, V and Ni content in clinopyroxenes) than the Cu -rich trachyte and latite (Fig. 5). The trachyte-rhyolite step requires a
high percentage ($60 \mathrm{vol} \%$) of fractionated solid (Costa et al., 2020), strongly increasing the final concentration of incompatible elements and possibly explaining the large spread in Zr values measured in rhyolites.

The evolution of Pb shows an increase with differentiation up to rhyolite (Fig. 3b). This agrees well with the low sulfide melt/silicate melt partition coefficient for this element, which is orders of magnitude lower than that of Cu (this work and Li and Audétat, 2015). The modeled Pb trend in rhyolites $(\mathrm{Zr}>200 \mathrm{ppm})$, despite the higher D_{Pb}, slightly deviates from the measured data. This may be ascribed to the partitioning of Pb in an exsolved Cl -bearing aquan fluid.

5.2. The effect of fluid saturation

Tracking metal evolution in magmas cannot c er oook the effect of fluid-saturation along differentiation. While Vulcano basalts are $\mathrm{C}_{2} \mathrm{f}^{\prime}$-, S -, Cl-rich, the shoshonitic magmas have lower volatile contents (Gioncada et al., 1998), s••ggesting that $\mathrm{H}_{2} \mathrm{O}, \mathrm{S}$ and Cl may be lost to an exsolved aqueous fluid phase at the basalt-shochor it, transition. Our results show that, despite mafic magmas degassing during ascent, Cu and F ' increase with differentiation (Fig. 3a, b). This suggests that the evolution of these metals is not :orificantly affected by decompression degassing of mafic magmas as they refill crustal resu voirs. Indeed, Cu scarcely partitions into a hydrosaline fluid phase exsolved from mafic magmas according to the experimental results of Zajacz et al. (2012). In trachytes and rhyolites, the Cu -normalized abundances of $\mathrm{S}, \mathrm{Mo}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Pt}, \mathrm{Au}, \mathrm{Pb}$ in Type 1 (trachyte) and Type 2 (trachyte and rhyolite) SIs show different patterns (Fig. 6). While $\mathrm{Mo} / \mathrm{Cu}$ ratio in the rhyolite Type 2 SIs is higher than that of Type 2 SIs in trachyte, $\mathrm{Zn} / \mathrm{Cu}$ and $\mathrm{Pb} / \mathrm{Cu}$ are distinctly lower (Fig. 6a). This is in agreement with the exsolution of a Cl -rich magmatic fluid phase from the rhyolitic magma at La Fossa (Fulignati et al., 2018), causing Pb and Zn to preferentially partition with respect to Mo (Zajacz et al., 2008). Mo, which is not efficiently
partitioned in a Cl-rich magmatic fluid phase (Candela and Holland, 1984; Zajacz et al., 2008), tends to also increase in the rhyolite SIs.

At Vulcano, previous data suggest that metal-bearing fluids can be involved in phreaticphreatomagmatic eruptions (Gurioli et al., 2012). An example is the Breccia di Commenda eruption, a violent explosive event occurred at La Fossa volcano during XIII Cent. AD. This eruption produced a high amount of lithics which showed acid-sulfate alteration (Gurioli et al., 2012). Interestingly, $\mathrm{S} / \mathrm{Cu}, \mathrm{Zn} / \mathrm{Cu}, \mathrm{Pb} / \mathrm{Cu}$ ratios measured on the fine ash of the Breccia di Commenda deposits are higher than the same ratios measured in the chytic and rhyolitic SIs (Fig. 6a). This suggests that Cl -rich fluids carrying Pb and Zn frc..1 .he magmatic-hydrothermal system were involved in the Breccia di Commenda eruption.

5.3. Comparison with mineralized systems

With the aim to compare the SIs compostion in the products of an active arc volcano with that of SIs from magmas associated with nor ${ }_{\mathbf{1}}{ }^{\text {h }}$ jry mineralization, absolute and Cu -normalized metal concentrations from La Fossa arc compared with those found in well-preserved SIs of ore-related igneous rocks. The metal ratios ard absolute concentrations in Vulcano SIs (either in Type 1 and Type 2 SIs) match well in those of mineralized systems (Fig. 6b, c). This suggests that, at Vulcano, the late attainment of sulfide saturation during fractionation in mid-upper crustal reservoirs prevents the early depletion in S and chalcophile metals and produces magmatic sulfide melts with compositions comparable to those found in several porphyry systems. Once formed, the sulfides may be stored in crystal mushes of intermediate to evolved crustal reservoirs, re-melted by mafic sulfide-undersaturated recharges or eventually cannibalized by aqueous fluids exsolving at the rhyolite stage, thereby producing highly mineralizing solutions (Keith et al., 1997; Halter et al., 2002; Nadeau et al., 2010; Audétat and Simon, 2012; Wilkinson, 2013).

Our results indicate that the processes governing metal evolution through silicate melt differentiation in active arc magmatic systems share similarities to those inferred for magmas associated to porphyry Cu systems. Bearing in mind that the magmatic stage is arguably pivotal in the evolution of porphyry Cu systems (Audétat and Simon, 2012), arc volcanoes such as La Fossa can thus be viewed as active analogues and ideal sites for studying the critical early stages of porphyry Cu genesis. Their possibility to evolve towards mineralized systems will, of course, depend also on other factors (magma chamber size and depth, duration of magmatic and hydrothermal activity, and the efficiency of magmatic fluid focrein ${ }^{\circ}$: Richards, 2011; Wilkinson, 2013) that can either promote or inhibit porphyry Cu formatic.1.

6. Conclusive remarks

In this work, we used combined compos ior al data (major, minor and trace element) on melt inclusions, magmatic sulfides and host mi. ${ }^{\text {arals }}$ from the eruptive products of the arc volcano of La Fossa (Vulcano Island, Italy), to trač th ‘ volution of metals along the magma differentiation path of an active magmatic system. V e found that, in case of sulfide-undersaturated, volatile-rich arc basalts, metals are scarcely subuaried by degassing during ascent to shallow crustal reservoirs and thus reach their highest ac 'muances in intermediate magmas. Further evolution results in sulfide saturation where Cu and chalcophile metals strongly partition into the sulfide melt, causing a dramatic decrease in abundance from the silicate melt. The evolution of Cu in the silicate melts was modeled with quantitative fractional crystallization, and the results are in close agreement with experimental data. The model shows that fractionation of only $0.2-0.3 \mathrm{wt} \%$ of sulfide is sufficient to deplete the silicate melt in Cu down to the values recorded by MIs in trachytic and rhyolitic products. Metals that do not partition in sulfides $(\mathrm{Pb}, \mathrm{Zn})$ increase their concentrations with magmatic evolution until they are scavenged by a Cl-rich aqueous fluid phase, possibly exsolved at the rhyolitic stage.

The comparison of metal ratios and absolute concentrations of the Vulcano magmatic sulfides with those of sulfides found in magmatic rocks, associated with world-class porphyry Cu systems, shows strong similarities. This suggests that the processes governing metal evolution through silicate melt differentiation in active arc magmatic systems are similar to those processes inferred for magmatic stage of porphyry Cu environments. Our results thus suggest that the investigation of metal evolution in active arc volcanoes such as La Fossa can provide information for interpreting the genetic mechanisms of porphyry Cu deposit formation.

ACKNOWLEDGEMENTS

We warmly thank Prof. Jung-Woo Park for the review or an early version of the manuscript. We would also like to thank Greg Shellnutt for edi o_{1} al andling. The present manuscript benefited from the constructive review of two anony. no \cdot s referees whose comments and suggestions helped to improve the quality and clarity of the manuscript. The authors thank R. Ishak (Università di Pisa), A. Risplendente (Università di Mil.no), for assistance during analytical work, F. Colarieti and M. Gemelli (Università di $\mathrm{P} \cdot$ a) tur sample preparation and M. D. Suttle for helping us with English editing. This researcı r/as funded by projects PRA_2018_41 to PF and MP and FFABR2017 to AG. This research is part of SC PhD program funded by a Tuscany Regional "Pegaso" doctoral grant.

REFERENCES CITED

Audétat, A., Simon, A.C., 2012. Magmatic controls on porphyry copper genesis. In: Hedenquist, J.W., et al. (Eds.), Geology and Genesis of Major Copper Deposits and Districts of the World: A Tribute to Richard H. Sillitoe. Society of Economic Geologists Special Publications, 16, pp. 1-18.

Bai, Z.-J., Zhong, H., Hu, R.-Z., Zhu, W.-G., 2020. Early sulfide saturation in arc volcanic rocks of southeast China: Implications for the formation of co-magmatic porphyry-epithermal $\mathrm{Cu}-\mathrm{Au}$ deposits. Geochim. Cosmochim. Acta 280, 66-84.

Boyce, A.J., Fulignati, P., Sbrana, A., Fallick, A.E., 2007. Fluids in early stage hydrothermal alteration of high-sulfidation epithermal systems: A view from the Vulcano active hydrothermal system (Aeolian Island, Italy). J. Volcanol. Geotherm. Res. 166, 76-90.

Candela, P.A., Holland, H.D., 1984. The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochim. Cosmochim. Acta 48, 373-ン80.

Chang, J., Audétat, A., 2018. Petrogenesis and Metal Conter © ι^{c} Horneblende-rich Xenoliths from Two Laramide-age Magma Systems in Southwestern ¿'SA: insights into the Metal Budget of Arc Magmas. J. Petrol. 59, 1869-1898.

Chen, K., Tang., M, Lee, C.-T.A., Wang, Z., Zu , Z., Hu, Z., Liu, Y., 2020. Sulfide-bearing cumulates in deep continental arcs: 7 he nissing copper reservoir. Earth Planet. Sci. Lett. In press.

Costa, S., Masotta, M., Gioncada, A. Pistr.esi, M., Bosch, D., Scarlato, P., 2020. Magma evolution at La Fossa volcano (Vulc: 10 Island, Italy) in the last 1000 years: evidence from eruptive products and temperature ere lient experiments. Contrib. Mineral. Petrol. 175, 31.

Cox, D., Watt, S.F.L., Juntı, F.E., Hastie, A.R., Hammond, S.J., 2019. Chalcophile element processing beneath a continental arc stratovolcano. Earth Planet. Sci. Lett. 522, 1-11.

Craig, J.R., Kullerud, G., 1969. Phase relations in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Ni}-\mathrm{S}$ system and their application to magmatic ore deposits. Econ. Geol. Monograph. 4, 344-358.

De Astis, G., Peccerillo, A., Kempton, P.D., La Volpe, L., Wu, T.W., 2000. Transition from calcalkaline to potassium-rich magmatism in subduction environments: geochemical and Sr, Nd, Pbisotopic constraints from the island of Vulcano (Aeolian arc). Contrib. Mineral. Petrol. 139, 684-703.

De Astis, G., Lucchi, F., Dellino, P., La Volpe, L., Tranne, C.A., Frezzotti,, M.L., Peccerillo, A., 2013. Geology volcanic history and petrology of Vulcano (central Aeolian archipelago). Geol. Soc. London Mem. 37, 281-349.

Fulignati, P., Gioncada, A., Sbrana, A., 1998. Geologic model of the magmatic-hydrothermal system of Vulcano (Aeolian Island, Italy). Mineral. Petrol. 62, 195-222.

Fulignati, P., Gioncada, A., Costa, S., Di Genova, D., Di Traglia, F., Pistolesi, M., 2018. Magmatic sulfide immiscibility at an active magmatic-hydrothermal system: The case of la Fossa (Vulcano, Italy). J. Volcanol. Geotherm. Res. 358, 45-57.

Fusillo, R., Di Traglia, F., Gioncada, A., Pistolesi, M., Wall ،ct, F.J., Rosi, M., 2015. Deciphering post-caldera volcanism: insight into the Vulcanello (Island of Vulcano, Southern Italy) eruptive activity based on geological and petrologica. onstraints. Bull. Volcanol. 77, 76.

Georgatou, A., Chiaradia, M., 2020. Magmatic ssifides in high-potassium calc-alkaline to shoshonitic and alkaline rocks. Solid arta 11, 1-21.

Georgatou, A., Chiaradia, M., Rezeau, I: Walle, M., 2018. Magmatic sulphides in Quaternary Ecuadorian arc magmas. Lithos 79.-99, 580-599.

Gioncada, A., Clocchiatti, R., Sb ••na, A., Bottazzi, P., Massare, D., Ottolini, L., 1998. A study of melt inclusions at Vulcan (seolian Islands, Italy): insights on the primitive magmas and on the volcanic feeding vstem. Bull. Volcanol. 60, 286-306.

Gurioli, L., Zanella, E., Gioncada, A., Sbrana, A., 2012. The historic magmatic-hydrothermal eruption of the Breccia di Commenda, Vulcano, Italy. Bull. Volcanol. 74, 1235-1254.

Halter, W.E., Pettke, T., and Heinrich, C.A., 2002. The origin of $\mathrm{Cu} / \mathrm{Au}$ ratios in porphyry-type ore deposits. Science 296, 1844-1846.

Halter, W.E., Heinrich, C.A., Pettke, T., 2005. Magma evolution and the formation of porphyry CuAu ore fluids: evidence from silicate and sulfide melt inclusions. Mineral. Deposita 39, 845863.

Hao, H., Campbell, I.H., Richards, J.P., Nakamura, E., Sakaguchi, C., 2019. Platinum-Group Element Geochemistry of the Escondida Igneous Suites, Northern Chile: Implications for Ore Formation. J. Petrol. 60, 487-524.

Hedenquist, J.W., Lowenstern, J.B., 1994. The role of magmas in the formation of hydrothermal ore-deposits. Nature 370, 519-527.

Jenner, F.E., O’Neill, H.S.C., Arculus, R.J., Mavrogenes, J.A., 2010. The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu . J. Petrol. 51, 2445-2464.

Keith, J.D., Whitney, J.A., Hattori, K., Ballantyne, G.H., C' ${ }^{\prime}{ }^{\prime 11}{ }^{*}$ 'iansen, E.H., Barr, D.L., Cannan, T.M., Hook, C.J., 1997. The role of magmatic sulfics and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah. J. Petrel. . X, 1679-1690.

Le Voyer, M., Asimow, P.D., Mosenfelder, J.I ., in an, Y., Wallace, P.J., Schiano, P., Stolper, E.M., Eiler, J.M., 2014. Zonation c. H_O and F concentrations around melt inclusions in olivines. J. Petrol. 55, 685-707.

Li, Y., Audétat, A., 2015. Effects of ${ }^{\circ} \mathrm{m}_{1}$ ®e ature, silicate melt composition, and oxygen fugacity on the partitioning of $\mathrm{V}, \mathrm{Mn}, \mathrm{C}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{As}, \mathrm{Mo}, \mathrm{Ag}, \mathrm{Sn}, \mathrm{Sb}, \mathrm{W}, \mathrm{Au}, \mathrm{Pb}$, and Bi between sulfide phases and silicate $\mathrm{n} f \mathrm{It}$. Geochim. Cosmochim. Acta 162, 25-45.

Mungall, J.E., Brenan, J.ı * , uodel, B., Barnes, S.J., Gaillard, F., 2015. Transport of metals and sulphur in magmas by flotation of sulphide melt on vapour bubbles. Nature Geoscience 8, 216-219.

Nadeau, O., Williams-Jones, A.E., Stix, J., 2010. Sulphide magma as a source of metals in arcrelated magmatic hydrothermal ore fluids. Nature Geoscience 3, 501-505.

Paonita, A., Federico, C., Bonfanti, P., Capasso, G., Inguaggiato, S., Italiano, F., Madonia, P., Pecoraino, G., Sortino, F., 2013. The episodic and abrupt geochemical changes at La Fossa fumaroles (Vulcano Island, Italy) and related constraints on the dynamics, structure, and compositions of the magmatic system. Geochim. Cosmochim. Acta 120, 158-178.

Parat, F., Holtz, F., Streck, M.J., 2011. Sulfur-bearing magmatic accessory minerals. Rev. Mineral. Geochem. 73, 285-314.

Park, J.-W., Campbell, I.H., Arculus, R.J., 2013. Platinum-alloy and sulfur saturation in an arcrelated basalt to rhyolite suite: Evidence from the Pual Ridge lavas, the Eastern Manus Basin. Geochim. Cosmochim. Acta 101, 76-95.

Park, J.-W., Campbell, I.H., Kim, J., Moon, J.W., 2015. The Role of Late Sulfide Saturation in the Formation of a Cu - and Au-rich Magma: Insights from the Platinum Group Element Geochemistry of Niuatahi-Motutahi Lavas, Tonga Rear Arc I. \frown trol. 56, 59-81.

Park, J.-W., Campbell, I.H., Malaviarachchi, S.P.K., Coc'.eı, H., Нао, H., Kay, S.M., 2019. Chalcophile element fertility and the formation of t rephyry $\mathrm{Cu} \pm \mathrm{Au}$ deposits. Mineral. Deposita 54, 657-670.

Peccerillo, A., Frezzotti, M.L., De Astis, G., V nıra, G., 2006. Modeling the magma plumbing system of Vulcano (Aeolian Islanc. .taly) by integrated fluid-inclusion geobarometry, petrology, and geophysics. Geology 24, 17-20.

Richards, J.P., 2011. Magmatic to hedrctrermal metal fluxes in convergent and collided margins. Ore Geol. Rev. 40, 1-26.

Richards, J.P., 2015. The oxida: n state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Litı^ऽ 253 , 27-45.

Rosi, M., Di Traglia, F., Pistolesi, M., Esposti Ongaro, T., de' Michieli Vitturi, M., Bonadonna, C., 2018, Dynamics of shallow hydrothermal eruptions: new insights from Vulcano's Breccia di Commenda eruption. Bull. Volcanol. 80, 8.

Rottier, B., Audétat, A., Kodera, P., Lexa, J., 2020. Origin and evolution of magmas in the porphyry Au -mineralized Javorie volcano (Central Slovakia): evidence from thermobarometry, melt inclusions, and sulfide inclusions. J. Petrol. in press

Scaillet, B., MacDonald, R., 2006. Experimental and thermodynamic constraints on the sulphur yield of peralkaline and metaluminous silicic flood eruptions. J. Petrol. 47, 1413-1437.

Scaillet, B., Pichavant, M., 2005. A model of sulphur solubility for hydrous mafic melts: application to the determination of magmatic fluid compositions of Italian volcanoes. Annals Geophys. 48, 671-698.

Sillitoe, R.H., 2010. Porphyry copper systems. Econ. Geol. 105, 3-41.
Timm, C., de Ronde, C.E.J., Leybourne M.I., Layton-Matthews, D., Graham, I.J., 2012. Sources of Chalcophile and Siderophile Elements in Kermadec Arc Lavas. Econ. Geol. 107, 1527-1538.

Wilkinson, J.J., 2013. Triggers for the formation of porphyry ore deposits in magmatic arcs. Nature Geoscience 6, 917-925.

Zajacz, Z., Halter, W.E., Pettke, T., Guillong, M., 2008. Dc. armination of fluid/melt partition coefficients by LA-ICPMS analysis of co-existing flut ${ }^{\text {t }}$ and silicate melt inclusions: controls on element partitioning. Geochim. Cosmochim. A>ta '2, 2169-2197.

Zajacz, Z., Candela, P.A., Piccoli, P.M., Sanct e_ V.Ile, C. 2012. Gold and copper in volatile saturated mafic to intermediate $\mathrm{ma}_{\mathrm{y}} \mathrm{na}^{2}$: solubilities, partitioning and implications or ore deposit formation. Geochim. Cosmu him. Acta 91, 140-159.

Zelenski, M., Kamenetsky, V.S., M^vr a nes, J.A., Gurenko, A.A., Danyushevsky, L.V., 2018. Silicate-sulfide liquid imm: cibıity in modern arc basalt (Tolbachik volcano, Kamchatka): Part I. Occurrence and con $n \stackrel{n}{ }$ sitions of sulfide melts. Chem. Geol. 478, 102-111.

Zhang, D., Audétat, A., 2v ${ }^{1 \%}$. What Caused the Formation of the Giant Bingham Canyon Porphyry $\mathrm{Cu}-\mathrm{Mo}-\mathrm{Au}$ Deposit? Insights from Melt Inclusions and Magmatic Sulfides. Econ. Geol. 112, 221-244.

TABLES CAPTIONS

Table 1. Major element composition (wt.\%) of Type 1 and Type 2 SIs; Ol: olivine; Cpx: clinopyroxene; Bt: biotite; Pl: plagioclase; Sa: sanidine; Ti-Mt: Ti-magnetite. Reconstructed: calculated bulk composition of the sulfide inclusions (see methods section for details and
supplementary materials for phase proportions); bdl: below detection limit; source a: Fulignati et al. (2018), EPMA analyses; source b: this work, FE-SEM-EDS analyses.

Table 2. Major and trace elements (ppm) bulk composition of Type 1 and Type 2 SIs analyzed by LA-ICP-MS; Ol: olivine; Cpx: clinopyroxene; Sa: sanidine; Ti-Mt: Ti-magnetite.

Table 3. Mean composition and standard deviation (SD) for major elements (wt.\%) of MIs in the Vulcano products. Literature EPMA data: Gioncada et al. (1998) L_{s} Voyer et al. (2014) for La Sommata basalt; Fusillo et al. (2015) for Vulcanello 1 shosh sili²; Fulignati et al. (2018) for Pal D trachyte. Pal C latite and Pal B rhyolite are FE-SEM-EDS ati ${ }^{1}$ yses from this work.

Table 4. Trace elements composition (ppm) of N‘‘s analyzed by LA-ICP-MS; B: La Sommata basalts; SH: Vulcanello 1 shoshonite; LT: 'al A and Pal C latites; TR: Pal C and Pal D trachytes; RH: Pal B rhyolite. Ol: olivine; Cpx: c'nopyroxene; Sa: sanidine; bdl: below detection limit. Detection limits are in Supplementarv M tr rial S1.

FIGURES CAPTIONS

Figure 1. (a) Location of \llcorner १ russa volcano and Vulcano island in the Aeolian Arc; (b) Panoramic view toward N of La Fossa crater and its fumarolic field; (c) TAS (total alkali vs SiO_{2}) diagram of Vulcano rocks. Stars are the samples selected to represent the basalt to rhyolite suite; insert in (c) shows the composition of MIs of the selected samples; (d) $\mathrm{Fe}_{2} \mathrm{O}_{3}$ tot. vs MgO diagram of Vulcano products. Whole rock data in (c) and (d) are re-calculated to 100 on anhydrous basis; literature data are from De Astis et al. (2013), Fusillo et al. (2015) and Costa et al. (2020). Melt inclusions major elements data are from Gioncada et al. (1998), Le Voyer et al. (2014), Fusillo et al. (2015), Fulignati et al. (2018) and this work. The complete data set of MIs is reported in the supplementary material S1.

Figure 2. (a) BSE images of Type 1 SIs consisting of unmixed chalcopyrite (Cp)-bornite (Bn) and Type 2 SIs represented by homogeneous pyrrhotite (Po); (b) abundance of SIs in the various mineral phases and groundmass glass of eruptive products (Ol: olivine; Cpx : clinopyroxene; Bt : biotite; Pl: plagioclase; Sa: sanidine; Mt: magnetite; Gl: groundmass glass); (c) Composition of SIs in the $\mathrm{Cu}-\mathrm{Fe}-\mathrm{S}$ system at $1000^{\circ} \mathrm{C}$ (Craig and Kullerud, 1969), for Type 1 SIs analyses of unmixed phases and the correspondent reconstructed composition are shown and joined by red lines, error bars fall within the symbols; data from this work and Fulignati et al. (2018) are reported in Table 1 and in the supplementary material S1. L, liquid; bnss, bornite suid solution; mss, monosulfide solid solution.

Figure 3. Copper (a) and Pb (b) versus Zr as diff rr_{c} iti .tion index for the glassy MIs representative of the basalt to rhyolite suite at Vulcano, , ith quantitative fractional crystallization model for the evolution of Cu and Pb in the silicate me* Bulk partition coefficients (D) for Cu, Pb and Zr have been calculated using minerals/silicata n.al partition coefficients from literature and sulfide/silicate melt partition coefficients calcula ${ }^{*} \cdot \mathrm{~d}$ with the model of Li and Audétat (2015). See supplementary material S1 for additional detant sigma error for each analysis is shown as error bars, which if not visible, is smaller han the symbol. Symbols and numbers along the fractionation paths indicate melt fraction.

Figure 4. Comparison of measured sulfide - silicate melt partition coefficients with values predicted by the model of Li and Audétat (2015); (a) sulfide liquid (Type 1 SIs)-silicate melt (b) monosulfide solid solution (Type 2 SIs)-silicate melt. T of $950^{\circ} \mathrm{C}, \Delta \mathrm{FMQ}=-0.77$ and FeO in the melt $=4.4 \mathrm{wt} \%$ estimated for La Fossa trachyte by Fulignati et al. (2018) have been used in the model.

Figure $5 . \mathrm{Cu}$ versus Cr, V and Ni content for clinopyroxene crystals in the latitic and trachytic products of La Fossa hosting the type 1 (yellow and green symbols) and type 2 (red symbols) SIs. See the supplementary material S1 for the complete data set of analyses of clinopyroxene. 1 sigma error for each analysis is shown as error bars, which if not visible, is smaller than the symbol.

Figure 6. (a) Cu-normalized composition of La Fossa SIs and Breccia di Commenda fine ash; (b) Cu -normalized composition (average and range) of Type 2 SIs compared to SIs of ore-related latitic magma at Bingham and at Santa Rita and Cerrillos; (c) Absoluta nital concentrations in Type 1 and Type 2 La Fossa SIs compared with those found in mint $\mathfrak{l l}$ lized systems (Bingham Canyon, Santa Rita, Cerrillos and Bajo de la Alumbrera).

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Corresponding author
Paolo Fulignati

Table 1

Host rock	Unit	$\begin{gathered} \text { Host } \\ \text { mineral } \end{gathered}$	Sulfide ID	Sulfide type	source	Fe	S	Co	Mn	Ni	Zn	Cu	total
Trachyte	Pal D	sa	PAL-90 sulf1	2	a	58.48	37.19	0.09	0.08	0.06	bdl	1.44	97.33
Trachyte	Pal D	cpx	PAL-90 sulf2	2	a	59.12	38.05	0.03	0.09	0.03	0.10	1.19	98.60
Trachyte	Pal D	cpx	PAL-90 sulf2	2	a	59.89	38.08	0.07	0.12	0.05	0.03	0.42	98.65
Trachyte	Pal D	ol	pal90solf3	2	a	57.19	37.24	0.14	0.18	0.07	0.07	1.62	96.52
Trachyte	Pal D	gl	pal90solf4	2	a	58.01	37.24	0.16	0.11	0.09	bdl	2.32	97.93
Trachyte	Pal D	ol	pal90solf5	2	a	58.94	37.60	0.10	0.12	0.10	bdl	1.67	98.53
Trachyte	Pal D	ol	pal90solf5	2	a	59.19	38.08	0.09	0.18	0.04	bdl	1.29	98.88
Trachyte	Pal D	gl	pal90sulf8	2	a	57.09	38.05	0.07	0.10	0.04	0.11	1.34	96.80
Trachyte	Pal D	Ti-mt	pal90sulf10	2	a	58.72	38.24	0.05	0.16	0.05	0.05	0.97	98.23
Trachyte	Pal D	cpx	pal90sulf13	2	a	58.38	37.99	0.13	0.12	0.00	0.03	1.54	98.18
Trachyte	Pal D	cpx	pal90sulf13	2	a	58.25	37.70	0.07	0.04	0.01	0.06	1.46	97.58
Trachyte	Pal D	cpx	pal90sulf 14a	2	a	53.30	39.64	0.14	0.09	0.06	bdl	2.16	95.39
Trachyte	Pal D	Ti-mt	$\begin{aligned} & \text { PAL90 } \\ & \text { u293sulf17 } \end{aligned}$	2	a	58.15	37.73	0.09	0.08	0.01	bdl	1.31	97.37
Trachyte	Pal D	Ti-mt	$\begin{gathered} \text { PAL90 } \\ \text { u293sulf17 } \end{gathered}$	2	a	58.60	38.26	0.07	0.12	0.09	0.02	1.39	98.54
Trachyte	Pal D	pl	$\begin{aligned} & \text { PAL90U297 } \\ & \text { sulf18 } \end{aligned}$	2	a	56.63	37.48	し'3	0.10	0.08	0.10	1.55	95.95
Trachyte	Pal D	cpx	PAL-15D sulf1	2	a	56.33	37.35	0.11	0.11	0.04	bdl	1.34	95.28
Trachyte	Pal D	cpx	PAL-15D sulf2	2	a	57.60	37.53	0.12	0.13	0.05	bdl	1.32	96.75
Trachyte	Pal D	Ti-mt	PAL-15D sulf3	2	a	56.48	37.45	1^{-}	0.12	0.05	0.04	1.34	95.60
Trachyte	Pal D	gl	PAL-15D sulf4	2	a	56.85	37 د1	9.09	0.11	0.05	0.11	1.30	96.12
Trachyte	Pal D	cpx	sulf5	2	a	56.06	ค7. 9	J. 06	0.14	0.06	bdl	1.84	95.84
Trachyte	Pal D	cpx	pal15sulf8.spc	2	a	57.15	7.63	0.04	0.13	bdl	0.04	1.02	96.00
Trachyte	Pal D	cpx	Pal 15 D sulf 6	2	a	56.28	7\%.21	0.08	0.10	0.05	0.06	2.51	96.71
Trachyte	Pal D	cpx	Pal 15 D sulf 6	2	a	$56.3^{\text {. }}$	364	0.14	0.12	0.11	0.11	2.54	97.01
Trachyte	Pal D	cpx	Pal 15 D sulf 6	2	a	56.40	2\%. 67	0.15	0.01	0.07	0.07	2.72	97.09
Trachyte	Pal D	Ti-mt	Pal 15 D sulf 7	2	a	57.0)	- 764	0.03	0.10	0.05	0.04	1.21	97.06
Trachyte	Pal D	Ti-mt	Pal 15 D sulf 8	2	a	- 96	37.57	0.12	0.11	0.08	0.04	1.58	97.46
Trachyte	Palizzi lava	pl	SC15-1_1	1	b	24.15	32.12	bdl	bdl	bdl	bdl	43.83	100.00
Trachyte	Palizzi lava	pl	SC15-1_1	1	'	38.65	33.84	bdl	bdl	bdl	bdl	27.51	100.00
Trachyte	Palizzi lava	pl	reconstructed *SC15-1_1	1	b	33.54	33.24	bdl	bdl	bdl	bdl	33.22	100.00
Trachyte	Palizzi lava	pl	SC15-1_2		b	21.84	31.58	bdl	bdl	bdl	bdl	46.58	100.00
Trachyte	Palizzi lava	pl	SC15-1_2	1	b	33.72	34.57	bdl	bdl	bdl	bdl	31.70	100.00
Trachyte	Palizzi lava	pl	reconstructed *SC15-1_2		b	28.50	33.25	bdl	bdl	bdl	bdl	38.25	100.00
Trachyte	Palizzi lava	cpx	SC15-1	1	b	20.92	28.88	bdl	bdl	bdl	bdl	50.20	100.00
Trachyte	Palizzi lava	cpx	SC15-1_3	1	b	5.09	22.51	bdl	bdl	bdl	bdl	72.40	100.00
Trachyte	Palizzi lava	cpx	[_3	1	b	20.74	30.62	bdl	bdl	bdl	bdl	48.64	100.00
Trachyte	Palizzi lava	cpx	$\begin{gathered} \text { rec nstr .cted } \\ { }^{\circ} \mathrm{C} 15-1 _3 \end{gathered}$	1	b	15.57	27.94	bdl	bdl	bdl	bdl	56.48	100.00
Trachyte	Palizzi lava	cpx	cr 15-1_3b	1	b	21.60	23.91	bdl	bdl	bdl	bdl	54.49	100.00
Trachyte	Palizzi lava	cpx	SC15-1_3b	1	b	12.40	21.58	bdl	bdl	bdl	bdl	66.02	100.00
Trachyte	Palizzi lava	cpx	SC15-1_4	1	b	37.20	29.81	bdl	bdl	bdl	bdl	32.99	100.00
Trachyte	Palizzi lava	cpx	SC15-1_4	1	b	30.91	31.85	bdl	bdl	bdl	bdl	37.24	100.00
Trachyte	Palizzi lava	pl	SC15-1_5	1	b	10.02	25.69	bdl	bdl	bdl	bdl	64.29	100.00
Trachyte	Palizzi lava	pl	SC15-1_5	1	b	22.46	29.18	bdl	bdl	bdl	bdl	48.36	100.00
Trachyte	Palizzi lava	pl	reconstructed *SC15-1_5	1	b	20.64	28.67	bdl	bdl	bdl	bdl	50.69	100.00
Trachyte	Palizzi lava	pl	SC15-1_6	1	b	18.07	30.59	bdl	bdl	bdl	bdl	51.35	100.00
Trachyte	Palizzi lava	pl	SC15-1_6	1	b	9.64	24.69	bdl	bdl	bdl	bdl	65.66	100.00
Trachyte	Palizzi lava	pl	reconstructed *SC15-1_6	1	b	15.62	28.88	bdl	bdl	bdl	bdl	55.50	100.00
Trachyte	Pal D	sa	SC_18_20c1	2	b	62.38	37.48	bdl	bdl	bdl	bdl	0.14	100.00
Trachyte	Pal D	sa	SC_18_20c2	2	b	62.83	36.85	bdl	bdl	bdl	bdl	0.32	100.00
Trachyte	Pal D	sa	SC_18_20c3	2	b	62.18	37.21	bdl	bdl	bdl	bdl	0.60	100.00
Trachyte	Pal D	sa	SC_18_20c4	2	b	63.61	36.11	bdl	bdl	bdl	bdl	0.28	100.00
Trachyte	Pal D	pl	SC_18_20c5	2	b	63.70	36.20	bdl	bdl	bdl	bdl	0.10	100.00

Trachyte	Palizzi lava	Ti-mt	sc1824 11-12	1	b	24.18	28.79	bdl	bdl	bdl	bdl	47.04	100.00
Trachyte	Palizzi lava	Ti-mt	sc1824 11-12	1	b	31.37	29.73	bdl	bdl	bdl	bdl	38.91	100.00
Trachyte	Palizzi lava	cpx	sc1824 4-5-6	1	b	20.42	28.20	bdl	bdl	bdl	bdl	51.38	100.00
Trachyte	Palizzi lava	cpx	sc1824 4-5-6	1	b	2.27	18.68	bdl	bdl	bdl	bdl	79.05	100.00
Trachyte	Palizzi lava	cpx	$\begin{aligned} & \text { reconstructed } \\ & \text { *sc1824 4-5-6 } \end{aligned}$	1	b	10.89	23.21	bdl	bdl	bdl	bdl	65.90	100.00
Trachyte	Palizzi lava	cpx	sc1824 7-8	1	b	29.89	29.63	bdl	bdl	bdl	bdl	40.48	100.00
Trachyte	Palizzi lava	cpx	sc1824 7-8	1	b	22.97	28.30	bdl	bdl	bdl	bdl	48.73	100.00
Trachyte	Palizzi lava	cpx	*sc1824 7-8	1	b	25.18	28.73	bdl	bdl	bdl	bdl	46.09	100.00
Latite	Pal C	Ti-mt	sulf n4	1	b	28.65	32.34	bdl	bdl	bdl	bdl	39.01	100.00
Latite	Pal C	Ti-mt	solf n4	1	b	11.75	25.37	bdl	bdl	bdl	bdl	62.88	100.00
Latite	Pal C	Ti-mt	reconstructed *solfn4	1	b	18.51	28.15	bdl	bdl	bdl	bdl	53.34	100.00
Rhyolite	Pal B	sa	pallentiasulf1	2	a	59.58	36.72	$\checkmark \cdot 3$	0.03	0.04	0.09	0.33	96.81
Rhyolite	Pal B	sa	pallentiasulf1	2	a	58.57	36.56	0.04	0.07	0.01	bdl	0.42	95.67

Table 2

Trac hyte		sa		2	3791	bd 1	$\begin{gathered} 67 \\ 1 \end{gathered}$		$\begin{gathered} 82 \\ 3 \end{gathered}$	$\begin{gathered} 26 \\ 9 \end{gathered}$		$\begin{gathered} 24 \\ 1 \end{gathered}$	bdl	$\begin{aligned} & 25 . \\ & 84 \end{aligned}$	$\begin{aligned} & 0 . \\ & 47 \end{aligned}$	$\begin{gathered} 3.9 \\ 8 \end{gathered}$	$\begin{aligned} & 1 . \\ & 16 \end{aligned}$	$\begin{aligned} & 2 . \\ & 05 \end{aligned}$	0.	b dl	$\begin{gathered} 0 . \\ 0 \\ 8 \end{gathered}$	$\begin{gathered} 0 . \\ 0 \\ 1 \end{gathered}$	$\begin{gathered} 0 . \\ 07 \end{gathered}$	$\begin{gathered} 3.9 \\ 0 \end{gathered}$	bdl	
	Pal																									
	D		sulf1																							
Trac hyte	Pal	cpx		2	380	8.	27	249	36	11	662	37	bdl	2.21	bd1	$\begin{gathered} 3.4 \\ 6 \end{gathered}$	bd 1	$\begin{aligned} & 3 . \\ & 47 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \mathrm{dl} \end{gathered}$	$\begin{gathered} \mathrm{b} \\ \mathrm{dl} \end{gathered}$	$\begin{aligned} & 0 . \\ & 4 \\ & 8 \end{aligned}$	$\begin{gathered} \mathrm{b} \\ \mathrm{dl} \end{gathered}$	$\begin{gathered} 0 . \\ 01 \end{gathered}$	$\begin{gathered} 4.3 \\ 8 \end{gathered}$	0.08	
	D		90		658	80	5	572	2	1	6															
			sulf2																							
Trac hyte	Pal	ol	pal90s olf5	2	378390	1.39	$\begin{gathered} 49 \\ 3 \end{gathered}$	$\begin{aligned} & 454 \\ & 061 \end{aligned}$	$\begin{aligned} & 14 \\ & 06 \end{aligned}$	$\begin{gathered} 69 \\ 0 \end{gathered}$	$\begin{gathered} 353 \\ 69 \end{gathered}$	$\begin{gathered} 15 \\ 0 \end{gathered}$	bdl	$\begin{gathered} 18 \\ 3.5 \\ 5 \end{gathered}$	1.67	$\begin{gathered} 3.4 \\ 3 \end{gathered}$	$\begin{gathered} 3 . \\ 85 \end{gathered}$	bd 1	0.06	dl	0.	0.	60	5	0. 1 3	
																					02	14	$\begin{aligned} & .2 \\ & 7 \end{aligned}$	0	13	
	D																									
Trac hyte	Pal	$\begin{aligned} & \mathrm{Ti}- \\ & \mathrm{mt} \end{aligned}$	$\begin{gathered} \text { pal90s } \\ \text { ulf10 } \end{gathered}$	2	$\begin{aligned} & 382 \\ & 459 \end{aligned}$	170	$\begin{gathered} 76 \\ 2 \end{gathered}$	$\begin{aligned} & 690 \\ & 365 \end{aligned}$	$\begin{gathered} 59 \\ 3 \end{gathered}$	85	$\begin{gathered} 176 \\ 66 \end{gathered}$	$\begin{gathered} 31 \\ 4 \end{gathered}$	$\begin{aligned} & 34 . \\ & 08 \end{aligned}$	bdl	26.79	3.2	$1 .$$16$	bd 1	0.	1.	0.	b	4.	19		
	D																		1	6 7	5	dl	06	4	8 4	
Trac hyte	Pal	cpx	pal90s ulf13	2	$\begin{aligned} & 378 \\ & 456 \end{aligned}$	$\begin{gathered} 24 \\ .9 \\ 8 \end{gathered}$		$\begin{aligned} & 533 \\ & 044 \end{aligned}$	$\begin{aligned} & 17 \\ & 01 \end{aligned}$	$\begin{gathered} 38 \\ 0 \end{gathered}$	$\begin{gathered} 208 \\ 26 \end{gathered}$	$\begin{gathered} 15 \\ 7 \end{gathered}$	$\begin{gathered} 3.1 \\ 9 \end{gathered}$	bdl	$\begin{gathered} 2 . \\ 78 \end{gathered}$	$\begin{gathered} 4.1 \\ 3 \end{gathered}$	$\begin{aligned} & 0 . \\ & 46 \end{aligned}$	1. 41	1.	1.	b	0.	1.	3.2	$0 .$	
	D						1202												00	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	dl	6	35	3.27		
Trac	Pal		pal90s		396	6.	79	695	13	35	293	23			2	3.2	0.	1.	b	b	0.	0.	0.	3.0	0.	
hyte	D	cpx	ulf14a	2	402	23	5	233	34	4	42	0	bdl	1,	81	2	50	07	dl	dl	0	1	07	8	1	
																					8	0			7	
Trac hyte	$\begin{gathered} \mathrm{Pal} \\ \mathrm{D} \end{gathered}$	$\begin{aligned} & \text { Ti- } \\ & \mathrm{mt} \end{aligned}$	PAL9	2	$\begin{array}{lr} & \\ 379 & 85 \\ 924 & .5 \\ & 6\end{array}$		$\begin{gathered} 79 \\ 7 \end{gathered}$	$\begin{aligned} & 445 \\ & 303 \end{aligned}$	$\begin{aligned} & 11 \\ & 07 \end{aligned}$	$\begin{gathered} 15 \\ 3 \end{gathered}$		29 4	$\begin{gathered} 3.3 \\ 2 \end{gathered}$		$\begin{aligned} & 2 . \\ & 31 \end{aligned}$	$\begin{gathered} 2.2 \\ 8 \end{gathered}$	$\begin{aligned} & 0 . \\ & 16 \end{aligned}$	$\begin{gathered} 2 . \\ 77 \end{gathered}$	b dl	$\begin{gathered} \mathrm{b} \\ \mathrm{dl} \end{gathered}$	b dl	$\begin{gathered} 0 . \\ 0 \\ 4 \end{gathered}$	1.09	$\begin{gathered} 35 . \\ 01 \end{gathered}$		
			0				0.71																			
			u293s																							
			ulf17																							
Trac hyte	$\begin{gathered} \mathrm{Pal} \\ \mathrm{D} \end{gathered}$	Ti- mt	PAL9	2	$\begin{aligned} & 379 \\ & 924 \end{aligned}$	$\begin{gathered} 32 \\ .8 \\ 3 \end{gathered}$		$\begin{aligned} & 459 \\ & 804 \end{aligned}$																		
			0				$\begin{gathered} 74 \\ 6 \end{gathered}$		$\begin{gathered} 86 \\ 9 \end{gathered}$	185		24	8.7		7.	2.1	3.	0.	b		b	b	0.	19.	1	
			u293s									3	6	bdl	57	9	60		dl	3	dl	dl	49	60	0.	
			ulf17																	7					8	
	Pal		PAL-		149	10	39	582	14	11	63	16		84				16	b	2.	b	b	bd	12	0.	
Trac		cpx	15D	2			72						bdl					. 3		3					8	
hyte	D		sulf1		585	68		983	38		4	64		77	20	52	1		dl		dl	dI	1	81	5	
			PAL-																	2.	0.	0.			0.	
		cpx	15D	2	341	11	68	582	5	2	139	60	2.1	4.7		3.6			b	0	1	1	0.	4.1	3	
hyte	D				034	9	00	$98{ }^{3}$? 7	.	00	3	1	1	09	8	18	48	dl		3	8	03	5	0	
	Pal				346	20	12	582	34	37	109	14		10	2.	9.8	10	4.	0.	b	0.	0.	0.	6.6	0.	
hyte	D	cpx	sulf5	2			95		12				bdl				. 9		9	d	2	0		6.6	3	
hyte	D				344	6			12	5	79	45		7	36	6	5	96	9	di	9	4	20	4	8	
	Pal		Pal 15		370	1.		82	42	34									b	0.	0.	0.	0	14	7.	
Trac		cpx	D sulf	2				8					bdl							4	1	1			6	
hyte	D				083	'		983	48	95	55	3		50	68	7	31	93	dl	8	8		35	51	0	
			Pal 15												22				1.	1.	0.	0.		38	1	
Trac	Pal	cpx	D sulf	2	232		24	582	15	21	123	64	50.	15.	. 5	13.			8	5	3	4	7.	4.5	6	
hyte	D	pr			691	2	13	983	50	45	73	4	61	36	8	36	27	1	2	2	4	6	18	6	6	
			Pal 15																		0.	0.			0.	
			D sulf	2	42								bdl	bdl			1.		b		1	1			2	
hyte	D	mt			053	2	01	983	48	61	32	06			12	6	07	29	dl	dl	0	1	45	6	3	
			Pal 15																		0.	0.			0.	
			D sulf	2	349								bdl						b		1	0	0.	3.7	1	
hyte	D	mt			260	4	05	983	77	97	55	0		01	72	4	60	16	dl	dl	2	7	32	2	2	
	Pal																									
	izz										119		39			35		14	4.	0.	0.				3.	
Trac	i	cpx	sc1824	1	595	11	15	173	59	47	358	11	7.3	20	6.	4.0	0.	. 2	9	5	0	b	0.	34.	3	
hyte	lav		4-5-6		243	7	05	263			2	45		8	46	5	64	7			7	dl	03	41	1	
	a																									
	Pal																									
	izz																16		0.	1.		0.			3	
Trac	i	cpx	sc1824	1	148	0.	68	108	13	49	248	60	0.4			9.0	. 6	3.	1	1	b	0	0.	20	2.	
hyte	lav		7-8		141	05	2	824	1	3	441	7	7	66	02	7		95			dl	4	03	20	6	
	a																									
															76					3.		0.			0.	
Rhy	Pa	sa	pallent	2	362		16	582	12	19	800	44	bdl	45.	3	1.8	2.	1.	b	4	b	0	0.	0.8	2	
olite	B		iasulf1		456	1	16	983	16	79	3			77	6	5	14	83	dl		dl		12	0	3	

Host rock composition	Unit		SiO_{2}	TiO_{2}	$\mathrm{Al}_{2} \mathrm{O}_{3}$	$\mathrm{FeO}_{\mathrm{t}}$	MnO	MgO	CaO	$\mathrm{Na}_{2} \mathrm{O}$	$\mathrm{K}_{2} \mathrm{O}$	$\mathrm{P}_{2} \mathrm{O}_{5}$	Cl
Basalt	La Sommata	mean (15) SD	45.91 0.80	0.62 0.06	10.99 0.40	8.93 0.49	0.17 0.02	8.76 1.36	14.34 0.49	1.99 0.17	1.85 0.28	0.31 0.20	0.29 0.05
Shoshonite	Vulcanello 1	mean (33) SD	54.34 1.44	0.63 0.09	17.31 0.63	7.05 0.90	0.15 0.04	2.16 0.59	4.51 0.89	4.57 0.34	6.83 0.66	0.66 0.12	0.30 0.03
Latite	Pal C	mean (5)	56.55	0.86	18.08	6.18	0.14	1.10	3.39	4.94	7.93	0.40	0.42
		SD	1.09	0.15	0.80	1.59	0.13	1. 34	0.77	0.39	1.01	0.15	0.09
Trachyte	Pal D	mean (22) SD	60.00 0.86	0.58 0.12	17.38 0.56	4.41 0.57	0.4 0.00	1.01 0.32	2.49 0.54	4.59 0.54	6.82 1.04	0.20 0.08	0.38 0.06
Rhyolite	Pal B	mean (18) SD	70.44 0.79	0.13 0.05	14.87 0.62	292 029	0.11 0.05	0.13 0.11	0.95 0.16	4.53 0.48	6.64 0.51	0.06 0.00	0.51 0.08

MI id	$\begin{gathered} \hline \mathrm{H} \\ \mathrm{os} \\ \mathrm{t} \\ \mathrm{tin} \\ \mathrm{mi} \\ \mathrm{ne} \\ \mathrm{ral} \\ \hline \end{gathered}$	v	C	$\underset{i}{\text { N }}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{u} \end{aligned}$	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{n} \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & \mathrm{~b} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{r} \end{aligned}$	Y	$\begin{aligned} & \mathrm{Z} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~b} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { B } \\ & \text { a } \end{aligned}$	$\begin{aligned} & \mathrm{L} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & \mathrm{C} \\ & \mathrm{e} \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~d} \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~m} \end{aligned}$	E	$\begin{aligned} & \mathrm{G} \\ & \mathrm{~d} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~b} \end{aligned}$	$\begin{aligned} & \mathrm{D} \\ & \mathrm{y} \end{aligned}$	$\stackrel{H}{+}$	$\begin{aligned} & \mathrm{E} \\ & \mathrm{r} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~m} \end{aligned}$	Y	${ }_{\text {L }}$	H f	$\begin{aligned} & \mathrm{T} \\ & \mathrm{a} \end{aligned}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~b} \end{aligned}$	$\begin{aligned} & \mathrm{T} \\ & \mathrm{~h} \end{aligned}$	U	
$\begin{gathered} \text { BASA } \\ L T \end{gathered}$																																	
dc_1		2		1	3	1	6		1	6	5	1.	5	2		6.	${ }_{5}^{2}$	4.	1	4	0	3	0	1	0	1	0	1.	0	9.			
	ol	${ }_{8}^{2}$	${ }_{6}^{6}$	3.	9.	1	2.	0 4	3	6.		1.	${ }_{7}$	8	4.	${ }_{3}^{6}$	5.	4										${ }_{6}^{1 .}$		4.	${ }_{1} 1$	${ }_{0}^{2 .}$	
		5	8	3 5	5 4	7	7 3	4	6	${ }_{0}$	6 0	3	2	2	0	7	3 4	${ }_{7}$	${ }_{2}^{2}$	1	5 2	${ }_{1}$	5	3	${ }_{2}$	6	1 4	1	2	6	3	8	
dc_4	ol					7	3	5	7	2	2			1	2		1		0	1	0	1	0	0	0	0	0		0				
		4	${ }_{6}^{2}$	4	7.	9.	1.	5		8.		0.	${ }_{4}^{2}$	2	3.	${ }_{6} 6$	2.	${ }_{5}^{2 .}$										${ }_{7}$		3.	${ }_{7}^{2 .}$	0. 8	
		4	0		2	4	7	${ }_{6}$	2	8	2	8	3		0	${ }_{7}$	6	5	7	8	2	7	3	8	0	8	0	2	1	4		${ }_{5}$	
									0	6	6			3			5		4	9	4	3	-	0	8	2	8		0				
dc_7		2	5	3	${ }^{3}$	5	3	9	9	5	3	0.	3	1	3	4.	2	3.	1	3	0	2	0	1	0	0	0	1.	0	3.	2.	0.	
	ol	3	0	2.	1.	4.	5	5	$\dot{9}$	5.	i	9	5		8.	5	0.	7	0	0	3	2	2	1	1		1	3		5	6	9	
				${ }_{7}$	${ }_{9}^{2}$		8	0	1	6	1	1	5	1	5	1	0 4	0	0	0	3 9	${ }_{9}^{2}$	2	1	${ }_{2}^{1}$	7 9	1	5	${ }_{7}^{1}$	0	4	4	
${ }_{0}^{\text {dc_1 }}$			1	,			4	1	7	2	2			2			1		0	1	0	1	0	0	0	0	0	0	0				
	ol	${ }_{1}^{2}$	7.	${ }_{7}^{2}$	${ }_{3}^{1}$	1	5.	4		1.		0.	4	1	${ }_{9}^{3}$	4.	6.	${ }_{5}^{2 .}$										0.		9.	3.		
		1	9	0	3		0	1	2	4	9	${ }_{6}$	4		9.	${ }_{7}$	5	5	6	6	2	6	2	9	1	7	0	7	1	6	${ }_{0}$	5	
			3				1	7	2	3	7			3			3		5	2	4	4	7	9	0	7	8	4	3				
$\underset{2}{\mathrm{dc} 1}$	ol	1	3	5	1	${ }_{7} 7$	1	2	4	1 8	1	0.	1	9	2	1.	8.	2.	0	1	0	1	0	0	0	0	0	0.	0	0.	1.	0.	
		0	5	1	6.	7.	7.	9	i	${ }_{2}^{1}$	3	7	4		0.	9	1	0	5	1	2	3	i	6	i	3	i	6	${ }_{0}$	4	4	6	
		9		8			5		7	3	1	6	1	2	5	9	7	7	8	9	${ }^{3}$	2	8	0	0	3	1	6	3	9			
$\mathrm{dc}_{3} 1$		2	3		3	9	1	7	1	5	3	1	9	${ }^{2}$		4.	2	4.	1	3	,	2	0	1	0	0		1.	0	1.	4.		
	ol	6	4	b	3.	1.	1	0	2	2.		9.	7		7.	7	0.	5										4		7	5	7	
			6	dl	1	6	5	5	7	3	9	1	3	;	6	8	${ }^{8}$	0	3	4	4	3	4	1	1	9	1	7	1	3	5	8	
$\underset{4}{\text { dc_1 }^{1}}$			1	2	1	1		1	1		5			3			2		1	3	0	3	0	1	0	1	0	1.	0				
	ol	9	5.	3.	${ }_{5}$	1	6	1	4	7.	;	6	8	0	7.	4	7.	6	5	7	¢							7		4	5	${ }_{0}$	
		7	${ }_{8}^{6}$	${ }_{8}^{6}$	${ }_{7}$	1			8	7	7	8	6	;	6	8	${ }_{7}^{8}$	7	5	7	3	${ }_{4}$	5	${ }_{8}^{4}$	2	1	${ }_{4}^{2}$	5	${ }_{6}^{2}$	3	2		
$\mathrm{dc}_{7} 1$			3	2	1			8	1	4	3		3	1	3		1	3.	1	3	0	2	0	1	0	1	0	1.	0				
	ol	5	7	5.	3	6	2	6	2	4.	;	2	3	9	6.	3	7.	9			;	5	4	;	i	;	i	2	,	4	7	4	
				7				0	5	2	${ }_{9}$	9	1	9		2	8		5	9	9	1	${ }_{8}^{4}$	6	${ }_{6}$	${ }_{7}$	${ }_{6}^{1}$		8	7			
sho																																	
SHONITE																																	
ea_1		1		4.				6	${ }_{5}^{2}$	1	3	9.				1 4	5	9.		5	0	4	0	2	0	2	0	4.	1	2	3 2 2	1 0	
	${ }_{\text {cp }}^{\text {cp }}$	3	0	2	7	0	0	9		8		2	7	7	3		1.	0	6	8			9					9		${ }_{5}^{6}$			
		0	6	1	7	8	9	2	3	6	2	8	8		5		.	4	${ }_{9}^{6}$	8	${ }_{8}^{8}$	${ }_{5}^{8}$	9	5	3	8	3 9	3	${ }_{3}^{2}$	9	4 8 8	${ }_{0}^{1}$	
ea_2	${ }_{\text {cp }}^{\text {c }}$		2	2	8				${ }_{7}$,								2	7	1	5	1	2	0	2	0		0	1	1		
		2	9.	7.	9.	6.	0	4	7	3	1	5	5	4	c	${ }_{9}$		6	,							9		5	\%	$\stackrel{3}{3}$	5.	1	
				0	${ }_{0}^{2}$	8	1	1	9	9	7	5	1			${ }_{7}^{9}$	4	7	${ }_{3}$	6	${ }_{8}^{0}$	3	${ }_{7}^{0}$	4	${ }_{0}^{4}$	${ }_{0}$	9	1	${ }_{1}^{6}$	${ }_{0}^{2}$	4		
ea_3	${ }^{\text {cp }} \times$			1.					2	2	${ }_{5}^{2}$	0		7		1	4		1	5	0	4	0	2	0	2	0	5.	1	2	3		
		1	dl	9	1	1	3	${ }_{9}^{6}$	3	0	5	${ }_{4}$	5	7	3	${ }^{3} 8$	8.	7	6	4	8	4	8	2	3	6	$\dot{3}$	3	3	${ }_{1}$	${ }_{1}$	1.	
									9		4	6	2		8	2	9		5	4	4	0	6	2	9	9	9		4	3	6		
ea_4	${ }_{\text {cp }}^{\text {cp }}$	1		4	4				${ }_{0}$		4	1.	2	${ }_{4}$		7.	3	8.	1	6	0	4	0	1	0	1	0	2.	0	5.	5.		
		9	5	8.	${ }_{5}^{1 .}$	2.	4	2	0	${ }_{8}^{7}$		8		4	5	0	${ }_{8}$		8	0								8		5	4	7	
		5	6	6	5	0		8	2		7	7	2	2	4	1	8 8	6	4	${ }_{8}^{0}$	7	${ }_{7}^{6}$	7	${ }_{2}$	2	${ }_{7}^{6}$	${ }_{6}^{2}$	6	2	5	9		
ea_5				2	8				1		1						2			4	0	3	0	1	0	1	0	2.	0	1	1		
	${ }_{\text {cp }}^{\text {c }}$	2	3	8.	3.	5.	1	${ }_{9}$	3	${ }_{7}^{8}$	1		7	5	${ }_{3}^{6}$	9	7.	5	3									${ }_{7}$		5.	5.	5	
			8	2	5	5	7	3	6	7		3	4	0	3	4	${ }_{3}^{0}$	1	9	6	${ }_{7}^{5}$	${ }_{4}^{0}$	5	1	${ }_{1}^{2}$	4	2	3	${ }_{9}^{6}$	2	$\begin{aligned} & 5 \\ & 6 \end{aligned}$		
ea_6	${ }_{\text {cp }}^{\text {cp }}$	1	5.	1.	1			9	${ }_{9}^{1}$	1	2		1			1	4	7.	1	5	0	3	0	,	0	,	,	4.	,	2	3		
		4	2	7	5	0	2	6	9	7		2	1	7	2	2.	5.	6	7	0		9	8	1		0	$\dot{3}$	5	2	${ }_{8}^{8}$	4.	6	
		6	5	7	8	7	3	5	8	9		4	6			6	1	5	5	3	0	3	${ }_{0}$	1	${ }_{8}$	0	${ }_{0}$	5	4	8	1		
ea_7	cp		3.	6.				9	0		2	8.	,			1		8.	1	5	0	4	0	2	0	2	0	4.	1	2	2		
		5	1	3	4	0	9	0	0		,	2	${ }_{4}$	${ }_{8}^{6}$	1	${ }_{1}$	5.	0										1		6.	7.	7	
		3	3	2	3	5	8	0	5	4		7	4 6		9	${ }_{8}^{1}$	2	8	0	${ }_{4}^{2}$	${ }^{7}$	${ }_{0}^{0}$	4	${ }_{2}$	3	0	${ }_{9}^{2}$	1	1	${ }_{3}^{0}$	${ }_{7}^{6}$		
ea_8				1.					1		2		1			1	3		1	4	0		0	1	0	1	0		1	2	2		
	${ }_{\text {cp }}^{\text {cp }}$	1	7	5	8	${ }_{0}$	2	5	6		2	1	1	${ }_{7}^{6}$	1	1.	9.	9	4			2	6			7	2	8	0	$\stackrel{8}{5}$	7.	8	
		8	1	1	9	1	2	9	$\dot{8}$	0	6	7	${ }_{7}$		5	${ }_{2}^{4}$	3	6	8	7	${ }_{1}$	${ }_{6}$	4	${ }_{7}$	4	2	5	5	${ }_{7}$	2	1		
ea_9	$\begin{aligned} & \mathrm{cp} \\ & \mathrm{x} \end{aligned}$							1	1	1	${ }_{0}$		2		1	1	4	6.	1	4	0	3	0	1	0	1	0	3.	1	$\stackrel{2}{5}$	2		
		2	4	2	4	0	0	,		5		6	1	${ }_{5}$	1	${ }_{0}$	1.	7	7							9		5				3	
		7	9		4	9	2	4	3	6	8	3	1	5	2	${ }_{5}^{0}$	1	6	7	9	${ }_{5}^{6}$	5	${ }_{4}^{6}$	7	${ }_{4}^{2}$	9	${ }_{9}^{2}$	6	${ }_{2}^{0}$	3	${ }_{3}$		
${ }_{\text {ea }}^{0}{ }^{\text {d }}$			7						2		1					1		1	2	7	1	5	1	2	0	2	0		0	${ }^{2}$	2		
	${ }_{\text {cp }}^{\text {cp }}$	0	0. 4	7. 6	2	3	6	6	6	6	9	3	2	7 5	3	4.	8.	0. 3	,				0			5	3	5		${ }_{1}^{1 .}$	4.	5	
		8	${ }_{3}^{4}$	${ }_{5}^{6}$	7	2	0	8	3	4	6	0	8		7	7	3	3 5	3	0	${ }_{3}^{0}$	${ }_{5}^{2}$	${ }_{0}^{0}$	3 0	7	1	3	5	${ }_{7}^{9}$	${ }_{0}$	${ }_{7}^{2}$		
$\stackrel{\text { ea_1 }}{1}$	${ }_{\text {cp }}^{\text {cp }}$			9.	1	1	1		7	1	7	7.				1		6.	1	4	0	3	0	1	0	1	-	3.	0	2	2		
		7	7	7	8	0	7	${ }_{8}^{2}$	7	4	7	3	0 5	${ }_{0}^{6}$	0	${ }_{7}$	9.	8	6	5	6	4	6	5	2	7	2	5	9	3.	3.	2	
			0	6	6	2	8	${ }_{4}^{8}$	j	1	9	7	6		5	2	1	5	${ }_{3}$	5	${ }_{3}^{6}$	${ }_{3}^{4}$	${ }_{2}^{6}$	5	${ }_{5}$	3	${ }_{4}^{2}$	2	3	8	6		
${ }_{\text {ea_ }}^{2} 1$								8	${ }_{8}^{1}$	1	${ }_{3}^{2}$	7.	1		1	1.	4	6.	1	4	0	3	0	1	0	1	0	4.	1	2 8 8	2 8 5	9.	
	${ }_{\text {cp }}$	2	6	2	0	0	0	3	8	8	3	8	5	9	1	${ }_{5}$	1.	9		8				7				1		8	$\stackrel{8}{5}$	2	
		7	7	2	3	5	6	9	4	0	9	4	1	9	8	5 7	6	7	7	8	${ }_{6}^{6}$	5 1	${ }_{3}^{6}$	7	7	7	$\stackrel{2}{8}$	8	1	${ }_{9}^{8}$	5 3		
${ }_{3}^{\text {ea }} 1$									1		2		1			1			1	4	0	3	0	1	0	1	0		1	2	3		
	${ }_{\text {cp }}^{\text {c }}$	1	9	9	9	0	2	7	7	8	4	9	1 4	${ }_{7}^{6}$	1	1. 0	9.	7	5				6			$\dot{8}$	2	3	2	9.	0. 0	5	
		7	2	9	5	0	7	9	9	1	6	7	4 6	7	4	${ }_{9}^{0}$	6	3	4	6	${ }_{3}^{6}$	3	${ }_{5}^{6}$	${ }_{8}^{6}$	4	${ }_{2}^{8}$	${ }_{7}^{2}$	6	${ }_{0}^{2}$	${ }_{7}^{2}$	${ }_{3}^{0}$	2	
${ }_{4}^{\text {ea_ }}{ }^{1}$									1	1	6	6.	9			9.		6.	1	4	0	3	0	1	0	1	0	3.	0	2	${ }^{2}$		
	${ }_{\text {cp }}^{\text {c }}$	5	5.	9	${ }_{5}^{6}$	9 2	6	4	6	2	6	6	3	5	${ }_{5}^{9}$	5	5.	3	3	5	5	0	6	5	2	4	i	0	8	3.	${ }_{2}$	8	
			7	4			0	1	6	6	6	7	9			3	9	8	0	1	8	3	4	2	2	4	1	9	2	1	4		
${ }_{5}^{\text {ea }} 1$			${ }_{4}$	2					2		1					1	4	9.	1	7	0	5	1	2	0	2	0	3.	0	1	1		
	${ }_{\text {cp }}$	6	4.	6.	3	0	1	5	6	2	2	7	2	5	0	1.	8.	7	9							3	3	7		3.	7. 2	1	
		9	1	${ }_{9}^{6}$	2	7	2	7	${ }_{0}$	3	1	9	0	5	3	${ }_{4}^{6}$	0	8	8	6	${ }_{5}^{9}$	3	${ }_{5}$	4	8	3	3 4	7	${ }_{2}^{6}$	5 9	${ }_{8}^{2}$	2	
${ }_{6}^{\text {ea_ }} 1$	${ }_{\text {cp }}^{\text {¢ }}$		1	${ }_{2}$					${ }_{5}$		1					,			1	6	0	5	0	2	0	2	0		0	1	1		
		8	8.	1.	1	8	2	7	5	1	3	4	5	4 8	${ }_{5}^{9}$	1.	4.	3	9	;	9	1	9	5	3	3	$\dot{3}$	3.	;	6.	7.	5	
				${ }_{7}$	0		4	7	1	0	9	3	8			8	4	0	5	2	5	2	9	6	4	6	6		0	0	${ }_{0}$		
$L_{\text {LATI }}$																																	
HosT																																	
									1		2								1		0	3	0	1	0	1	0						
	cp	1	b	3.	${ }_{4}^{2}$	1	${ }_{1}^{2}$	8	9	${ }_{7}^{1}$	4		1	7	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	2.												$4 .$		9.	1.		
	x		dl	9	${ }_{9}^{4}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	9	5		5		3	${ }_{6}^{6}$	2	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	4	$\begin{aligned} & 4 . \\ & 3 \end{aligned}$	2	5	${ }_{5}^{8}$	${ }_{9}^{6}$	7	7	${ }_{6}$	3	8	3	$\begin{aligned} & 5 \\ & 3 \end{aligned}$	2	0	7	0	
dd_3									,	1	2		8			1	4		1	4	0	4	0	2	0		0	4.	1	2	2	9.	
	${ }_{\text {cp }}^{\text {cp }}$	5	2. 8	3	6 0	$\begin{aligned} & 8 \\ & 2 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 6 \end{aligned}$	$\begin{aligned} & 1 \\ & 9 \end{aligned}$	9	7	1	$\begin{aligned} & 0 . \\ & 7 \\ & 5 \end{aligned}$	3	$\begin{aligned} & 6 \\ & 2 \end{aligned}$		$0 .$	$\begin{gathered} 4 \\ 0 \\ 3 \end{gathered}$	6 9	6	9	7	0	6	0	3	$\dot{8}$	2	$\begin{aligned} & 4 \\ & 6 \\ & 9 \end{aligned}$	1	4.	9 4 4	0	

dd_

			dl	dl	3	d	2	1.	6	1	8	5.	3	0	5	4.	0.	0										0.		1.	9.	5.
		1					7	4		3		9	8		4	2	0	0	5	5	7	3	1	1	5	6	5	3	7	3	4	7
		0							7		8	3				7			9	1	3	4	1	8	7	1	4	2	4	7		7
ca_1	sa	0		1			3		3		2	${ }^{1}$	3.	1	1	1	5	9.	0	6	0	5	1	2	0	3	0	9.	1	3	5	1
2			b	1.	5	n	3	7.	1	6	8	5.	7	0	7	6.	6.	1										0		2.	3.	6.
		6	dl	6	3	d	0	9		8		6	9	6	3	8	6.	1	2	2	9	6	1	4	4	4	5		7	9	4	7
		3		0			0	9	0	8	6	3	9	6	3	1	1	1	8	7	1	2	3	6	3	4	6	6	5	4	4	8
${ }_{3}{ }^{\text {a }} 1$		1					3	1	3	4	3	7	2.	1	1	1	5	8.	0	7	0	5	1	3	0	3	0	1	1	3	5	1
	sa		d	b	5	n	3	6.	2	${ }_{0}$	0	7.	2.	1	8	7.	7.	2										${ }_{5}$		4.	8.	7.
		7	dl	dl	7	d	4	3	7	2	3	3	0	1	0	4	2	8	2	1	9	${ }_{8}$	0	5	4	5	7 2	5	9	${ }_{7}$	6	2 8
		9																		8	8	${ }_{5}^{8}$	1		${ }_{0}$	3	0	6	1	3		8
$\frac{\mathrm{ca}}{4} \mathrm{~A}$	sa	1					3	2	${ }_{8}$	2	3	4.	8.		1	1	4	8.	0	4								7.	1	3	5	1
		3	b	b	4	n	0	8.	8	8	1	4.	8	9	5	4.	6.	4	3	7	8	2	0	7	4	1	6	6	8	3.	3.	5.
		7					8	3	5	3	9	8	6		8	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	6	1	3	0	2	1	6	6	3	8	6	5	8	6	6	${ }_{2}$
${ }_{6}^{\text {ca_1 }}$		0							2		2	1			1	1			0	5	0	4	1	3	0	3	0	8	1	3		1
	sa		b	b	4	n	3	1.	6	4	7	4.	9	8	4	3.	3.	2										7		1.	8.	4.
		6	dl	dl	1	d	3	1.		4		4	9	7	4	2	3.	4	3	1	7	6	1	4	4	4	4	7	7	8	1.	1
		5					0		5	4	6	5	0		2	7		4	9	6	1	7	8	4	4	8	5	1	2	0	1	7
$\mathrm{ca}_{7}{ }^{1}$									2		2	1				1			0	4	0	4	0	2	0	2	0		1	3		1
	sa	b	b	b	5	n	3 4	6.	5	${ }_{0}$	6	5.	3.	8	1	3.	6	7 2										6. 5		0.	4	5.
		d	dl	dl	4	d	4	7		7		1	4	5	4	7	6.	4	2	7	7	6	9	8	3	7	5	5	3	4	6.	0
									0	7	2	5	4		3	0	7		7	3	4	2	6	6	0	4	1	9	2	5	7	7
$\begin{gathered} \mathrm{ca}_{8} 1 \end{gathered}$							3		2		$\stackrel{2}{9}$	1	3.	1	1	1			0	5	0	5	1	2	0	2	0	7.	2	3		1
	sa	d	b	b	6	n	6	3.	7	9	9	9.	4	${ }_{0}$	7	6.	1.	0										3		5.	1.	8.
			dl	dl		d						2				1			2	0	8	2	1	9	4	8	5	8	0	7	1.	5
							1	2	5	9	3	7	8	5	1	3	2	2	4	5	0	0	7	3	6	6	2	8	2	3	1	3
$\underset{9}{\mathrm{ca}_{1} 1}$							3	2	2		${ }_{9}$	1	8.		1	1	4	7.	0	4	0	4	0	2	0	2	0	6.	2	3	6	1
	sa	d	b	b	4	n	2	0.	6	2	9	8.	5	9	5	4.	6.	5	2	6				9	3		5	4	2	7.	2.	8. 9
							8	1	9	2	2	${ }_{9}$	0		5	${ }_{0}$	0	4	${ }_{0}$	6	7	9	9	4	3	7	5	3	${ }_{8}^{2}$	4 2	2	9
$\stackrel{c}{\mathrm{ca}_{0}}$		0							2		2	1				1		7.	0	3	\bigcirc	3	0	2	0	2	0	5.	1	3		1
	sa		b	b	4	n	9	1.	4	9	6	6.	6	8	4	3.	4	4										5.		0.	2	6.
		9	dl	dl	4	d						2		8		5			4	4	8	9	9	5	5	4	4		7	4		8
		6						3	5		i	6				0	6	4	3	0	8		6	3	2	2	3	2	7	5	7	9

Highlights

- We tracked metal evolution in the plumbing system of La Fossa active volcano
- Sulfide saturation is achieved in intermediate composition magmas
- Two types of Cu -bearing magmatic sulfides were identified
- Cu and Pb evolution during magmatic differentiation is modeled
- Metal evolution gives insights into the mineralizing potential of arc magmas

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

