
QuickScorer: Efficient Traversal of Large
Ensembles of Decision Trees

Claudio Lucchese1, Franco Maria Nardini1, Salvatore Orlando2,1,
Raffaele Perego1, Nicola Tonellotto1, and Rossano Venturini3,1

1 ISTI–CNR, Italy, name.surname@isti.cnr.it
2 Ca’ Foscari Univ. of Venice, Italy, orlando@unive.it
3 Univ. of Pisa, Italy, rossano.venturini@unipi.it

Abstract. Machine-learnt models based on additive ensembles of bi-
nary regression trees are currently deemed the best solution to address
complex classification, regression, and ranking tasks. Evaluating these
models is a computationally demanding task as it needs to traverse thou-
sands of trees with hundreds of nodes each. The cost of traversing such
large forests of trees significantly impacts their application to big and
stream input data, when the time budget available for each prediction is
limited to guarantee a given processing throughput. Document ranking
in Web search is a typical example of this challenging scenario, where
the exploitation of tree-based models to score query-document pairs, and
finally rank lists of documents for each incoming query, is the state-of-
art method for ranking (a.k.a. Learning-to-Rank). This paper presents
QuickScorer, a novel algorithm for the traversal of huge decision trees
ensembles that, thanks to a cache- and CPU-aware design, provides a
∼9× speedup over best competitors.

Keywords: Learning to Rank, Ensemble of Decision Trees, Efficiency.

1 Introduction

In this paper we discuss QuickScorer (QS), an algorithm developed to speedup
the application of machine-learnt forests of binary regression trees to score and
finally rank lists of candidate documents for each query submitted to a Web
search engine. QuickScorer was thus developed in the field of Learning-to-
Rank (LtR) within the IR community. Nowadays, LtR is commonly exploited by
Web search engines within their query processing pipeline, by exploiting mas-
sive training datasets consisting of collections of query-document pairs, in turn
modeled as vectors of hundreds features, annotated with a relevance label.

The interest in exploiting forests of binary regression trees to rank lists of can-
didate documents is due to the success of gradient boosting tree algorithms [4].
This kind of algorithms is considered the state-of-the-art LtR solution for ad-
dressing complex ranking problems [5]. In search engines, these forests are ex-
ploited within a two-stage architecture. While the first stage retrieves a set of
possibly relevant documents matching the user query, such expensive LtR-based



scorers, optimized for high precision, are exploited in the second stage to re-rank
the set of candidate documents coming from the first stage. The time budget
available to re-rank the candidate documents is limited, due to the incoming
rate of queries and the users’ expectations in terms of response time. Therefore,
devising techniques and strategies to speed up document ranking without losing
in quality is definitely an urgent research topic in Web search [9].

Strongly motivated by these considerations, the IR community has started
to investigate computational optimizations to reduce the scoring time of the
most effective LtR rankers based on ensembles of regression trees, by exploiting
advanced features of modern CPUs and carefully exploiting memory hierarchies.
Among those, the best competitor of QuickScorer is vPRED [1].

We argue that QuickScorer can also be exploited in different time-sensitive
scenarios and each time it is needed to use a large forest of binary decision trees,
e.g., random forest, for classification/regression purposes and apply it to big and
stream data with strict processing throughput requirements.

2 QuickScorer

Given a query-document pair (q, di), represented by a feature vector x, a LtR

model based on an additive ensemble of regression trees predicts a relevance score
s(x) used for ranking a set of documents. Typically, a tree ensemble encompasses
several binary decision trees, denoted by T = {T0, T1, . . .}. Each internal (or
branching) node in Th is associated with a Boolean test over a specific feature
fφ ∈ F , and a constant threshold γ ∈ R. Tests are of the form x[φ] ≤ γ, and,
during the visit, the left branch is taken iff the test succeeds. Each leaf node
stores the tree prediction, representing the potential contribution of the tree
to the final document score. The scoring of x requires the traversal of all the
ensemble’s trees and it is computed as a weighted sum of all the tree predictions.

Algorithm 1 illustrates QS [7,3]. One important result is that QS computes
s(x) by only identifying the branching nodes whose test evaluates to false, called
false nodes. For each false node detected in Th ∈ T , QS updates a bitvector asso-
ciated with Th, which stores information that is eventually exploited to identify
the exit leaf of Th that contributes to the final score s(x). To this end, QS main-
tains for each tree Th ∈ T a bitvector leafidx[h], made of Λ bits, one per leaf.
Initially, every bit in leafidx[h] is set to 1. Moreover, each branching node is
associated with a bitvector mask, still of Λ bits, identifying the set of unreachable
leaves of Th in case the corresponding test evaluates to false. Whenever a false
node is visited, the set of unreachable leaves leafidx[h] is updated through
a logical AND (∧) with mask. Eventually, the leftmost bit set in leafidx[h]
identifies the leaf corresponding to the score contribution of Th, stored in the
lookup table leafvalues.

To efficiently identify all the false nodes in the ensemble, QS processes the
branching nodes of all the trees feature by feature. Specifically, for each feature
fφ, QS builds a list Nφ of tuples (γ, mask, h), where γ is the predicate threshold
of a branching node of tree Th performing a test over the feature fφ, denoted by



x[φ], and mask is the pre-computed mask that identifies the leaves of Th that are
un-reachable when the associated test evaluates to false. Nφ is statically sorted
in ascending order of γ. Hence, when processing Nφ sequentially, as soon as a
test evaluates to true, i.e., x[φ] ≤ γ, the remaining occurrences surely evaluate
to true as well, and their evaluation is thus safely skipped.

Algorithm 1: QuickScorer
1 QuickScorer(x,T ):
2 foreach Th ∈ T do
3 leafidx[h]← 11 . . . 11

4 foreach fφ ∈ F do // Mask
Computation

5 foreach (γ, mask, h) ∈ Nφ do
6 if x[φ] > γ then
7 leafidx[h]← leafidx[h] ∧ mask

8 else
9 break

10 score← 0 // Score Computation
11 foreach Th ∈ T do
12 j ← leftmost bit set in leafidx[h]
13 l← h · Λ+ j
14 score← score+ leafvalues[l]

15 return score

Fig. 1: QS performance.

1000 5000 10000 20000
Number of Trees

5

6

7

8

9

10

S
p

ee
du

p
w

.r
.t

.
V

P
R

E
D

vQS

BWQS

QS

We call mask computation the first step of the algorithm during which all
the bitvectors leafidx[h] are updated, and score computation the second step
where such bitvectors are used to retrieve tree predictions.

Compared to the classic tree traversal, QuickScorer introduces a main
novelty. The cost of the traversal does not depend on the average length of the
root-to-leaf paths, but rather on the average number of false nodes in the trees
of the forest. Experiments on large public datasets with large forests, with 64
leaves per tree and up to 20,000 trees, show that a classic traversal evaluates
between 50% and 80% of the branching nodes. This is due to the imbalance of the
trees built by state-of-the-art LtR algorithms. On the other hand, on the same
datasets, QuickScorer always visits less than 30% of the nodes. This results
in a largely reduced number of operations and number of memory accesses.

Moreover, QuickScorer exploits a cache- and CPU-aware design. For in-
stance, the values of (γ, mask, h) are accessed through a linear scan of the
QuickScorer data structures, which favours cache prefetching and limits data
dependencies. For each feature, QuickScorer visits only one true node, thus
easing the CPU branch predictor and limiting control dependencies. This makes
QuickScorer to perform better than competitors also with a special kind of
perfectly balanced trees named oblivious [6].

The design of QuickScorer makes it possible to introduce two further im-
provements. Firstly, for large LtR models, the forest can be split into multiple
blocks of trees, sufficiently small to allow the data structure of a single block to
entirely fit into the third-level CPU cache. We name BlockWise-QS (BWQS)
the resulting variant. This cache-aware algorithm reduces the cache miss ratio
from more than 10% to less than 1%. Secondly, the scoring can be vectorized so



as to score multiple documents simultaneously. In V-QuickScorer (vQS) [8]
vectorization is achieved through AVX 2.0 instructions and 256-bits wide regis-
ters. In such setting, up to 8 documents can be processed simultaneously.

Figure 1 compares QS, BWQS, and vQS against the best competitor vPRED.
The test was performed on a large dataset, with a model with 64 leaves per tree
and varying the number of trees of the forest.

3 Discussion

In this work, we focused on tree ensembles to tackle the LtR problem. Decision
tree ensembles are a popular and effective machine learning tool beyond LtR.
Their success is witnessed by the Kaggle 2015 competitions, where most of the
winning solutions exploited MART models, and by the KDD Cup 2015, where
MART-based algorithms were used by all the top 10 teams [2].

In the LtR scenario, the time budget available for applying a model is limited
and must be satisfied. Therefore large models, despite being more accurate,
cannot be used because of their high evaluation cost. QS, a novel algorithm
for the traversal of decision trees ensembles, is an answer to this problem as
it provides ∼9× speedup over state-of-the-art competitors. Moreover, the need
of efficient traversal strategies goes beyond the LtR scenario, for instance when
such models are used to classify big data collections. For all these reasons, we
believe that QS can help scientists from the data mining community to speed-up
the process of evaluating highly effective tree-based models over big and stream
datasets.

References

1. Asadi, N., Lin, J., de Vries, A.P.: Runtime optimizations for tree-based machine
learning models. IEEE TKDE. 26(9), 2281–2292 (2014)

2. Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In: Proc.
SIGKDD. pp. 785–794. ACM (2016)

3. Dato, D., Lucchese, C., Nardini, F.M., Orlando, S., Perego, R., Tonellotto, N., Ven-
turini, R.: Fast ranking with additive ensembles of oblivious and non-oblivious re-
gression trees. ACM TOIS 35(2), 15:1–15:31 (2016)

4. Friedman, J.H.: Greedy function approximation: A gradient boosting machine. An-
nals of Statistics 29, 1189–1232 (2000)

5. Gulin, A., Kuralenok, I., Pavlov, D.: Winning The Transfer Learning Track of Ya-
hoo!’s Learning To Rank Challenge with YetiRank. In: Yahoo! Learning to Rank
Challenge. pp. 63–76 (2011)

6. Langley, P., Sage, S.: Oblivious decision trees and abstract cases. In: Working Notes
of the AAAI-94 Work. on Case-Based Reasoning. pp. 113–117. AAAI Press (1994)

7. Lucchese, C., Nardini, F.M., Orlando, S., Perego, R., Tonellotto, N., Venturini, R.:
QuickScorer: A Fast Algorithm to Rank Documents with Additive Ensembles of
Regression Trees. In: Proc. SIGIR. pp. 73–82. ACM (2015)

8. Lucchese, C., Nardini, F.M., Orlando, S., Perego, R., Tonellotto, N., Venturini, R.:
Exploiting CPU SIMD extensions to speed-up document scoring with tree ensem-
bles. In: Proc. SIGIR. pp. 833–836. ACM (2016)



9. Segalovich, I.: Machine learning in search quality at Yandex. Presentation at the
Industry Track of SIGIR. (2010)


	QuickScorer: Efficient Traversal of Large Ensembles of Decision Trees

