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Measurement-induced dynamics of many-body systems at quantum criticality
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We consider a dynamic protocol for quantum many-body systems, which enables us to study the interplay
between unitary Hamiltonian driving and random local projective measurements. While the unitary dynamics
tends to increase entanglement, local measurements tend to disentangle, thus favoring decoherence. The
competition of the two drivings is analyzed at quantum transitions, where the presence of critical correlations
substantially changes the impact of local measurements. We identify a particular regime (dynamic scaling limit)
within a dynamic scaling framework, where the two mechanisms develop a nontrivial interplay and peculiar
scaling behaviors. This is supported by a numerical analysis of a measurement-driven quantum Ising chain. The
local measurement process generally tends to suppress quantum correlations, even in the dynamic scaling limit.
The power law of the decay of the quantum correlations turns out to be enhanced at the quantum transition.
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I. INTRODUCTION

One of the greatest challenges of modern statistical me-
chanics is understanding and controlling the quantum many-
body dynamics. The recent progress in atomic physics and
quantum optical technologies offers a great opportunity for
thorough investigations of the interplay between the coherent
quantum dynamics and the interaction with the environment,
from both experimental and theoretical viewpoints [1-6]. The
competition of such mechanisms may originate a subtle in-
terplay, likely representing the most intricate dynamic regime
of quantum systems where complex many-body phenomena
appear. In this respect, it is worth focusing near quantum
phase transitions, where quantum critical fluctuations emerge
and correlations develop a diverging length scale [7,8].

In general, while the unitary evolution enhances the entan-
glement, measurements of observables disentangle degrees of
freedom and thus tend to decrease quantum correlations, sim-
ilarly to decoherence. A quantum measurement is physically
realized when the interaction with a macroscopic classical
object makes a quantum mechanical system rapidly collapse
into an eigenstate of a specific operator, and the resulting time
evolution appears to be a nonunitary projection. Such process
is referred to as a projective measurement [9,10]. When the
system is projected into an eigenstate of a local operator,
the corresponding local degree of freedom is disentangled
from the rest of the system. Moreover, if measurements are
performed frequently, the quantum state gets localized in
the Hilbert space near a trivial product state, leading to the
quantum Zeno effect [11,12]. In strongly correlated systems,
quantum phase transitions give rise to a peculiar dynamic
regime where long-range correlations set in; the impact of
projective quantum measurements on the decay rate of quan-
tum correlations might be thus substantially affected by the
emerging critical dynamics.

Inspired by recent pioneering studies of the entanglement
dynamics in measurement-induced random unitary quantum
circuits [13-15], we introduce a framework to address the
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interplay of unitary and projective dynamics in experimentally
viable many-body systems at quantum transitions, such as
quantum spin networks. For this purpose, we consider dy-
namic problems arising from protocols combining the unitary
Hamiltonian and local measurement drivings (for a cartoon,
see Fig. 1). In such conditions, it is not clear how the presence
of projective measurements modifies the quantum critical
behavior of a purely unitary system. One can easily imagine
that different regimes emerge, depending on the measurement
protocols and their parameters. If every site were measured
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FIG. 1. Sketch of the protocol: A quantum spin system, initially
frozen in its ground state at quantum criticality (t = 0), is perturbed
with local projective measurements (stars) occurring after every time
interval ¢,,, with a homogeneous probability p per site. In between
two measurement steps, the system evolves unitarily according to
its Hamiltonian. Red stars denote the occurrence of a measurement
on a given site (for the sake of clarity, in the figure we consid-
ered o®-type measures: spins colored in red are projected along
the z axis).
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during each projective step, the system would be continually
reset to a tensor product state. More intriguing scenarios
should hold when local measurements are spatially dilute.

Most of the work done in this context focused on the inves-
tigation of entanglement transitions genuinely driven by local
measurements, either in random circuits [13-22], or in the
Bose-Hubbard model [23,24], on nonanaliticities emerging
in quantum spin systems [25], and on measurement-induced
state preparation [26]. In noninteracting models, continuous
local measurements were shown to largely suppress entangle-
ment [27]. Here we study a substantially different dynamic
problem: understanding and predicting the effects of local
random measurements on the quantum critical dynamics of
many-body systems, i.e., when a quantum transition is driven
by the Hamiltonian parameters.

II. MEASUREMENT PROTOCOLS

We consider quantum lattice spin systems, assuming that
only one relevant parameter p of the Hamiltonian H(w)
[with corresponding renormalization-group (RG) dimension
yu > 0] can deviate from the critical point located at p, = 0.
The system is initialized, at + = 0, in the ground state close
to criticality; thus |u| < 1. Random local measurements are
then performed at every time interval ¢, such that each site
has a (homogeneous) probability p to be measured. In be-
tween two measurement steps, the system evolves according
to the unitary operator e 7 where we fix h=1 (see
Fig. 1). If p — 1, each spin gets measured every ¢,,, and the
effects of projections are expected to dominate over those of
the unitary evolution. In contrast, for p sufficiently small, the
time evolution may end up being unaffected by measurements.
In between these two regimes, we unveil the existence of a
competing unitary vs projective dynamics, characterized by
controllable dynamic scaling behaviors associated with the
universality class of the quantum transition.

More complex protocols may be devised. For example, the
initial ground state might be replaced with a finite-temperature
Gibbs state. One may also consider a quench of the control
parameter at t = 0, starting from the ground state for a given
value o < 1, to a different value p characterizing the uni-
tary evolution between the measurement steps. In this case,
the out-of-equilibrium evolution arises from both the initial
quench and the measurement protocol. In our presentation
below, we focus on the simpler version discussed before,
although an extension to such more complex scenarios is
possible (see Appendix A).

As for the model, we consider
d-dimensional quantum Ising Hamiltonian,
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the paradigmatic

where 0 = (6D, 0, 0®) are spin-1/2 Pauli matrices, the
first sum is over the bonds connecting nearest-neighbor sites
(x,y), while the other sums are over the sites. We fix J =1
as the energy scale. At g = g. and h = 0, the model under-
goes a continuous quantum transition belonging to the two-
dimensional Ising universality class, separating a disordered
phase (g > g.) from an ordered (g < g.) one [7,8]. Such
transition is characterized by a diverging length scale & of
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FIG. 2. Evolution of the susceptibility x for the Ising chain with
L =10 and g = 1. Local measurements are performed along either
the longitudinal [0;3), continuous curves] or the transverse direction
[0V, dashed curves], with t,, = 0.1. In the left panel we fix 7 =0
and vary p; in the right panel we fix p = 1072 and vary h (see
legends). Here and in the next figures data are averaged over many
[O(10*)] trajectories and errors are on the order of the size of the
lines.

critical correlations and the suppression of the energy gap
A as A~ &7% where z = 1 is the dynamic exponent. The
power-law divergence of £ is related to the RG dimensions
of the relevant parameters § = g — g. and h: it behaves as
g~ 18|71 ath =0, and & ~ |h|~'/ for § = 0 [28].

In our dynamic protocol, we take a spin system of linear
size L with periodic boundary conditions and perform, on
each site, random measurements of the spin components oy,
along transverse [0"] or longitudinal [0>] directions, every
time interval 7,, and with probability p. We then project onto
the measured value of the spin component and normalize the
many-body wave function. The main features of the resulting
evolution are inferred by fixed-time averages of observables,
as magnetization m(¢) and susceptibility x (¢),
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averaging over trajectories ((-); is the expectation value at
time ). Since measurements generally suppress quantum cor-
relations, x(f — oo0) — 1, corresponding to an uncorrelated
state, we study the ratio R, (t) = [x(t) — 11/[x( =0) — 1],
which goes from 1 ( = 0) to zero (+ — 00). The timescale T,
of the suppression of quantum correlations may be estimated
from the halving time of R, (¢). Further details on the various
quantities that can be analyzed for dynamic protocols involv-
ing the quantum Ising model are provided in Appendix B.

As visible from the data in Fig. 2, obtained by numerically
simulating a one-dimensional (1D) quantum Ising model,
random spin measurements tend to destroy correlations in
the system, which converges asymptotically in time to a
fully disordered configuration (x = 1, m = 0). Details on
the numerical computations are postponed in Appendix C.
Here we observe that the timescale t,, of such dynamical
process depends on p (left panel), on the initial state, and
the measurement axis (right panel). In particular, longitudi-
nal measurements are less destructive than those along the
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FIG. 3. Susceptibility ratio R, vs rescaled time tL~° for the
quantum critical Ising chain (g =1, h = 0) for various L. Mea-
surements occur along the longitudinal direction, with 7, = 0.1 and
p either constant (left: ¢ = 0.005) or equal to p = cL™ (middle:
a=1, ¢c=0.05; right: a=3, c=15). For a=0 and a =1, the
timescale 7,, of quantum correlations significantly decreases with
increasing L as a function of the scaling time L%, while fora = 3 it
clearly increases.

transverse direction, being orthogonal to the coupling and thus
to the ordering direction of spins. One can gain insight on this
mechanism, which resembles relaxation due to decoherence,
by first looking at the exactly solvable single-spin model
(see Appendix D): Irrespective of the magnetic field strength
and direction, for finite #,,, the magnetization drops to zero
exponentially in time, ending up into a completely unpolar-
ized state. Deviations from pure exponentials have thus to be
ascribed to the full many-body nature of the system (1).

III. DYNAMIC SCALING BEHAVIOR

To achieve a more quantitative understanding of the role of
projective measurements in this context, we first focus on the
quantum critical region, where universality can be helpful to
control the system dynamics. Indeed, the out-of-equilibrium
critical dynamics at continuous quantum transitions develops
homogeneous scaling laws [30—42], even in the presence of
dissipation [43,44]. One could ask whether similar scaling
arguments hold in the above context. A naive application of
the dynamic finite-size scaling (FSS) theory [45-47] at the
critical point of the quantum Ising chain leads to the results of
Fig. 3, reporting the susceptibility ratio R, versus the rescaled
time variable ¢/t, where t = L* ~ A1 is the timescale of
the critical quantum correlations. If the probability p to
perform measurements is kept constant while increasing the
system size (left panel), the net effect of projections becomes
progressively important, eventually overwhelming the unitary
Hamiltonian dynamics. Therefore a putative scaling behav-
ior could emerge only after rescaling p with L. Guided by
scaling arguments, it is tempting to assume that p ~ L™%.
Figure 3 shows that while with p ~ L' random measure-
ments are still dominant (middle panel), with p ~ L~3 they
become irrelevant for the asymptotic dynamic scaling (right
panel). Between these two cases, there could be a suitable
power-law exponent entering the proper scaling theory for the
measurement-induced dynamics described above, provided
this is possible.

Taking advantage of the previous insight, we put forward a
phenomenological framework in which, as a working hypoth-

esis, we assume a scaling behavior for the parameters ¢,, and
p characterizing the measurement procedure. We conjecture
that for systems with Hamiltonian H () as introduced above,
a generic observable B (averaged over the trajectories) follows
the scaling law

B(i, t, ty, p) = b2 B(ub'™ , tb™%, 1,, b, pb°).  (3)

Here b denotes an arbitrary positive parameter, yp is the
critical RG dimension of the operator B, while ¢ and ¢
are appropriate exponents associated with the measurement
process, and B is a universal scaling function apart from
normalizations (see Appendix A for more details). Equation
(3) is expected to provide the power-law asymptotic behavior
in the large-b limit, neglecting further dependencies on other
parameters, which are supposed to be suppressed (and thus
irrelevant) in such limit.

The arbitrariness of the scale parameter b in Eq. (3) can
be fixed by setting b = A = |u|~'*, where A ~ £ is the
length scale of critical modes. The scaling variable associated
with the time interval #,, should be given by the ratio ¢,/t,
where T ~ A~! ~ A% is the time scale of the critical models
(this implies ¢ = —z). Keeping ¢, fixed in the large-A limit,
the dependence on f,, disappears asymptotically, originating
only O(A7%) scaling corrections. Moreover, noticing that p
is effectively a probability per unit of time and space, a
reasonable guess would be that its correct scaling to compete
with the critical modes is p ~ A~¢4 thus,

e=z+d. 4

This leads to the dynamic scaling equation
B(u, t,ty, p) =~ A78B(tATE, pA®) [48]. The value of ¢
in Eq. (4) is crucial, since it allows us to separate the
measurement-irrelevant regime p = o(A~%) (Fig. 3, right
panel) from the measurement-dominant regime pA® — 00
(Fig. 3, left and middle panels). Note that since p ~ A™° and
t ~ A%, the dynamic scaling Ansatz predicts that the timescale
T, associated with the suppression of quantum correlations
behaves as 7,, ~ p7 withk = z/e < 1.

The above scaling theory holds in the thermodynamic limit
L/A — oo, which is expected to be well defined for any
u #£ 0, for which A is finite. Nonetheless, for most practical
purposes, both experimental and numerical, one typically has
to face systems of finite length. Such situations can be framed
in the FSS framework, where the scale parameter in Eq. (3) is
setto b = L [8,39,45-47,49]. Fixing again t,,, straightforward
manipulations lead to the scaling law

B, t, tm, p, L) ~ L™ B(uL*, tL, pL®). 5)

The proper dynamic FSS behavior is obtained for L — oo and
taking the arguments of the scaling function B fixed.
Analogous scaling Ansdtze for more general observables,
as fixed-time correlation functions, are obtainable with the
same arguments and assumptions (see Appendix B). They can
be extended to include an initial quench of the Hamiltonian
parameter 1y — w [by adding a further dependence on b
in Eq. (3)], to consider finite-temperature initial Gibbs states
(by adding a dependence on 7b*), and allowing for weak dis-
sipation [44]. Note that the scaling arguments do not depend
on the type of local measurement; therefore they are expected
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FIG. 4. Time behavior of R, at criticality, for various sizes.
Random measurements are either along the longitudinal (upper plots)
or the transverse direction (lower plots), for ¢, = 0.1, p = 1/L?
according to (4). The two insets display data for specific values of
t/L (dashed line in the main frames), showing that the convergence
to the asymptotic behavior is compatible with an O(L~*/#) approach
(dashed red lines).

to be somewhat independent of them. Further investigations
are called for to classify the extension of such independence.

The above phenomenological scaling theory has been
checked on the quantum Ising chain. The dynamic FSS laws
for the magnetization and its susceptibility follow Eq. (5), in
which the parameter u corresponds to either § = g — g. or h
in Eq. (1). In particular, for § = h = 0, one obtains m(t) = 0
by symmetry, and

x@)—1

R tvtm’ 7L =
x( p,L) Yt =0)—1

~ R, (L™, pL?).  (6)

Results for a system at criticality, the quantum critical point,
with random local longitudinal and transverse spin measure-
ments, are shown in Fig. 4. Data for R, versus tL™° nicely
agree with Eq. (6), and corrections to the scaling are consistent
with a L~/ approach, as expected (see the insets). Analogous
scaling results are obtained in the small-#,, limit, and also for
the magnetization at & # 0, keeping hL”" constant; these are
shown in Appendix C.

We finally focus on situations far from phase transitions,
for example, g > g, in quantum Ising models. In such case,
the system lies in the disordered phase, where the length scale
& of quantum correlations and the gap A remain finite with
increasing L. The data in Fig. 5 for R, at fixed size L suggest
that, away from criticality, the characteristic time 7,, of the
measurements scales as 7,, ~ p~ !, unlike the critical behavior,
where 7, ~ p~* withk = z/¢ < 1.
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FIG. 5. R, for the Ising chain with L = 10, h = 0, as a function
of ¢p. Local measurements are performed along of), with ¢, = 0.1
and varying p (see legend). We fix g = 1.1 (left) or g =2 (right).
The approximate collapse of the data versus 7p suggests that the

characteristic time t,, scales as t,, ~ p~ ..

IV. SUMMARY AND CONCLUSIONS

We unveiled different regimes arising from the interplay
between unitary and projective dynamics in critical systems.
One of them is dominated by local random measurements, for
example for any finite probability p of making the measure-
ment. In contrast, for sufficiently small p values (decreasing as
a sufficiently large power of the inverse diverging length scale
£), the measurements are irrelevant. We conjectured these
two regimes to be separated by dynamic conditions imposing
suitable scaling behaviors for the characterizing parameters
of the protocol, controlled by the universality class of the
quantum transition. For a d-dimensional critical system, this
occurs when p ~ £7°, for which we argue ¢ = z + d. This
scenario is supported by numerical results for the quantum
Ising chain, with measurements performed along the trans-
verse or the longitudinal component of the local spin operator.
Local measurements generally suppress quantum correlations,
even in the dynamic scaling limit, with scaling laws that are
qualitatively different when being far from criticality. The
corresponding timescale at a quantum transition is indeed
expected to behave as t,, ~ p~™* withk = z/¢ < 1, to be com-
pared with the noncritical case 7,, ~ p~'. The smaller power
Kk at criticality (i.e., faster decay rate) can be explained by the
fact that the relevant probability (p,) driving the measurement
process is the one to perform a local measurement within the
critical volume &9; therefore p, = p£?. The time rate thus
behaves as 1, ~ pr_', similarly to the noncritical case, where
& =0(Q).

Additional checks are called for to definitely validate our
scaling conjectures, such as to study protocols with Hamilto-
nian quenches, higher dimensions, and other quantum tran-
sitions and measurement schemes (not necessarily strictly
on-site, yet sufficiently local). Moreover, arguments similar to
those employed here should hold for measurements localized
in restricted regions of space, and also close to first-order
quantum transitions, where boundary conditions could be
relevant [39,50].

Given the relatively small sizes required to reach the
dynamic FSS limit (see Fig. 4), a direct experimental real-
ization of our protocol can be reasonably considered as a
near-future target for quantum simulations. Promising plat-
forms are superconducting quantum circuits [51-53], nuclear
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spins [54,55], trapped ions [56-58], and ultracold atomic
systems [59-62].
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APPENDIX A: PHENOMENOLOGICAL SCALING
THEORY OF THE OUT-OF-EQUILIBRIUM DYNAMICS
INDUCED BY LOCAL MEASUREMENTS

We work out a phenomenological scaling theory for the
out-of-equilibrium dynamics arising from random local pro-
jective measurements during the evolution of a many-body
system at a quantum transition [7]. For simplicity, we as-
sume that the quantum transition is driven by a relevant
parameter p of the Hamiltonian H (u), whose critical value is
e = 0. At the critical point, the low-energy unitary Hamilto-
nian dynamics develops long-distance correlations, character-
ized by a diverging length scale & ~ |u|™", where v = 1/y,
and y,, is the RG dimension of the relevant parameter.

More specifically, we consider the dynamic problem as-
sociated with the following protocol: (a) The system starts
at + =0 from the ground state close to the critical point,
thus || <« 1. (b) Random local measurements are performed
every time interval 7,,, with a homogeneous probability p per
site. Between two measurement steps, the system evolution
is driven by the unitary operator e~ Hereafter we adopt
units of 1 = kg = 1.

The out-of-equilibrium critical dynamics at continuous
quantum transitions has been shown to obey homogeneous
scaling laws [30-42], even in the presence of dissipation
[43,44]. For example, after an instantaneous quench from
uo = 0 to u, a generic observable B at fixed time ¢ after the
quench is generally expected to behave as [39]

B(u,t,L) ~ b2 B(ub, tb™*, L/b), (A1)
where b is an arbitrary positive parameter, L is the linear
size of the d-dimensional system under investigation, and
B is a universal scaling function apart from normalizations.
The exponent yp denotes the RG dimension of the operator
associated to B, while the dynamic exponent z characterizes
the behavior of the energy differences of the lowest-energy
states and, in particular, the ground-state gap A ~ L*. Equa-
tion (Al) is expected to provide the asymptotic power-law
behavior in the large-b limit.

We now extend the dynamic scaling arguments leading to
Eq. (Al), by allowing for the dependence on the parameters
t,» and p which characterize the measurement procedure of the
protocol. As a working hypothesis, we assume that an asymp-
totic scaling behavior is achieved by appropriately rescaling
t,n and p, such as in Eq. (3):

B(u,t,ty, p, L) = b B(ub’, tb %, t,, b*, pb°, L/b),
(A2)
where ¢ and ¢ are appropriate exponents whose relevance is
discussed below.

1. Dynamic finite-size scaling

It is possible to exploit the arbitrariness of the scale
parameter b. For example, by setting b = L, we obtain the
dynamic FSS equations, extending those holding for closed
systems [8,39,47,49]. To achieve a nontrivial competition with
the critical modes, it is reasonable to assume the scaling
behaviors t,, ~ L and p ~ L=*~¢ for the parameters t,, and
p characterizing the measurement process. Comparing with
Eq. (A2), this implies that

{ = —z,

On the basis of these scaling arguments, from Eq. (A2) we
conjecture that, keeping #,, and the arguments of the scaling
function B fixed, the dynamic FSS law associated with the
random-measurement protocol reads

B(, t, tw, p, L) = L7 B(uL tL™%, pL*).

e=z+d. (A3)

(A4)

The scaling function B is expected to be largely universal
with respect to the Hamiltonian of the system, within a
given universality class, and also with respect to the details
of the protocol. Of course, like any scaling function for
a quantum transition, such universality is expected modulo
a multiplicative overall constant and normalizations of the
scaling variables. Note that in this case, the asymptotic scaling
behavior does not depend on 7, and therefore it is expected to
hold also in the limit ¢,, — 0.

Alternatively, one may rescale the time interval 7, as
T ~ L%, thus keeping the ratio f,,/L* fixed. In this case we
expect the probability p to scale as the inverse volume only,
ie.,

B, t,ty, p, L) ~ L™ B(uL’, tL™%, t,,L 7%, pL?).  (A5)

Note that analogously to Eq. (A4), the FSS limit requires
that p/t,, ~ L~°. Similar scaling Ansctze for more general
observables, such as fixed-time correlation functions of two
operators, can be straightforwardly obtained using the same
assumptions and scaling arguments.

The above predictions can be extended to the more com-
plex protocol including an initial quench of the Hamiltonian
parameter from pq to w; this is achieved by adding the further
dependence on poL”*. Moreover, one may also consider an
initial Gibbs state for a small temperature 7', and this can be
taken into account by adding further scaling variables 7'L*.

We finally note that our scaling arguments do not appar-
ently depend on the type of local measurement; thus they are
expected to be somewhat independent of them.

2. Dynamic scaling in the thermodynamic limit

To derive a dynamic scaling theory for infinite-volume
systems, we may restart from the general homogeneous power
law in Eq. (A2) and set

b=x=|u|"n, (A6)

where A is the length scale of the critical modes, and consider
the limit L/A — oo, assuming that it is well defined (this
limit corresponds to the so-called thermodynamic limit, which
is expected to be well defined for any p # 0, for which A
is finite). Then, keeping again #,, fixed such that 7, /A* — 0
in the A — oo limit, and using the fact that the power law
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associated with p is expected to be characterized by the same
exponent ¢ given in Eq. (A3), one obtains the dynamic scaling
Ansatz

B(w, t,tm, p) = AP B(@A", pA®), (A7)

where ¢ = z+d is given as in Eq. (A3). Note that strictly
speaking, one has two scaling functions 3, depending on the
sign of u.

APPENDIX B: DYNAMIC SCALING WITHIN THE
QUANTUM ISING MODEL

The 1D quantum Ising model in a transverse field, de-
scribed by the Hamiltonian in Eq. (1), is one of the sim-
plest paradigmatic quantum many-body systems exhibiting
a nontrivial zero-temperature phase diagram. As stated in
Sec. II, the model undergoes a continuous quantum transition
at g=g. =1 and h = 0, belonging to the two-dimensional
Ising universality class [28].

For dynamic protocols using the quantum Ising Hamilto-
nian in Eq. (1), the evolution of the system can be effectively
characterized by the time-dependent magnetization along the
coupling direction

m(t) = % > (e?).. (Bla)
the fixed-time longitudinal correlation function
G(x,y, 1) ={0Pa), (B1b)
and the corresponding susceptibility
(Blc)

1
x(t) = Z;G(x,y,r>.

Here (), indicates the expectation value of a given ob-
servable at time ¢. Note that translation invariance, which
also applies in finite-size systems with periodic boundary
conditions, implies G(x, y,t) = G(x — y, 1).

For the sake of presentation and without loss of gener-
ality, we fix g = g. and only vary A, so that & corresponds
to the parameter p of the above-reported scaling equations
(analogous equations would hold if g were varied, with the
substitution 7 — § and y, — ys). The dynamic FSS laws of
the observables (Bla)-(B1c), keeping t,, fixed, thus read

m(h,t,t,, p, L) =~ L™ M(hL™, tL™%, pL?), (B2a)
G, h,t, ty, p, L) = L~ 2m g(%, hL, tL7%, pL®), (B2b)
X(h,t, ty, p, L) &~ LY C(hL tL™%, pLF), (B2¢c)

where y,, is the RG dimension of the longitudinal spin
operator o®), given by

Ym=2d+z-2+n), (B3)

and the power of the prefactor associated with the longitudinal
spin correlation (Blb) is twice y,, (v, = 1/8, in 1D). In
particular, for 2 = 0 one has m(¢) = 0 and

Xty tw, p, L) ~ L2 C(tL ™%, pLF). (B4)

Corrections to scaling are generally expected to be O(1/L);
see for example Refs. [39,42,47]. However we note that,
in the case of the susceptibility x defined as in Eq. (Blc),
O(L~%+2n) corrections are also present, already at the level
of the equilibrium ground-state values of x, due to analytic
contributions to the critical behavior, as explained in Ref. [47].
Therefore, in the case of the Ising chain, we expect that the
leading scaling corrections to the asymptotic dynamic scaling
of the evolution of x are O(L~3/%).

Our numerical results show that the measurement process
generally tends to suppress quantum correlations; therefore
x () is a monotonic decreasing function. In particular, the
numerics provides evidence of the fact that

lim x () = 1. (B5)

The asymptotic value corresponds to a fully disordered state
with vanishing correlations, G(x, y, t = 00) = 0 (for x # y),
and where the only nonzero contributions entering the sum
(Blc) are those for x =y, which trivially sum up to 1. To
monitor the suppression of quantum correlations due to the
measurement process, it is thus convenient to introduce the
ratio

x@)—1

=G0 (B6)

which goes from 1 (for ¢+ = 0) to zero (for t — o0). In the
dynamic scaling limit at the critical point, using Eq. (B4), we
can immediately derive the asymptotic behavior

R, (t, 1y, p.L) ~ Ry (tL™%, pL?). (B7)

Note that in the dynamic scaling limit, R, ~ x(t)/x(0); i.e.,
the finite subtraction of 1 in the numerator and denominator
of the definition of R, turns out to be irrelevant. Therefore,
like for the susceptibility, the approach to the asymptotic
dynamic FSS behavior (B7) is expected to be characterized by
O(L~3/*) corrections for the quantum Ising chain (see Fig. 4).
In the infinite-volume limit, at g = g., we expect to have

m(h, t, by, p) X A7 M@ELTZ, pA®), (B8a)
G(x, b, t, by, p) ~ X727 G(x/A, 1A 75, pA®),  (B8b)
Xyt t, p) A A2 CATF, pAF), (B8c)

where A = |h|~!'/”. Such dynamic scaling behaviors are
expected to be approached asymptotically for L — oo, keep-
ing fixed the scaling variables of the functions M and C.

As already noted above, the dynamic scaling arguments
that we have outlined do not apparently depend on the type of
local measurement. In particular, in the case of the quantum
Ising model, they should apply to protocols based on both ax(l)
or 0¥ local measurements.

The timescale t,, of the suppression of the quantum corre-
lations may be estimated from the halving time of R, (¢). Its
power-law scaling behavior in terms of the probability p can
be easily derived in the dynamic scaling limit, by noting that
p~&%andr ~ &%, where £ is the length scale of the critical
modes (thatis £ ~ L at the critical point and & ~ A around it).
Therefore, the dynamic scaling predicts that the timescale t,,
associated with the suppression of the quantum correlations
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behaves as
_z
7z+d’

G, k== (B9)
€
Note that ¥ < 1; thus the time rate in terms of p turns out to
be accelerated with respect the noncritical behavior ,, ~ p~!
which has been obtained numerically (see Fig. 5). As stated
in Sec. III, this apparently counterintuitive behavior can be
explained by the nontrivial fact that the relevant probability
pr, which drives the measurement process, is the probability
to perform a local measurement within the critical volume &¢.

APPENDIX C: DETAILS ON THE NUMERICAL
COMPUTATIONS

To check our phenomenological dynamic scaling theory
discussed before, we have performed some numerical sim-
ulations on the 1D quantum Ising chain (1), based on ex-
act diagonalization (ED). We are interested in the random-
measurement protocol starting from the ground state of a
system of size L (with periodic boundary conditions) for
the Hamiltonian parameter 4 and with g = g. = 1, which
has been obtained by means of a Lanczos technique. The
evolution is essentially driven by the random measurements,
which are performed at every time interval #,,. We have
considered either local longitudinal [0*)] or transverse [o!]
measurements, occurring with a probability p per site. For the
dynamics between consecutive measurements, we employed
a fourth-order Suzuki-Trotter decomposition of the unitary-
evolution operator, with time step dt = 5 x 10~ (this value
ensures convergence on the scale of all figures, over the largest
reached system size).

Results at any time ¢ have been averaged over Ny,
trajectories, with Ny =2 X 10* up to L = 14 sites, and
Navg =2 X 103 for L > 14 The need of averaging over many
different trajectories, together with the fact that the numerical
results shown in this paper are nicely consistent with the
dynamic FSS theory, prevented us from studying systems
with more than L = 18 sites, although larger sizes would
be easily addressable for a single trajectory or a few ones.
Also note that we preferred to use conventional (and fully
controllable) ED techniques over DMRG-based algorithms
[5,63], since with those latter methods it is more complicated
to guarantee the required accuracy in order to carefully test
our phenomenological scaling theory. Nonetheless, there are
no conceptual limitations in using DMRG for analyzing the
measurement-induced dynamics of quantum lattice models
with finite degrees of freedom [23]. In summary, ED tech-
niques are more controllable, but suffer from severe limita-
tions in the reachable system sizes; DMRG allows us to study
larger systems, although it requires more care in the choice of
the bond-link dimension for the study of dynamical problems.

In Sec. III, we showed results only for the susceptibility
ratio R, (Fig. 4). Here we provide some additional data, both
for the magnetization (B 1a) and for the susceptibility (Blc), in
which we kept g = 1 and varied the longitudinal field / (note
that the quantum Ising chain with A # 0 is not integrable).

Figure 6 displays the numerical outcomes for the suscep-
tibility at the Ising critical point (g = 1, h = 0), for random
local measurements taken along the longitudinal or the trans-
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1 T o068 I
Ty osF f .
< x 0.6 L 5%
o 08 L=5 F o t#/L=05 ]
N | - L=8 0
x —=-L=11
0'6 — L=14
—L=17
©) S
04|~ O measures -
L | 1 | 1 l 1 | 1
T T T T T T —\\l T T T
1 078 “~.__ #L=02 7
0.76 r ]
5 08 072 S=
~ 07 ' —
x 0 0.1 0A2L-3/4 0.3
0.6 —
M |
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1 | 1 | S D S B R
0 0.2 0.4 0.6 0.8 1
t/L

FIG. 6. Rescaled susceptibility L~/ at criticality (g=1, h=0),
as a function of the rescaled time #/L, for the quantum Ising chain
with different system sizes L (see legend). The upper panel refers to
random measures along the longitudinal direction [o®], while the
lower panel refers to random measures along the transverse direction
[0D]. Measurements are characterized by #, = 0.1, p = 1/L* as
predicted by Eq. (A3). The two insets display the same data as the
main panels for a specific cut in the rescaled time (t/L = 0.5 for
the upper frame, t/L = 0.2 for the lower frame) versus L™3/4, The
approach to the asymptotic value is consistent with the expected
O(L™3/*) corrections. Dashed red lines denote 1/L3* fits to numeri-
cal data (black circles) and have been obtained by discarding points
for the smaller available sizes. Here and in the next figures, data have
been averaged over a number of N, =2 x 103 (for L < 14) and
Nye = 2 x 10° (for L > 15) trajectories.

verse direction. Note that the results presented in this figure
are the same as those reported in Fig. 4, but for the rescaled
susceptibility yL™/* [instead of the ratio R, in Eq. (B6)].
Similarly to the case for the susceptibility ratio, we observe
a nice agreement with the predicted scaling behavior in
Eq. (B2c). Moreover, corrections to the scaling are consistent
with a L=3/4 behavior, as expected (see the two insets).

Results for the magnetization m(t) are reported in Fig. 7.
In that case, we considered g = 1 and a nonzero longitudinal
field A, since the latter is essential in order to start from an ini-
tially magnetized state [m(0) # 0]. After a suitable rescaling
of all the relevant parameters, the various curves approach an
asymptotic scaling behavior, as indicated in Eq. (B2a). Notice
that we also rescaled the field 4 so to keep the scaling variable
hL'/3 constant. The approach to the scaling is governed by
corrections whose leading order appear to be consistent with
a L~ ! behavior, as witnessed by the two insets.

All the numerical data presented in this paper correspond
to fixing the time interval between two consecutive measure-
ments equal to #,, = 0.1. We checked that analogous scaling
results can be obtained for arbitrary values of ¢,,. In particular,
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FIG. 7. Same as in Fig. 6, but for the rescaled magnetization
mL'/8 vs the rescaled time /L. The initial state here is the ground
state of the quantum Ising ring with ¢ = 1 and rescaled longitudinal
field AL'>/® = 1, which has a finite magnetization. The two insets
display the same data as the main panels for a specific cut in the
rescaled time, versus 1/L. The approach to the asymptotic FSS
behavior, for finite L, appears to be consistent with the expected
O(1/L) trend (dashed red lines).

in Fig. 8 we considered the limit #,, — 0. More precisely,
random local measurements have been performed at every
Trotter time step, so that #,, = 0.005. The upper panel displays
results for the rescaled susceptibility y L~/ as a function
of the rescaled time 7/L, keeping g = 1 and 4 = 0, for mea-
surements performed along the longitudinal direction [o¥].
The lower panels highlight that corrections to the scaling are
O(L™3/%), as expected. Here the compatibility with a L=3/4
behavior (dashed red lines) is excellent already at very small
system sizes, contrary to the case of larger #,, values: compare
with the insets of Fig. 6, where deviations from the expected
trend emerge at smaller L. This hints at the fact that other
subleading terms, that may enter the scaling corrections at
finite L, may get suppressed for #,, — 0, such as those which
are O(t,,/L*).

Finally we observe that the same scaling functions (M,
g, C, ...) are expected to hold for vanishing t,,, so that the
asymptotic curves for the magnetization and the susceptibility
at L — oo should coincide with those at finite ¢,,, after a
proper rescaling of all the relevant parameters in the dynamic
protocol.

APPENDIX D: ONE-SPIN MODEL SUBJECT TO PERIODIC
MEASUREMENTS

Here we discuss the dynamics of a single spin-1/2 system
in a magnetic field, subject to periodic measurements along
a given axis, for which it is possible to derive an analytic

T T T T | T

1= \\\ L=5 |

A - L=8 A

5 sk N - L=11

S L L=14
x - 1 \\:\\\\ -
0.6 R —
©) \+:\1:\1\ -
0.4 - o, measures ST —
N R T S R
0 0.2 0.4 0.6 0.8 1
t/L

T T N T |/ 0-6 T I T I T |/

0.85 A - e

g g — s
Ty osl I B T Z ]
, 08 = 1 3 oosk Z ]
X F 1 RST F 1
075~ }{ B 045 - L —
0.7 /// = 0.4 ; /// ;

065 b | t/ﬁ =0.2 . 035 | t/L| =05 -

0 0.1 3/40.2 0.3 0 0.1 3/40.2 0.3

L L

FIG. 8. Same as in Fig. 6, but for random local measurements
along the longitudinal direction in the continuous-time limit #,, — 0
and with p = 0.1/L?. The lower panels display the same data as the
main panel, for two specific values of rescaled time (left: 7 /L = 0.2;
right: £ /L = 0.5) versus L3/, The approach to the asymptotic value
is consistent with the expected L=%/* corrections (dashed red lines).

solution. We consider the following Hamiltonian model:

Hy = —go" —ha®, (D1)

where g and & denote the intensity of an applied external
magnetic field along two orthogonal directions. Without loss
of generality, we fix g = 1. We now suppose initializing the
system in its ground state, associated with the parameter % at
t = 0. Then we perform a sequence of repeated measurements
of the operator o ® at every time interval t,, (the choice of the
measurement axis is arbitrary).

The dynamics arising from this protocol can be described
in terms of the system’s density matrix p. The starting ( = 0)
state is a pure state, given by

po = p(t = 0) = [0)(Onl, (D2)

where
Eo=—1+H1, (D3)
0n) = NI(=h — V1 +E)|+) + -], (D4)

and |+) are the eigenstates of 0, while A\ is the normaliza-
tion to obtain (0,]|0;) = 1. Then, defining the density matrix
after n measurements, at time t = nt,,, as

Pn = ;O(t = nty), (D5)

the subsequent dynamics can be described as a series of two-
step operations:
(i) A unitary time evolution for a time ¢,,,

Pnt1 = eilHltmpnelHlt"E (D6a)
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(ii) The measurement of o,
Pn+1 = Tr(,bn-i—lP-&-)P-}— + Tr(:th—lP— )P—’

where P, are the projectors onto the eigenstates |+) of o®.
Simple manipulations thus lead to

Wop = pll, =1, (D6c)

(D6b)

3
Pntl = %I+Wn+10—( ),

where W quantifies the deviation from the trivial completely
unpolarized density matrix p, = I/2. Given the initial condi-
tion (D2), one finds

M1+ h2+h
W, = Wi+h+h . D7)
21+ h> + hy1 4+ h?)
Straightforward computations allow one to obtain
2[sin(t,,v/1 + h?)]?
War1 = f W, f=1- 1+ 12 . (D8)

In particular, for h=1, one gets W, = (1+ «/5)/(4 +
24/2) 7 0.35355 and f = 1 — sin’(+/2t,,). Note that the fac-
tor f is bounded; indeed,

Ilf1 < 1. (D9)

Moreover, for arbitrary values of & and t,,, one strictly finds
|f|l < 1. Indeed f = —1 for h = 0 only, while f = 1 for the
specific values t, = mm /+/1 + k2, with integer m.

Equation (D8) implies

W, = w1 (D10)
Therefore, by monitoring the expectation value of ¢®), one
eventually gets
(0o, = Trlo D p,] = 2W, =2W "~ (D11
Since in general | f| < 1, this shows that for any /4 the dynamic
protocol tends to produce disorder in the spin model, leading
to a completely unpolarized density matrix.
For the specific case of sufficiently small ¢,, < 1, one finds

f=1=22240@, (D12)

and thus

W, ~ (1= 202) ~ e~ 2", (D13)
Therefore, the dependence on 4 disappears in the leading
O(t?) term. Finally, we note that in the limit #,, — 0, the
quantum Zeno effect [11,12] can be recovered; indeed one
simply has f — land W,, — 1.
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