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Dynamics after quenches in one-dimensional quantum Ising-like systems
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We study the out-of-equilibrium dynamics of one-dimensional quantum Ising-like systems, arising from
sudden quenches of the Hamiltonian parameter g driving quantum transitions between disordered and ordered
phases. In particular, we consider quenches to values of g around the critical value gc, and mainly address
the question whether, and how, the quantum transition leaves traces in the evolution of the transverse and
longitudinal magnetizations during such a deep out-of-equilibrium dynamics. We shed light on the emergence
of singularities in the thermodynamic infinite-size limit, likely related to the integrability of the model. Finite
systems in periodic and open boundary conditions develop peculiar power-law finite-size scaling laws related to
revival phenomena, but apparently unrelated to the quantum transition, because their main features are generally
observed in quenches to generic values of g. We also investigate the effects of dissipative interactions with
an environment, modeled by a Lindblad equation with local decay and pumping dissipation operators within
the quadratic fermionic model obtainable by a Jordan-Wigner mapping. Dissipation tends to suppress the main
features of the unitary dynamics of closed systems. We finally address the effects of integrability breaking, due
to further lattice interactions, such as in anisotropic next-to-nearest-neighbor Ising (ANNNI) models. We show
that some qualitative features of the post-quench dynamics persist, in particular, the different behaviors when
quenching to quantum ferromagnetic and paramagnetic phases, and the revival phenomena due to the finite size
of the system.
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I. INTRODUCTION

The quantum evolution of many-body systems has been
considered a challenging problem for long time. The recent
experimental progress in the realization, control, and readout
of the coherent dynamics of isolated quantum many-body
systems (see, e.g., Refs. [1,2]) has made this issue particularly
relevant for experiments and realizations of physical devices
for quantum computing.

The simplest protocols in which the out-of-equilibrium
dynamics of many-body systems can be investigated are pro-
vided by the so-called quantum quenches [3–8]. A quench
protocol is generally performed within Hamiltonians that may
be written as the sum of two noncommuting terms: Ĥ (g) =
Ĥu + gĤg, with a tunable parameter g. In practice, one may
start from the ground state |�g0〉 of the Hamiltonian Ĥ (g0)
associated with an initial value of the parameter g0, i.e.,
|�(t = 0)〉 = |�g0〉, and then suddenly change it to g �= g0.
Then the quantum evolution gets driven by the Hamiltonian
Ĥ (g), that is,

|�(t )〉 = e−iĤ (g)t |�g0〉 (1)

(hereafter we adopt units of h̄ = 1). Several interesting is-
sues have been investigated for the quantum dynamics after
a quench. They include the long-time relaxation and the con-
sequent spreading of quantum correlations and entanglement,
the statistics of the work, localization effects due to the mu-
tual interplay of interactions and disorder, dynamical phase
transitions, the dynamic scaling close to quantum transitions,

effects of dissipation due to interactions with an environ-
ment, the relevance of quantum measurements protocols after
quenches at quantum transitions, to mention some of the most
representative ones (see, e.g., Refs. [9–38] and references
therein).

Quantum phase transitions are striking signatures of many-
body collective behaviors [39,40]. They are essentially related
to the equilibrium low-energy properties of the system. How-
ever, they could also be probed by out-of-equilibrium dynamic
protocols, for example analyzing the effects of slow changes
of the Hamiltonian parameters across them [41–46]. Re-
cently, some studies have also focused on the possibility of
probing quantum transitions analyzing the out-of-equilibrium
dynamics arising from quantum quenches, for example when
instantaneously changing the Hamiltonian parameters, setting
them to values corresponding to different quantum phases
(see, in particular, Refs. [47–51]).

The out-of-equilibrium dynamics at the quantum transi-
tions develops scaling behaviors controlled by the universality
class of the quantum transition, located at a given g = gc.
Indeed such dynamic scaling is observed when the Hamil-
tonian parameters are slowly changed across the transition
[16,45,46], and also at quantum quenches when both Hamil-
tonian parameters associated with the quench, g0 and g, are
close to the quantum critical point [34,52]. However, in the
case of hard quenches, i.e., when g0 and g differ significantly,
a dynamic scaling controlled by the universality class of the
equilibrium quantum transition is not expected, essentially be-
cause the instantaneous change of the Hamiltonian parameters
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entails a significant amount of energy exchange. Indeed, the
instantaneous change from g0 to g gives rise to a relatively
large amount �E of energy above the ground level of the
Hamiltonian Ĥ (g),

�E =
∑

n

[En(g) − E0(g)]|〈n, g|�g0〉|2 ∼ Ld , (2)

where L is the size of the system, |n, g〉 and En(g) are the
eigenstates and eigenvalues of Ĥ (g). Typically �E is much
larger than the energy scale Ec of the low-energy excita-
tions at criticality g = gc, which is Ec ∼ L−z with z = 1
for continuous transitions of Ising-like systems. This would
naturally lead to the expectation that the unitary energy-
conserving dynamics after quenching to gc is not significantly
related to the quantum critical features of the low-energy
spectrum of the critical Hamiltonian. However, as argued in
Refs. [47–51], some signatures may emerge as well. In par-
ticular, integrable many body systems (such as systems that
are mappable into generic noninteracting fermionic systems)
develop some peculiar discontinuities even in the asymptotic
stationary states arising from the quantum quenches [47,48].
On the other hand, local observables are not expected to
present singularities in nonintegrable systems where generic
quantum quenches lead to thermalization, since they are gen-
erally smooth functions of the temperature. Nonetheless it
has been recently argued that it is possible to recover some
signals from intermediate regimes of the quantum evolution
after quenches [51].

In this paper, we elaborate on this issue, focusing on the
out-of-equilibrium dynamics arising from quantum quenches
within one-dimensional Ising-like quantum systems. Specifi-
cally, we consider quantum XY chains, for which we observe
peculiar nonanalyticities in the behavior of the transverse
and longitudinal magnetizations, when comparing them after
quenches of the Hamiltonian parameter g around the criti-
cal point. We also extend the analysis to finite-size effects,
showing the emergence of revival phenomena with peculiar
scaling behaviors. This somehow extends the phenomenology
of quantum revival phenomena observed in various con-
texts, see, e.g., Refs. [53–57]. Moreover, we discuss the
impact of dissipative mechanisms arising from interactions
with an environment, and the effects of integrability-breaking
perturbations (such as next-to-nearest-neighbor Ising-like
couplings). Our purpose is to understand whether, and in
which conditions, it is still possible to unveil signatures of the
various equilibrium phases and quantum transitions separat-
ing them, after a quench protocol.

The paper is organized as follows. In Sec. II, we present
the XY chain, the dissipation modeling based on the Lind-
blad master equations, and the observables that we consider
during the post-quench time evolution. Section III is devoted
to the study of the dynamics arising from quenches starting
from the disordered phase, in the thermodynamic limit and
for finite-size systems with periodic and open boundary con-
ditions. In Sec. IV, we study the effects of dissipation due
to the interaction with an environment within the quadratic
fermionic model obtained by a Jordan-Wigner mapping of
the Ising chain. In Sec. V, we discuss quenches form the
ordered states breaking the Z2 symmetry of Ising-like sys-
tems. In Sec. VI, we address some effects of integrability

breaking, due to further lattice interactions, such as models
with next-to-nearest-neighbor couplings. Finally, in Sec. VII,
we summarize and draw our conclusions.

II. THE XY MODEL AND OBSERVABLES

The ferromagnetic quantum XY chain is defined by the
Hamiltonian

ĤXY = −J

2

L∑
x=1

[
(1+γ )σ̂ (1)

x σ̂
(1)
x+1 + (1−γ )σ̂ (2)

x σ̂
(2)
x+1 + gσ̂ (3)

x

]
,

(3)

where L is the number of lattice sites, σ̂ (α)
x denote the spin-

1/2 Pauli matrices (α = 1, 2, 3) for each lattice site (x =
1, . . . , L), J > 0 is the energy scale, γ the Ising-like cou-
pling anisotropy, and g the strength of a uniform transverse
magnetic field. In the following, we focus on positive values
of g. For any γ > 0, a continuous quantum transition [40]
belonging to the two-dimensional Ising universality class oc-
curs at the critical point g = gc = 1, separating a disordered
(g > gc) from an ordered (g < gc) quantum phase. For γ = 1,
one recovers the quantum Ising-chain Hamiltonian

ĤIs = −J
L∑

x=1

[
σ̂

(1)
x σ̂

(1)
x+1 + g σ̂ (3)

x

]
. (4)

In the following, we consider systems with boundary condi-
tions respecting the Z2 global symmetry of the model

σ̂ (1,2)
x → −σ̂ (1,2)

x , σ̂ (3)
x → σ̂ (3)

x , (5)

such as periodic boundary conditions (PBC), in which σ̂
(k)
L+x =

σ̂ (k)
x , and open boundary conditions (OBC). Hereafter we set

J = 1.
We want to study the dynamics arising from instantaneous

quenches of the Hamiltonian parameter g, starting from states
|�(0)〉 corresponding to the ground states associated with
Hamiltonian parameters g0 �= g. In particular, as reference
states, we consider the extreme cases of maximally disordered
initial state |→, . . . ,→〉, corresponding to the ground state
for g0 → +∞ (i.e., all spins aligned along the direction α =
3), and the completely ordered state |↑, . . . ,↑〉, corresponding
to one of the degenerate lowest-energy states at g0 = 0 in the
thermodynamic limit [i.e., all spins aligned along the direction
α = 1 for the Ising model (4)]. Note that, in the latter case, the
initial state breaks the Z2 symmetry of the model.

For closed systems, the dynamics after a quench is unitary
and the state at any time remains pure, as given by Eq. (1).
In such case, to monitor the resulting out-of-equilibrium time
evolution, we consider the longitudinal and transverse local
magnetizations

Mx(t ) = 〈�(t )|σ̂ (1)
x |�(t )〉, (6a)

Sx(t ) = 〈�(t )|σ̂ (3)
x |�(t )〉. (6b)

In the case of boundary conditions and protocols respecting
translational invariance, such as PBC or antiperiodic boundary
conditions (ABC), the above magnetizations do not depend on
the lattice site, thus

M(t ) ≡ Mx(t ), S(t ) ≡ Sx(t ). (7)
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In the case of OBC, giving rise to inhomogeneous depen-
dences, we distinguish the magnetizations at the center (c) of
the chain and at the boundary (b), i.e.,

Mc(t ) ≡ ML/2(t ), Sc(t ) ≡ SL/2(t ), (8a)

Mb(t ) ≡ M1(t ), Sb(t ) ≡ S1(t ), (8b)

where L has been assumed even, for the sake of clarity.
It is worth pointing out that the time dependence of the

transverse magnetization is related to the average work W
necessary to perform the following protocol: (i) the system is
initially prepared in the ground state associated with a Hamil-
tonian transverse parameter g0; (ii) at t = 0, one performs an
instantaneous quench of the transverse parameter to g �= g0;
(iii) then the time evolution is driven by the Hamiltonian Ĥ (g);
(iv) after a time t f , the transverse parameter is instantaneously
brought back to g0, and the system evolution is again driven
by the initial Hamiltonian Ĥ (g0). The total average work can
be obtained as

W = E f − Ei,

E f = 〈�(t � t f )|Ĥ (g0)|�(t � t f )〉, (9)

Ei = 〈�(t = 0)|Ĥ (g0)|�(t = 0)〉,

where we used the fact that, after t f , the average energy is
conserved along the unitary evolution. Straightforward calcu-
lations lead to the expression

W = (g − g0)
L∑

x=1

[Sx(t f ) − Sx(0)]. (10)

Thus, for translationally invariant systems, we obtain

W/L = (g − g0) [S(t f ) − S(0)]. (11)

If the system is in contact with some environment, the
unitary evolution (1) is not valid anymore, because the time
dependence is also determined by nonunitary drivings arising
from the interaction with the environment. The state of the
system at a given time t is represented by a density matrix
ρ(t ) whose time dependence can be reasonably described by
the Lindblad master equation [58]

∂ρ

∂t
= −i[Ĥ (g), ρ] + uD[ρ]. (12)

The first term in the right-hand side provides the coherent
driving, while the second term accounts for the coupling to
the environment, characterized by a global coupling constant
u > 0. In our quench protocol, the initial state can be thus
written as ρ(t = 0) = |�g0〉〈�g0 | The instantaneous longitu-
dinal and transverse magnetizations now read

Mx(t ) = Tr
[
σ̂ (1)

x ρ(t )
]
, Sx(t ) = Tr

[
σ̂ (3)

x ρ(t )
]
. (13)

Analogous definitions, as those in Eqs. (7), (8a), and (8b),
can be adopted here as well, depending on the choice of the
boundary conditions.
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FIG. 1. Transverse magnetization S(t ) after a quench in the quan-
tum Ising chain with PBC, starting from a completely disordered
state (g0 = +∞), to g = 1 (critical point), for L = 500 up to t = 240
(dashed black line), and for L = 1000 up to t = 400 (continuous red
line). At relatively small times, t < 100, the data sets superimpose,
corresponding to the thermodynamic limit, while after some time
which depends on the size, in particular after t ≈ L/(2vm ) with vm =
2 Min[g, 1] = 2 (indicated by the arrows), peculiar oscillating behav-
iors appear, corresponding to finite-size revivals. The inset shows a
magnification at small times (blue box), where numerical data have
been superimposed with the analytic results in the thermodynamic
limit (dotted blue line) obtained in Ref. [10].

III. QUENCHES STARTING FROM THE
DISORDERED PHASE

We first focus on the unitary dynamic behavior of closed
systems which arises from instantaneous changes of the trans-
verse parameter g, starting from the ground state associated
with an initial value g0 > 1 in the disordered phase. By sym-
metry, the longitudinal magnetization remains zero at any
time after the quench, Mx(t ) = 0, while the transverse mag-
netization Sx(t ) presents a nontrivial time dependence [9,10].
We initially discuss the case of PBC for which S(t ) ≡ Sx(t )
independently of the lattice site, and then that of OBC, for
which we present results for both the central and boundary
local transverse magnetizations, Sc and Sb, respectively.

A representative example is shown in Fig. 1, for an in-
stantaneous quench to gc, starting from the fully polarized
state along the transverse direction, which corresponds to the
ground state |�g0→∞〉. The considered system is subject to
PBC. The time evolutions of the transverse magnetization for
the sizes L = 500 and L = 1000 appear identical up to t �
100. Within this interval the curves rapidly converge toward
the value S(∞) = 0.5 (see inset of Fig. 1), in a time interval
t � 10, and then appear constant up to t ≈ 100. Since data
for L = 500 and 1000 match, this behavior should correspond
to the time dependence in the thermodynamic limit L → ∞.
However, after such a relatively large interval, where the sys-
tems have apparently reached their stationary behavior, the
time dependence becomes again nontrivial. It shows peculiar
structures at later times depending on the size, starting from
t ≈ 125 for L = 500 and t ≈ 250 for L = 1000, thus at larger
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and larger times with increasing the size. These are char-
acterized by an oscillatory behavior enveloped by a smooth
decreasing function, and are clearly finite-size effects. In the
following we characterize the two regimes, identifying their
main features. We conclude this brief summary by noticing
that Fig. 1 reports the results for a chain with PBC, but anal-
ogous qualitative considerations apply to different boundary
conditions as well (see, e.g., Sec. III C for the case with OBC).

A. Time dependence in the thermodynamic limit

The time dependence of the transverse magnetization in
the thermodynamic limit was analytically computed long time
ago by Niemeijer [9] and by Barouch, McCoy, and Dresden
[10]. The infinite-size limit of the transverse magnetization,


(t, g0, g) ≡ S(t, g0, g, L → ∞), (14)

can be written as a sum of an asymptotic time-independent
term and a time dependent term vanishing in the large-time
limit, i.e.,


(t, g0, g) = F (g0, g) + Ft (t, g0, g). (15)

Setting

�(k, g) =
√

[g − cos(k)]2 + γ 2 sin(k)2, (16)

Ref. [10] reports

F (g0, g) =
∫ π

0

dk

π

g − cos(k)

�(k, g0)�(k, g)2
{[g0 − cos(k)]

× [g − cos(k)] + γ 2 sin(k)2} (17a)

and

Ft (t, g0, g) =
∫ π

0

dk

π

γ 2(g0 − g) sin(k)2 cos[4�(k, g)t]

�(k, g0)�(k, g)2
.

(17b)

In particular, for g0 → ∞ these expressions simplify into

F (∞, g) =
∫ π

0

dk

π

[g − cos(k)]2

�(k, g)2
, (18a)

Ft (t,∞, g) =
∫ π

0

dk

π

γ 2 sin(k)2 cos[4�(k, g)t]

�(k, g)2
. (18b)

Let us first focus on the large-time limit (17a) of 
(t ). As
shown by the plots in Fig. 2, the function F (g0, g) presents
a nonanalytic behavior in correspondence of the critical point
gc = 1. Indeed, we have that

lim
g→g+

c

∂F (g0, g)

∂g
− lim

g→g−
c

∂F (g0, g)

∂g
= γ −1/2. (19)

Note that such a discontinuity is independent of g0 > 1. In
particular, for γ = 1 and g0 → ∞, the behavior around gc

turns out to be

F (∞, g) =
{

1
2 + (g−1) + O[(g−1)2] for g > 1,

1
2 for g � 1.

(20)

An analogous discontinuity has been reported in Ref. [47] for
the asymptotic behavior of the energy density after a quench,
and also in generic noninteracting fermionic systems [48].

00.511.52 g
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F γ = 1
γ = 0.75
γ = 0.5
γ = 0.25

g0 = ∞
g0 = 2

FIG. 2. The function F (g0, g) of Eq. (17a) representing the large-
time limit of the transverse magnetization in the thermodynamic limit
[10], as a function of g, for various values of γ (different colors,
see legend), and g0 = ∞ (continuous lines) or g0 = 2 (dashed lines).
The curves display a singular behavior, i.e., a discontinuity in the
derivative, at g = gc = 1.

Even the asymptotic approach to the large-time limit is
singular at gc. Indeed, for g �= 1, it is given by [10,21]

Ft (t, g0, g) = g0 − g

27/2
√

πg3/2
t−3/2

[
sin[4(g + 1)t − π/4]

(g0 + 1)
√

g + 1

− sin(4|g − 1|t + π/4)

|g0 − 1|√|g − 1|
]

+ O(t−5/2), (21)

while at g = 1 it turns out to be given by

Ft (t, g0, 1) = (g0 − 1) sin(8t − π/4)

16(g0 + 1)
√

π
t−3/2 + O(t−5/2).

(22)

Note that Eq. (22) is simply obtained by dropping the second
divergent term within the parenthesis in Eq. (21). Numerical
evidence of the validity of Eq. (22), for sufficiently long times,
is provided by the data shown in Fig. 3. There we report
a direct comparison between the transverse magnetization

(t, g0, g) of Eq. (15), calculated either with the exact for-
mula of Eq. (17b) or with the approximate one of Eq. (22). The
agreement between the two results emerges from the analysis
of the absolute discrepancy between them, explicitly shown in
the inset, where corrections of O(t−5/2) evidently appear (see
dot-dashed blue line).

We finally recall that the thermodynamic limit, approached
by taking the large-L limit at fixed time, is expected to be
independent of the boundary conditions. This is confirmed
by our numerical results. However, as we shall see below,
the finite-size effects are instead dependent on the boundary
conditions. In the following we address the cases of PBC and
OBC separately.

B. Finite-size effects with PBC

We now discuss the emergence of finite-size effects mostly
related to revival phenomena, which are characterized by
definite power-law scaling behaviors. Analyses of revival
finite-size effects have been recently discussed under various
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FIG. 3. Time behavior of the transverse magnetization

(t, g0, g) in the infinite-size limit, for a quench in the quantum
Ising chain from two different values of g0 (see legend), to the critical
point g = 1. Continuous lines denote the exact result obtained using
Eq. (17b), while dashed lines report the approximate result using
Eq. (22). The inset shows absolute discrepancies between exact
and approximate results; the dot-dashed blue line denotes a t−5/2

behavior and is plotted to guide the eye.

perspectives in Refs. [17,18,22,57], considering also the be-
havior of the entanglement properties. Here we focus on the
quantum Ising chain (4) with PBC.

Before presenting our results, it is instructive to realize
that, for quenches starting from ground states for g0 > gc,
the dynamic problem can be exactly mapped into that of a
fermionic quadratic model with antiperiodic boundary condi-
tions (ABC), see, e.g., Ref. [59]. This is essentially due to the
fact that the initial quantum state |�g0>gc〉 has a definite parity,
and therefore only fermionic states with ABC are involved
during the evolution. Therefore, for these types of quenches,
we may consider the equivalent Kitaev quantum wire defined
by the Hamiltonian [60]

ĤK = −
L∑

x=1

(ĉ†
x ĉx+1 + γ ĉ†

x ĉ†
x+1 + H.c.) − 2g

L∑
x=1

n̂x, (23)

where ĉx is the fermionic annihilation operator on the xth
site of the chain and n̂x ≡ ĉ†

x ĉx the density operator. The
quench problem considered here can be matched by taking
ABC, ĉL+x = −ĉx (we suppose L even, for convenience). The
straightforward diagonalization of the quadratic fermionic
model (23) allows one to obtain results for very large sizes, up
to L = O(104), requiring computational resources which in-
crease only linearly with L. For details see, e.g., Refs. [46,59].
In the following we set γ = 1, corresponding to the Ising
chain (4).

Some results for quenches from g0 → ∞ to various values
of g are shown in Fig. 4, where we report the subtracted
transverse magnetization

δS(t, g0, g, L) ≡ S(t, g0, g, L) − 
(t, g0, g), (24)
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FIG. 4. Finite-size features of the temporal behavior of the trans-
verse magnetization after a quench from g0 = +∞. We plot L1/3δS
versus the rescaled time tL ≡ t/L, where δS is defined in Eq. (24).
Different panels are for g = 2, 1.1, 1, 0.9, and 0.5. Colored curves
stand for various system sizes, as indicated in the legend, and nicely
support the behavior put forward in Eq. (25).


(t, g0, g) being the infinite-size limit given by Eq. (14). The
numerical results show the following behavior:

δS(t, L) = L−a fe(tL ) fo(t, L) + O(L−1), (25)

where

tL ≡ t/L, a = 1/3 (26)

(as we shall see, the accuracy of the estimate of exponent a
is very high), fo(t, L) is a rapidly oscillating function around
zero depending on both t and L, while the envelope function
fe is a (nonoscillating) function of tL with discontinuities
located at tL = tL,k [for simplicity, here we have omitted the
dependence on g0 and g in Eq. (25)].

The discontinuities of fe are essentially related to revival
phenomena and appear at times

tL,k ≡ k

2vm
, vm = 2 Min[g, 1], (27)

for k = 1, 2, . . ., where vm is the maximum velocity of the
quasiparticle modes [20,61,62]. The amplitude of such dis-
continuities generally tends to decrease with increasing k, as
it can be seen from the various panels of Fig. 4. We point out
that the scaling behavior of the revival times tL,k , and their
connection with the maximum velocity of the quasiparticle
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FIG. 5. Scaling behavior of the position and height of the first
dip (located at t1 ≈ L/4, corresponding to tL,1 ≡ t1/L ≈ 1/4) of the
transverse magnetization for quenches to the critical point g = 1,
starting from the fully disordered state |�∞〉 (see arrows in Fig. 1).
We simulated systems with up to L = 104 sites. (Top) Data for
tL,1 − 1/4 vs L−2/3, confirming the behavior predicted by Eq. (28);
the dashed red line shows a linear fit for L � 100. (Bottom) Data for
δS(t1, L) vs L−1/3; the dashed red line shows a linear fit for L � 250.

modes, were already put forward by other studies of revival
phenomena in finite-size systems, see e.g. Refs. [18,22,57].

Our numerical results for g = gc = 1 show that the first
sharp dip is asymptotically located at

tL,1 = 1/4 + O(L−2/3), (28)

as reported in the upper panel of Fig. 5. The relative accuracy
achieved by our numerical results on the asymptotic location
of the peak is very high, within O(10−5), so that we can safely
conclude that its value is 1/4 with great accuracy. This can
be related to the interference between the signals traveling
in the opposite direction with velocity vm = 2 [54], taking a
time t = L/(2vm) = L/4 to approach each other. Note that the
O(L−2/3) corrections to the value of tL at the dip arise from the
O(L−1) corrections in the formula (25). We mention that, once
fixed the asymptotic value tL,1 = 1/4, the relative accuracy of
the estimate of the exponent of the power-law correction in
Eq. (28) is a few per mille. The lower panel of Fig. 5 shows
the large-L scaling of the transverse magnetization at the dip,
clearly demonstrating the power-law asymptotic behavior L−a

with a = 1/3, which is approached with O(L−2/3) corrections,
as implied by Eq. (25). The relative accuracy on the estimate
of a turns out to be safely better than 10−4. Therefore, some-
how biased by the expectation that the exponent a should be a
simple fraction, we assume a = 1/3 in the following.

The zeros of δS, cf. Eq. (25), are essentially controlled by
the oscillating function fo. In Fig. 6, we show some analyses
of the results for quenches to g = gc = 1. The top panel dis-
plays numerical results for the zeros ζm of the function δS. The
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− 

ζ m
-2
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L = 4000
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0
1

f o

0 0.05 0.1 0.15 0.2 0.25
[t − t1] / L

0

0.5

1

f e

L = 16000

FIG. 6. Numerical analysis of the oscillations appearing in the
time behavior of δS(t, L), after a quench from the completely dis-
ordered state to gc. (Top) Temporal interval ζm − ζm−2 between the
times at which the mth zero and the (m − 2)th zero occur, for two
different sizes L. This is plotted as a function of the rescaled time
ζm/L − tL,1. (Middle) Time behavior of the oscillating function fo,
numerically inferred by taking the ratio between L1/3δS(t, L) at a
given size L (L = 4000 in the figure) and the interpolation of the
maxima of the corresponding curve for the largest available data
set at L = 16000. The latter also gives an estimate of the envelope
function fe, reported in the bottom panel.

difference ζm − ζm−2, which would correspond to the period
in the case of periodic functions, turns out to be a function
of tL ≡ t/L, with singularities at tL,k . The bottom panel shows
the envelop function fe as obtained by interpolating the max-
ima of L1/3δS for the largest available lattice size L = 16 000,
while the intermediate panel shows the resulting oscillatory
function fo. The above results globally support the ansatz (25).

We note that the scaling behavior (25) is generally ob-
served for any value of g, as confirmed by our numerical
simulations (not shown here). Of course, the functions fe

and fo will depend on g, but their structure looks similar
when varying it. Therefore this shows that the main features
of the finite-size effects are not related to the existence of
quantum criticality at gc. We also mention that analogous re-
sults, reproduced by Eq. (25) with the appropriate dependence
on g0 and g, are obtained when starting from ground states
corresponding to finite values of g0 > 1. Indeed, comparing
the two panels of Fig. 7, obtained for quenches starting from
either g0 = +∞ or g0 = 2, one can recognize the same scal-
ing behavior for the curves corresponding to various system
sizes. Note that times have been zoomed around t/L ≈ 0.75,
in order to highlight the third revival phenomena appearing
at time t3 [see Eq. (27)]. A close look at the two panels
reveals that, although very similar patterns can be seen for
the two cases, fast oscillating wiggles are slightly reduced for
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FIG. 7. Finite-size features of the temporal behavior of the trans-
verse magnetization after a quench to the critical point g = 1, starting
from either g0 = +∞ (top) or g0 = 2 (bottom). We plot curves
for δS(t, g0, g, L) as defined in Eq. (24), zooming around the third
revival [see Eq. (27)]. Note that the upper panel displays the same
data of the central panel of Fig. 4. The color code is the same as in
that figure.

g0 = 2. Such differences are even less visible for the former
two revivals (not shown).

We finally mention that finite-size revivals in the entan-
glement entropy were investigated in Ref. [57], showing that
they are also characterized by dips in the block entanglement
entropy.

C. Finite-size effects with OBC

A natural arising issue concerns the dependence on the
boundary conditions of the main features observed in the
previous sections. To answer this question, we have consid-
ered quench protocols applied to systems with OBC. Here we
report results starting from the fully disordered state |�+∞〉,
focusing again on the transverse magnetization. However,
since OBC breaks the translational invariance, we will sep-
arately consider the central and boundary local transverse
magnetizations, cf. Eqs. (8a) and (8b), as representative ob-
servables. Technically, we can still take advantage of the
mapping into the Kitaev quantum wire, where ABC are now
replaced by OBC. However, in this latter case, going to
Fourier space is no longer helpful to diagonalize the Hamilto-
nian ĤK and one has to perform a 2L-dimensional Bogoliubov
rotation. The required computational resources keep growing
polynomially with L, thus preserving the ability to simulate
sizes comparable to those for translationally invariant sys-
tems.

The central local transverse magnetization is expected to
have the same large-L limit discussed for systems with PBC.
We have also checked it numerically. Thus, to study finite-size
effects, we again subtract the asymptotic large-L limit 
 given
by Eq. (15), i.e.,

δSc(t, g0, g, L) = Sc(t, g0, g, L) − 
(t, g0, g), (29)

with Sc defined as in Eq. (8a). The transverse magnetization Sb

at the boundary, cf. Eq. (8b), is expected to behave differently,
even in the large-L limit, and its time dependence in the
thermodynamic limit is not known.
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L = 2000
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L = 4000

FIG. 8. Finite-size features of the temporal behavior of the cen-
tral transverse magnetization, with OBC, after a quench from g0 =
+∞ to g = 2 (top), g = 1 (middle), and g = 0.5 (bottom). We show
curves for L1/3δSc versus the rescaled time tL ≡ t/L, where δSc(t, L)
is defined in Eq. (29).

Figure 8 reports the central transverse magnetization at
the central site of the chain, when the time evolution is con-
trolled by the Hamiltonian at g = 2, 1, and 0.5, starting from
the disordered state |�+∞〉. The finite-size behavior of Sc is
qualitatively similar to that observed for systems with PBC.
Indeed, the large-L time dependence of the subtracted central
transverse magnetization δSc turns out to be well described by

δSc(t, L) = L−a fe(tL ) fo(t, L) + O(L−1) (30)

with a = 1/3, analogously to the PBC case [cf. Eq. (25)].
We also note that, apart from rapid oscillations encoded
by the function fo(t, L), smooth envelope structures appear,
associated with a rescaled time tL = t/L. Again peculiar
discontinuities emerge in proximity of the values tL,k =
kL/(2vm), for k = 1, 2, . . . The main difference with the PBC
case is that at tL,1 only oscillations with tiny amplitudes
emerge. More in general, the main structures are observed at
times tL,2 j ( j = 1, 2, . . .); small bumps also occur at any time
tL,2 j−1, although they are barely visible for j � 2.

The behavior of the boundary transverse magnetization is
substantially different. Let us define again a subtracted quan-
tity

δSb(t, L) ≡ Sb(t, L) − Sb(t, L → ∞) (31)

where Sb(t, L → ∞) can be accurately obtained from the
results for the largest lattices, as one may infer from the curves
shown in the upper panel of Fig. 9. In particular, we have
verified that the apparent relation Sb = Sc for t → ∞ and
L → ∞ actually holds only for g0 → ∞, and, even in this
case, the equality does not hold at finite t . Finite-size effects
are captured by a scaling equation of the form

δSb(t, L) = L−b fe(tL ) fo(t, L) + O(L−1), (32)

where

b ≈ 2/3, (33)
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FIG. 9. Finite-size features of the temporal behavior of the
boundary transverse magnetization, with OBC, after a quench from
g0 = +∞ to g = 1. The top panel shows curves for Sb versus the
time t , while the bottom panel shows curves for L2/3δSb [cf. Eq. (31)]
vs the rescaled time tL ≡ t/L. The inset of the bottom panel high-
lights the scaling behavior of the height of the first peak (located at
t1 ≈ L/2), showing data for δSb(t1, L) vs L−2/3; the dashed red line
is a linear fit for L � 240.

as emerging from the data reported in the lower panel. This be-
havior is again characterized by the rapid oscillations fo(t, L)
and a smooth envelope function fe(tL ) with argument tL =
t/L. The main difference is that such a smooth finite-size
behavior gets suppressed by a power L−2/3 (see, in particular,
the inset in the lower panel), and peculiar structures emerge at
tL,k = k/vm.

We conclude this part by mentioning that the above be-
haviors are not peculiar of the choice of the initial condition,
corresponding to the ground state for g0 → ∞. Indeed, their
main features also emerge in quenching protocols starting
from ground states associated with finite values g0 > 1 (data
not shown).

IV. QUENCHES FROM THE DISORDERED PHASE IN THE
PRESENCE OF DISSIPATION

A. Modeling dissipation

The purpose of this section is to extend the previous analy-
sis on the dynamic features of closed quantum Ising chains,
in order to include the effects of weak dissipative mecha-
nisms: besides the changes of the Hamiltonian parameters, we
suppose that the many-body system is also subject to some
interaction with the environment. For the sake of simplicity,
here we only concentrate on quenches starting from the disor-
dered phase (|g0| > 1), such that it is still possible to exploit
the mapping to the Kitaev Hamiltonian for fermionic particles
(23), as we did in Secs. III B and III C. We consider dissipation
mechanisms associated with either particle losses or pumping
on each lattice site, so that our system-bath coupling scheme

describes the coupling of each site with an independent bath.
In the case of weak coupling to Markovian baths, the general
Lindblad master equation (12) can be thus written as [63,64]

∂ρ

∂t
= −i[ĤK, ρ] + u

∑
j

[
L̂ jρL̂†

j − 1
2 (ρ L̂†

j L̂ j + L̂†
j L̂ jρ)

]
.

(34)

The onsite Lindblad operators associated to either losses (l) or
pumping (p) are respectively given by [36,65–69]

L̂(l)
j = ĉ j, L̂(p)

j = ĉ†
j . (35)

The choice of such dissipators turns out to be particularly con-
venient for the numerical analysis, allowing us to maintain the
polynomial scaling with L of the computational complexity of
the problem, as for the unitary dynamics of the Kitaev chain.

In the rest of this section, for our convenience we shall
restrict to homogeneous dissipation mechanisms and to Ki-
taev models with ABC (corresponding to PBC for the Ising
chain, when quenching from ground states in the disordered
phase), in such a way to preserve translational invariance and
to further reduce computational resources to a linear amount
in L. We study the time behavior of the analogue, in fermionic
language, of the transverse magnetization with either incoher-
ent losses or pumping

S(l/p)(t, g0, g, u, L) = 2 Tr[ĉ†
j ĉ j ρ(t )] − 1, (36)

where the superscripts (l) and (p) refer to the loss or pumping
dissipations related to the Lindblad operators (35). Note that
the initial condition |�g0〉, being the ground state of ĤK, can
be interpreted as a state with a local fermionic filling given
by n j = 〈�g0 |ĉ†

j ĉ j |�g0〉, with n j ∈ [0, 1]. For example, the
extreme cases of disordered ground states are denoted by the
completely filled state of fermions |�+∞〉 = |1, . . . , 1〉 and
the completely empty state of fermions |�−∞〉 = |0, . . . , 0〉.

In Fig. 10, we show some representative examples of the
time dependence of the transverse magnetization when the
system evolves according to the Lindblad equation (12) for
g = 1. We start from the completely filled state corresponding
to the ground state for g0 → +∞, so that S(t = 0) = 1. The
dissipation is modeled in the form of particle losses, whose
action is to deplete the system, and thus the value of S tends
to generally decrease in time. The upper panel displays the
time behavior of S(l) for different wire lengths L and fixed
dissipation strength u = 0.1. With increasing L, the various
curves overlap up to progressively longer times: for L � 20 all
of them appear to be identical up to t � 3, while looking at the
curves for larger sizes L = 80 and 100, we see that they cannot
be distinguished up to much longer times (t ≈ 18). This fact
witnesses the existence of a well defined temporal behavior in
the thermodynamic limit L → ∞, as already pointed out for
the unitary dynamics of a closed system (see Fig. 1). In fact,
the emergence of dips and wiggles at finite size L, departing
from the large-L behavior and whose position progressively
shifts to later times with increasing L (see arrows highlighting
the first of such dips, clearly visible at the smallest available
sizes), can be ascribed to finite-size effects, as we will see in
Sec. IV C. Note also the emergence of an asymptotic station-
ary value S(l)(t = ∞) ≈ −0.5, which weakly depends on the
value of L, as hinted by the data reported in the inset. The
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FIG. 10. Time behavior of the transverse magnetization S(l) after
a quench in the Kitaev quantum wire, starting from a completely
filled state (g0 = +∞), to g = gc = 1 (critical point), in the presence
of incoherent particle losses. Upper panel: curves are for different
sizes L, at fixed dissipative coupling constant u = 0.1 (the inset
shows a magnification at long times); arrows indicate the position
t1 of the first dip that is ascribable to finite-size effects. Lower panel:
curves correspond to different values of u and fixed L = 100.

bottom panel of Fig. 10 shows how the progressive increase
of the dissipation strength u leads to a faster decay of S(l) in
time, down to the asymptotic behavior. This contrasts with the
unitary case (u = 0), where S converges to the large-time limit
according to the oscillating behavior predicted by Eq. (18b).

Below we focus on all these issues in more detail, specif-
ically addressing the thermodynamic limit behavior and
finite-size corrections. As we shall see in the following anal-
ysis, some features characterizing the unitary evolution of the
closed system disappear, while other will leave some residual
trace.

B. Behavior in the thermodynamic limit

Here we consider sufficiently large system sizes, so that
finite-size effects are guaranteed not to play any role (i.e., for
the times analyzed below, curves obtained for the two largest
available values of L do overlap at any time). Note however
that, due to the presence of dissipation, revivals are generally
expected to be suppressed, and the influence of the boundary
conditions to be less important than in closed systems. In
practice, we carefully checked that chains of length L = 1000
were sufficiently long to ensure that we are always probing
the thermodynamic limit behavior (for example by comparing
results for different sizes, and requiring agreement).

Analogously to closed systems, we define the thermody-
namic limit of the transverse magnetization


(l/p)(t, g0, g, u) ≡ S(l/p)(t, g0, g, u, L → ∞), (37)

When monitoring the time evolution of the transverse mag-
netization after a quench of the Hamiltonian parameter g and
switching on the dissipation at t > 0, one finds a behavior
of the type reported in Fig. 11: 
(l/p) starts from its corre-
sponding value at the ground state with g0, and then evolves in
time until it converges to an asymptotic steady-state value, for
t → ∞. Comparing the three panels for different initial con-
ditions, being either the completely filled, completely empty,
or a partially filled state, we note that the steady-state magne-
tization 
(l/p)(t → ∞) does not depend on such choice. This
is a particular feature related to the presence of dissipation.
Indeed the uniqueness of the (possibly existing) steady state
has been proven for the loss and pumping operators [66–69].
This contrasts what happens in the absence of dissipation,
where the surviving time-independent contribution F (g0, g)
clearly depends both on g and on g0 [see Eq. (17a) and the
plateau reached at long times by the continuous purple lines
in Fig. 11].

Notice however that, in the presence of incoherent pump-
ing, the transverse magnetization evolves in time similarly
to a closed system, which is initialized in the completely
filled state |�+∞〉 (left panel). Conversely, with incoherent
decay, 
 behaves similarly to a closed system initialized in
the completely empty state |�−∞〉 (central panel). Asymptotic
long-time values are also relatively close to the nondissipa-
tive predictions given by F (±∞, 1), respectively. While the
specific time dependence of 
(l/p) depends on the dissipation
strength u, discrepancies with respect to the corresponding
unitary behavior tend to amplify with increasing u (compare
the continuous curves at u = 0.1 with those at u = 1), and
even at u = 1 it is possible to recognize a qualitatively similar
trend. The above similarities between unitary and dissipative
dynamics disappear when starting from a partially filled initial
state |�g0, with |g0|<∞〉 (right panel).

As emerging from the data presented in Fig. 11, the time
evolution of the transverse magnetization satisfies


(l)(t,±∞, g, u) = −
(p)(t,∓∞, g, u), (38)

when starting from one of the extremal states |�±∞〉 (com-
pare left and central panels). The same holds for the unitary
dynamics obtainable setting u = 0, i.e., 
(t,+∞, g, 0) =
−
(t,−∞, g, 0). This is no longer the case if |g0| < ∞.
However, due to the independence on g0 of the steady-state
value of 
, we still have for fixed dissipation strength u:


(l)(t → ∞, g0l, g, u) = −
(p)(t → ∞, g0p, g, u), (39)

independently of the values g0l and g0p.
We stress that, while the figure only reports results for

quenches ending at the critical point g = gc = 1, analogous
conclusions on the steady-state values and symmetry proper-
ties of the model can be drawn for generic values of g (not
shown here).

To better analyze the influence of dissipation and of the
post-quench transverse field g on the long-time value of the
transverse magnetization, in Fig. 12, we report the dependence
of 
(p)(t → ∞) on g, for two distinct values of incoherent
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FIG. 11. Transverse magnetization as a function of time, in the dissipative Kitaev quantum wire quenched to the critical point g = 1.
The three panels refer to different initial conditions, corresponding to: a completely filled state (g0 = +∞, left), a completely empty state
(g0 = −∞, central), and a partially filled state (g0 = 1.1, right). The dissipation is implemented in the form of either particle losses (l) or
pumping (p), with two different strengths (see legend). The continuous purple line in each panel denotes the behavior in the absence of
dissipation (u = 0), cf. Eq. (14), which converges to F (g, g0 ) for t → ∞ [see Eq. (17a)]. In all the curves reported here, we have fixed
L = 1000, after checking that such system size was sufficiently long to guarantee the study of time dependence in the thermodynamic limit.
Times are in a logarithmic scale, to better highlight the convergence to the t → ∞ stationary behavior.

pumping strength u. These are compared with the unitary
prediction given by F (+∞, g) [cf. Eq. (18a)]. As is visible,
the discontinuity in the first derivative at gc is smeared by
the coupling with the environment. For small u it is however
possible to recover a signal of singularity in gc. In the figure
we did not report the case of incoherent decay, being equal to
the opposite value of pumping [see Eq. (39)] and matching the
corresponding unitary prediction F (−∞, g).

We conclude this part by observing that, in the large time-
limit, the time evolution of the transverse magnetization, for
small dissipation strength u � 1, obeys an asymptotic scaling
behavior of the form


(l/p)(t, g0, g, u) ≈ 
(l/p)
r (g0, g, ν), ν ≡ u t, (40)

0.4 0.6 0.8 1 1.2 1.4 1.6g
0.5
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0.7

0.8

Σ
(p

) (t
→

∞
) F (+∞, g)
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FIG. 12. Asymptotic long-time value reached by the transverse
magnetization, 
 (p)(t → ∞), as a function of the post-quench value
of g in the presence of incoherent pumping of strength u = 0.1
(red circles) and u = 1 (blue squares). The continuous black line is
the function F (+∞, g) of Eq. (18a) for the large-time limit in the
absence of dissipation and starting from g0 = +∞.

keeping ν fixed. The data in Fig. 13, for various values of the
strength u of incoherent losses, nicely support this behavior
(note also that, for u � 0.1, the collapse of the various curves
definitely becomes less accurate). An analogous data collapse
is seen in the case of incoherent particle pumping. We stress
that the scaling behavior put forward in Eq. (40) should not be
considered as unexpected, since the parameter u plays the role
of decay rate of the dissipation.

C. Finite-size effects

As for the case of closed systems, we now focus on finite-
size effects for PBC and look at the difference

δS(l/p)(t, g0, g, u,L) = S(l/p)(t, g0, g, u, L)−
(l/p)(t, g0, g, u),

(41)

where 
(l/p)(t, g0, g, u) is the infinite-size limit of
S(l/p)(t, g0, g, u,L). Figure 14 displays such difference in
the asymptotic long-time limit for a prototypical dissipative
situation, where the system is quenched to the critical point
gc and with dissipation strength u = 0.1. As noted before,
the value reached by δS in the long-time stationary regime
does not depend on g0 and on the type of dissipation (losses
or pumping). The various curves show that δS(l/p) decays
exponentially in the large-L limit, i.e.,

δS(l/p)(t → ∞) ∼ e−c(g)L. (42)

It is also interesting to note that the exponential rate c(g) dis-
plays a minimum at g = gc = 1, thus signaling the emergence
of larger finite-size corrections at the critical point (although
they are still exponentially suppressed).

Coming back to the time behavior of S(l)(t ) at finite size,
shown in the upper panel of Fig. 10, we can observe a dip
(and subsequent wiggles) at larger and larger times t1 with
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FIG. 13. Scaling behavior of 
 (l) in the presence of incoherent
particle losses, for a quench from g0 = +∞ to g = 1. The various
curves are for different values of u (see legend) and L = 1000, so
to ensure having reached the behavior in the thermodynamic limit.
Times have been rescaled according to the adimensional variable
ν = u t .

increasing L, so that t1 ∼ L (see the inset of Fig. 15). This
finite-size behavior apparently resembles the one already ob-
served in closed systems, as in Fig. 1. However, a closer
inspection of the scaling of the height of such dips reveals
that their depth is exponentially suppressed with increasing
L, as clearly visible from the data shown in the main frame
of Fig. 15. The large-L limit is thus approached much faster
than for the unitary dynamics (compare, e.g., with Fig. 5). We
checked that these facts are not qualitatively affected by the
choice of the pre- and post-quench values g0 and g, nor by the
type and the strength of dissipation.

In conclusion we observe that, differently from the uni-
tary dynamics of closed systems, the presence of dissipation
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FIG. 14. The difference δS(l/p), cf. Eq. (41), in the asymptotic
long-time limit, between the transverse magnetization at finite length
L and the corresponding thermodynamic limit value for L → ∞, The
various curves are for different values of g and for fixed dissipation
strength u = 0.1. These data are unaffected by the choice of dissipa-
tion (being either losses or pumping) and of g0. The inset shows the
exponential decay rate of such discrepancy, as a function of g.
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FIG. 15. Scaling behavior of the first dip (see arrows in Fig. 10)
corresponding to finite-size effects in the transverse magnetization,
for a quench from g0 = +∞ to g = 1 and in the presence of incoher-
ent losses of strength u = 0.1. The main frame displays the value of
the subtracted magnetization at the dip, δS(l)(t1) [cf. Eq. (41)], as a
function of L in semilog scale. The inset displays the position of the
dip t1/L vs 1/L.

dramatically reduces finite-size effects and no relevant revival
phenomena emerge, as substantially expected.

V. QUENCHES FROM THE ORDERED STATE

We now address quenches of the quantum Ising chain (4)
starting from a completely ordered state (i.e., a fully magne-
tized state |�(t = 0)〉 = |↑, . . . ,↑〉). This corresponds to one
of the degenerate ground state in thermodynamic limit when
g0 → 0, obtainable by the ground state in the limit

|�(0)〉 = lim
g0→0

lim
h→0+

lim
L→∞

|GS〉, (43)

where h is an external homogenous magnetic field coupled to
the longitudinal magnetization. Since such initial state breaks
the Z2 symmetry (5) of the model, one finds a nonzero lon-
gitudinal magnetization M [cf. Eqs. (6a) and (7)] along the
quantum evolution (1) after quenching the transverse field
parameter g. We will not explicitly show data for initial par-
tially ordered states (i.e., corresponding to finite values of
0 < g0 < 1), since the same conclusions apply also in such
circumstances. Therefore, in the following, we drop the de-
pendence on g0 of the observables.

An example of the evolution of M(t ) after the above pro-
tocol is provided by Fig. 16, where we focus on quenches
to the critical point g = gc = 1 for different lattice sizes L.
Similarly to the case of quenches from disordered states, the
small-time behavior appears to be independent of the size
(see, e.g., Fig. 1), and in this case it drops exponentially in
time. Then, after some time which depends on L and on the
choice of the boundary conditions, a non monotonic behavior
related to finite-size revival effects sets in, as we shall clarify
below.

At this stage, it is important to stress that, for quenches
from ordered states (g0 < 1), one cannot exploit the exact
mapping with the quantum fermionic wires (23) with ABC.
Therefore in this case, to study the exact out-of-equilibrium
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FIG. 16. Longitudinal magnetization after a quench in the quan-
tum Ising chain with PBC, starting from the symmetry-broken
ordered state at g0 = 0, to g = 1. The various data sets are for
different chain lengths; arrows denote the position of the first peak
emerging in the finite-size revivals, located at time t1(L) ≈ L/(2vm ).
The inset is a magnification at small times in semilog scale, showing
that, in the thermodynamic limit, the magnetization decays exponen-
tially with t .

behavior of the system, we are forced to employ exact-
diagonalization methods which typically scale exponentially
with L and thus severely limit the simulatable lattice sizes
up to L � 24. In passing we mention that a new formalism
based on the correspondence between momentum space and
real space has been recently put forward in Ref. [70], which
would enable to evaluate the longitudinal magnetization for
considerably larger system sizes, by numerically computing
suitable Pfaffians. Nonetheless, as we shall see in a moment,
brute-force diagonalization will be sufficient to infer the main
dynamical features we are interested in.

A. Quenches in the thermodynamic limit

We first discuss the thermodynamic limit of the longitu-
dinal magnetization M(t ). For the transverse magnetization
S(t ), it is sufficient to take the limit g0 → 0 of the exact
analytic formulas reported in Sec. III A.

The longitudinal magnetization in the thermodynamic
limit,

M(t, g) ≡ M(t, g, L → ∞), (44)

turns out to vanish in the large-time limit t → ∞. Indeed, it
presents an asymptotic exponential decay, according to [20]

M(t, g) ≈ Ma(t, g) = A(g) exp[−�(g) t], (45)

where

A(g) = 1√
2

[1 +
√

1 − g2]1/2, (46)

�(g) =
∫ π

0

dk

π
2

cos(k) − g

�(g, k)
ln

[
1 − cos(k)

�(g, k)

]
, (47)
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FIG. 17. Longitudinal magnetization M(t ) in the Ising chain for
a quench from the completely ordered state to g = 1. These analytical
and numerical results are supposed to show the behavior in the
thermodynamic limit. In particular, the continuous black curve is
the result of a numerical simulation with L = 24 sites; we checked
that such system size guarantees the study of time dependence in
the thermodynamic limit, up to time t = 5.5. Dashed blue and dot-
dashed red data sets respectively denote the predictions M(t, 1)
given by Eq. (45) with either A(1) in Eq. (46) or with A(1) = 1.229.
The inset shows the relative difference |�M(t, 1)|/Ma(t, 1), where
�M(t, g) = M(t, g) − Ma(t, g) as a function of time, for the two
predictions discussed before.

where �(g, k) is the function reported in Eq. (16) setting
γ = 1. The asymptotic behavior (45) was derived essentially
for g < 1 in Ref. [20]. Similarly as for the transverse magne-
tization [see Eq. (20)], even in this case we note a singular
behavior at g = gc = 1. Indeed, around gc, the decay function
�(g) behaves as

�(g) =
{

4/π + 2
√

2(1 − g) + O(1 − g) for g < 1,

4/π for g � 1.
(48)

We have carefully checked that these asymptotic analytic be-
haviors are supported by our data (not shown).

A noteworthy issue is the fact that numerical results evi-
dence a discontinuity at g = gc = 1 also in the prefactor A(g).
As a matter of fact, while for g �= 1 the formula (46) appears
to be correct, the value A(1) which captures the long-time
behavior of M is not provided by the g → 1 limit of Eq (46).
Indeed, as explicitly reported in Fig. 17, we found that

A(1) ≈ 1.229 (49)

(with an accuracy of about two per mille), definitely differ-
ent from the prefactor predicted by Eq. (46), i.e., A(1) =
1/

√
2 ≈ 0.707. This signals a discontinuity in the prefactor of

Eq. (45) of the asymptotic large-time behavior, indicating that
such an asymptotic behavior is not uniformly approached for
g → 1−. In particular, the analytic estimate with A(1) given
by Eq. (49) is nearly indistinguishable from the numerical
data, thus demonstrating convergence for times sufficiently
small to ensure the reaching of the thermodynamic limit for
the largest available size (compare the continuous black line
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FIG. 18. Time dependence of the longitudinal magnetization in
the thermodynamic limit, up to time t = 7, after quenches to various
values of g, starting from the fully ordered state.

with the dot-dashed red line). A closer look at the relative
discrepancies shows that, in fact, the exact solution presents
an oscillating contribution that vanishes at long times (see
inset). On the other hand, the estimate provided by Eq. (46)
does not provide the correct result (dashed blue line).

Let us now have a closer look at the infinite-size limit
of the longitudinal magnetization as a function of the time
after the quench, for some different values of g, starting
from the completely ordered state at g0 = 0. To infer the
thermodynamic-limit behavior, we first performed numerical
simulations at various lattice sizes, up to L = 24. For suffi-
ciently small values of t , the curves at the largest available
sizes superimpose, therefore they can be considered as a
good approximation of the thermodynamic large-L limit (see
Fig. 16 for an example at g = 1). The complete L → ∞ curve
has been then reconstructed by matching with the analytical
asymptotic results discussed above. Such curves are reported
in Fig. 18. We note that, when crossing the critical point
g = gc = 1, they become nonmonotonic and start oscillating,
showing a negative dip. This may be considered as a particular
signature of the transition point.

We finally mention that Refs. [18,22] exploit a semiclas-
sical framework to compute the longitudinal magnetization
and related correlations. This semiclassical approach provides
reliable results in regions of the Hamiltonian parameters,
where a quasiparticle picture based on kinks or domain walls
turns out to be effective, for example, for small values of the
transverse field g.

B. Finite-size effects with PBC

To analyze finite-size effects, we consider again the sub-
tracted quantity δS defined in Eq. (24), and the corresponding
δM for the longitudinal magnetization

δM(t, g, L) ≡ M(t, g, L) − M(t, g). (50)

Since, for the latter, we do not have the exact large-L curve
but only its large-time exponential behavior Ma, to evaluate
M(t, g) we use both numerical results for the largest lattice
sizes supplemented by their asymptotic large-time behavior,
as mentioned at the end of Sec. V A.
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FIG. 19. Time behavior of the transverse (top) and longitudinal
(bottom) magnetization after a quench from the symmetry-broken
state at g0 = 0, to g = 1. Times have been rescaled with t/L and
subtracted magnetizations as L1/3 δS and L δM, respectively [cf.
Eqs. (24) and (50)]. The different data sets are for systems with PBC
and various chain lengths, as indicated in the legend. The inset in the
lower panel shows data for δM(t1, L) vs L−1; the dashed red line is a
linear fit for L � 20, assuming the prediction of Eq. (51) with ω = 1.

To begin with, we present results for quenches to the crit-
ical point g = gc = 1. Even in the case of quenches starting
from ordered states, the transverse magnetization behaves
consistently with Eq. (25), which explains the finite-size scal-
ing behavior of the main features of the time dependence,
such as the relevant time scaling variable tL ≡ t/L, the revival
features starting at tk = kL/(2vm), and the L−1/3 power law
of the envelope of the short time oscillations. This is wit-
nessed by the curves plotted in the upper panel of Fig. 19,
which analyze the behavior of the transverse magnetization
δS after a quench from the perfectly ordered state at g0 = 0,
to the critical point g = gc = 1. Note the appearance of a good
data collapse already at L � 24, after the proper rescaling as
predicted in (25) using a = 1/3 and tL = t/L.

In the lower panel of the same figure, we report data of the
subtracted longitudinal magnetization δM [cf. Eq. (50)], for
the same type of quench from the symmetry-broken state at
g0 = 0. The subtraction of the asymptotic large-time behavior
in the thermodynamic limit is effective, indeed we clearly
observe a relatively large interval (t/L ≈ 0.2, in the figure)
where the time dependence appears flat and vanishing. As
expected, the positions of the peaks and dips confirm that
the relevant time scaling variable is tL = t/L, analogously as
for the transverse magnetization (not shown). However, the
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FIG. 20. Longitudinal magnetization as a function of time, after
quenches to various values of g in the ordered phase (g = 0.5, top), at
the critical point (g = 1, middle), and in the disordered phase (g = 2,
bottom), starting from the fully ordered state. The various curves are
for different chain lengths, as reported in the legend.

behavior of the maxima/minima at the peaks/dips suggests
a different rescaling, as can be seen from the data for the
magnetization values at the first peak versus the inverse size
L−1, shown in the inset. Therefore, despite the impossibility
to reach higher sizes with great accuracy prevents us from
giving a conclusive statement, our data hint at the following
finite-size scaling behavior:

δM(t, g = 1, L) ≈ L−c fs(tL ), c ≈ 1, (51)

in accordance with the nice approach to data collapse, for
the curves with L � 24 shown in the main frame of the
lower panel, reporting the rescaled magnetization L δM vs the
rescaled time t/L.

The above asymptotic large-L features are also observed
in quenches to values of g different from gc = 1, in particular
around it. On the other hand, as shown in Fig. 20, the situation
is less clear for small values of g; see e.g. the case of g =
0.5, where the data for different values of L appear to tend to
the same value M ≈ 0.8. Of course, this may reflect a slow
convergence in the chain size; in other words, the approach
to an asymptotic behavior such as that reported in Eq. (51)
may be significantly delayed for quenches to small values of
g. Large lattice sizes would be necessary to clarify this point.

C. Finite-size effects with OBC

Let us finally consider the role of OBC for quenches
starting from the symmetry-broken phase. The decay of the
longitudinal magnetization as a function of the position, and
in particular at the boundaries, was discussed in Ref. [17].
Here we only explicitly discuss central magnetizations, for
time evolutions controlled by the critical Hamiltonian (g = 1)
and starting from the fully ordered state (g0 = 0). Data for the
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FIG. 21. Subtracted transverse (top) and longitudinal (bottom)
magnetization after a quench starting from the symmetry-broken
state at g0 = 0, to g = 1, calculated at the center of an Ising chain
with OBC. Data are plotted a function of the rescaled time t/L.
The lower panel shows δSc(t1) and δMc(t1) vs L; the dashed lines
indicate the behaviors δSc(t1) ∼ L−1/3 (black set) and δMc(t1) ∼ L−1

(red set), respectively.

subtracted transverse and longitudinal magnetization, respec-
tively given by Eqs. (29) and by the analogous of Eq. (50)
for Mc,

δMc(t, g, L) ≡ Mc(t, g, L) − Mc(t, g), (52)

are reported in Fig. 21. Of course, the large-L thermodynamic
limit is expected to be the same as for S and M. This is
confirmed by the results shown in the two upper panels of the
figure, where a plateau equal to zero is clearly visible for short
times t/L � 0.2. The scaling of first large dip with the size is
compatible with what we already observed for PBC (i.e. same
scaling with L, as witnessed by the data in the bottom panel),
cf. Eq. (51).

VI. QUENCHES IN THE ANNNI MODEL

We now extend our study to Ising-like systems in the pres-
ence of integrability-breaking perturbations. For this purpose,
we consider quantum quenches in the anisotropic next-
nearest-neighbor Ising (ANNNI) chain, changing the quench
parameter across an underlying quantum phase transition. Its
Hamiltonian reads

ĤANNNI = −J
L∑

x=1

[
σ̂

(1)
x σ̂

(1)
x+1 − κ σ̂

(1)
x σ̂

(1)
x+2 + g σ̂ (3)

x

]
. (53)
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FIG. 22. Same as in Fig. 16, but for the post-quench critical dy-
namics of the nonintegrable ANNNI chain with PBC and κ = 0.15.
Here we set g = gc(κ = 0.15) = 0.73405(4) [71].

For values of κ sufficiently small, quantum ANNNI mod-
els present a continuous Ising-like transition, see, e.g.,
Refs. [51,71] and references therein.

In the following, we analyze quench protocols start-
ing from the fully ordered state (corresponding to g →
0) to the critical parameter g = gc(κ ) [71,72]. Figure 22
displays some results for κ = 0.15, for which [71] gc =
0.73405(4). They look qualitatively similar to those ob-
tained for the Ising chain (κ = 0), see Fig. 1. The results
up to L = 24 allow us to determine the quantum evolution
M(t, κ, g) in the thermodynamic limit up to t ≈ 7, by check-
ing their convergence with increasing L, see Fig. 23. The
resulting curves in the thermodynamic limit are shown in
Fig. 23.

We note remarkable similarities with the case of the Ising
chain (κ = 0), in particular the qualitative different behav-
ior of the evolution of the longitudinal magnetization when
quenching to the ordered and disordered phases. Indeed
quenches within the ordered phase, g < gc, are characterized
by exponential decays to zeros, while quenches to the dis-
ordered phase, g > gc, show minima, so that the asymptotic
vanishing value gets approached from below. The behavior
around g = gc turns out to be less clear, requiring further
and more accurate numerical studies. This shows that these
qualitative features may persist even in nonintegrable mod-
els. They provide different characterizations of the different
phases, which may turn useful to distinguish different phases
within hard quenching protocols. Further studies are deemed
in order to understand whether such qualitative differences
can be also used to obtain accurate estimates of the transition
point.

Our analysis substantially supports the idea that the
quench dynamics may be employed to signal the presence
of phase transitions even in nonintegrable systems, as also
put forward in Ref. [51], where the peculiar behaviors of
some local observables at intermediate times after quenches
were investigated for the purpose of locating the phase
transition.
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FIG. 23. Same as in Fig. 18, but for the ANNNI chain with
PBC and κ = 0.15 (top) and κ = 0.25 (bottom). We recall that
gc = 0.73405(4) for κ = 0.15 and gc = 0.5403(3) for κ = 0.25.

Finally, Fig. 24 displays the subtracted quantity

δM(t, κ, g, L) ≡ M(t, κ, g, L) − M(t, κ, g). (54)

for κ = 0.15 and for a quench to g = gc. Again the behavior is
quite similar to that observed for the Ising chain; in particular,
the position of the first peak scales as tL ≡ t/L. As highlighted
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FIG. 24. Subtracted longitudinal magnetization after a quench
in the ANNNI chain with PBC and κ = 0.15, from the symmetry-
broken state at g0 = 0, to g = gc. Data for different system sizes are
plotted a function of the rescaled time t/L. The inset shows the value
of the subtracted magnetization at the first peak, δM(t1), vs L; the
dashed line indicates the behavior δM(t1) ∼ L−1.
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in the inset, while the reported data cannot be considered con-
clusive due to the small simulatable system sizes, the decay of
δM(t1) is consistent with an asymptotic L−1 behavior, as for
the scaling ansatz reported in Eq. (51).

VII. CONCLUSIONS

We have investigated the out-of-equilibrium dynamics of
one-dimensional quantum Ising-like systems arising from
quenches of the Hamiltonian parameter g driving the phase
transition that separates the quantum paramagnetic and fer-
romagnetic phases. To this purpose, we have considered
the simplest quenching protocol: the system starts from the
ground state of the many-body Hamiltonian associated with
a given value g0 of the parameter; the latter is then sud-
denly changed to g �= g0. The resulting quantum evolution
is driven either by the unitary dynamics (1), for a closed
system, or by the Lindblad equation (12), in the presence
of dissipative interactions with an environment. The issue
we have addressed is whether, and how, quantum transitions
can be probed by the study of such quench protocols. The
behavior of the transverse and longitudinal magnetizations
have been considered both in the infinite-size limit and also
considering finite-size effects, for systems with periodic and
open boundary conditions. The out-of-equilibrium evolution
of such magnetizations in quantum XY chains, in the thermo-
dynamic limit, cf. Eq. (3), develops a singular dependence on
the quench parameter g around its critical value g0, for any
anisotropy parameter γ > 0 and starting point g0, including
the extremal ones corresponding to fully disordered and or-
dered initial states. Similar singularities have been reported
in Ref. [47]. Finite-size effects, related to revival phenomena,
develop peculiar scaling laws characterized by power laws.

Their exponents have been accurately determined numeri-
cally, suggesting simple fractions, see, e.g., Eqs. (25) and (51)
for the transverse and the longitudinal magnetizations, respec-
tively. Such power laws are not actually related to the quantum
transitions, since they are observed in generic quenches even
those not involving critical parameters. They should be related
to the interference of quasiparticle excitations after traveling
across the finite chain. The understanding of such emerging
power laws deserve further investigations.

Finally we have analyzed the effects of two different mech-
anisms moving Ising-like systems away from integrability, by
adding either dissipation or further nonintegrable Hamiltonian
terms (such as those of the ANNNI models). In the case
of system-bath couplings, modeled by a Lindblad equation
with local decay and pumping dissipation operators within
the fermionic model obtainable by a Jordan-Wigner map-
ping, the singularity of the time evolution of the transverse
magnetization in quenches from disordered states to the crit-
ical Hamiltonian is washed out. Moreover, local dissipation
suppresses finite-size effects exponentially, in particular the
revival phenomena observed in closed systems. On the other
hand, our analysis of the ANNNI model reveals that some
of the main features of the post-quench dynamics persist,
in particular the evolution of the longitudinal magnetiza-
tion shows qualitative differences when the quenches are
performed within the ordered phase or crossing the transi-
tion point toward the disordered phase. Therefore, as already
hinted in Ref. [51], hard quench protocols may be exploited
to get evidence of phase transitions even in nonintegrable sys-
tems. It would be tempting to test whether phenomena similar
to those observed here may emerge also for other classes
of quantum transitions, which include different universality
classes or topological phase transitions.
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